
Foundational principles of reversible and quantum computing

Reversible Computing

Luca Paolini

paolini@di.unito.it

Università di Torino
Dipartimento di Informatica

October 30, 2013

Preamble 2
Entropy . 3
Reversible Logic . 4

Reversible Turing Machines 5
References . 6
TM. 7
Reversible Computing . 8
I/O semantics. 9
Inversion . 10
Reversibilization . 11
Robustness. 12
Expressiveness . 13
Universality . 14
Janus . 16

Reversible Circuit 17
References . 18
Reversible Computing . 19
Fan-out . 20
Example 1 . 21
Example 2 . 22
Gate Lines . 23
Reversibility Theorem. 24
Invertible primitives . 25
Conservative Logic . 26
Toffoli Gate . 27
Fredkin Gate . 28
Feynman Gate . 29
. . . readings . 30

1

http://www.di.unito.it/~paolini

Preamble 2 / 30

Entropy

The information-entropy à la Shannon is the average information content of an information entity (a
channel signal, a variable, ...).

Definition 1 Let B be a (not necessarily finite) type whose values are labeled b1, b2, Let ξ be a
random variable of type B that is equal to bi with probability pi. The entropy of ξ is defined as
−
∑

i pi log pi.

Definition 2 Consider a function f : B1 → B2 where B2 is a (not necessarily finite) type whose
values are labeled b12, b

2
2, , The output entropy of the function is given by −

∑
qj log qj where qj

indicates the probability of the output of the function to have value bj
2
.

Definition 3 We say a function is information-preserving whenever its output entropy is equal to the
entropy of its input.

• For instance, let true, false be the values of type Bool. Let us consider a variable ξ of type
Bool ×Bool. The information content of this variable depends on the probability distribution of the
four possible Bool ×Bool values. If we have a computational situation in which the pair
(false, false) could occur with probability 1/2, the pairs (false, true) and (true, false) can each
occur with probability 1/4, and the pair (true, true) cannot occur, the information content of ξ would
be:

1/2 log 2 + 1/4 log 4 + 1/4 log 4 + 0 log 0 = 1.5bits of information.

• If, however, the four possible pairs had an equal probability, the same formula would calculate the
information content to be 2 bits, which is the maximal amount for a variable of type Bool ×Bool .

• The minimum entropy 0 corresponds to a variable that happens to be constant with no uncertainty.

Now consider functions.

� Consider the Bool → Bool function not. Let pF and pT be the probabilities that the input is
false or true respectively. The outputs occur with the reverse probabilities, i.e., pT is the
probability that the output is false and pF is the probability that the output is true. Hence the
output entropy of the function is −pF log pF − pT log pT which is the same as the input entropy
and the function is information-preserving.

� As another example, consider the Bool → Bool function constT (x) = true which discards its
input. The output of the function is always true with no uncertainty, which means that the
output entropy is 0, and that the function is not information-preserving.

� As a third example, consider the function and and let the inputs occur with equal probabilities,
viz. let the entropy of the input be 2. The output is false with probability 3/4 and true with
probability 1/4, which means that the output entropy is about 0.8 and the function is not
information-preserving.

� As a final example, consider the Bool → Bool ×Bool function fan-out(x) = (x, x) which
duplicates its input. Let the input be false with probability pF and true be probability pT . The
output is (false, false) with probability pF and (true, true) with probability pT which means that
the output entropy is the same as the input entropy and the function is information-preserving.

2

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 3 / 30

Reversible Logic

As we pack more and more logic elements into smaller and smaller volumes and clock them at higher
and higher frequencies, we dissipate more and more heat. This creates at least three problems:

� Energy costs money (throughput).
� Portable systems exhaust their batteries (stockpiling).
� Systems overheat (disposal).

When a computational system erases a bit of information, it must dissipate ln 2× kT energy, where k
is Boltzmann’s constant and T is the temperature.
For T = 300 Kelvins (room temperature), this is about 2.9× 10−21 joules (roughly the kinetic energy
of a single air molecule at room temperature).

Today’s computers erase a bit of information (in the sense used here) every time they perform a logic
operation. These logic operations are therefore called ”irreversible.” This erasure is done very
inefficiently, and much more than kT is dissipated for each bit erased.

Reversible Logic is also known as Charge Recovery Logic or Adiabatic Logic.

“Turing hoped that his abstracted-paper-tape model was so simple, so transparent and
well defined, that it would not depend on any assumptions about physics that could
conceivably be falsified, and therefore that it could become the basis of an abstract theory
of computation that was independent of the underlying physics. ‘He thought,’ as Feynman
once put it, ‘that he understood paper.’ But he was mistaken. Real, quantum-mechanical
paper is wildly different from the abstract stuff that the Turing machine uses. The Turing
machine is entirely classical, and does not allow for the possibility the paper might have
different symbols written on it in different universes, and that those might interfere with
one another.”

The above quote by David Deutsch, originally stated in the context of quantum computing, stems
from the observation that even the most abstract models of computation embody some laws of
Physics. Indeed, conventional classical models of computation, including boolean logic, the Turing
machine, and the λ-calculus, are founded on primitives which correspond to irreversible physical
processes.
For example, a NAND gate is an irreversible logical operation in the sense that its inputs cannot
generally be recovered from observing its output, and so is the operation of overriding a cell on a
Turing machine tape with a new symbol, and so is a β-reduction which typically erases or duplicates
values in a way that is destructive and irreversible. Reversible computation models have been studied
in widely different areas ranging from cellular automata, program transformation concerned with the
inversion of programs, reversible programming languages, the view-update problem in bidirectional
computing and model transformation, static prediction of program properties, digital circuit design, to
quantum computing.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 4 / 30

3

Reversible Turing Machines 5 / 30

References

Slides in this Section are based on:

Holger Bock Axelsen and Robert Glück. What do reversible programs compute? In Proceedings of the

14th international conference on Foundations of software science and computational structures: part

of the joint European conferences on theory and practice of software, FOSSACS’11/ETAPS’11, pages
42–56. Springer-Verlag, 2011

where more references can be found.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 6 / 30

4

Triple-format TM

The computation models that form the basis of programming languages are usually deterministic in
one direction (forward), but non-deterministic in the opposite (backward) direction.

Reversible computing is the study of computation models wherein all computations are organized
two-way deterministically, without any logical information loss.

Definition 4 (3TM) A (non-deterministic) turing machine T is a tuple (Q,Σ, δ, b, qs, qf) where

� Q is a finite set of states,
� Σ is a finite set of tape symbols and b ∈ Σ is the blank symbol,
� δ ⊆ (Q× [(Σ× Σ) ∪ {L,N,R}]×Q) = ∆ is a partial relation defining the transition relation,
� qs ∈ Q is the starting state, and qf ∈ Q is the final state.

There must be no transitions leading out of qf . There must be no transition leading into qs. Symbols
L,N,R represent the three shift directions.

It is easy to see how to extend the definition to k-tape machines by letting

δ ⊆ (Q× [(Σ× Σ)k ∪ {L,N,R}k]×Q).

Definition 5 (Configuration) . The configuration of a TM is a tuple

(q, (l, s, r)) ∈ Q× (Σ∗ × Σ× Σ∗) = C,

where q ∈ Q is the internal state, l, r ∈ Σ∗ are the parts of the tape to the left and right of the tape
head represented as strings, and s ∈ Σ is the symbol being scanned by the tape heada.

A TM T = (Q,Σ, δ, b, qs, qf) in configuration C ∈ C, leads to configuration C ′ ∈ C, written as
T ⊢ C ❀ C ′, defined for s, s′ ∈ Σ, l, r ∈ Σ∗ and q, q′ ∈ Q by

T ⊢ (q, (l, s, r)) ❀ (q′, (l, s′, r)) if (q, (s, s′), q′) ∈ δ,
T ⊢ (q, (ls′, s, r)) ❀ (q′, (l, s′, sr)) if (q, L, q′) ∈ δ,
T ⊢ (q, (l, s, r)) ❀ (q′, (l, s, r)) if (q,N, q′) ∈ δ,
T ⊢ (q, (l, s, s′r)) ❀ (q′, (ls, s′, r)) if (q,R, q′) ∈ δ.

aWhen describing tape contents we shall use the empty string ǫ to denote the infinite string of blanks b
ω, and shall

usually omit it when unambiguous.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 7 / 30

5

Reversible Computing

Definition 6 Let T = (Q,Σ, δ, b, qs, qf) be a TM.

� T is locally forward deterministic iff for any distinct pair of transition rule triples
(q1, a1, q

′

1), (q2, a2, q
′

2) ∈ δ, if q1 = q2 then a1 = (s1, s
′

1) and a2 = (s2, s
′

2), and s1 6= s2.

� T is locally backward deterministic iff for any distinct pair of triples (q1, a1, q
′

1), (q2, a2, q
′

2) ∈ δ, if
q′1 = q′2 then a1 = (s1, s

′

1) and a2 = (s2, s
′

2), and s′1 6= s′2.

Definition 7 A TM T is reversible whenever it is locally forward and backward deterministic.

The reversible Turing machines (RTMs) are thus a proper subset of the set of all TM, with an easily
decidable property.

Lemma 1 If T is a RTM then the induced computation step relation T ⊢ · ❀ · is an injective
function on configurations.

Proof. Trivial, since the backward determinism and conditions on qs, qf .!

� Consider a TM with states {qs, qf}, with alphabet {0, 1, b} and with transitions

{(qs, (1, 0), qs); (qs, (0, 0), qf)}.

It is a RTM?

It is easy to check that this TM is not injective on configurations, viz. (qs, (ǫ, 0, ǫ)) and (qs, (ǫ, 1, ǫ))
reduce both to (qF , (ǫ, 0, ǫ)).

We shall consider the relationship mainly between deterministic and reversible Turing machines. Thus,
all TMs are assumed to be fwd deterministic.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 8 / 30

6

I/O semantics

Definition 8 A tape containing one finite, blank-free string s ∈ (Σ\{b})∗ is said to be given in
standard configuration for a TM (Q,Σ, δ, b, qs, qf) iff the tape head is positioned to the immediate left
of s on the tape, i.e. if for some q ∈ Q, the configuration of the TM is (q, (ǫ, b, s)).

The semantics JT K of a TM T = (Q,Σ, δ, b, qs, qf) is given by the relation

JT K = {(s, s′) ∈ ((Σ\{b})∗ × (Σ\{b})∗) | T ⊢ (qs, (ǫ, b, s)) ❀
∗ (qf , (ǫ, b, s

′))}.

To differentiate between extensional and intensional aspects, we shall write T (x) to mean the
computation of JT K(x) by the specific machine T . We say that T computes function f iff JT K = f .

Thus, the string transformation semantics of a TM T has type

JT K : Σ∗ ⇀⇀⇀ Σ∗.

Theorem 1. If T is an RTM then JT K is injective.

Proof. The proof follows by Lemma 1. Remark that we are just considering a functional relation (a
partial function).!

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 9 / 30

7

Inversion

It is well-known that if f is a computable injective function then f−1 is still computable.

Lemma 2 Given a TM T computing an injective function JT K there exists a TM M(T), such that
JM(T)K = JT K−1.

Lemma 3 Given a RTM T = (Q,Σ, δ, b, qs, qf), the RTM T−1 = (Q,Σ, inv(δ), b, qf , qs) computes
the inverse function of JT K, i.e. JT−1K = JT K−1, where inv : ∆ → ∆ is defined as

inv(q, (s, s′), q′) = (q′, (s′, s), q) inv(q, L, q′) = (q′, R, q)
inv(q,N, q′) = (q′, N, q) inv(q,R, q′) = (q′, L, q)

Questions: Are RTM turing-complete? Are RTM and TM equivalent?

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 10 / 30

Reversibilization

Lemma 4 Landauer embedding Given a 1-tape TM T = (Q,Σ, δ, b, qs, qf), there is a 2-tape RTM

L(T) such that JL(T)K : Σ∗ ⇀ Σ∗ ×R∗, and JL(T)K
def

= λx.(JT K(x), trace(T, x)), where trace(T, x)
is a complete trace of the specific rules from δ (enumerated as R) that are applied during the
computation T (x).

The trace is machine-specific. Given functionally equivalent TMs T1 and T2, i.e., JT1K = JT2K, it will
almost always be the case that JL(T1)K 6= JL(T2)K.
The addition of the trace also changes the space consumption of the original program.

It is preferable that an injectivization generates extensional garbage data (specific to the function)
rather than intensional garbage data (specific to the machine), since we would like to talk about
semantics and ignore the mechanics and data-representation. This is attained in a Lemma, known
colloquially as “Bennett’s trick.”

Lemma 5 Bennet embedding Given a 1-tape TM T = (Q,Σ, δ, b, qs, qf), there exists a 3-tape
RTM B(T), s.t. JB(T)K = λx.(x, JT K(x)).

While the construction (shown below) is defined for 1-tape machines, it can be extended to Turing
machines with an arbitrary number of tapes.
It is important to note that neither Landauer embedding nor Bennett’s method are semantics
preserving as both reversibilizations lead to garbage: JL(T)K 6= JT K 6= JB(T)K. References are:

� Rolf Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.,
5(3):183–191, 1961

� Charles H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17(6):525–532, 1973

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 11 / 30

8

Robustness

The Turing machines are remarkably computationally robust. Using multiple symbols, tapes, heads
etc. has no impact on computability.

Theorem Let T be a k-tape, m-symbol RTM. Then there exists a 1-tape, 3-symbol RTM T ′ s.t.
JT K(x1, . . . , xk) = (y1, . . . , yk) iff JT K(e(〈x1, ..., xk〉)) = e(〈y1, ...yk〉), where 〈·〉 is the
character-sequentialization of tape contents, and e(·) is a binary encoding.

Robusteness-proofs are not too different from the classic ones.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 12 / 30

9

Expressiveness

By Theorem 1 the RTMs compute only injective functions, but we can say something more.

Theorem Given a 1-tape TM S1 s.t. JS1K is injective, and given a 1-tape TM S2 s.t.
JS2K = JS1K

−1, there exists a 3-tape RTM T s.t. JT K = JS1K.

Theorem 5. The RTMs can compute exactly all injective computable (partial) functions. That is,
given a 1-tape TM T such that JT K is an injective function, there is a 3-tape RTM T ′ such that
JT K = JT ′K.

Proof. We construct and concatenate three RTMs (see Fig. 1 below, for a graphical representation.)
First, construct B(T) by applying Lemma 5 directly to T :

JB(T))K = λx.(x, JT K(x)), B(T) ∈ RTM

Second, construct the machine B(M(T))−1 by successively applying the transformations of Lemmas
2, 5 and 3 to T :

JB(M(T))−1K = (λy.(y, JT K−1(y)))−1, B(M(T))−1 ∈ RTM

Third, we can construct an RTM S, s.t. JSK = λ(a, b).(b, a), that is, a machine to exchange the
contents of two tapes (in standard configuration). To see that JB(M(T))−1 ◦ S ◦B(T)K = JT K, we
apply the machine to an input, x:

JB(M(T))−1 ◦ S ◦B(T)K(x)
= JB(M(T))−1 ◦ SK(x, JT K(x))
= JB(M(T))−1K(JT K(x), x))
= (λy.(y, JT K−1(y)))−1(JT K(x), x)
= (λy.(y, JT K−1(y)))−1(JT K(x), JT K−1(JT K(x)))
= JT K(x).

!

Thus, the RTMs can compute exactly all the injective computable functions. This suggests that the
RTMs have the maximal computational expressiveness we could hope for (in any (effective) reversible
computing model).

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 13 / 30

10

Universality

A universal machine is a machine that can simulate the functional behaviour of any other machine.

Definition 9 Classical universality. A TM U is classically universal iff for all TMs T, all inputs
x ∈ Σ∗, and Gödel number pTq ∈ Σ∗ representing T : JUK(pTq, x) = JT K(x).

The actual Gödel numbering p q : TMs → Σ∗ for a given universal machine is not important, but we
do require that it is computable and injective (up to renaming of symbols and states).
Because JUK in this definition is a non-injective function, it is clear that no classically universal RTM
exists! Maybe, the appropriate question to ask is whether the RTMs are classically universal for just
their own class, i.e. where the interpreted machine T is restricted to being an RTM.

The answer is, again, NO:

Remark Different programs may compute the same function, so there exists RTMs T1 = T2 such
that JT1K(x) = JT2K(x), but U ∈ RTM must be inherently non-injective, and therefore JUK cannot be
computed by any RTM.

The classic definition of universality is therefore unsuitable if we want to capture a similar notion wrt
RTMs.

Definition 10 (Universality). A TM UTM is universal iff for all TMs T and all inputs x ∈ Σ∗,

JUTM K(pTq, x) = (pTq, JT K(x)).

This is equivalent to the original definition of classical universality.
Given UTM universal UTM , snd ◦ UTM is classically universal, where snd is a TM s.t.
JsndK = λ(x, y).y. The converse is easy.

Definition 11 An RTM URTM is RTM-universal iff for all RTMs T and all inputs x ∈ Σ∗,

JURTM K(pTq, x) = (pTq, JT K(x)).

Theorem There exists an RTM-universal RTM UR.

Proof. We show that an RTM UR exists, such that for all RTMs T , JURK(pTq, x) = (pTq, JT K(x)).
Clearly, JURK is a computable function, since T is a TM (so JT K is computable), and pTq is given as
input. We show that JURK is injective.
Assuming (pT1q, x1) 6= (pT2q, x2) we show that (pT1q, JT1K(x1) 6= (pT2q, JT2K(x2).
Either pT1q 6= pT2q or x1 6= x2 or both. Because the program text is passed through to the output,
the first and third cases are trivial. Assuming that x1 6= x2 and pT1q = pT2q, we have that
JT1K = JT2K, i.e. T1 and T2 are the same machine, and so compute the same function. Because they
are RTMs this function is injective (by Theorem 1), so x1 6= x2 implies that JT1K(x1) 6= JT2K(x2).
Therefore, JURK is injective, and by Theorem 5 computable by some RTM UR.!

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 14 / 30

11

Universality (2)

Given an irreversible TM computing the function of RTM-universality, Theorem 5 provides us with a
possible construction for an RTM-universal RTM. In any case the construction uses the very
inefficient generate-and-test inverter by McCarthy. We can do better.

Lemma There exists an RTM pinv, such that pinv is a program inverter for RTM programs,

JpinvK(pT1q) = pT−1

1
q.

This states that the RTMs are expressive enough to perform the program inversion of Lemma 3. For
practical Gödelizations this will only take linear time.

Theorem Let U be a classically universal TM s.t. JUK(pTq, x) = JT K(x) for all TM T . We can
define the following RTM-universal machine UR

UR = pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U),

where pinv1 is an RTM that applies RTM program inversion on its first argument,
Jpinv1K(p, x, y) = (JpinvK(p), x, y) , and S23 is an RTM that swaps its second and third arguments,
JS23K = λ(x, y, z).(x, z, y).

Proof. We must show that JURK(pTq, x) = (pTq, JT K(x)) for any RTM T . To show this, we apply
UR to an input (pTq, x).

JURK(pTq, x) = Jpinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U)K(pTq, x)
= Jpinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1K(pTq, x, JT K(x))
= Jpinv1 ◦ (B(U))−1 ◦ S23K(pT

−1
q, x, JT K(x))

= Jpinv1 ◦ (B(U))−1K(pT−1
q, JT K(x), x)

= Jpinv1K(pT
−1

q, JT K(x))
= (pTq, JT K(x))

The reasoning is presented in the figure.

!

Note that this implies that RTMs can simulate themselves exactly as time efficiently as the TMs can
simulate themselves, but the space usage of the constructed machine will, by using Bennett’s method,
be excessive. However, there is nothing that forces us to start with an irreversible (universal) machine,
when constructing an RTM-universal RTM, nor are reversibilizations necessarily required ...

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 15 / 30

12

Janus

Definition 12 A (reversible) programming language R is called r-Turing complete iff for all RTMs T
computing function JT K, there exists a program p ∈ R, such that JpKR = JT K.

Tipically this can be proved likewise the classic proofs, viz. by programming a “universal interpreter”
and by remarking that the application of the “universal interpreter” to a representation of T is still a
program of the considered programming language.

This has been done for the language Janus ...

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 16 / 30

Reversible Circuit 17 / 30

References

Slides in this Section are based on:

Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on Automata,

Languages and Programming, pages 632–644. Springer-Verlag, 1980

where more references can be found. See also:

E. F. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics,
21(3/4):219–253, 1982.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 18 / 30

13

Reversible Computing

Concrete computation - whether by man or by machine - is a physical activity, and is ultimately
governed by physical principles. One important role for mathematical theories of computation is to
grasp in their axioms, in a stylized way, certain facts about the ultimate physical realizability of
computing processes.
... albeit phisics theories which are (today) unsuitable for the realization of computating devices can
be mathematically interesting by itself.

TM embodies in a heuristic form the axioms of computability theory.

In contrast to the opinion of David Deutsch, Edward Fredkin and Tommaso Toffoli sustain what
follows.

From Turing’s original discussion (1936) it is clear that he intended to capture certain
general physical constraints to which all concrete computing processes are subjected, as
well as certain general physical mechanisms of which computing processes can undoubtedly
avail themselves.

At the core of Turing’s arguments, or, more generally, of Church’s thesis, are the following physical
assumptions.

� P1. The speed of propagation of information is bounded. (No ”action at a distance”: causal
effects propagate through local interactions.)

� P2. The amount of information which can be encoded in the state of a finite system is bounded.
(This is suggested by both thermodynamical and quantum-mechanical considerations.)

� P3. It is possible to construct macroscopic, dissipative physical devices which perform in a
recognizable and reliable way the logical functions AND, NOT, and FAN-OUT. (This is a
statement of technological fact.)

Additional axioms can be suggested from empirical observation (physical, chemical, biological, ...) to
improve, the computational implementation, in some way.

Different axioms can be suggested from new empirical theories (not only of physics) to include new
kind of computational devices between the our computing machinary.

One of the strongest motivations for the study of reversible computing comes from the desire to
reduce heat dissipation in computing machinery, and thus achieve higher density and speed. Briefly,
while the microscopic laws of physics are presumed to be strictly reversible, abstract computing allow
irreversible processes.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 19 / 30

Fan-out (Duplicazione)

The process of generating multiple copies of a given signal must be treated with particular care when
reversibility is an issue (moreover, from a physical viewpoint this process is far from trivial).

For this reason, in all that follows we shall restrict the meaning of the term ”function composition” to
one-to-one composition, where any substitution of output variables for input variables is one-to-one.

Thus, any fan-out node in a given function-composition scheme will have to be treated as an explicit
occurrence of a fanout function of the form 〈x〉 7→ 〈x, ..., x〉. Intuitively, the responsibility for
providing fanout is shifted from the composition rules to the computing primitives.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 20 / 30

14

Example 1

Not all boolean circuit are reversible.

x y1 y2
0 0 0
1 1 1

x

y1

y2

fan-out

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

x1

x2

y

xor

Neither of these functions is invertible.

� fan-out is not surjective, since, for instance, the output 〈0, 1〉 cannot be obtained for any input
value;

� xor is not injective, since, for instance, the output 0 can be obtained from two distinct input
values, 〈0, 0〉 and 〈1, 1〉.

Yet, both functions admit an invertible realization.

c x y1 y2

0 0 0 0

0 1 1 1
1 0 1 0
1 1 0 1

x

c = 0

y1
y2

fan-out

c x y1 y2
0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

y1 = x1 ⊕ x2

y2(= x)

c

x

xor

In what follows, we collectively call the source the auxiliary input components that have been used in
a realization, such as component c (for the gate fan-out), and the sink the auxiliary output
components such as g (for the gate xor).
The remaining input components will be collectively called the argument, and the remaining output
components, the result.

In general, both source and sink lines will have to be introduced in order to construct an invertible
realization of a given function.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 21 / 30

15

Example 2

x y

0 1
1 0

not

x x̄

x1 x2 y

0 0 0
0 1 0
1 0 0
1 1 1

and

x1

x2
y = x1x2

For example, from the invertible function and/nand defined by the table the and function can be
realized with one source line and two sink lines.

c x1 x2 y g1 g2
0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

y = x1x2

g 1
(=

x
1
)

g 2
(=

x
2
)

x1
x2

c = 0

Reusing the xor/fanout:

x c y c′

0 0 0 0

0 1 1 1
1 0 1 0

1 1 0 1

y = x̄

c′(= c)

x

c = 1

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 22 / 30

16

Gate Lines

Observe that in order to obtain the desired result the source lines must be fed with specified constant
values, i.e., with values that do not depend on the argument. As for the sink lines, some may yield
values that do depend on the argument and thus cannot be used as input constants for a new
computation; these will be called garbage lines.
On the other hand some sink lines may return constant values (indeed, this happens whenever the
functional relationship between argument and result is itself an invertible one).
To give a trivial example, suppose that the not function, which is invertible, were not available as a
primitive. In this case one could still realize it starting from another invertible function, e.g., from the
xor/fan-out function; note that here the sink, c′, returns in any case the value present at the
source, c.

Definition 13 If there exists between a set of source lines and a set of sink lines an invertible
functional relationship that is independent of the value of all other input lines, then this pair of sets
will be called a temporary-storage channel.

Using the terminology just established, we shall say that the above realization of the fan-out
function by means of an invertible combinational function is a realization with constants, that of the
xor function, with garbage, that of the and function, with constants and garbage, and that of the
not function, with temporary storage (for the sake of nomenclature, the source lines that are part of
a temporary-storage channel will not be counted as lines of constants).

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 23 / 30

Reversibility Theorem

According to the following theorem, any finite function can be realized in this way starting from a
suitable invertible one.

Theorem For every finite funcfion φ : Bm → Bn there exists an invertible finite function
f : Br ×Bm → Bn ×Br+m−n, with r ≤ n, such that

f〈0, . . . , 0
︸ ︷︷ ︸

r

, x1, . . . , xm〉 = φi〈x1, . . . , xm〉, (i = 1, . . . , n).

Proof. It suffices to add the input to the output.!

In general, given any finite function one obtains a new one by assigning specified values to certain
distinguished input lines (source) and disregarding certain distinguished output lines (sink).

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 24 / 30

17

Invertible primitives

It is well known that, under the ordinary rules of function composition, the two-input nand element
constitutes a universal primitive for the set of boolean functions.

Lemma There are primitive sets of universal reversible gates.

Proof. In the theory of reversible computing, a similar role is played by the and/nand element: if
c = 0 then y = x1x2 (their and), if c = 1 then y = x1x2. Thus, as long as one supplies a value of 1
to input c and disregards outputs g1 and g2, the and/nand element can be substituted for any
occurence of a nand gate in an ordinary logic circuit.
In spite of having ruled out fan-out as an intrinsic feature provided by the composition rules, one can
still achieve it as a function realized by means of an invertible primitive such as the xor/fan-out
element: if c = 0 then x = y1 = y2.

Recall that finite composition always yields invertible functions when applied to invertible functions.

Therefore, using the set of invertible primitives consisting of the xor/fan-out element and the
and/nand element, any classical circuit can be immediately translated into a reversible one which,
when provided with appropriate input constants, will reproduce the behavior of the original network.

Indeed, even the set consisting of the single element and/nand is sufficient for this purpose, since
xor/fan-out can be obtained from and/nand, with one line of temporary storage, by taking
advantage of the mapping 〈1, p, q〉 7→ 〈1, p, p⊕ q〉. !

In the element-by-element substitution procedure outlined above, the number of source and sink lines
that are introduced is roughly proportional to the number of computing elements that make up the
original network.

To achieve a less wasteful realization:

� one can augment the network to make correlated signals interfere with one another and produce a
number of constant signals instead of garbage

� these constants can be used as source signals in other parts of the network.

In this way, the overall number of both source and sink lines can be reduced.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 25 / 30

18

Conservative Logic

Universal logic capabilities can still be obtain even if one restricts attention logic circuit that, in
addition to being reversible, conserve in the output the number of 0’s and 1’s that are present at the
input. The study of such networks is part of a discipline called conservative logic.
In conservative logic, all data processing is ultimately reduced to conditional routing of signals.
Roughly speaking, signals are treated as unalterable objects that can be moved around in the course
of a computation but never created or destroyed. The basic primitive of conservative logic is the
Fredkin gate, defined by the table

c x1 x2 c′ y1 y2
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

This computing element can be visualized as a device that performs conditional crossover of two data
signals x1 and x2 according to the value of a control signal c.
In order to prove the universality of this gate as a logic primitive for reversible computing, it is
sufficient to observe that and can be obtained from the mapping 〈p, q, 0〉 7→ 〈p, pq, p̄q〉, and not and
fan-out from the mapping 〈p, 1, 0〉 7→ 〈p, p, p̄〉.

The conservative logic models some preservation of physics, in particular a physical realization of the
Fredkin gate based on elastic collisions in the billiard ball model of computing.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 26 / 30

19

Toffoli Gate

Toffoli Gate is also called CCNOT (acronym of controlled-controlled-not).

c0 c1 x y0 y1 r

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

c0 y0 = c0

c1 y1 = c1

x r = c0c1 ⊕ x

It is easy to see that the Toffoli gate is universal, since and and not can be repesented by:

� if c0 = 1 and c1 = 1 then r = x̄,
� if x = 0 then r = c0c1.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 27 / 30

Fredkin Gate

A (variant of) Fredkin Gate (also CSWAP gate, viz. controlled-swap) is also universal.

c x1 x2 c′ y1 y2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

c c′ = c

x1 y1 = c̄x1 ⊕ cx2

x2 y2 = cx1 ⊕ c̄x2

It is easy to see that the Fredkin gate is universal, since and and not can be repesented by:

� if x2 = 0 then y2 = cx1;
� if x1 = 0 and x2 = 1 then y2 = c̄

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 28 / 30

20

Feynman Gate

Last, Feynman-gate is another useful reversible gate.

c x1 x2 c′ y1 y2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 0

c c′ = c

x1 y1 = c⊕ x1

x2 y2 = c⊕ x2

It is easy to see that the Feynman gate is not universal, because and cannot be represented.a

A not gate can be implemented as follows:
if c = 0 then y1 = x̄1 (and y2 = x̄2).

a An argument against xor and xnor as universal gates. An xor gate is a parity generator. Cascading parity

generators always produce parity generators. and and or are not parity functions. An xor gate can be used as an

inverter. An xnor gate is an xor followed by an inverter, so it is also a parity generator.

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 29 / 30

. . . readings

Interesting books are

Kalyan S. Perumalla. Introduction to Reversible Computing. Chapman Hall, CRC Computational
Science, 2013

Alexis De Vos. Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley,
2010

Luca Paolini: Reversible Computing Lezioni PhD, 2013 – 30 / 30

21

	Preamble
	Entropy
	Reversible Logic

	Reversible Turing Machines
	References
	TM
	Reversible Computing
	I/O semantics
	Inversion
	Reversibilization
	Robustness
	Expressiveness
	Universality
	Janus

	Reversible Circuit
	References
	Reversible Computing
	Fan-out
	Example 1
	Example 2
	Gate Lines
	Reversibility Theorem
	Invertible primitives
	Conservative Logic
	Toffoli Gate
	Fredkin Gate
	Feynman Gate
	…readings

