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Abstract

The evolution of the Web into a collaborative and social platform where identities, resources,

and services are sewn together by networks of people have revolutionized the way to communicate

and search through the Internet. Information and ideas are increasingly originated by the “long

tail” of Web users and are capillary spread through the online connections of the new-generation

social media. Understanding and modeling the dynamics of information flows and of interpersonal

interactions in online social media has become increasingly necessary to retrieve the relevant data

from such information-overloaded environments and to offer effective search and personalization

services. On the other hand, in a scenario where the quality of services increases with the amount

of data provided by the users, serious privacy issues arise about the management, the use, and the

diffusion of personal user data on the Web.

In this work we explore the orthogonal axes of services and privacy in social media and in

search engines. Relying on data mining and complex systems analysis techniques we investigate

the evolutionary dynamics of social and search systems with a focus on similarity patterns between

users, correlations between activity indicators, homophily and social influence. Empirical findings

from data-driven analysis allowed us to develop accurate prediction and recommendation tech-

niques. In particular, we propose and discuss several flavors of link recommendation algorithms

for social networks and we put the basis for the prediction of future user activity in conventional

search engines. A new scheme of social search engine is also proposed to tackle the information

overload in search from a collaborative perspective. Besides, we explore the dimension of privacy

by surveying the hazards of personal data exploitation and leakage and proposing an architecture

to support privacy-aware social networks and applications. We rely on a decentralized paradigm

that effectively tackles privacy issues with strong network-level security devices and flexible access

control mechanisms. Furthermore, we show that typical applications widely used in centralized so-

cial systems and search engines can be efficiently implemented and maintained on our decentralized

platform.
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Preamble

This work presents the original research results of a three-year PhD program in Computer Sci-

ence. The exposed findings belong to multidisciplinary research areas including analysis of complex

online systems, collaborative and centralized search, peer-to-peer overlays, network security, and

privacy-aware design of online social networks. The work is structured in three Parts.

Part I is focused on the analysis of information overloaded online systems such as social net-

works and search engines. Using techniques from complex systems analysis and data mining

we discover hidden patterns in the data describing the dynamics of evolution of such socio-

technological systems. A proper exploitation of the emerging patterns can help to win the infor-

mation overload problem for both providers and consumers, thus fueling a virtuous circle where

users participate more actively to get more high-quality personalized services back. One of the

main themes of this part will be a study on the possibility to make predictions on the evolution

of such complex systems at both macroscopic and microscopic scales.

More in detail, introductory Chapters 1 and 2 present the context on information overload in

social media and search systems and outline the basic techniques of social networks and complex

systems analysis that are used later in the thesis. Based on the data extracted from many social

media different in size and scope, we analyze the patterns of the evolution of online networked

environments (Chapter 3) and the phenomena of homophily and influence occurring between

the individuals in the network (Chapter 4). The possibility of predicting the creation of new social

links in a network is explored in Chapter 5. The context of information overload in search engines is

discussed in Chapter 6, where we show the potential of a topical user profiling in predicting future

search activity. Finally, the strength of collaborative paradigm in overcoming the information

overload in search systems is discussed in Chapter 7.

Part II deals with the privacy problems emerging in online social media. The growing volume

of data gathered by online social networks has led to a dramatic collision between private, public

and commercial spheres that have become very strictly connected. To address the issues of user

information exploitation and leakage we propose a distributed architecture for social networking

which reaches a good trade-off between the often conflicting requirements of security, privacy, and

quality of service.

In Chapter 8 we present the problem and the major former attempts to solve it. In Chapter 9 we

overview the state of the art of purely decentralized peer-to-peer systems and of their security

issues. Then we describe, in a bottom-up fashion, all the architectural components we introduce

to support privacy-preserving social networks, namely a secure DHT (Chapter 10), a suite of

privacy and access control services (Chapter 11), and a collaborative search application that

can efficiently work on the top of the stack and provide all the functions that are typically available

in a centralized context (Chapter 12).

Part III concludes by outlining some new perspectives and challenges in the analysis and ex-

ploitation of complex online systems. We discuss the increasing entanglement between real and

online worlds and the reciprocal effects that they have one another. Also, we show the outcome of
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an experiment on popularity and influence in social media that reveals an interesting perspective

on the usage patterns of social networks and highlights hazards given by some vulnerabilities of

online social tools. Since the obtained results are not dependent on the architectural type of the

social platform in use (centralized or peer-to-peer), they help to outline new challenges that are

intrinsic to the social substrate and go beyond the privacy issues related to the techniques of user

data management.

The material composing this thesis is drawn in large part from original publications of the

candidate. Part I includes the contributions of the following papers:

• Link creation and profile alignment in the aNobii social network (SocialCom 2010) [8]

• Friendship prediction and homophily in social media (TWEB 2011) [16]

• Tagging relations to achieve complex search goals (NWeSP 2011) [298]

• Behavior-driven clustering of queries into topics (CIKM 2011) [10]

• Dynamics of link creation and information spreading over social and communication networks

(submitted to TIST) [9]

Part II reports the results of the following publications:

• Tempering Kademlia with a Robust Identity Based System (P2P 2008) [11]

• Avoiding eclipse attacks on Kad/Kademlia: an identity based approach (ICC 2009) [213]

• Tagging with DHARMA, a DHT-based Approach for Resource Mapping through Approxi-

mation (HOTP2P 2010) [12]

• Secure and Flexible Framework for Decentralized Social Network Services (SeSoc 2010) [14]

• An identity-based approach to secure P2P applications with Likir (P2P Applications 2011) [13]

• LotusNet: tunable privacy for distributed online social network services (ComCom 2012) [15]
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Ruling information overload with

online search and social systems
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Chapter 1

Information overload in the social

network era

Future shock is the shattering stress and disorientation that we induce in individuals by

subjecting them to too much change in too short a time.

Alvin Toffler, writer and futurist (1970)

The Future Shock is the formula used by Alvin Toffler to define the upsetting effect that

information overload has on human mind. Information overload affects the ability of a person

to take rational decisions or adopt rational behavior when she is subject to a great amount of

data or when she is “plunged into a fast and irregularly changing situation, or a novelty-loaded

context” [325]. In other words, when the amount of available information grows too much, the

decision-making capability of an individual is shattered and could bring to a state of behavioral

paralysis (Figure 1.1).

The term, “information overload” popularized by Toffler in his extensive work discussing the

impact of the digital revolution on social and personal life, was known even before the so-called

Information Era. The traits of the information revolution brought by the World Wide Web and

its implications on the explosion of the amount of data accessible by any person connected to the

Internet went even far beyond Toffler’s imagination.

We can detect three macro-steps in the history of the Web that determined radical changes in

the way we collect information from it. First, at the end of the 90s, the exponential rise of the

number of Web pages induced the need for increasingly sophisticated tools for indexing and search;

online search engines experienced an explosive growth of usage in a few years [157] and they soon

became the main access points for the retrieval of online information. The second phase came before

the mid of 2000s, with the rise of the Web 2.0 paradigm [253]. The Web quickly shifted from the

publisher-consumer structure (few providers producing content for the crowds) to a collaborative

paradigm where every user can actively participate the Web and become a content contributor,

using new instruments like Wikipedia, microblogging, or collaborative tagging systems. Last, the

4
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Figure 1.1: Pictorial representation of the information overload. The quality of a decision depends

on the amount of the information available about the context in which the decision must be taken.

Up to a certain threshold, richer information implies higher quality decisions. Above that threshold,

the amount of information to be processed is too high for a human mind. As a consequence, every

additional piece of information reduces the quality of the decision because the mind is forced to

take mental shortcuts, thus risking over-generalization and an over-selection that often ends up in

confirming prior points of view [309].

most recent stage of evolution of the Web is the transition between Web 2.0 and the so-called Social

Web, that can be symbolically traced to the 2008 event of Facebook overtaking MySpace in terms

of Internet traffic [19]. Since then, the growth of the social media has been explosive [145, 274] and

social tools like Facebook, Twitter, LinkedIn, and Google+ (just to mention some of the major

online social networks) have become the main means of interaction and information dissemination

and acquisition for Web users [254, 166].

In a world where social experiences are augmented (when not replaced) by online social media,

and every single user of the Web can generate, process and convey information, the problem of

information overload becomes extremely difficult to manage. In fact, such countless data sources

imply an extremely high rate of resource creation and an enormous redundancy in the publicly

available information. By this time, information overload not only affects the individuals exposed

to this plentiful stream of data, but neither entire organizations nor the processing capacity of the

most advanced computer clusters are able to digest and synthesize the full corpus of data in some

extremely information-overloaded domains like Web search and information exchange on online

social media.

Such great data availability represents an opportunity that has never been experienced before.

In first place, scientists can support their social interaction theories with data-driven analysis on

extensive datasets. But mastering efficient techniques for data filtering, mining, and analysis has

become a necessity also for service providers and, as a consequence, for their clients. Service

providers need fast tools to understand the relevant information emerging from their user base so

that they can predict some aspects of the evolution of the system and provide new services and,

5



CHAPTER 1. Information overload in the social network era

possibly, make profit from them. On the other hand, consumers need support to filter data in a

clever way to optimize their information gain.

There are two main paths can be followed to seize this opportunity. The first is the produc-

tion of automatic data analysis techniques to unveil hidden patterns and model the dynamics of

an information overloaded system. In this work we will extensively discuss and explore several

networked systems that can be effectively analyzed through complex systems analysis techniques.

The latter is to leverage the user mass to filter and redirect the information using the human

computing power. This approach has the advantage that, in some contexts, human judgment can

retrieve some relations between resources and facts that can be hardly recognized by automated

procedures.

The main contribution of this Part is to show how information overload in complex web-based

systems (e.g., social networks, social media, search portals, an so on) can be limited, channeled,

and managed. We will describe how the general dynamics of a social system can be understood,

modeled, and predicted using techniques from social network analysis, complex system analysis,

data mining, and machine learning. We also show how the collaborative paradigm can be exploited

to contrast information overload.

We want to show that there is a self-powered loop (or virtuous circle) between the amount of

involvement of the user in a web service (in terms of data shared and human-computing power)

and the services that the users can have back. In fact, service providers who have enough data

are enabled to provide services like recommendation of new items or social contacts, and if there

is enough participation of the users they can build innovative collaborative systems for smart

information sharing and filtering.

More in detail, the structure of this Part is the following. First, in Chapter 2 we provide

an overview on the techniques and tools for social network mining, and we report some of the

major outcomes in complex systems analysis and modeling. In Chapter 3 we start a systematic

study of the structure and dynamics of three different social media, discussing invariants and

peculiarities of their evolutionary traces. In Chapter 4 we delve into the dynamics of link creation

and profile alignment in the social network; in particular we find strong evidence of the presence

of homophily-driven attachment and social influence and a reciprocal causality between the two

phenomena. Based on these observations, in Chapter 5 we leverage the acquired knowledge on

the evolutionary processes underlying the social graph to propose a contact recommender that is

trained on both topological and user profile features. In Chapter 6 we shift our perspective to

search systems and we tackle the problem of summarizing the corpus of queries generated by users

in a more synthetic set of wider topics. We show how such summarized information can be used to

profile users and to pose the basis for the modeling and prediction of their future activity. Finally,

in Chapter 7 we deal with a very common kind of social search system (i.e., folksonomy) and we

show how a proper model of collaborative knowledge management could dramatically expand its

potential and effectiveness.

6



Chapter 2

Study of complex systems with

network analysis

2.1 Pervasiveness of networks in real world

Historically, man has attempted to describe the world around him by finding regularities in what

is perceivable. As a matter of fact, patterns of interaction between entities emerge clearly, at

both macroscopic and microscopic scales, in most of the natural and artificial environments we are

plunged in. Predator-prey relationship between living beings in natural ecosystems, the process

of spreading of a virus in a population, the interactions that occur between two or more proteins

to carry out a biological function, are all intelligible examples of networked systems as well as the

map of the daily schedule of flights around the world, the social acquaintances of the citizens in a

town or the connections between the routers of the Internet.

In general, every system that encapsulates a relation or interaction among some of its constituent

elements admits some abstract representation in terms of a network, or, from a mathematical

perspective, of a graph. A graph is formed by a set of vertices (or nodes) that identify the elements

of the system, together with a set of edges representing some sort of relation between the vertices.

Such very general theoretical framework can be applied to model a vast variety of complex systems.

Even if it is hard to converge on a widely accepted notion of “complexity”, a quite general definition

has been given by Barrat et al. [41]:

“Complex systems consist of a large number of elements capable of interacting with each

other and their environment in order to organize in specific emergent structures”.

Complex systems analysis is a relatively young discipline focused on the empirical study and

systematic modeling of real-world networks with the goal of mining the information hidden by the

complex patterns, understanding the underlying dynamics of interaction and evolution and learn

how to improve the effectiveness and efficiency of artificial complex systems.

Probably, Social Network Analysis (SNA) has been one of the earliest disciplines that can be

classified under the label of “complex systems analysis”. Initially, SNA was a branch of sociology

7



CHAPTER 2. Study of complex systems with network analysis

Figure 2.1: Zachary’s karate club network [359], one of the most known “toy datasets” in social

network analysis. It represents the social network of friendships between 34 members of a karate

club in a US university in the 70s. Nodes are colored on a scale from green to red according to the

number of their connections. Even in this tiny social network, complex patterns in the structure

of the interpersonal relations are observable from the visualization. Picture made with the Gephi

toolkit [42] (gephi.org).

(or, more precisely, an evolution of sociometry) that relied on notions of graph theory to understand

the dynamics of social aggregations of people. Back to the earliest times of SNA, the techniques of

data collection (mainly, surveys written off by the individuals under investigation) did not allow

the analysis of huge networks. However, even very small environments may be driven by complex

patterns (see Figure 2.1), and many techniques that are still widely used today in the analysis of

huge datasets have been studied and developed from the analysis of small real-world cases [340].

More recently, the rapid scaling of Internet and especially of the Web in his collaborative facet,

has provided a fresh source of social data that can be mined to describe the underlying patterns

of big and very dynamic online social systems.

Such data allowed to test classic theories of SNA on a larger scale. For instance, the results

of the notorious Milgram’s experiment [226] on the six degrees of separation, according to which

the number of hops that separates any two individuals in the graph of social acquaintances is

surprisingly small (6 was the number estimated for US population), has been recently verified on

the Microsoft Messenger [188] and Facebook [329]. Another example is the Dunbar theory that,

based on the observation of the social dynamics of a group of primates and using a regression

equation on their cortical size, claims that the “mean group size” that allow stable and profitable

social relationships for humans is around 150 [99, 98]; quite surprisingly, the same theoretical

cognitive limit has been verified in the Twitter follower network [129].

In addition to the study of virtual socio-systems, complex network analysis has been effectively

applied to tackle social and humanitarian problems like the propagation of sexually transmitted

diseases [201] and the proliferation of terrorist organizations [349]. In general, a graph-driven study

of the so-called “dark networks” is useful to spot the weaknesses in the structure of undesirable

aggregations of individuals to carry out targeted attacks able to disrupt the effectiveness of the
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2.2. Graph theory and social network analysis

network with a minimal cost.

Structural analysis has been an area of great interest also on technological networks, like the

Internet [106] or the Web. The rapid growth of such world-scale technological systems has raised

for the first time (well before the viral diffusion of online social networks) the problem of dealing

with the very high dimensionality of the data and the consequent difficulty in mining meaningful

patterns. Foundational work on such systems has been made, for instance, in estimating the

boundaries and the diameter of the World Wide Web [18] and in unveiling its shape that it has been

shown to be organized in three main components (In, Out and Strongly Connected) surrounded

by tendrils [65].

Around the turn of the millennium, the availability of datasets from many different sources and

fields triggered a significant effort in the investigation of all kinds networked environments using the

paradigm of the complex systems analysis. Such very interdisciplinary study allowed to discover

very soon striking regularities in diverse networks. Several technological, biological or social self-

organizing systems [242, 20] have been found to be characterized by the small world property [341],

that determines a logarithmic growth of the average distance between pairs of nodes with respect

to the total number of nodes. Many of these networks have been also found to be scale-free, namely

characterized by a node connectivity distribution that decays as a power law [39, 69]. The discovery

of these and many other invariants has given strength to the area of complex systems analysis as

a cross-discipline science useful to detect and exploit ubiquitous hidden patterns in biological life

and technological structures.

Since then, the perspective on the data-driven study of graph-based systems has widened con-

siderably and the results of exploratory analysis of big networks [7, 160, 186], together with the

increasingly richness of data on human activity, mobility, and interactions [297] opened the way

to devise services that can profitably combine several data sources of interrelated complex systems

to provide services to people. Besides the numbers of new recommendation and suggestion tools

for online social networks, notable examples are the control of spreading of viruses in computer or

human contact networks [261, 86], the monitoring of face-to-face interactions inside hospitals to

minimize infections within the structure [158], the “outdoor advertising” on mobile phones [269]

based on the mobility patterns of people in a city, and the spreading of information between mobile

devices based on spontaneous affinities of users [300].

In this Part we use complex systems analysis to study social, concept, and similarity networks.

In the following we provide some fundamental notions of graph theory and the descriptions of

network analysis techniques and tools that are at the basis of our investigations.

2.2 Graph theory and social network analysis

2.2.1 Graph definition and basic terms

Graph theory is a branch of mathematics, whose origin can be traced back to Euler (see Figure 2.2),

aimed at the study of structures formed by relations between objects. According to the definition
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Figure 2.2: The problem of the Seven Bridges of Königsberg. Is there a walk through the city that

crosses each bridge once and only once? Its negative solution was found by Leonhard Euler [103]

in 1736 using an abstraction based on the notion of graph, where each land mass is reduced to a

vertex and the bridges are the edges between them. Euler’s proof laid the foundations of today’s

graph theory.

given by Bondy and Murthy [58], a graph is a triple G = (V,E, ψ) composed by a set of vertices

(or nodes) V , a set of edges (or links) E, and an incidence function ψ that associates a pair of

nodes with each edge. Two nodes put in relation by an edge are commonly called neighbors and

the set of neighbors of a specific node i can be denoted with Γ(i). Graphs can be very intuitively

drawn with circles to represent vertices and lines connecting the circles to represent the edges.

If the node pairs in the codomain of ψ are unordered (i.e., ψ(e) = (i, j)↔ ψ(e) = (j, i)), then

the graph is undirected (or symmetric), otherwise it is directed. In the directed case the edges can

be also called arcs, the node from which the arc originates is called predecessor and the other one

successor. The endpoints of an edge are said to be incident with the edge and are adjacent to each

other.

An edge can connect nodes that are not necessarily distinct, so an edge can be a loop that

originates and terminates in the same node. If more than one edge maps on the same pair of

nodes, then the graph is a multigraph. On the contrary, a simple graph contains no loops and

no multiple edges. When focusing on graphs with no multiple edges the definition of graph can

be simplified to a pair G = (V,E). Nodes and edges can be annotated with attributes, and

specifically, a weighted graph has numeric weights associated to edges (or, more formally, exists a

function W : E → R).

When the set of predecessors in the incidence function has a empty intersection with the set of

successors, (i.e., ψ(e) = (i, j)→ i ∈ V1, j ∈ V2, V1 ∩ V2 = �∧ V1 ∪ V2 = V, ∀e ∈ E), then the graph

is bipartite. Other examples of well-known structures are the empty graph (V = �, E = �), the

trivial graph (with just one node), and the complete graph (where every possible pair of nodes is

connected by one edge).

Similarly to sets, a graph includes subgraphs and set-like operations can be adapted to them.

A subgraph H = (EH , VH , ψH) of the graph G = (EG, VG, ψG) is defined by the subset relations

VH ⊆ VG, EH ⊆ EG. A subgraph of the graph G is induced by the node set V ′ ⊆ V if it contains all

the nodes in V ′ and all the edges of G between the nodes of V ′; a edge-induced graph is determined

by a set of edges and the nodes incident on them, instead.

A walk is a finite non-null sequence W = v0, e0, ..., vn, en whose terms are alternatively nodes
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and edges, and such that, given 0 < i ≤ n, vertices vi−1 and vi are adjacent. If all the nodes

are distinct, then the walk is a path; if all the edges are distinct it is called trail. Two vertices

are connected if a path between them exists in the graph; accordingly, the graph is connected if

there is a path between any pairs of its nodes. The maximal connected subgraphs are called the

components of the graph. Components containing just one node are commonly called singletons.

When dealing with directed graphs, the definition of walk, path, and connected components can

be adapted taking into account the directionality of edges. Connected components in a directed

graph are called strongly connected components; weakly connected components, instead, are the

components given by disregarding the directionality of arcs.

From a mathematical point of view, a graph can be defined in terms of a |V | × |V | adjacency

matrix, where each entry (i, j) contains a binary value indicating the presence of a tie between

nodes i and j or the weight of the connection in case of weighted graphs. The adjacency matrix is

symmetric for undirected edges and the diagonal is undefined for simple graphs.

2.2.2 Topological measures on graphs

Complex network analysis is based on a core of topological measures that describe the main struc-

tural properties of the graph [340, 247]. In the following we review some of them.

Degree and strength.

The number of edges incident with a node is the degree of the node and it is usually denoted with

the letter k. In case of directed networks, we can distinguish the in-degree kin and out-degree kout,

respectively the number of edges for which the node is a successor or predecessor. For weighted

networks, the sum of the weights of the edges incident on a node is the strength of the node;

in-strength and out-strength are defined for weighted networks, similarly to in- and out-degree.

Density.

The ratio between the number of existing edges in a simple graph and the number of maximum

edges is a measure of how densely the network is connected. Formally, the density is specified as:

D =
2|E|

|V |(|V | − 1)
. (2.1)

In directed networks density is divided by a factor 2 since the possible number of connections

is double than the number in undirected graphs. Note that density is a measure that is strictly

dependent by the size of the network. In real-world cases, the bigger is the network, the lower is

the density. There is not a standard way to assess if a graph is dense or sparse. As a rule-of-thumb,

a network is considered sparse when its average degree is much smaller than the number of nodes,

〈k〉 � |V |, or when the orders of magnitude of the number of nodes and edges are approximatively

the same, |V | ∼ |E|.
Diameter.

The distance �(i, j) between two nodes i, j in a graph is given by the shortest path between

them. The maximum node distance among all the possible pairs of nodes is the diameter of

the graph. Diameter is used to assess the width of the network; however, it is very susceptible

to outliers, since just a single long shortest path can determine a high diameter. To avoid this
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problem, the effective diameter measure have been proposed, that is the minimum distance such

that it includes the 90% of the node pairs [257].

Clustering coefficient.

The structure of the neighborhood of a node reveals how much “local” nodes are clustered

together. The clustering (or transitivity in social sciences) measures the tendency of the neighbors

of a node to be connected to each other, thus forming a dense grid of triangles. In the context

of human social networks, tendency to high clustering can be roughly summarized with the folk

sentence “all the friends of my friends are my friends too”. Quantitatively, clustering of a node i is

measured by a coefficient C(i) [341] computed as the ratio of the number of connections between

i and its neighbors and the maximum number of such links. Let ki be the degree of node i and ei

the number of edges between its neighbors; the clustering coefficient is then defined as:

C(i) =
ei

ki(ki − 1)/2
(2.2)

This measure is meaningful only for ki > 1. If ki = 1 then we consider C(i) = 0. The clustering

coefficient of the network, which measures the overall degree of clustering of the graph, is simply

defined as the average clustering:

〈C(i)〉 =
1
N

∑
i

C(i) (2.3)

Centrality and centralization.

The role that specific nodes and edges have with respect to the global topology of the graph is

one of the main insights to characterize the network. The importance of a node or edge is assessed

by centrality measures [115], that may be defined on several structural features of the graph, like

its connectivity or its position with respect to the other nodes.

The most commonly used centrality measure is the degree centrality, that coincides with the

degree of the node.

CD(i) = ki. (2.4)

The closeness centrality focuses instead on the distance of the target node to all the other vertices;

centrality of a node i is defined as:

CC(i) =
1∑

j �=i �(i, j)
. (2.5)

To account the importance of nodes that may not be well connected to the rest of the network but

act as bridges between two or more components that are loosely tied to each other, the betweenness

centrality is used:

CB(i) =
∑

h �=j �=i

σhj(i)
σhj

(2.6)

where σhj is the total number of shortest paths from node h to node j and σhj(i) is the number

of these shortest paths passing through i. The variation of the value of the centrality measures

over all the nodes of the network (and with proper normalization factors) is called centralization,

and provides a measure of how much the whole network is centralized. For instance, the degree

centralization will be maximum in a star graph, where all the nodes are connected with a single
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Figure 2.3: All the possible configurations of dyads and triads in a directed graph.

edge to a central node (and therefore the relative variation on the out-degree is maximum), and

minimum in a ring graph, where each node is connected to two neighbors in a circle. Degree,

closeness, and betweenness centralizations are defined respectively as:

CD =
∑

i[C
max
D −CD(i)]

(|V |−1)(|V |−2) , (2.7)

CC =
∑

i[C
max
C −CC(i)]

[(|V |−2])(|V |−1)]/(2|V |−3) , (2.8)

CB = 2
∑

i[C
max
B −CB(i)]

(|N |−1)2(|N |−2) , (2.9)

where Cmax
x denotes the maximum value of centralization in the graph.

Network motifs.

The analysis of small and well-identifiable structural components of the network helps to un-

derstand the meaning of the structure of the graph as a whole. Depending on the specific context,

a configuration of edges can be mapped on some well-known behavior of the nodes. For example

consider a directed network of email traffic, where i→ j iff i has sent an email to j. In this case,

the most trivial but yet meaningful pattern is a mutual tie i→ j, i← j that indicates some level of

reciprocity that the individuals show in replying one to the other. This kind of analysis is indeed

particularly useful in directed graphs, where much more configurations of connectivity are possible,

and it is usually focused on sets of two or three nodes, namely dyads and triads.

There are three isomorphism classes for dyads (i → j, i ↔ j, i and j disconnected) and 16

classes for triads (see Figure 2.3). More in general, configurations of n nodes are called network

motifs [228]; studying complex motifs with n > 3 may make sense depending on what kind of

natural phenomenon or technological structure the network is modeling. In most of the scenarios,

the dyadic and triadic census, namely a statistic on the portion of each type of dyad and triad

over all the possible instances of dyads and triads, can be useful to highlight what are the most

prominent connectivity patterns in the graph.

Mixing patterns.

Structural and hierarchical ordering of many networked systems is often given by the tendency

of individuals to be connected with others that share some feature in common. This pattern has

been detected in datasets coming from different fields like human and computer sciences, ecology,

and epidemiology and it is known as assortative mixing. Simmetrically, a disassortative mixing is

detected in many other real world networks where individuals are connected more likely with others

with different properties [243, 244, 249]. For instance, social webs are assortative with respect to
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the age of the people and the network of routers in the Internet is disassortative with respect to

the number of connections of each router.

Even if mixing patterns can be defined with respect to any attribute of the vertices, the most

studied mixing pattern involves the node degree. This mixing measures the likelihood that nodes

have neighbors with similar degree. One of the measures of correlation between degrees of neighbors

is given by the Pearson assortativity coefficient [243]:

r =
∑

e jeke/|E| − [
∑

e(je + ke)/(2|E|)]2
[
∑

e(j2e + k2
e)/(2|E|)]− [

∑
e(je + ke)/(2|E|)]2

(2.10)

where je and ke denote the degree of the two nodes incident on edge e. Its values can range

from -1 (perfectly disassortative network) up to 1 (perfectly assortative network). Nevertheless,

Pearson coefficient can be misleading when a non-monotonous behavior of the correlation function

is observed; in this case the measure gives more weight to the higher degree classes, which in several

cases might not express correctly the variations of the correlation function behavior.

A more practical measure involves the average nearest neighbors degree of a vertex i:

knn,i =
1
ki

∑
j∈Γ(i)

kj . (2.11)

Starting from this quantity for single nodes, we can define an average for all the nodes with the

same degree class [260, 332]:

knn(k) =
1
Nk

∑
i|ki=k

knn,i, (2.12)

where Nk is the number of nodes with degree k. In the presence of correlations, knn(k) identifies

two classes of networks. If the value of knn(k) increases with k, then highly connected nodes have

a high probability of being linked with other high degree nodes, while a decreasing trend reveals a

disassortative mixing.

2.3 Cohesive groups and clusters

A crucial problem in network analysis is the extraction of clusters, i.e., groups of nodes that share

some common property or similar structural roles. In a graph context, a cluster (or community,

or module) is intuitively a group of nodes tied by relatively dense, frequent or intense connections.

To some extent, clusters can be considered as separate entities with their own autonomy, that can

be often coherently explored independently of the graph as a whole.

In classical social network analysis, the concept of cohesive subgroup [340] is close to this intuitive

notion. The simpler definition of cohesive subgroup is the clique, namely a subgraph with more than

two vertices whose nodes are all adjacent (or, in other words, a complete subgraph). In this case

the notion of cluster coincides with the notion of clique and the problem of finding the communities

in a graph becomes equivalent to the problem of maximal cliques detection. The clique has well-

specified mathematical properties and captures much of the intuitive notion of cohesive subgroup.

Furthermore, cliques can overlap, thus allowing to define non-disjunct communities. However, the

clique is the strictest definition of community and it is not suitable for many real-world networks.
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The most intuitive relaxation of clique is the k-plex. The k-plex is a maximal subgraph con-

taining n vertices in which each vertex is adjacent to at least n − k vertices in the subgraph. In

other words, each node in the group may lack edges to no more than k other group members. If

k = 1 the k-plex is a clique; as the parameter k gets larger, each node is allowed more missing

edges within the group. The dual definition of k-plex is the k-core, which is a subgraph whose

vertices are adjacent to at least k other nodes of the group.

Looser notions of cohesive subgroups are not focused on the density of the group but on

diameter-related features instead. n-cliques, for instance, are a maximal subgraph in which the

largest geodesic distance between any two nodes is smaller than n. The smallest paths considered

may also reside partially outside the group. If n = 1 the n-clique is a clique; the higher the param-

eter n is, the larger the community size will be. The subgraph induced by the nodes in the n-clique

can be disconnected because two nodes may be connected only by a geodesic which includes nodes

outside the group and by no path which is fully inside the n-clique. n-clans are a slight adaptation

of n-cliques that impose that no geodesic distance between two nodes can be greater than n for

paths within the group, thus avoiding the possibility of disconnection.

Instead of focusing just on the edges within the group it can be useful to consider also structural

elements that lie outside the group. A LS set, for instance, is a cohesive subgroup that focuses on

the frequency of edges among group members in relation to the ties to outsiders. Every subgraph

S in the LS set must have more ties toward its complement S = LS − S than to the outside LS.

LS sets can be nested hierarchically but they cannot overlap partially. LS sets can be extended

to λ sets. Let λ(i, j) be the number of ties that must be removed from a graph to leave no path

between nodes i and j; the smaller is the value of λ the more susceptible is the pair of nodes to the

disconnection. A set of nodes S is a λ set if any pair of nodes in S has larger λ than any pair of

nodes with a vertex inside the set and one outside. Members of a λ set do not need to be adjacent,

and since there is no restriction on the length of paths that connect two members of the set, it can

be quite sparse over the network.

Even if the definitions of cohesive subgroup can help to understand how a module can be

identified, they cannot be directly applied for graph clustering. Cohesive subgroups may not

identify fully connected structures (e.g., λ sets) or may leave many nodes out of any cluster (e.g.,

cliques). In general, the previous definitions do not highlight well the community structure of the

whole network, but instead are useful to detect important structures in the graph, like its main

cores.

For this reason, ad hoc techniques for network clustering (often referred as community detection)

have been developed and literally hundreds of algorithms have been proposed over the last few

years [112]. The fundamental idea of community detection is to find a partition of the graph

through agglomerative or divisive procedures such that some global (the entire network) or local

(single partitions or nodes) goodness measure of the clusters is maximized.

Goodness indices have been defined on several structural indicators like the trade-off between

inter- and intra-connectivity of clusters [271], betweenness [122], or other centrality indices [114],

but for several years the most widely used metric was the modularity [248]. Formally, it is defined
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as:

Q =
∑

i

(cii − a2
i ). (2.13)

C is a k × k matrix whose generic element cij is the fraction of all the edges in the network that

connect vertices in cluster i to those in cluster j. Conversely, ai = Σjcij is the fraction of edges

that connect vertices belonging to cluster i with nodes of other clusters. In a random graph the

fraction of edges between clusters i and j is ai · aj and the fraction of the resulting edges that

connect nodes within cluster i is a2
i . Therefore, modularity measures the fraction of edges that

connects vertices in the same cluster minus the expected value of the same quantity in a random

network.

Even if finding maximum modularity partitions is an NP-complete problem [64], numerous algo-

rithms based on suboptimal modularity maximization has been proposed [245, 97, 246, 278], until

an intrinsic resolution limit of modularity in cluster detection was discovered [113]. Specifically,

modules with size lower than
√

2|E| cannot be resolved with modularity maximization procedures

even in the extreme cases where communities are cliques connected by a single bridge to the rest

of the network.

After this result, also in the wake of many other methods that proposed alternatives to mod-

ularity maximization [348, 256, 51], different fitness measures to define cluster quality have been

introduced [178, 191, 180] and many recently proposed algorithms use local metrics to detect

communities [112].

2.4 Network models

Macro statistical properties of networks allow to partition them in categories and to build models

that can reproduce artificial networks with the same qualitative features. In the following, we

present three well-known network categorizations with their corresponding models, focusing in

particular on the diameter, the clustering coefficient and the degree distribution that the graphs

originated by such models have.

Lattice ring network.

A simple deterministic models of graph topologies is given by the lattice, a network where nodes

are connected according to regular grid-like patterns. The lattice ring network (or one-dimensional

lattice) belongs to this class of graphs and it is originated by logically arranging nodes into a ring

and connecting each node with the m closest nodes in the ring (with m even).

Nodes in lattice networks are densely connected locally and therefore the clustering coefficient

is high. On the other hand, the shortest path connecting two generic nodes in the network is long

on average and consequently the diameter is high.

Random network (Erdös-Rényi).

A random process of edge creation originates a random graph whose final degree distribution

depends on the nature of the random process. Among the several random processes studied in

graph network modeling [57], the most known is the one at the basis of the Erdös Rényi (ER)

graphs [101, 102].
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A ER graph can be generated given a number of nodes n and a probability of attachment p. The

graph is generated through a memoryless process attaching every pair of nodes with probability p.

The probability that a node has degree k is given by the binomial distribution:

P (k) =
(
n− 1
k

)
pk(1 − p)n−1−k (2.14)

and as n increases, the degree distribution tends to a Poisson distribution

P (k) ≈ e−n·pn · p
k!

(2.15)

meaning that the range of variability of node degree is relatively small.

The global connectivity of the graph depends on the n and p values, following a sharp threshold

behavior. When n · p < 1, it is very likely that the graph will be disconnected, with components

of size O(log(n)). At the threshold value n · p = 1 the graph will have with very high probability

a connected component of size around n2/3. Finally, if n · p > 1, the graph will have almost surely

a giant connected component containing the vast majority of edges. The giant component of ER

graphs has very small diameters and low clustering coefficient. This means that the network can

be walked across in a few hops but its node will tend not to form well-recognizable clusters.

Small world network (Watts-Strogatz).

Many real-world networks present characteristics that are between random and regular graphs.

In particular, they exhibit a small diameter and a high clustering. In social networks, for example,

social groups are highly clustered but two generic individuals are on average separated by few hops

in the acquaintance network. To model this “small world” phenomenon, Watts and Strogatz [341]

proposed a model (WS) based on a shortcut strategy on lattice ring networks.

Given a lattice ring graph, each node i is considered and each of its edges is replaced with

probability p with a new edge that is rewired with a different endpoint chosen at random among

the nodes in V \Γ(i). As the probability p increases, the macro characteristics of the graph change

in a threshold-driven fashion. Approximatively, when p ∈ [0, 10−3) the graph still preserves the

main features of the lattice ring and when p is over 10−1 the shape of the graph becomes similar

to a ER configuration. In the interval [10−3, 10−1) the graph assumes the desired small world

properties. In particular, if compared with a random graph with the same size, this small world

graph has a comparable average shortest path length but a much higher clustering.

Scale Free network (Barabási-Albert).

Watts-Strogatz graphs reproduce well the average path length and the clustering of many real

networks, but they cannot model their degree distribution, that is much broader in real networks.

To solve this problem, Barabasi and Albert [39] proposed the preferential attachment model of

network growth.

Given an initial random network with m0 nodes with degree greater than 1, the preferential

attachment model grows the graph by adding a new node and connecting it to m < m0 nodes with

probability proportional to the degree of existing nodes. Specifically, the probability of connection

with an existing node i is:

pi =
ki∑
j kj

. (2.16)
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This “rich gets richer” strategy is similar to the growth process of real networks like the graph of

World Wide Web, where very popular pages are linked by new pages with probability much higher

than unpopular pages.

The average path length in the Barabasi-Albert model (BA) grows approximately logarithmi-

cally with the network size:

〈�〉 = ln |V |
ln ln |V | , (2.17)

and the clustering coefficient is higher than a ER graph with comparable size. The degree distri-

bution of BS graphs is distributed as a power law of the form:

p(k) = c · k−α (2.18)

that defines a scale free distribution, meaning that the degree distribution is invariant under rescal-

ings of the variable, or p(ak) ∝ p(k), with a constant. Applying the logarithm to the degree

distribution we obtain:

log(p(k)) = log(c)− αlog(k), (2.19)

that is the equation of a line with slope −α. For this reason, plotting the degree distribution of a

scale free network on a log-log scale produces a distribution that can be fitted linearly. It has been

observed that the typical exponent of the power law degree distribution of many real-world graphs

ranges between 2 and 3.

Even if clustering coefficient given by BA model is higher than in ER, it is still lower than the

clustering in WS, whose clustering coefficient in much more adherent to the values found in real

graphs. Therefore, both BA ans WS models fails in modeling some macro statistical properties of

real networks. Nevertheless, such models gave a priceless contribution to the study and modeling

of complex networks and provide useful abstractions for the comparison of properties of different

systems.

2.5 Visualization and analysis tools

Visualization of networks is an important phase of complex systems analysis. A good pictorial rep-

resentation of a graph can highlight its most important structural components, logically partition

its different regions, and point out the most central nodes and the edges on which the information

flows more frequently or quickly.

The values of most of the metrics we defined in Sections 2.2 and 2.3 can be somehow represented

using different nodes and edges colors, sizes and layouts. In Figure 2.4 we show how the visualization

of a small graph can evolve from a random layout to a more clever, yet very simple presentation

that conveys to the observer much information about the structure of the graph.

Many free tools for graph visualization have been developed in the last decade; among the most

popular tools we mention:

1. Pajek [94] (pajek.imfm.si), one of the first visual exploratory tools for visualization and

analysis of small graphs.

18



2.5. Visualization and analysis tools

(a) Random layout (b) Yifan Hu layout. Nodes are resized and colored

Figure 2.4: Visualizations of the author’s ego network of Facebook contacts in 2009. From a

representation with a random layout and no colors to a visualization where nodes are resized

depending on their degree, colored according to their maximum-modularity cluster and arranged

through the Yifan Hu graph layout [152]

2. Networkbench (nwb.cns.iu.edu), a tool to model and visualize networked datasets from

different fields, in support of cross-disciplinary research.

3. Walrus [237] (www.caida.org/tools/visualization/walrus), visualizes graphs based on

their spanning tree representation.

4. Gephi [42], sponsored as the “photoshop for graphs” (gephi.org). It provides an advanced

GUI for visual manipulation and a vast API useful also for streaming visualization of dy-

namical graphs.

5. GUESS [4] (graphexploration.cond.org), visualization and analysis tool based on Gython,

a domain-specific language that supports operators that can deal directly with graph struc-

tures in an efficient and intuitive way.

6. GleamViz (www.gleamviz.org), specifically designed to simulate and visualize spreading of

infectious diseases across the globe.

Furthermore, many graph analysis packages like iGraph (igraph.sourceforge.net), networkx

(networkx.lanl.gov), and R (www.r-project.org) provide network visualization tools or plugins.
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Chapter 3

Dynamics of complex social

systems

3.1 Unveiling evolutionary patterns in online social networks

Macroscopic dynamics of collaborative and social systems emerge from the aggregation of the

behavioral footprints generated by the activity of the users and their interactions. Online social

networks, together with online systems for content organization and sharing, entangle cognitive,

behavioral, and social aspects of a user community through an underlying technological platform.

The resulting “ecosystems” provide new possibilities to mine and investigate the various processes

at play in the interactions of individuals, and to study the ways in which users relate with the

information they share. Understanding and predicting their global dynamics allows us also to

profile more accurately the individual actors, thus enabling a wide range of recommendation and

personalization services.

Key open questions deal with understanding the concepts of similarity and influence, tracking

the emergence of shared semantics, and determining the interplay between social proximity and

shared topical interests among users. The emergence, spreading, and stability of any shared concept

depend critically on these factors. As observed by danah boyd [63],

“In a networked world, people connect to people like themselves. What flows across the

network flows through edges of similarity. The ability to connect to others like us allows

us to flow information across space and time in impressively new ways, but there’s also

a downside. Prejudice, intolerance, bigotry, and power are all baked into our networks.

[...] In a world of networked media, it’s easy to not get access to views from people who

think from a different perspective. Information can and does flow in ways that create

and reinforce social divides. Democratic philosophy depends on shared informational

structures, but the combination of self-segmentation and networked information flow

means that we lose the common rhetorical ground through which we can converse.”

We see a pressing need for an investigation of these issues. Social media supporting many user-
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3.1. Unveiling evolutionary patterns in online social networks

profile features are especially relevant to a data-driven analysis of these questions, because they

stimulate users to provide much information about themselves. For instance, services supporting

tagging provide light-weight semantic annotations in the form of freely chosen, user-generated

terms [125]. Social annotations based on tags are valuable for research because they externalize

the three-way relation between users, items of interest (resources), and metadata (tags). Usage

patterns of tags can be employed to monitor interests, track user attention, and investigate the

emergence and spread of shared concepts through a user community. Moreover, several social

media platforms support explicit representations of social links between users, making an objective

definition of social proximity available. They also combine several aspects of user activity, such as

exposing resources, belonging to discussion groups, and communicating to other users.

Online social systems have long been observed in their static network properties [230] and in

the dynamics of their evolution [174, 187]. Fluctuations in time of network topological features

like diameter, clustering coefficient and mixing patterns [7] have been explored in depth through

data-driven analysis of large-scale real world systems. Previous work on link characterization have

studied the patterns that describe the creation of links and how social ties features evolve in

time [229, 181, 343].

More specifically, we find several other studies on the evolution of online social systems and

correlations between different user features. Leskovec et al. [189] present a study on the Microsoft

Messenger network, showing correlation between user profile information and communication pat-

terns. The role of groups as coordination tools in Flickr is investigated by Prieur et al. [265]. They

point out a strict relation between the density of the social network and the density of the network

of tag co-usage among group members. Kumar et al. [186] perform a comparative study on the

microscopic evolutionary dynamics between several social networks, in which a special emphasis is

placed on the arrival process of new nodes and on the dynamics of attachment.

Influence of social contacts on browsing patterns in Flickr has been analyzed by Lerman and

Laurie [184] and van Zwol [331], who provide insights into the activity patterns of users. Correlation

between topical overlap among user interests in tagging systems and other indicators of social

behavior has also been explored in CiteULike and Connotea systems [294]; since these systems lack

an explicit social network component, the collaboration relations determined by the participation

in the same discussion group can be considered as social substrate.

Recently, findings from social network analysis have been corroborated and expanded by the

study of communication networks — also denoted as activity networks [82] or interaction net-

works [346] — that often coexist with social networks. The comparison of the graph of user-to-user

interactions with the social network reveals several overlaps and similar connectivity patterns driven

by reciprocity and triangle closure [188].

However, differently from the social networks, activity networks are much more dynamic and

reflect inconstant trends in user interaction and information flow. Communication patterns have

shown to be strongly clustered on an interaction frequency basis and to change quickly over both

micro and macro time scales, even if the structural features of the activity network remains stable

over time [334]. It has been observed that the average interaction level with neighbors in the social
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network is very low [50] and often decreasing with time [334]; in agreement with this, thorough

studies on Facebook interaction graph [346] reveal that social links that are effectively exploited

for user-to-user communication are a minority. Such results confirm the intuition that social ties

are not always good proxies to extract information exchange patterns. For an accurate description

of the dynamics of online communities it is thus necessary to supplement the study on the social

network with an analysis on the communication network.

Our work originates directly from this previous research knowledge. This Chapter, together

with Chapters 4 and 5 analyzes important aspects of the evolution of online social networks using

a data-driven approach on real datasets taken from three popular online social media. The three

datasets differ significantly by size, category of resources, and the precise ways in which users tag

resources and relate to each other.

Besides giving an overview of what are the structural properties that can be inferred by a static

analysis of the social graph of such datasets, we focus on three phenomena that drives an important

part of the dynamics of social environments. Namely, we will discuss how communication between

individuals affect the social structure of the network, we explore the role that homophily has in the

creation of social connections, and we analyze the influence patterns that occur in the network.

Our results highlight the heterogeneity of user activities and the correlations in the various

metrics measuring the different activities of a single user. We also show the existence of non-

trivial mixing patterns and we expose the substantial levels of topical similarity that exist among

users who are close to each other in the social network and provide a causal relationship between

homophily, influence, and such overlap.

Our findings shed light on the fundamental processes that drive link creation and that determine

the evolution of features associated to the individuals in the social substrate. We can leverage such

theoretical findings to provide ad-hoc services for the end users. In particular, we discuss a number

of link prediction techniques aimed to a contact recommendation service, also known as “friend

suggestion”. Based on a number of topical similarity measures, we evaluate the performance of

predictors based on some ground truth similarity of user profiles and on temporal data of the

growth of social graphs.

3.2 Datasets

In the following, we report on the main features of our datasets and we describe the data retrieval

methods we used to build them. Depending on the type of analysis we are interested in, we will

focus from time to time to one specific dataset or on another, also according to their peculiarities

and unique features. Table 3.1 summarizes the sizes of our three dataset.

3.2.1 Flickr

We collected the tagging information about the pictures uploaded in Flickr between January 2004

and January 2006 by means of API methods (flickr.com/api). The crawling effort was distributed

by splitting the above time interval into smaller time windows to be crawled independently. A global
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3.2. Datasets

Dataset Users Triples Tags Tagged items Groups

Flickr 130, 840 90, 723, 412 1, 420, 656 20, 599, 583 92, 301

Last.fm 90, 049 6, 971, 166 194, 763 894, 615 69, 306

aNobii 140, 687 7, 328, 494 171, 126 1, 137, 191 4, 799

Table 3.1: Dataset statistics

tag knowledge base, initialized with a minimal set, was shared between parallel crawlers. Crawlers

issued search queries limited to their specific time interval to retrieve information about photos

marked with the tags stored in the common database. New tags were added to the shared database

as they were discovered by individual crawlers.

Separate crawls were made to explore group affiliations and the social network. In Flickr jargon,

social ties are called contacts ; they are directed and do not require acceptance by the linked user.

The overall crawl was performed during the first half of 2007.

Our analysis will focus on the network of about 130 thousand users for whom we have tag,

group, and contact information.

3.2.2 Last.fm

In Last.fm, each user is linked to friends through undirected links that are established given the

consent of both endpoints. Users also have a public list of neighbors, computed by the system as

recommendations for potential new friendship contacts. An affinity value, ranging from 0 to 1, is

also assigned to each member of the neighbor set. Users can annotate songs, artists or albums

with tags, and can create or join groups. Users also have a public library, i.e., a list of the artists

they have listened to. User profile information includes an optional geographic specification at the

country level.

We used both API calls (last.fm/api) and web crawling methods to build the dataset. The

API can be used to retrieve user profiles, friendships and neighborhood relationships and a list

of the 50 top artists in the user library (i.e., those with the highest playcount). The API does

not allow for the collection of a user’s complete activity and group affiliation information, so we

extracted the (user, item, tag) triples and the group membership relations via web crawling and

scraping. The user set we consider was selected by a BFS crawl of the friendship network. The

crawls took place in January 2010. We started from three randomly chosen users and for each

of them we performed a crawl up to those nodes that resided 4 hops away. The corresponding

snapshots include approximatively 100 thousand users each, with an overlap of about 20% between

them. Since we found that the results of our analysis are consistent across the three samples, we

report the findings for a single representative one.

Recently, the Last.fm API was extended with a similarity function, called tasteometer, which,

given in input a pair of users or artists, returns an affinity score ranging from 0 to 1. This value

is different from the one provided by the neighborhood score and, most of all, it can be computed

for any pair of users or artists. Jointly with the crawling activity, we retrieved the tasteometer

values for a large set of user pairs to compare the performance of our tag-based similarity functions
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in the link prediction task with the performance of the tasteometer. Further details are given in

Section 5.2.

3.2.3 aNobii

Users in aNobii (www.anobii.com) fill their digital book collections with titles selected from the

public aNobii book database, which at the and of 2011 contained the metadata (such as publication

year, authors, etc.) of about 30 millions different publications, written in 49 different languages.

Each personal book collection is partitioned into a library, which is a set of titles that the user is

reading or has already read, and a wishlist that lists the books that the user wants to read in the

near future. Every book in the library can be marked with a reading status (e.g. finished reading)

and can be annotated with arbitrary tags, a rating (from 1 to 5 stars) and a review.

Users can also provide public information about their profile, such as gender, age, marital

status, and a detailed specification of their geographic location including country and hometown.

Affiliation with thematic, user-generated groups is also possible.

Channels of social interaction are another crucial component of aNobii. Two different types

of social ties can be established between users: friendship and neighborhood. The aNobii website

suggests that people should be friends if they know each other in real life. Users should establish

neighborhood ties with people who have a library they consider interesting. Surprisingly, although

these two types of social links are formally different, they are equivalent from a structural point of

view. In fact, they both are directed and can be created without any consent of the linked user,

who is not even notified when a new incoming tie is established. Furthermore, both links activate

a monitoring on the linked user’s library that triggers notifications on library updates. Given this

strong structural similarity, and since the two types of links are mutually exclusive, in the following

we deal with the union between friendship and neighborhood networks and we generically refer to

the union network as the aNobii social network. Users can write on the message wall of any other

individual, no matter if they have a relationship on the social network. Self-posting is also allowed.

The wall message history is public and the last five messages received are displayed on the main

profile page.

We expored the aNobii social networks through web crawling and collected all the public user

data trough web scraping. Crawling started in December 2009 from a random seed of users and

followed the social links in a forward BFS fashion. We iterated the crawling procedure several

times, 15 days apart, to take several snapshots of the network. We explored the entire giant

strongly connected component and the out component of the social network. We collected each

user’s profile information, group affiliations, library, and tag assignments through web scraping.

3.3 Structural analysis

As we mentioned earlier, in most social media the activity of users has many facets. In Flickr, for

instance, users can upload pictures and tag them, participate in groups, and comment on photos.

In Last.fm, users can listen to music and tag songs according to their characteristics and personal
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Friendship Neighborhood Union Communication

Nodes 126,859 77,357 140,687 80,303

Links 557,259 633,640 1,187,656 574,285

Loops 0 0 0 22,579

Reciprocation 0.60 0.43 0.54 0.61

< kout > 4.4 8.2 8.4 7.2

< w > 1 1 1 1.8

< m > - - - 12.9

WCC size 121,143 76,760 140,687 75,965

SCC size 81,292 41,063 100,492 38,336

Density 3.4 · 10−5 1.1 · 10−4 6.0 · 10−5 8.9 · 10−5

Average SPL 7.3 4.7 5.3 4.8

Diameter 25 15 20 17

Degree centr. 0.0072 0.0875 0.0486 0.0650

Table 3.2: Statistics on friendship network, neighborhood network, the union between them (i.e.,

the full social network) and communication network in April 2011. SPL=shortest path length;

WCC=weakly connected component; SCC=strongly connected component; 〈kout〉 average out de-

gree, 〈w〉 average edge weight (applies only to the communication network, see Section 3.3.4), 〈m〉
average number of messages in the shoutbox.

tastes. In aNobii, users can add books to their libraries, tag them, join groups, and create a list of

books they wish to read.

Since social networks are explicitly built by users, we can also consider the number of friendship

relations to be a measure of activity in each social media we consider. When links are directed, we

consider out-degree as a proxy for activity, while in-degree measures popularity.

In this Section, we first analyze the activity patterns of individual users, and show their con-

siderable heterogeneity. We also investigate the correlations between various activity indicators.

3.3.1 Macro structural properties

Since the aNobii dataset includes a snapshot of the whole social graph, we focus on it for a

preliminary analysis of the macroscopic statistical properties that define the network.

Macro topological properties of friendship and neighborhood networks are similar, but with

some structural differences. As shown in Table 3.2, both networks have a high percentage of

reciprocated links and a strongly connected kernel that includes the majority of nodes. However,

the neighborhood network is slightly smaller, denser, and has higher degree centralization [340].

Its size is smaller because neighborhood ties tend not to be used by less active members and it is

more centralized because of very popular libraries with many “followers”: the range of variation

of the in- and out-degree are broader for neighborhood than for friendship (for the in-degree, the

maximal values are 1708 for neighborhood and 453 for friendship; for the out-degree, the maximal

values are respectively 6537 and 705). These differences reveal that the two social ties are used
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Figure 3.1: Graphs of home countries and towns of aNobii users. Nodes are scaled according to

the size of the communities and width and colors of edges are proportioned to the number of links

that connects nodes between the communities

slightly differently by users; however, when discussing about properties that apply to comparable

quantitative and qualitative extent to both networks, it is more convenient to consider the union

between them. In the following, for simplicity, we will refer to the union network as the aNobii

social network.

As a direct result of their structural differences, the diameters of the two networks (computed

as the maximum shortest path length) are appreciably different. Still, they are both very high if

considered that similar diameter values have been found for many other online social networks with

much greater size [230]. The strong geographical clustering of the social network is the main reason

behind this feature. The country-level graph of the social network depicted in Figure 3.1(a) reveals

that the network has two main geographic communities, namely Italy (with roughly 60% of users)

and Far East (composed by Taiwan, Hong Kong and China, that include less than 30% of users

altogether). Since these two clusters are loosely connected to each other, the network has a dual

core structure where connection between the two cores is mostly mediated by smaller communities

(e.g., the USA cluster). Paths between individuals residing in different cores are thus longer if

compared to a more ordinary single core configuration and, consequently, the diameter is higher.

Narrowing down the view on town-level graphs inside clusters, the intra-cluster connections appear

denser and structured around a single core of nodes (see Figure3.1(b)). Of course, since aNobii is

focused on books, language is the main reason that leads to this sharp separation.

Besides the geographical location, aNobii profiles contain a rich information about users. User

activity, along with social ties, can be measured by several indicators. Not surprisingly, the most

popular activity is filling the library with books (94% of users have at least one book). Approxima-

tively 50% of users added at least one book in the wishlist and roughly the same portion of users

is member of at least one group. Books are annotated with reviews by around 40% of users and

are rated by the 75%. Tagging activity is quite unfrequent. Finally, around 75% of users declare
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Figure 3.2: Flickr complementary cumulative distributions of (A) the number kout of neighbors of

a user, (B) the number ng of groups of which a user is a member, (C) the number nt of distinct

tags per user, and (D) the number a of tag assignments per user.

at least one friend or neighbor.

3.3.2 Heterogeneity and Correlations

Figures 3.2 and 3.3 show the distributions of the number of neighbors in the Flickr and aNobii and

the probabilities of finding a user with a given number nt of distinct tags in her vocabulary, a total

tagging activity a, belonging to ng groups, and having (for aNobii) nb and nw books in her library

and wishlist, respectively.

All these distributions are broad, spanning multiple orders of magnitude, showing that the

activity patterns of users are highly heterogeneous. For each activity measure most users have

little activity while some are extremely active, and all intermediate values are represented. No

characteristic or “typical” value of the activity can be sensibly defined as evident from a standard

deviation that is orders of magnitude larger than the average, for each activity measure.

Given this high level of disparity between users, a natural question arises about the correlations

between the different types of activity: “do users who have many neighbors also use many tags,

belong to many groups, and so on?” The simplest way to examine this issue is to compute the

average activity of a type for users having a certain value of another activity type. For instance, we

can measure the average number of distinct tags for users having k neighbors in the social network

adapting Equation 2.12 to the tag dimension:

〈nt(k)〉 = 1
|u : ku = k|

∑
u:ku=k

nu
t , (3.1)

where nu
t is the number of distinct tags of user u. For the case of aNobii, we show in Figure 3.4

that all types of activity have a clearly increasing trend for increasing values of the out-degree;

users who have more contacts in the social network tend also to be more active in terms of tags

and groups. Overall, the various activity metrics are all positively correlated with one another.
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Figure 3.3: Complementary cumulative distributions of the measures of activity of aNobii users:

in-degree kin and out-degree kout in the social network, number of distinct tags nt and tagging

activity a (total number of annotations by a user), number of group memberships ng, number of

books in a user library nb and in a user wishlist nw.

For instance, we show the correlation between the number of books in the library and the number

of annotations or the number of group affiliations. Analogous results hold also for the other two

datasets.

A slightly different to present the same result is to plot binned data with errorbars (Figure 3.5).

In this kind of representation we show the cases on aNobii and Flickr. A third way to denote the

correlation is the Pearson correlation coefficient [243]. In Flickr, the Pearson correlation coefficients

are all positive, denoting positive correlation: 0.349 between k and nt, 0.482 between k and ng,

0.268 between k and a, 0.429 between nt and ng, 0.753 between nt and a, and 0.304 between ng

and a.

Despite these correlations, large fluctuations are still present. First, the strong fluctuations at

large degree values are due to the smaller number of highly-connected nodes over which the average

is performed. Notably, users with a large number of social contacts but using very few tags and

belonging to very few groups can be observed. We can investigate in more detail the degree of

correlation between activity types through the conditional probabilities of the type P (nt|k), i.e.,

the probability for a user to have nt tags, knowing that she has k neighbors in the social network,

where the average 〈nt(k)〉 is simply the first moment of this conditional distribution. As shown for

some examples in Figure 3.6, these distributions, although narrower than the distributions shown

in Figures 3.2 and 3.3, remain broad. This shows that, despite the strong correlations observed,

users with a given activity level in the social network remain quite heterogeneous.

3.3.3 Mixing Patterns

While the previous analysis concerns the correlations between the diverse activity levels of a single

user, another important question concerns the correlations between the activity metrics of users
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Figure 3.6: Complementary cumulative conditional distributions P (n|kout) in aNobii, where n is

the number of tags nt, of groups ng, of books nb, and wishlist size nw, compared with the global

cumulative distributions P> (black lines). Even among the subset of users with a given kout, a

strong disparity is still observed in the amount of activity.

who are linked in the social network. This is a long-standing problem in the social sciences, ecology

and epidemiology that is captured by the notion of assortative (or disassortative) mixing patterns

we described in Section 2.2.2.

Mixing patterns can be defined with respect to any property of the nodes. In the case of

social media, since each user is endowed with several properties characterizing his activity and

social connectivity, it is interesting to characterize mixing patterns with respect to each of these

properties. In the present case, we can characterize the mixing patterns concerning various activity

types.

As seen in Section 2.2.2, one of the most investigated mixing pattern involves the degree of

nodes. However, we can generalize the average nearest neighbors degree presented above for

the case of any profile feature. We define the average number of tags of u’s nearest neighbors

nu
t,nn = 1

ku

∑
v∈V(u) n

v
t , and, similarly, the average number of tag assignments used by her nearest

neighbors, au
nn = 1

ku

∑
v∈V(u) a

v, the average number of groups to which her nearest neighbors

participate, nu
g,nn = 1

ku

∑
v∈V(u) n

v
g, and, in the case of the aNobii dataset, the average number of

books read by her nearest neighbors, nu
b,nn = 1

ku

∑
v∈V(u) n

v
b and the average wishlist size of her

nearest neighbors, nu
w,nn = 1

ku

∑
v∈V(u) n

v
w.

By analogy with the case of knn(k), we can compute the average number of distinct tags of the

nearest neighbors for the class of users having n distinct tags,

nt,nn(n) =
1

|u : nt(u) = n|
∑

u:nt(u)=n

nu
t,nn , (3.2)

and the average number of tag assignments used by the nearest neighbors for the class of users

with a tag assignments,

ann(a) =
1

|u : a(u) = a|
∑

u:a(u)=a

au
nn . (3.3)
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Figure 3.7: Mixing patterns in the aNobii and Flickr dataset: average number nt,nn(nt) of distinct

tags of the nearest neighbors of users having nt distinct tags; average number ng,nn(ng) of groups

of the nearest neighbors of users belonging to ng groups; average number nb,nn(nb) of books of

the nearest neighbors of users who have read nb books; average wishlist size nw,nn(nw) of the

nearest neighbors of users who have a wishlist of size nw; average out-degree knn(k) of the nearest

neighbors of users having out-degree k; and average number ann(a) of distinct triples of the nearest

neighbors of users having a distinct triples.

Analogous definitions can be used with respect to all other profile features. Similar formulae can be

used to define the average number of groups of the nearest neighbors for the class of users who are

members of n groups, ng,nn(n), the average number of books of the nearest neighbors for the class

of users who have read n books, nb,nn(n) and the average wishlist size of the nearest neighbors for

the class of users who have a wishlist of size n, nw,nn(n).

Figure 3.7 shows clear assortative trends for several measures for both the aNobii and Flickr

datasets, as in other social networks [244, 223]. Similar results are obtained for Last.fm (not

shown). As before, large fluctuations are observed for large activity values, because of the small

number of very active users. But we see for all activity measures that the average activity of the

neighbors of a user increases with the user’s own activity —the activities of socially connected

users are correlated at all levels.

3.3.4 Communication and interaction networks

Often, ties in social media are not categorized based on the intensity or on the type of the con-

nections, mainly to allow users for an easy management of their acquaintances list. However, in a

social context, ties might have different strength and meaning, depending on the information that

flows on them and from the features that describe the individuals they connect. To reach a deeper

understanding of social dynamics, the information on the social connections must be complemented

with other relational data. In this respect, the communication network carries a useful information

to augment the description of the social substrate as given by the user-declared “friendship” or

“neighborhood” ties: some user-declared ties might not be the support of any communication, and
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Figure 3.8: Distributions of in- and out-strength in the communication network

communication may occur between users that are neither “friends” nor “neighbors”.

The most extensive way in which the communication history between individuals can be defined

is through a multigraph, where each edge carries the information about a single message sent. To the

purpose of our study we consider an aggregation over time and thus we define the communication

graph as a directed graph where each edge between two nodes is weighted by the number of

messages sent between these nodes. The communication graph is dynamic, as the frequency of

messages exchanged by two users might change, with periods of inactivity followed by bursts

of messages. The detailed study of this dynamics would be very interesting but goes beyond the

scope of the present study, so that we consider an aggregation over the whole data set time window,

and consider for each pair of nodes the total number of messages. More formally, we define the

communication graph as:

Gc = (〈U,E〉 ,W )|(u1, u2) ∈ E ⇔ u1
msg−→ u2 ∧W : E → N. (3.4)

Similarly to previous work [346], we observe that macroscopic structural features of communica-

tion graph are analogous to those of the social networks. Degree distributions are very close to

those found for the social networks (not shown) and the strength distributions (i.e., number of

received or sent messages) shown in Figure 3.8 reveal an expected broad behavior. The statistics

shown in Table 3.2 indicate that this graph has high reciprocation and centralization. Note that

the communication network has self-links since it is possible for a user to write messages on her

own shoutbox. Users keeping alive conversation threads on a single shoutbox or announcements

published by the shoutbox owner are the main causes of this phenomenon. This behavior concerns

however only 28% of the users, and the self-links represent only 4% of the total number of links.

In Figure 3.9 we also observe that the social connectivity and the amount of books in the library

are correlated with the activity on the communication network. A strong correlation is found also

between in-degree and out-degree in the communication network.

As shown in Table 3.3, the overlap between social and communication graphs is significant

but far from being complete. More than 75% of the socially connected pairs lack of any form of

public communication and, conversely, around 25% of the communication channels are established

between non connected users. We call interaction graph the portion of the social graph that overlaps
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Social\Comm Comm\Social Social∩Comm

#Nodes

Friendship 57,456 10,901 69,402

Neighborhood 20,792 23,739 56,564

Union 63,719 3,336 76,967

#Edges

Friendship 461,774 478,801 95,484

Neighborhood 435,396 376,046 198,239

Union 894,946 281,581 292,704

Table 3.3: Overlap between social networks and communication network.
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Figure 3.9: Correlation plots revealing the main motivations for message exchange. The number

of incoming and outgoing messages is heavily correlated with the number of social acquaintances

(ksocial) and with the size of the library (nb). The high reciprocation in communication implies

also a strong correlation between in- and out- degree in the communication network.

with the communication network (i.e., Social ∩ Comm in the notation of Table 3.3).

3.3.5 Topical Alignment

The previous analysis has focused on the amount of user activity, as quantified by several metrics,

and on the corresponding correlations and mixing patterns. To understand the interplay between

the social network and user activities, it is necessary to take into account not only the amount,

but also the nature and content of the user activities.

Assortative mixing patterns suggest indeed a propensity to local alignment between connected

nodes, even though just quantitatively. We call instead topical alignment a static property of the

social network for which individuals that are close in the social graph are more qualitatively similar

if compared to those residing far. To compare users from this perspective, we therefore focus here

on the topical similarity between user profiles as measured by the shared features —tags, groups,

books, songs, and so on— in their profiles.

Before exploring the local similarity patterns, a first natural question regards the possible

existence of some amount of global similarity between the users of a given social media. For

instance, in the context of tags, a simple test for the existence of a globally-shared vocabulary can

be performed by selecting pairs of users at random and measuring the number of tags they share,

nst.
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Figure 3.10: Probability distribution of the number of shared tags for two randomly chosen Flickr

users. The probability to have no tags in common is P (0) ≈ 0.67, but the overall distribution is

broad.

In the case of Flickr, this measure shows that there is actually no shared tag vocabulary; this

is not very surprising, given that Flickr is a narrow folksonomy (see Section 5.2) and the broad

range of interests of the users. The average number of shared tags is only about 1.6 in Flickr, and

the most probable case is the absence of any tags shared by the selected users (Figure 3.10).

Despite the lack of a globally shared profile, a number of mechanisms may however lead to

local similarity of user profiles, in terms of shared tags, groups membership, books, musical tastes,

and so on [223]. The presence of a social link suggests some degree of shared context between the

connected users, who are likely to have some interests in common, or to share some experiences,

and who are moreover exposed to each other’s content and annotations. As an example, Table 3.4

shows the 12 most frequently used tags for three Flickr users with comparable tagging activity.

User A and user B have marked each other as friends, while user C has no connections to either

A or B on the Flickr social network. All of these users have globally popular tags in their tag

vocabulary. In this example, the neighbors A and B share various interests (expressed by the tags

in bold).

From this perspective, it is necessary to define robust measures of profile similarity between two

users u and v, regarding the various types of activity. The first and simplest measure is given by

the number of shared items for each activity. For instance, we can consider the number of common

tags nct of the tag vocabularies of u and v, the number of common groups ncg to which both u

and v belong, the number of common books in their libraries or wishlists ncb, ncw for aNobii, and

the number of common songs ncs for Last.fm. These measures may however be affected by the

amounts of activity of the users; two users who apply many tags may have more tags in common

than two less active users, as it is more probable to find common items in two long lists than in

two short ones.

For instance, let us consider two users with 100 tags each, and having 10 of them in common.

The number of shared tags is 10 in this case, but represents just 10% of their tagging activity.

Two users with the same 5 tags, on the other hand, have nct = 5, i.e. less than in the previous
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Table 3.4: Tags most frequently used by three Flickr users; A and B are friends.
User A User B User C

green flower japan

red green tokyo

catchycolors kitchen architecture

flower red bw

blue blue setagaya

yellow white reject

catchcolors fave sunset

travel detail subway

london closeupfilter steel

pink metal geometry

orange yellow foundart

macro zoo canvas

case, but this represents 100% of their activity. In short, such simple measures are not normalized,

and we therefore also need to consider measures that compensate for the heterogeneity in the

amounts of activity. Therefore we need to normalize profile similarity measures to compensate for

heterogeneous activity.

Let us first consider the case of the tags. Following the study by Cattuto et al. [75] we regard

the vocabulary of a user u as a feature vector W whose elements correspond to tags and whose

entries are the tag frequencies for that specific user’s vocabulary, i.e., wut is the number of resources

tagged with t by u. To compare the tag feature vectors of two users, we use the standard cosine

similarity [292] defined as

σtags(u, v) =
∑

t wutwvt√∑
t w

2
ut

√∑
t w

2
vt

. (3.5)

This quantity is 0 if u and v have no shared tags, and 1 if they have used exactly the same tags, in

the same relative proportions. Because of the normalization factors in the denominator, σtags(u, v)

is not directly affected by user activity.

Similarly, we can define the cosine similarities for group memberships and for books. Since a

user belongs at most once to one group, and adds a book only once to her library, the elements of

the group and book vectors are binary, and the similarities reduce to

σgroups(u, v) =

∑
g wugwvg√
ng(u)ng(v)

; σbooks(u, v) =
∑

bwubwvb√
nb(u)nb(v)

, (3.6)

where wug is 1 if u belongs to group g and 0 otherwise, and wub is 1 if u has book b in her library

and 0 otherwise.

Figure 3.11 gives an indication of how the similarity between users depends on their shortest

path distance d on the social network, by showing the average similarity of two users as a function

of d. In aNobii the average number of shared books is rather large for neighbors (close to 20), but it

drops rapidly as d increases, and is close to 0 for d ≥ 4. Similar results are obtained for the number

of common groups and tags, and hold for Last.fm and Flickr as well. The cosine similarities display
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Figure 3.11: Average similarity of various activity indicators (tags t, groups g, books b) as a

function of the distance on the social graph, in the three systems considered. The similarity can be

computed simply with the number of common items (ncX(d)) or with the cosine similarity (σX(d)).

The diamonds correspond to the null model discussed in this Section.

the same decreasing trend as the distance along the social network increases.

The shortest path distance between two users gives the minimum number of steps to navigate

from one user to the other on the online social network. However, this measure of topological

proximity between users can be sensitive to the addition or removal of a single link, and does not

take into account the fact that more than one path can connect the users. To overcome this issue,

the personalized PageRank [143] of one user v with respect to another user u can be considered.

This algorithm essentially gives the probability, for a random walker starting from the profile page

of user u, to visit the profile page of v, and therefore is a more robust measure of social network

proximity. As shown in Figure 3.12, the topical similarity between users increases with their social

proximity, which is consistent with the trend of Figure 3.11.

To gain more insight into the entanglement between similarities and distance on the social

network, we present in Figures 3.13 and 3.14 the probability distributions of the selected similarity

measures for pairs of users at social distance d. The figures clearly shows the dependence of all

distributions upon the distance of the users along the social network: for users who lie at small

distances on the social network, rather broad distributions are observed for the number of shared

tags, groups, or books. As the distance d along the network increases, the distributions become

narrower. Two comments are in order: first, the distributions of nst at short distances reach much

larger values of nst than in Figure 3.10 (the same is observed for the number of shared groups

or books). The reason is that, when choosing a random pair of nodes (as in Figure 3.10), one is

unlikely to select two neighboring nodes. Second, at any distance, the most probable value of nsg or

nst is 0, even if the distributions are broad, and this probability increases with d. For instance, for

Flickr users, the probability that two users do not share any tag is P (nst = 0) = 0.1 if the users are
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Figure 3.12: Average library (top) and group (bottom) similarity between two aNobii users as a

function of the personalized PageRank of one user with respect to the other user. The diamonds

correspond to the null model discussed at the end of Section 3.3.5.

neighbors (d = 1), 0.17 if they are at distance d = 2, 0.37 at d = 3. For groups, P (nsg = 0) = 0.17

at d = 1, 0.4 at d = 2, 0.74 at d = 3. The distributions of cosine similarities between users at

distance d show similar features: they mostly span the whole interval of possible values, but the

probability of high similarity becomes smaller when d increases. The trends are similar for Last.fm

(not shown).

The presence of assortative mixing patterns in the social network, with respect to the intensity

of users activity, makes it necessary to investigate in more detail the observed local similarity of

profiles. It could indeed be the case that such assortativity, by a purely statistical effect, yields an

apparent local similarity between the tag vocabularies of users. For example, even in a hypothetical

case of purely random tag assignments, it would seem more probable to find tags in common

between two large tag vocabularies than between a small one and a large one. Furthermore, as we

have shown, users who are more active have more friends, and their friends are also more active,

therefore similarity with their friends may depend on their greater activity alone.

To discriminate between effects simply due to the assortativity and those due to actual profile

similarity, one has to construct a proper null model, i.e., an artificial system that retains the same

social structure as the one under study, but lacks any feature similarity other than the one that

may result from purely statistical effects. This is done by keeping fixed the social network and

its assortativity pattern for the intensity of the activity, but destroying socially-related feature

similarity by means of a random permutation of profile items.

For instance, we proceed in the following fashion for the tags: (i) we keep the social network

unchanged, preserving each user’s degree k; (ii) we shuffle the tags among users in such a way as

to preserve each user’s number of tag assignments a as well as number of distinct tags nt. This

guarantees that the distribution of frequencies of tags is left unchanged. For group membership
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Figure 3.13: Left: Complementary cumulative probability distributions of the number of shared

tags and groups for two Flickr users lying at distance d on the social network, for different values

of d. Right: Complementary cumulative probability distributions of the cosine similarity between

the tag vocabularies and group memberships of two Flickr users.
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Figure 3.14: Complementary cumulative distributions of the number of shared books and (left),

and of the similarities in the lists of books (right), in the libraries (top) and in the wishlists (bottom)

of aNobii users lying at distance d on the social network, for various values of d.
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Figure 3.15: Top: probability distributions of the number of shared tags of two Last.fm users lying

at distance d on the social network, for d = 1 and d = 2 (symbols), and for the same network

with shuffled tags (lines). Bottom: same for the distributions of the cosine similarities of the tag

vocabularies.

and for books, we can proceed in a similar way except we preserve in the shuffle each user’s number

of groups ng and number of books nb. Such a procedure is in the spirit of null models for detecting

the importance of patterns in networks [220] and of random models of networks with given degree

distributions or correlation patterns [233, 73, 301].

Using the null model defined above, we measure the similarity between users at distance d on

the social network in the same way as for the original data. As Figure 3.11 shows, the average

number of shared books in libraries and wishlists, as a function of the distance d, shows a similar

trend to the original (non-shuffled) data. Similar curves are obtained for the number of shared tags

and groups. For neighboring users, and also for next-to-nearest neighbors, the average numbers of

shared tags or groups are generally significantly lower in the null model, but the distributions are

very similar, as shown in Figure 3.15(top). The assortative mixing between the amount of activity

of neighboring users is therefore enough to yield a strong topical similarity as simply measured by

the number of shared tags, groups or books. The case of cosine similarity is different: as shown

in Figure 3.11, the average cosine similarity in the null model does not depend as strongly on

distance in the social network. Analogously in Figure 3.12 we see that the overlap measures in

the null model are affected by social proximity, unlike cosine similarity. Figure 3.15(bottom) also

shows that the distributions of σtags are very different for the original and shuffled data, and do

not depend on distance in the case of the shuffled data.

We conclude that the topical overlap measured by the cosine similarity is a genuine non-random

effect and it is not only due to the assortative mixing.

The same analysis can be performed on all the features of the users’ profiles. For instance, the
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Figure 3.16: Fraction of pairs of users at distance d in the union network residing in the same

country or town. In both cases data from the network with reshuffled links are shown.

relationship between the geographic attributes and the distance on the social graph are explored in

the right plots of Figure 3.16 that show the probability that two users at distance d on the social

graph are from the same country or town. Again, to disentangle this signal from statistical effects

(given for example by the imbalance of the number of users in each nation) we use as null model a

random network with the same degree sequence as the original network but reshuffled geographic

attributes. The alignment on the nationality feature is strong up to a distance of 4 hops and a

strong effect is observed as well for towns, most of all for directly connected users.

This result suggests that people preferentially establish social ties with others who speak the

same language, but also that the social selection process is driven by the geographic proximity (e.g.,

people that reside in the same town). In particular, 90% of the social edges connect users from

the same country and there is a 10% probability that two connected users are from the same city.

This result indicates a decreasing trend of the probability of connection with geographic distance,

as also found in other online social networks that are not based on a particular interest (here, the

books) but have broader scopes [200, 182].

As we have seen previously, the fact that two users are connected does not automatically mean

that they exchange information through messages. It is therefore of interest to compare the topical

alignment on the social links that effectively are the support of communication (“Social∩Comm”,

in the notation of Table 3.3) with the alignment along the subset of social links on which no

communication is observed (“Social\Comm”, in the notation of Table 3.3). Figure 3.17 shows that

the former is larger than the latter, but only slghtly: interestingly, strong alignment effects exist

even on a network along which no explicit communication flows, and are almost as strong as in the

network of communication.

3.3.6 Evolution of the network

Our aNobii temporal dataset allows us to study some regularities that emerge by the growth of

the social network in time. Since the activity of profile updating does not change the statistical

properties that we presented before, we focus just on the topological features of the graph. In

Table 3.5 we report the evolution of some network parameters in a time span of 2 and a half

months, with a granularity of 15 days. In each snapshot the largest component grows constantly
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Figure 3.18: Left: distribution at snapshot 4 of the distances of nodes which become linked between

snapshots 4 and 5, compared with the distribution at snapshot 4 of distances between all pairs of

users. The points in d = 0 give the portion of pairs of nodes between which no directed path exists.

Right: Measure of the preferential attachment. The dashed line represent a linear relationship.

due to the connections of new nodes to the graph core and new ties are also created between

existent users. Node and edge deletion are much rarer events.

We classify newly created edges among existing nodes in three categories. u → v denotes the

category of unidirectional links while u ↔ v represents the new reciprocal links. “Reciprocated”

denotes instead the new links from a node u to a node v, such that a link from v to u already

existed. Links of the type u → v and u ↔ v can be further described as “Simple closure” and

“Double closure” ties respectively if they close at least a directed triangle. This fits the expectation

that in a social network links are often established toward “friends of friends”. This triangle closure

phenomenon is evident also by looking at the distribution at time t of the distances of nodes that

become linked at time t + 1. The comparison between such distribution and the distribution of

distances between all the node pairs in the network (Figure 3.18 left) reveals that the process of
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1 → 2 2 → 3 3 → 4 4 → 5 5 → 6

New nodes 2241 2121 1911 3214 3567

Removed nodes 239 222 230 220 684

New edges 19472 18324 17618 24805 26883

Removed edges 642 763 713 782 700

u → v 5409 4942 5259 6546 6357

Reciprocated 1016 1155 1285 1526 1688

u ↔ v 1809 1597 1604 1924 2235

Simple closure 2070 1976 2143 2497 2382

Double closure 955 904 877 1027 1141

Table 3.5: Evolution of some quantities from one snapshot to the next.

social partner selection is very skewed on the topological vicinity of the user. In particular, more

than 40% of the new arcs close triangles and more than 80% are established between nodes residing

at distance at most 3.

Besides triangle closure, another phenomenon that underlies link creation in dynamic graphs

is preferential attachment, i.e. users with large number of connection are preferentially chosen to

establish a social link [17]. We test this hypothesis using the following method [241]. Let us denote

by Tk the a priori probability for a newcomer to create a link toward a node of degree k, between

time t−1 and t. Given that at time t−1 the degree distribution of the N(t−1) nodes is P (k, t−1)

(i.e., there are N(t − 1)P (k, t− 1) nodes of degree k), the probability to observe a new link from

a new node to a node of degree k between t− 1 and t is TkP (k, t− 1). Therefore, we can measure

Tk by counting for each k the fraction of links created by new nodes that reach nodes of degree

k, and dividing by P (k, t− 1). As shown in Figure 3.18 (right), we obtain a linear behavior, both

when considering for k the in and the out-degree (which are strongly correlated). This is a clear

signal of a linear preferential attachment.

Clearly, users do not have any knowledge of the overall network topology at anytime, so they

cannot be more motivated to connect to the most connected users. It is more likely that this

preferential attachment arises from the fact that a new user creates links not only towards another

user but also towards some of this user’s neighbors. It has been shown that this locally-driven

connection pattern results in effective preferential attachment [168, 173]. Indeed, we verified in

our dataset that many newcomers join the network by creating links to pairs of already connected

users.

42



Chapter 4

Homophily and influence dynamics

of complex social systems

4.1 Causal connection between similarity and link creation

Similarity effects between the members of social groups, or between individuals sharing a social

link has long been observed and studied in sociology [223]. The increasing availability of data

from online social networks has created ideal laboratories for testing and quantifying such social

phenomena and theories [323, 190].

As often discussed in the social sciences, similarity can emerge for different reasons, which are

summarized in two scenarios: link selection (or homophily) and social influence [183, 22, 223, 303].

The former scenario considers that social links are preferentially created between individuals who

are already similar and choose each other for establishing the social link precisely because they

share some degree of similarity. In the latter scenario, individuals become more similar over time

because they influence each other. Disentangling these scenarios is a delicate matter that requires

longitudinal data sets, as social influence implies a temporal evolution of a relationship [27, 303].

In particular, investigations on the interplay between homophily-driven creation of social con-

nections and the influence that neighbors exert on each other’s behavior have been made by Cran-

dall et al. [91] on the Wikipedia collaboration network. Authors show that editors are likely to

establish direct communication if they start having many editing activities in common. On the

other hand, the interaction between them is found to result in reciprocal influence that is measur-

able in terms of further alignment between their activities. Here we address a similar problem but

on a social media that is very different nature from Wikipedia, and our focus is on the analysis of

the profile features, shared metadata, and topicality rather than on collaboration patterns.

In the previous Chapter we observed topical alignment as a static property of the network.

Here we investigate the cause of this phenomenon more in detail. Since we verified that topical

alignment is not purely due to assortative patterns, we can ascribe this phenomenon to homophily

or to social influence. Given the temporal dataset from aNobii we can verify if such phenomena
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〈ncb〉 σb 〈ncg〉 σg

duv = 2 9.5 (0.2) 0.02 1.12 (0.61) 0.05

u → v 12.9 (0.16) 0.04 1.1 (0.6) 0.08

u ↔ v 18.5 (0.06) 0.04 1.67 (0.44) 0.11

Simple closure 18.2 (0.09) 0.04 1.81 (0.45) 0.1

Double closure 23.4 (0.03) 0.05 2.2 (0.36) 0.12

Table 4.1: Average similarity for snapshot t = 4 of pairs forming new links between t and t + 1,

compared with the average similarity of all pairs at distance 2 at t. The similarity is measured by

the number of common books ncb or groups ncg, and by the corresponding cosine similarities σb

and σg. The numbers in parenthesis give the probability to have similarity equal to 0.

are present.

To check whether homophily-driven attachment is present we compare the average similarity,

computed at time t, between pairs of nodes residing two hops away in the social graph (d = 2) and

between pairs of users who create e social connection between t and t+ 1. We observe in Table 4.1

that pairs of users that are going to get connected are more similar than the average of all the

nodes that simply reside two hops away in the graph, especially if we consider bidirectional links

and closing triangles. This result applies for all the similarity measures used. The probability that

two users at distance 2 have 0 similarity is also much smaller for users who become linked between

t and t+ 1.

The picture emerging from this analysis and from the results of the structural analysis of the

datasets is the following: users connect to others residing close in the social graph, very often

neighbors of neighbors; moreover, these individuals have more similar profiles than the average

pairs of users at distance 2. In this respect, one can infer that the first causal effect of topical

alignment is homophily, namely that similarity of users partly drives the creation of new links.

Verifying the presence of social influence requires instead to study the evolution in time of the

similarity between connected user profiles. In Figure 4.1 we plot the average similarity for library

and group membership features for pairs connecting between t and t+1. Before the link is created

the similarity score is rather stationary and a sudden jump is observed when the connection is

created; the similarity then continues to grow, albeit at a slower rate. The following scenario

emerges from this result: after a link creation, newly connected individuals take inspiration from

each other for new books to read and new groups to join. The direct consequence of this reciprocal

influence is a further alignment of the profiles.

To summarize, our analysis on the dynamics of social aggregations show the presence of a

bidirectional causal relationship between social connections and similarity. Higher similarity de-

termines a higher connection probability and, on the other hand, users who get connected become

more similar due to the influence that new acquaintances exert on one another. These results ap-

plies not only for collaboration networks [91], but also for the more general case of interest-based

networks such as aNobii, where the similarity between users is evaluated on the basis of profile

items, shared metadata, and topics of interest.
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Figure 4.1: Evolution of the average similarity of user profiles, as measured by the numbers of

common books or groups, and by the cosine similarity. Similarity is shown for links created

between t and t+1, for t = 2 (black circles), 3 (red squares), 4 (green diamonds), 5 (blue triangles),

normalized by the average similarity in the first snapshot. Values are quite stationary before t0,

and clear jumps are observed between t and t+ 1.

4.2 Information spreading and influence

Influence can also be investigated from a different angle, focusing on items rather than on users.

The influence observed at the time of a link creation might indeed remain effective for the whole life

span of the social link, and, at any time, may lead a user to adopt a new item (in particular a book)

from her neighbors and, in turn, to influence others to adopt the same item. This phenomenon

gives origin to adoption cascades that can be studied within the more general scope of information

spreading [41]. Better understanding the spreading of items on the network can shed a clearer light

on the overall role of influence in the online social network.

The task of capturing the dynamics of information spreading and influence that occur in net-

worked environments has received much attention recently. Diffusion models of word-of-mouth

processes have been developed in the past to enhance viral marketing strategies [167]; more re-

cently, due to the large diffusion of social media, detection of influence patterns and of influential

individuals have become important also to capture dynamics of interaction in social networks and

especially in real-time information networks.

Analysis of information propagation in Flickr [78] showed that, in spite of the common expecta-

tion about the quick and wide spreading of information delivered through word-of-mouth, diffusion

is limited to individuals who reside in the close neighborhood of the seed user and the spreading

process is very slow. Analysis of message cascading on Twitter has been used to estimate the

degree of influence of users [354]; the most influential among a pair of users is determined using the

difference between some activity metric, like the number of followers or number of tweet replies. In

partial disagreement with this study, it has been shown that the number of followers (or of social
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CHAPTER 4. Homophily and influence dynamics of complex social systems

contacts in general) does not imply a high influence degree [77].

Instead of representing the influence as an infection phenomenon between connected individu-

als, Yang and Leskovec [352] recently proposed a linear influence model which is agnostic on the

network structure and relies only on the time of the contagion; they show its accuracy in predict-

ing influenced nodes. These observations imply the presence of a hidden contagion web which is

different from the observed social network [128]. Based on similar observations, other probabilistic

models that represent influence effects between peers disregarding social links structure have been

proposed [29].

A crucial task in the analysis of influence patterns is to discern real influence by unobserved

factors, like homophily or confounding variables, that can induce statistical correlation between

the behaviors or the profiles of connected users even without one being influenced by the other.

Shuffling or randomization tests on user features are commonly used to detect a signal of influence

inside noisy patterns of correlation between pairs of users [22].

In this perspective, we study the static and dynamic properties of the book graphs G(b) defined

as the social subgraph induced by the users having the book b in their library or wishlist. We

differentiate the analysis by classes of book popularity using the cardinality of the set A(b) of the

users who adopted the book b (i.e., the nodes in G(b)). In particular, given the book popularity

distribution, we introduce three popularity classes, namely the rare (|A(b)| ∈ [10, 500)), the middle

(|A(b)| ∈ [500, 1000)), and the popular (|A(b)| ≥ 1000). The boundaries of the popularity classes are

chosen based on the empirical observation of the popularity distribution of books. Even neglecting

very rare books with less than 10 readers we have more than 1.5M of book graphs to study.

In this perspective, we study the static and dynamic properties of the book graphs G(b) defined

as the social subgraph composed by the users having the book b in their library or wishlist and

by the links between them. We differentiate the analysis by classes of book popularity using the

cardinality of the set A(b) of the users who adopted the book b (i.e., the nodes in G(b)). In

particular, given the book popularity distribution, we introduce three popularity classes, namely

the rare (|A(b)| ∈ [10, 500)), the middle (|A(b)| ∈ [500, 1000)), and the popular (|A(b)| ≥ 1000).

The boundaries of the popularity classes are chosen based on the empirical observation of the

popularity distribution of books. Even neglecting very rare books with less than 10 readers we

have more than 1.5M of book graphs to study.

We first report some static properties of the book graphs. Figure 4.2 shows the broad distri-

butions of the numbers of nodes and edges; book graphs can be disconnected and more than 10%

of them are composed just by singletons, even if this is observed only for graphs with at most 100

nodes. Patterns of connectivity in books graphs can be detected by measuring topological graph

features depending on the network size. In Figure 4.3 we report the relative size of the greatest

connected component (Sgcc/|A(b)|), the relative number of connected components (Ncc/|A(b)|),
and the clustering coefficient (C) against the size of the book graph |A(b)|, for every book. For the

sake of comparison, for every point in the scatterplot we also depict two twin points representing

the same topological measure calculated for two different random graphs. The first is an Erdős-

Rényi (ER) graph with the same number of nodes and edges and the second is a random subgraph
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Figure 4.2: Distribution of number of nodes and edges in the book graphs G(b).

of the social network with the same number of nodes. In particular, the random subgraph is used

as a null model that represents the adoption of a book as an aleatory process with probability

|A(b)|/N (with N the total number of users).

Book graphs exhibit a weaker connectivity but a more clustered shape than the corresponding

ER graphs. The relative number of connected components slowly decreases with the size but

remains considerably higher than in ER graphs with the same size; as a consequence, the relative

size of the greatest component asymptotically stabilizes around a value slightly under the case of the

ER graphs. Conversely, real book graphs are much more clustered than their randomized versions.

The comparison with the random-node-graph null model reveals instead that a random adoption

would give origin to much more fragmented book graphs with smaller clustering, thus suggesting

that book graph may be originated by a process of expansion and enforcement of clustered cores

of readers.

The dependance of the same quantities on the average number of outgoing ties 〈k〉 in the

subgraph can also be measured; in Figure 4.4 we focus on the relative Sgcc and on the average

clustering coefficient C. The size of the largest component grows steadily with the average number

of neighbors, while a relatively rapid transition from 0 to 1 is observed as 〈k〉 crosses 1 in the

ER graphs with the same size (corresponding to the percolation transition of ER graphs), and

no significant size increase is detected in the random-node-graphs. Also the clustering coefficient

grows almost linearly with 〈k〉, while it remains very low in the ER network and in the random-

node-graph. This results suggest that the connectivity in book graphs is not driven by a threshold

on the average node connectivity (as is the case in ER graphs); instead, for any level of average

connectivity and graph size, a non-negligible portion of isolated components are detected. This

tends to indicate that several users adopt a book independently, without being directly influenced

by their online social contacts. However, the strongly clustered nature of G(b) suggests that

independent adoption by distinct users is not the only driving force of book adoption, and that a

process of “contagion” between users might have taken place in the shaping of the subgraphs of

adopters G(b).

To have a better idea of the extent to which a user might be led to adopt a book through the

influence of her social neighborhood, it is necessary to analyze the temporal evolution of the G(b)

graphs. We call G(b, t) the social subgraph of users having book b at time t. G(b, t) can evolve
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Figure 4.5: Evolution of structural properties of book graphs in time. Number of nodes (N), num-

ber of edges (E), size of the giant connected component (Sgcc), number of connected components

(Ncc), average out-degree (K) and clustering coefficient (C) are shown. All values are normalized

on the initial value (t = 1).

because of new users arriving in the social network who have b in their library, users leaving, or

users adding/removing b to/from their library. For the purpose of detecting influence patterns, we

disregard the newcomers (who might or not fill their own library with the books they have read)

and users leaving the network, and focus on the graph G∗(b, t) restricted to the users who are

present in all the considered snapshots. Moreover, for simplicity, we neglect the (very rare) event

of book deletion: once a book is adopted by a user, we assume that it is present in her library at

anytime in the future. In this context, we formally define the set of adopters of a book b between

time t− 1 and t as A ∗ (b, t) = G∗(b, t)\G∗(b, t− 1).

In Figure 4.5 the evolution of some properties of G∗(b, t) graphs is shown. Most of the values

(N , E, K, C, Sgcc) grow in time, revealing the expansion and the increase of density and cohesion

of the greatest component. The only exception is observed for the decreasing trend in the number

of connected components for the graphs of the books with medium or high popularity. This can

be explained by the fact that if a book is widespread over the social network it is more likely that

a new adopter can create a bridge between two components of G∗(b, t − 1), thus reducing their

number.

Finally, for every adopter, we measure the fraction of users that could potentially have played

an influence in the book adoption process. If a book is adopted in the time span [t, t+1], the users

that may have influenced the adopter are her out-neighbors who already have that book in their

library at time t 1. We specifically focus only on the out-neighbors because users are explicitly

1We disregard here the possibility of interactions between users taking place outside the social network. It is clear

that what can be inferred from the analysis of the online social network are only tendencies and indications, and
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Figure 4.6: Distributions of number (Kb) and portion (Fb) of neighbors on the social network

having book b at time t for adopters of book b between t and t+1 and non-adopters. For adopters,

the same distributions computed on the interaction network only are shown.

notified of all their new book adoptions, while a user may not be aware of her in-neighbors and of

their activity. Consequently, we denote the number of user u’s out-neighbors at time t having book

b as Kb(u) and the fraction of such users over all u’s out-neighbors as Fb(u) = Kb(u)/Kout(u).

The distributions of Kb and Fb for the users u who adopt b in [t, t + 1] are shown in Figure 4.6,

together with the same distributions restricted to the users u who still do not have adopted b at

t + 1. The curves for the two user categories are very different for both measures, thus revealing

that users that adopt a particular book have been exposed, on average, to a higher number of

users that previously put that book in their libraries. In particular, the probability of having

no out-neighbors at t with the target book in their library is much lower for the adopters (0.66)

than for the non-adopters (0.98). Furthermore, as shown in Figure 4.7, the average Kb at fixed

values of Kout is much higher for adopters than for non-adopters, even if a positive correlation

is find in both cases, meaning that adopters are considerably more exposed, on average, to other

users exposing the adopted book. Such clear differences between the two cases of adopters and

non-adopters represents a very strong evidence of the presence of an influence effect in the process

of book adoption.

Interestingly, the vast majority (74%) of adopters with Fb > 0 exhibit values smaller than

0.2, and the average value of Fb for these adopters is rather small (0.189); on the other hand,

the numbers Kb of neighbors of an adopter who already have the book b are broadly distributed.

This tends to support two distinct hypothesis: the first one is that only a rather small number of

neighbors are really influential among the neighborhood of a user; the second is that the important

criterion in the adoption of a book (an “influence threshold”) is not the bare number of neighbors

who have adopted a book, but the corresponding fraction among all out-neighbors, and that the

influence threshold in such context is rather low.

As previously mentioned, users are notified of the adoption of a book by their out-neighbors:

information flows therefore in an automated way along the friendship and neighborhood links. It is

that no absolute proof of influence effects can be obtained, as one cannot rule out effects external to the network.

50



4.2. Information spreading and influence

0 50 100 150
k

0

1

2

3

4

5

〈K
b〉

Adopters
Non adopters

Figure 4.7: Number (Kb) of out-neighbors on the social network having book b at time t, averaged

for the users having the same number (k) of out-neighbors. The cases for adopters and non-adopters

are shown.

thus interesting to compare the potential existence of influence effects in the book adoption process

along the social links that do not support additional (non automated) communication between the

users (Social\Comm) with respect to the case of social links that do (Social ∩ Comm). To this

aim, we compute the probability of adoption at time t of a book b given a fixed number of neighbors

who already have b at time t − 1, formally: Pa(b, t|Kb) s.t. Kb = |Γout ∩ G∗(b, t− 1)|, where Γout

is the set of out-neighbors of u.

The computation of Pa for the pure social network must use out-neighbors because the informa-

tion (i.e., automatic notifications) flows contrariwise the direction of the edges. In the interaction

network instead, both directions should be taken into account because a message sent from u to v

may imply a particular interest of u in v’s library or, conversely, that u is proactively suggesting a

book to v. For this reason in the Interaction network we consider two separate cases where Kb is

computed considering the set of in-neighbors Γin or out-neighbors Γout.

Figure 4.8 shows the values of Pa(b, t|Kb) averaged over all books and time steps, for the pure

social network (Social\Comm) and the Interaction network (Social ∩ Comm).

Interesting features emerge: (i) the probability of adoption is very small if k = 0 (less than

2 · 10−4), and increases very rapidly as the number of out-neighbors having the considered book

at t − 1 increase.; (ii) this probability tends to saturate as k increases above 20, showing that

additional increase in the number of out-neighbors reading the book do not increase the user’s

adoption probability; (iii) the probability of adoption at fixed number of out-neighbors reading the

book is much larger for out-neighbors with whom an explicit communication is established; (iv)

when focusing on interaction ties, receiving messages from a number of early adopters of a book b

implies a higher probability of adoption of b than sending messages to the same number of owners

of b.

The first result is a strong indication in favor of the hypothesis of effective influence between
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Figure 4.8: Probability of a book adoption averaged on all the books and snapshots, at fixed values

of neighbors that are earlier adopters. Curves are depicted for the pure social network and for the

interaction network.

neighbors on the social graph. The second indicates that the number of influential neighbors is

limited, in support of the first hypothesis outlined above. The third result supports a scenario

in which direct suggestions from neighbors with whom an explicit communication exist have a

stronger influencing power than the automated notification system and, in particular, the fourth

result suggests that adoption is often triggered by direct recommendations received by earlier

adopters.
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Chapter 5

Link prediction

5.1 Toward friendship forecast service

Studying the dynamics of complex systems is useful to understand and model the mechanisms

at the basis of their evolution. Discovering the fundamental gears that move a complex social

network allows to perform predictions on the future status of the system [17]. Even though in

recent years the topic of prediction in social systems is becoming wider and tend to correlate

several interconnected systems with different features and dimensions (see for example the work by

Bollen et al. about the prediction of the stock market based on Twitter sentiment analysis [56]),

the main efforts in this field have been spent to predict some generic features of a node or edge in

a network [5] and, in particular, the presence of a link at some time in the future.

Predicting the presence of a link between two entities in a network is one of the major challenges

in the area of link mining [120]. Such edge-related mining task is usually defined as link detec-

tion [90] when it aims to disclose the presence of unobserved or unknown links on a static network

or as link prediction when it aims to foresee whether a connection will arise in the future between

two nodes that are unlinked at the current time; we preserve this terminology in the following.

Seminal work on link prediction was presented by Liben-Nowell and Kleinberg [197, 199]. They

identify structural properties of the graph which can be used to build a ranking of the node pairs

based on their structural similarity, which is in turn exploited to predict future interactions in

scientific collaboration networks. Results show a good accuracy over a random predictor. Several

slight variants of this approach has been adopted (e.g., work by Pavlov and Ichise [262]). In

contrast, another early work by Popescul et al. [263] focused on link detection using a classifier

trained on the feature vectors that describe the nodes of the graph. The authors point out also the

skew of the accuracy prediction due to the high sparsity of the link matrix, and perform a study

on the alteration of the accuracy depending on the ratio between positive and negative samples in

both training and test set.

Combining structural graph similarity measures and simple node features in a supervised learn-

ing approach to link prediction has been also tried in the past [142], showing the improvement of

the prediction performance compared to predictors aware of the topological features only. Geo-
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graphical proximity between nodes [250] and groups affiliation [362] have been effectively used as

node features as well. Recently, some tests have been done also on the predictive power of some

network clustering algorithms in the link prediction tasks [290]; however, reported results are not

very encouraging.

The best-known topological measures of structural similarity between pairs of nodes are re-

viewed and refined by Zhou et al. [363] and Lü et al. [206]; the authors compare several structural

similarity metrics for link prediction and detection, in terms of accuracy and computational effi-

ciency. New local measures, namely the resource allocation and the local path, are proposed and

showed to be efficient and accurate in link detection. Efficiency of structural proximity metrics on

graphs is addressed also by Song et al. [310].

Detection of links based only on the information extracted from the folksonomies embedded

in social media is performed by Schifanella et al. [299]; similarity measures explicitly designed for

the three-dimensional folksonomic space are used to compute a lexical proximity between users

and, consequently, to predict a connection between them. A similar context is considered by Leroy

et al. [185], who leverage the group membership information from Flickr to build a probabilistic

graph useful to detect the hidden social graph with a good accuracy.

The problem of detecting both unknown links and missing node attributes in a network is

addressed by Bilgic et al. [53]. They propose an iterative method which refines at each step the

prediction of one of the two features considered leveraging the information gained on the other

feature at the previous step.

The role of temporal aspects in prediction is explored by Tylenda et al. [328], who exploit the

information of recent interaction between individuals to improve the prediction accuracy. Dunlavy

et al. [100] use a matrix-tensor method to predict links that will be created in the future. Their

analysis is focused on networked systems with well-detectable period patterns in their underlying

periodic structure.

Huan et al. [153] define a cycle formation model for social graphs that relates the probability

of the presence of a link with its ability to form cycles. The parameters of the model are estimated

using the generalized clustering coefficients of the network. The power of the model is evaluated on

the Enron email dataset. Another probabilistic network evolution model aimed at link prediction

is proposed by [165]. The idea is that links appear in the network due to a copying process where

status labels associated to edges are copied from one node to another with a probability that is

dependent on the relative topological position of the two nodes.

Prediction of future links in a question-answering bulletin board service is performed by [238],

showing network proximity scores calculated from local topological information to be accurate

predictors of future links.

Clauset et al. [83] present a hierarchical decomposition algorithm for network clustering which

can also be applied to predict missing interactions in networks. The generated dendrograms deter-

mine the probability of connection for every pair of vertices. Links are predicted between pairs that

have high probability of connection within the hierarchical random graphs but that are unconnected

in the observed network. This technique yields positive results on several small networks.

54



5.2. Social link detection

Link prediction can also be based on features that describe user profiles, based on the principle

that people with similar tastes are more likely to establish social contacts. Caragea et al. [71]

propose an ontology-based classification of user features and show that the semantics captured by

the ontology can effectively improve the performance of a topology-based machine learning classifier

for social link prediction. Li et al. [194] propose a method to cluster Delicious users extracting

implicit relations based on the similarity of their tag vocabulary.

In a survey of link prediction techniques, Lu et al. [208] compare several structural similarity

metrics in terms of accuracy and computational efficiency.

Even if the majority of papers is focused on link prediction on simple (directed or undirected)

graphs, a few techniques have been developed also for different kinds of networks. Work has

been made in link detection on weighted networks [207, 121], bipartite networks [100, 47, 175]

and signed social graphs [190]. Very recently, an approach that combines supervised learning and

random walks has been shown to have a good accuracy for both prediction and recommendation

of new links [32].

Finally, some approaches based on probabilistic models such as relational Markov networks [324]

and probabilistic relational models [119] deserve to be cited. However, these approaches have not

been proved to be scalable and they have not been extensively tested on real-world datasets.

5.2 Social link detection

The findings on homophily reported in Chapter 4 naturally lead us to the hypothesis that the

presence of a social tie could be inferred relying only on the topical similarity between users. In

this section, we test this hypothesis focusing on the Last.fm and aNobii datasets. We do so for

several reasons. First, in these two cases, the data include information on the user libraries, in

addition to groups and annotations. Second, a prediction based on the tagging information is more

meaningful in a broad folksonomy, in which users can label the same (global) set of items and pick

from this global set to form their libraries. This condition allows us to deal with similarity based

on shared content as well as shared vocabulary. Last.fm and aNobii are broad folksonomies, as

any user can tag any artist or book. This is not the case for Flickr, which is considered a narrow

folksonomy, as users normally tag only the pictures they upload themselves.

Third, the Last.fm and aNobii datasets have peculiarities that allow to draw interesting con-

clusions regarding link prediction task. They both have a specification of users’ mother tongues;

as we shall see, language is a feature that can considerably affect prediction, and that should thus

be taken into account when accuracy is measured. Additionally, Last.fm provides the tasteometer

score, a user-to-user similarity metric computed by the system. While the tasteometer algorithm

is not public, and therefore we do not have precise information of how its values are computed,

we have verified empirically that it is largely independent from social information and it is based

only on listening patterns. Consequently we can fairly compare the prediction accuracy achieved

by user-to-user topical similarity measures to the one obtained by the system-provided similarity

metric.

55



CHAPTER 5. Link prediction

5.2.1 Methodology

In a first stage we focus on the task of link detection, that can be defined as follows. Given a

sample of users Us ⊆ U , we want to detect the presence or absence of a social link for every pair

(u, v) ∈ {Us×Us|u �= v}. When detecting the link between a pair (u, v) we suppose to have all the

information about the network topology but the (u, v) edge and about the features that describe

the user profiles. We deal in particular with four different features: groups, library, tags, and tagged

items. Note the difference between items and library features. In aNobii, tagged items are a subset

of the whole set of books in the user’s library, while in Last.fm tagged items can be tracks, albums

or artists and the library is composed only of the top 50 artists in the user’s global playlist. Tags

and items can be directly extracted from the three-dimensional triple space through aggregation

(details are provided in Section 5.2.2).

We take into account each feature separately, so each user is described with a single feature

vector. For each pair of users in Us, we compute a similarity value between their feature vectors

using the metrics defined in Section 5.2.2. In the case of Last.fm we also have the system-provided

tasteometer similarity. Next, we sort the node pairs in decreasing order of their similarity score.

The pairs with the highest topical similarity are those that we suppose are the most likely to be

connected with a social link. For this reason, we predict the presence of a tie for every user pair

whose similarity value is greater than or equal to a threshold value σ. To evaluate the accuracy

of our the link detection, we check the presence of each detected link in the social network and we

count the number of true positives and false positives. As the value of σ decreases, a higher number

of links is predicted, leading to an increase in the number of both true positives and false positives.

We test the accuracy of our predictor for all the significant values of σ. The similarity measure

that performs best for the prediction task is the one that achieves the best ratio between true

positives and false positives, across all the possible threshold values. To quantitatively measure

the prediction performance for the whole set of threshold values we consider ROC curves [108]

and we compare the area under the curve (AUC) achieved by the different features and similarity

metrics considered. ROC curves are commonly used in the machine learning community for link

prediction [83].

Given this setting, it is important to select a significant sample of users Us. Intuitively, one

could choose Us ≡ U . The problem is that, since the social graph’s density is very low, the full

social matrix U×U is extremely sparse, thus leading to a very low ratio of potential true positives.

The problem of studying greatly biased datasets is well known by data miners and it is a common

issue also in social link prediction, due to the intrinsic sparsity of social graphs [198, 120, 190, 208].

It has been shown that the AUC is a good measure for performance evaluation when there is a

strong class skew [314]. However, in the first part of our evaluation we want to minimize the

sparsity problem in order to compare the predictive power of different features in a less biased

setting.

We thus restrict our initial analysis to several smaller subsets, each composed of 500 users

sampled on the basis of one of two criteria. First, we extracted a Most Connected set for each

feature, composed of the nodes with the highest out-degree and that have at least one element for
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the considered feature. Second, we sampled a distinct Most Active set for each feature, containing

the 500 users with the largest number of elements for that feature. More in detail, we chose the sets

of users with the highest number of groups, with the highest number of objects in their libraries,

and, for both item and tag features, we chose the set of the 500 taggers with the highest number

of triples.

The Most Active sampling provides the best scenario in which to explore the effectiveness of

link prediction based on topical similarity. Furthermore, given the correlation between user activity

and social connectivity (see Figure 3.5), the Most Active nodes typically have a rather high degree,

thus ensuring a relevant number of intra-sample social connections. As a result, the density of our

social network samples ranges from 0.02 to 0.07, which is three–four orders of magnitude higher

than the full networks, whose order of magnitude is around 10−5. Besides, to perform a test on

the average case, we do not take into account simply a random set of users: we consider a set of

high-degree nodes instead, thus circumventing the density problem.

In a second phase of the evaluation, we expand our observations with a sensitivity analysis to

show how much the prediction accuracy is affected by the density, user activity, and size of the

sampled subgraph, thus disentangling the evaluation from possible skew due to the narrower sample

of active and connected users. Then, in Section 5.3 we will discuss the task of link prediction and

contact recommendation.

5.2.2 Similarity Metrics

To model the task of predicting social links we need to define measures of profile similarity between

users. In particular, we have to select a robust similarity metric for the features that characterize

the activity of users. In relation to group membership and library features we follow the approach

in Section 3.3.5 that computes similarities by way of the standard cosine similarity as formalized

in Equation 3.6.

For the remaining features we adopt the framework by Markines et al. [215] that represents the

system as a tripartite graph involving users, tags, and resources (e.g., books, songs, photos, etc.).

A triple is a ternary relation between a user u, a tag t, and a resource r, and a set of triples is

what we call a folksonomy F . We then define similarity measures σ(u, v) where u and v can be

two resources, tags, or users. Here we focus on similarity functions where u and v are two users.

Since measures for similarity and relatedness are not well developed for three-mode data such

as folksonomies, we consider various ways to obtain two-mode views of the data. In particular, we

consider two-mode views in which the two dimensions considered are dual — for example, users

can be represented as sets of tags or resources. The process of obtaining a two-mode view from a

folksonomy is called aggregation. Next we present different aggregation strategies and the set of

similarity functions we adopted.
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Aggregation Methods

In reducing the dimensionality of the triple space, we necessarily lose correlation information.

Therefore, the aggregation method is critical for the design of effective similarity measures; poor

aggregation choices may negatively affect the quality of the similarity by discarding informative

correlations. Focusing on user similarity, we can aggregate across one of the tag or resource

dimensions, obtaining a description of a user as a vector of, respectively, resources or tags. We

consider four approaches to aggregate user information: projection, distributional, macro, and

collaborative aggregation. To simplify our exposition, in the following definitions we will adopt an

aggregation across resources, meaning that a user will be represented as a vector of tags; analogous

mechanisms apply when tags are selected as the aggregation dimension. An extensive discussion

on these aggregation approaches can be found in the work by Markines et al. [215].

Projection. The simplest aggregation approach corresponds to the projection operator πu,t(F )

in relational algebra, assuming the triples are stored in a database relation F . Another way

to represent the result of aggregation by simple projection is a matrix with binary elements

where rows correspond to users (as binary vectors, or sets of tags) and columns corresponds

to tags (as binary vectors, or sets of users).

Distributional. A more sophisticated form of aggregation stems from considering distributional

information associated with the set membership relationships. One way to achieve distribu-

tional aggregation is to make set membership fuzzy, i.e., weighted by the Shannon information

(log-odds) extracted from the annotations. Intuitively, a tag shared by two users may signal

a weak association if it is very common. For example, let U be the set of users and Ut the

users that annotate with t. We will use the information of tag t defined as − log p(t) where

p(t) =
|Ut|
|U | . (5.1)

Another approach is to define a set of frequency-weighted pairs (u, t, wut) where the weightwut

is the number of resources tagged with t by u. Such a representation corresponds to a matrix

with integer elements wut, where rows are user vectors and columns are tag vectors. We

will use both of the above distributional aggregation approaches as appropriate for different

similarity measures.

Macro. To compute an average function in class-partitioned datasets (e.g., documents partitioned

into categories), micro- and macro-averaging approaches are possible. Micro-averaged scores

are calculated considering the contribution from each element in each class. In contrast,

macro-averaged values are obtained by first calculating the function for each class and then

taking the average of the results. Micro-averaging gives equal weight to every element while

macro-averaging gives equal weight to every class. Both approaches are broadly used in text

mining [109]. By analogy, distributional aggregation can be viewed as micro-aggregation if we

think of resources as classes. Each annotation is given the same weight, so that a more popular

resource would have a larger impact on the weights and consequently on any derived similarity
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measure. In contrast, macro-aggregation treats each resource’s annotation set independently

first, and then aggregates across resources. This will allow the similarity calculation to be

incremental, breaking the dependency on global frequencies. In relational terms, we can

select the triples involving each resource r, and then project, yielding a set of pairs for r:

{(u, t)r} = πu,t(σr(F )). This results in per-resource binary matrices of the form wr,ut. These

matrix representations wr,ut ∈ {0, 1} are used to compute a local similarity σr(u, v) for each

resource r. When defining the Shannon information of a feature, the feature probability

p(t) must be replaced by a conditional probability p(t|r). Finally, we macro-aggregate by

voting, i.e., by summing across resources to obtain the global similarity. Macro-aggregation

does not have a bias toward resources with many annotations. However, in giving the same

importance to each resource, the derived similarity measures amplify the relative impact of

annotations of less popular resources.

Collaborative. Macro-aggregation lends itself to the exploration of collaborative filtering in folk-

sonomies while the computation remains incremental. Thus far, we have only considered

feature-based representations when working with a tripartite representation. That is, a user

is described in terms of its tag or resource features. If two users share no feature, all of

the measures defined on the basis of the aggregation schemes will yield a zero similarity. In

collaborative filtering, on the other hand, the fact that one or more users vote for (or in our

case annotate) two objects is seen as implicit evidence of an association between the two

objects, even if they share no features. The more users share a pair of items, the stronger

is the association. We want to consider the same idea in the context of user similarity in

folksonomies. If many resources have been annotated by the same pair of users, even with

different tags, the two users might be related. Likewise, if two users apply the same tags, even

to annotate different resources, the two users might be related. We can capture this by adding

a feature-independent local similarity to every pair (u, v) of users in macro-aggregation. In

practice we can achieve this by adding a special “resource tag” tr to all users that tagged r.

This way all of r’s users have at least one annotation in common. However, the information

of such special tag would be − log(p(tr|r)) = − log(1) = 0. To ensure that the special tag

makes a non-zero contribution to the local similarity σr(u, v), let us redefine the odds of tag

t for resource r as

p(t|r) =
|Ut,r|
|Ur|+ 1

(5.2)

which is always less than 1 so that − log(p(tr |r)) > 0. Likewise, if many resources contain

the same pair of tags, the two tags might be related even if they share no users.

Similarity Measures

We wish to explore several information-theoretic, statistical, and practical similarity measures.

Each of the aggregation methods requires revisions and extensions of the definitions for appli-

cation to the folksonomy context. Prior work [215] shown that distributional aggregation yields

better accuracy than projection, and collaborative aggregation yields better accuracy than macro-
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aggregation, with the same computational complexity, we focus on distributional and collaborative

aggregations. For brevity, we show definitions only for the similarity measures in the distributional

case. These definitions are based on feature probabilities p(x) defined in Equation 5.1. The def-

initions of the local similarities for collaborative aggregation are similar except that the feature

probabilities are replaced by the conditional probabilities defined in Equation 5.2. We suppose that

u, v ∈ U represent users and Xu, Xv are their vector representations. Of course, the attributes of X

depend on the aggregation dimension. In the following formulas we consider the case of aggregation

across resources, i.e., the users are denoted by vectors of tags with tag elements wut. Recalling

that all measures are symmetric with respect to resources and tags, we simplify the notation as

follows:

Matching. The distributional version of the matching similarity is

σ(u, v) = −
∑

t∈Xu∩Xv

log p(t). (5.3)

Overlap. Distributional overlap is given by

σ(u, v) =

∑
t∈Xu∩Xv

log p(t)
max(

∑
t∈Xu

log p(t),
∑

t∈Xv
log p(t))

. (5.4)

Jaccard. Distributional Jaccard similarity is defined as

σ(u, v) =

∑
t∈Xu∩Xv

log p(t)∑
t∈Xu∪Xv

log p(t)
. (5.5)

Dice. Distributional version of Dice is defined as

σ(u, v) =
2
∑

t∈Xu∩Xv
log p(t)∑

t∈Xu
log p(t) +

∑
t∈Xv

log p(t)
. (5.6)

Cosine. For the distributional version of the cosine, it is natural to use the frequency-weighted

representation

σ(u, v) =
Xu

||Xu|| ·
Xv

||Xv|| =
∑

t wutwvt√∑
t w

2
ut

√∑
t w

2
vt

. (5.7)

This formula is equivalent to Equation 3.5.

Maximum Information Path. The last measure we consider is Maximum Information Path

(MIP) [217]. The MIP similarity is an extension of traditional shortest-path based similarity

measures [270] and Lin’s similarity measure [202]. MIP differs from traditional shortest-path

similarity measures by taking into account Shannon’s information content of shared tags

(or resources). Lin’s similarity measure only applies to hierarchical taxonomies, such as the

case when bookmarks are organized in folders and subfolders. However, when the folksonomy

includes non-hierarchical annotations, Lin’s measure is undefined while MIP similarity is well

defined and captures the same intuition. The association between two objects is determined

by the ratio between the maximum information they have in common (most informative

shared feature) and the information they do not share. Because of the dependency on log-

odds, maximum information is not defined for projection aggregation.
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Figure 5.1: Scalability of the MIP similarity computation for distributional and collaborative

aggregations. Computation time of collaborative aggregation is shown for two different aggregation

dimensions (items and tags). The figure reports the CPU time (in seconds) against the number n

of triples (and users, in the inset). Two guides to the eye representing O(n) and O(n2) complexity

are shown in gray.

We define MIP for the distributional case as

σ(u, v) =
2 log(mint∈Xu∩Xv [p(t)])

log(mint∈Xu [p(t)]) + log(mint∈Xv [p(t)])
. (5.8)

Prior work also explored mutual information and found it to be competitive but expen-

sive [215], therefore we exclude it from the present analysis.

Computational Complexity

When computing similarity in large systems, the issue of scalability becomes crucial. The most

important factor that affects scalability in the computation of the similarity matrix is the aggrega-

tion method adopted. In the following, we perform a computational complexity analysis focusing

on distributional and collaborative aggregations, since they proved to be far more effective than

other known aggregations [219]. The major difference between distributional and collaborative

is incrementality. With distributional aggregation, similarities must be recomputed from scratch

whenever new triples are added to the system, as frequency weights must be updated. Conversely,

collaborative aggregation allows for incremental computation because each new triple affects only

the contribution that the incoming tag or resource (depending on the aggregation dimension) gives

to the overall similarity matrix.

From a practical point of view, we can consider as scalable those measures that can be updated

as a stream of incoming annotations is received. However, since the update time clearly depends

on how many user pairs’ similarity scores are affected by the new triples, we should study how the
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update time changes as the system size grows. We resort to an empirical analysis to examine how

the update complexity scales with the number of users and triples in the system. Figure 5.1 shows

the complexity for the two different flavors of collaborative aggregations and a single representative

case for distributional aggregation, since in this case the aggregation dimension does not impact

performance. The experiment is performed on the aNobii dataset, using the MIP similarity.

We observe that up to around 105 triples the computational time is roughly linear with the

system size; when the size of the system grows further the time becomes quadratic. Nevertheless,

the computational advantage in using the collaborative paradigm instead of the distributional one

is evident. Moreover, it is clear that collaborative aggregation over items outperforms aggregation

over tags; this result is basically due to the different distributions of items and tags over users.

When a new triple is added, the contribution of the value of the aggregation dimension (tag or

item) of that triple to the overall similarity matrix should be recomputed. The greater the number

of users who have that tag or item in their triple sets, the higher the number of pairs whose

similarity score must be updated. In the considered sample the number of resources in the triple

set is one order of magnitude larger than the number of distinct tags. Similar ratios hold in any big

folksonomy. For this reason, it is more likely that the addition of a triple containing a very popular

tag will affect many more users (and consequently the similarity between them and others) than a

triple with a very popular item.

5.2.3 Link detection with single features

We computed the similarity metrics on the Most Active and Most Connected sets of users for

the four features considered, on the aNobii and Last.fm datasets. For the two folksonomy-related

features, items and tags, we combined all the aggregation methods with all the similarity metrics

defined above (except for the projection-MIP combination, which is not defined). For groups and

library features we calculated the similarity using matching, overlap, Dice, Jaccard, and cosine

metrics; note that these features do not require any aggregation and MIP is not defined for them.

We also considered two additional metrics as baselines. First, we queried the Last.fm API

service for the tasteometer scores related to the same most active and Most Connected samples

used for items and tags. Second, we computed the similarity in terms of number of common

neighbors (CN) for the Most Connected samples, which, in this case, overlap with the Most Active

samples since the number of connections is the feature considered. We introduce this widely used

metric to compare the performance of network-based and feature-based similarities. Among all the

known network-based metrics we opted for CN because, despite its simplicity, it has been shown to

be an effective detector of social ties [241] and it is a local measure, whose computation is scalable.

Altogether we obtained 133 user similarity networks that we used to evaluate as many social

link detections. For brevity, we next report only on a selection of representative cases, restricting

our evaluation to the best-performing instances. AUC values are summarized in Table 5.1. Note

that since the Last.fm library provided via the API has a size bounded to 50 artists, we cannot

identify the Most Active users for this feature, therefore we omit the Most Active sample for the

library feature. Not surprisingly, most of the highest AUC values are achieved for the Most Active
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Last.fm aNobii

Feature Similarity Active Connected Active Connected

Baselines
Tasteometer 0.734 0.759 - -

Common neighbors 0.927 - 0.854 -

Items

Distrib cosine 0.663 0.560 0.915 0.655

Distrib MIP 0.749 0.559 0.878 0.649

Collab MIP 0.589 0.613 0.652 0.561

Tags

Distrib cosine 0.579 0.625 0.652 0.554

Distrib MIP 0.697 0.618 0.651 0.560

Collab MIP 0.698 0.559 0.916 0.648

Groups Cosine 0.810 0.677 0.662 0.690

Library Cosine - 0.769 0.923 0.768

Table 5.1: AUC values for Last.fm and aNobii social link detections calculated for the four user

features. The user samples considered are the most active with reference to the considered feature

and the most connected users that have at least one element for that feature. The Last.fm results

refer to one of our three snapshots; results for the other snapshots are consistent. The tasteometer

similarity is calculated for the same most active and most connected sets used for items and

tags. The feature vectors for items and tags are obtained through distributional or collaborative

aggregation over the folksonomy. Shown in bold are the best results for each combination of

dataset, sampling method, and feature.

samples, due to the greater amount of information available.

We note that the detection potential is affected by the aggregation process, but without a

clearly interpretable pattern. Regarding the folksonomy-based features, we find that the MIP

similarity often outperforms the cosine metric, as well as the other measures (not shown). For the

Most Active Last.fm users represented through items, MIP similarity outperforms the tasteometer

baseline.

Detections based on groups and libraries perform even better. For groups, we note a lower

accuracy in the aNobii case compared to Last.fm, due to the relatively low cardinality of the

group set; in fact, in aNobii we have about 3, 000 groups, against about 70, 000 groups in Last.fm.

Inevitably, a lesser range of choice corresponds to a greater uniformity in the group affiliation

behavior, thus making it more difficult to infer social connections. Lastly, the library results suggest

that this is the best feature for detection purposes, when applicable. Since in Last.fm the library

feature vectors have at most just 50 elements each, the implicit social information carried by the

elements in the library is very high. When the cardinality of the feature vector is unbounded, like

in the Most Active scenario in aNobii, the AUC values become even higher. Of course, for aNobii,

we expected the library-based detection to be more accurate than the item-based ones, simply

because the set of books in the library is a superset of the tagged books that can be retrieved from

the folksonomy. Nevertheless, we observed that peak AUC values in aNobii are in part determined

by the particularly strong geographically-biased clustering of its social network, which we discuss
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Figure 5.2: ROC curves comparing the accuracy for the best feature-based detections in both

datasets. The tasteometer baseline curve is also shown for Last.fm.

in detail in Section 5.2.5. Finally, we observe that the detection based on common neighbors can be

very accurate when a lot of information about social contacts is available. Indeed, in Last.fm’s Top

Active sample, the CN metric performs best, while in aNobii the library and folksonomic features

are more accurate.

In Figure 5.2 we depict a summary comparison between the ROC curves of the best performing

detection measures, i.e., those shown in bold in Table 5.1.

Sensitivity Analysis

The analysis on small user samples is useful for comparing the effectiveness of different metrics

under different boundary conditions of connectivity and activity. However, to show that the results

are not biased by this sampling procedure, we performed a sensitivity analysis for detections made

on the aNobii dataset, using the library feature. (Similar results hold for other features.) We first

looked at the effect of sample size on accuracy. Top plots in Figure 5.3 show the AUC values

obtained for sample size up to 5000 users. Together with AUC, we also measure the precision

at top N , i.e., what fraction of the pairs which have the N highest similarity values are actually

connected; this is a metric which is commonly used to complement the AUC [32]. The detection

accuracy is stable and does not depend significantly on sample size.

Second, to study how the detection accuracy depends on the activity and connectivity values

of the samples, we collected several samples of the same size (500 users) but with decreasing

activity (starting from the Most Active sample) and connectivity (starting from the Most Connected

sample). Results are depicted in bottom plots of Figure 5.3. Since in many samples the number of
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Figure 5.3: Sensitivity analysis of link detection based on the library feature in aNobii; the Most

Active (left) and Most Connected (right) cases are considered. Top plots shows how AUC and

precision at N change as the sample size is increased up to 5,000 users. Bottom plots show how

AUC in different samples of size 500 but with decreasing values of density and activity (normalized

on the highest value); the noisy patterns at the end of the lines are observed because the detection

on very sparse samples is much more sensitive to slight variations in the connectivity patterns.

connected users is very low, and the classic definition of precision at top N is not meaningful when

the number of links is less than N , we present only the AUC values. We observe that even when

activity and connectivity are greatly reduced, the detection accuracy is stable and remains high.

Discussion

The overall picture that emerges from the experiments reveals some interesting results. First of all,

the strong correlation between social linking and user activity, resulting in a noticeable homophily

phenomenon, can be profitably exploited to accurately infer the structure of the social network

given only information on user features. Considering various features results in quite different

detection performance, as seen in Figure 5.2.

The only disadvantage of social link detection based on folksonomic information is that in many

systems a considerable portion of users does not use tags: 50% of users are taggers in Last.fm,

only 30% in aNobii. However, when tagging information is available, results are encouraging.

For folksonomy-based features (items and tags), our detection methodology based on the MIP

similarity metric tends to work better than the other similarity measures considered. This result

holds across different collaborative tagging systems. When users are active (described by a high

number of triples), we observe that good results are achieved with a distributional approach when

aggregating over tags and with a collaborative approach when aggregating over items. In other
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words, from a collaborative filtering perspective, knowing that two users share a tag is more

informative for detecting their social link. In the distributional scenario with item representation,

the accuracy compares favorably with that achieved by the Last.fm tasteometer, which is computed

from a complete knowledge of the user profile.

It is interesting to notice that the ranking of aggregation methods by detection accuracy is not

consistent across datasets. For example, in the Most Connected scenario, the distributional and

the collaborative approaches behave differently in the two datasets considered (see Table 5.1). This

means that even folksonomies with the same macro-structural properties (broad folksonomies, with

similar numbers of users, triples and tags) can be characterized by inequivalent tagging patterns

that lead to different performance of the detection techniques.

Detections made from the group feature can lead to even more accurate results. Groups behave

very well if the total number of groups in the system is not too small with respect to the user

population; furthermore, compared to the number of taggers, a larger portion of users in social

systems take part in thematic groups, thus allowing the detection for a wider user set. Even if

we do not focus here on the causality aspects linking social connections with homophily, the high

AUC values obtained for the group feature could reasonably lead us to conjecture that groups are

effective means of socialization, i.e., people know each other through groups.

The best performing profile feature is the library. Aside from the surprisingly high accuracy

obtained for the Most Active set, where the information is maximal, the most important outcome

is that the analysis of library feature vectors is very significant also in cases when considerably

less information is available. From this viewpoint, the Most Connected scenario in Last.fm is

particularly revealing because the accuracy is very high even if users are described with feature

vectors containing at most 50 artists from their libraries. In a nutshell, the detection task performs

best if it relies on the main feature that denotes the social network topic; in our case study, books

for aNobii and artists for Last.fm.

Finally, the common neighbors baseline seems to be a very good detector of social links, some-

times performing even better than all other profile features. This is in part expected because the

common neighbors measure captures the probability to form a triadic closure, which is a relevant

phenomenon of attachment in social networks [241].

Next, we explore a hybrid approach that combines profile features and network-based features

to achieve even better link detection accuracy.

5.2.4 Link detection with combined features

The common approach to link detection based on multiple features relies on machine learning

techniques. Detection is seen as a binary classification problem that can be solved with a classifier

trained on the features that describe the nodes. Positive and negative examples are chosen among

pairs of nodes that are connected or disconnected, respectively [208].

Here we adopt this approach by selecting 10, 000 positive samples and as many negative samples

from the set of aNobii users who have at least one instance of each feature in their profile and with

at least one outgoing edge. The features considered are simply the similarity scores, computed as
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described previously in this section. We use the J48 decision tree from WEKA [140] as a binary

classifier and perform a 10-fold cross validation on our sample. We run the classifier for each

profile feature and for the common neighbors separately, and then combine together all the profile

features exclusively, before finally adding the information on common neighbors. We consider the

AUC together with accuracy, False Positive and False Negative rates.

The results are shown in Table 5.2. The main observation is that combining different features

results in a noticeable boost in detection power. In particular, the combination of different profile

features gives about a 14% improvement in AUC over the best performing profile feature taken

individually, while adding topological information, like the number of common neighbors, leads to

an additional 4% improvement. Thus, even if link detection from network-based features can lead

to accurate results, the best performance is achieved by their combination with profile features.

Tags collab MIP Groups Library CN Profile feaures All features

AUC 0.785 0.807 0.811 0.844 0.924 0.963

Accuracy 0.786 0.809 0.812 0.846 0.877 0.915

FP Rate 0.177 0.143 0.335 0.031 0.109 0.072

FN Rate 0.251 0.240 0.041 0.277 0.137 0.099

Table 5.2: Detection power of single and combined features using a decision tree on a balanced set

of 10,000 positive and negative samples extracted from the aNobii dataset.

5.2.5 Language Community Analysis

The very high accuracy of our social link detection in aNobii motivated us to further inspect the

reasons behind such a strong performance. We suspected that the results were somehow affected

by the strongly clustered structure of the aNobii social network.

In fact, aNobii is split among two main groups: the Italian community (about 60% of users),

and the Far East community, representing Hong Kong and Taiwan (about 20% of users). Since

the type of literary items consumed by the great majority of people is strictly entangled with their

mother tongue, the intersection of topical interests between the two communities is very small and

prevalently limited to few worldwide best sellers. In addition to this, aNobii allows the insertion

of annotations with any language character set. As a result, users fill their libraries with books

written in their own language and they are motivated to annotate them using terms from their

mother tongue vocabulary. Given the topical similarity between neighbors (see Section 3.3), and

given that the two communities have very different topical interests, these two main groups turn

out to be almost disconnected in the social network.

We show that this scenario directly affects the performance of our folksonomy-based detection

method, considering as a representative example the Most Active sample of users. The same

qualitative considerations hold for other samples and features. We split the Most Active set of

taggers into clusters on a country level (within the set of top 500 taggers, 249 are Italian and 137

are Taiwanese) and we calculate some basic measures for pairs of users that reside in the same

country or in different countries (we neglect users who do not specify a location in the profile).
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aNobii Last.fm

Links (shuffl.) Tags σ Items σ Links (shuffl.) Tags σ Items σ

Intra 85% (38%) 3.4 · 10−2 2.2 · 10−2 17% (9%) 1.4 · 10−1 1.7 · 10−2

Inter 15% (62%) 4.7 · 10−3 1.8 · 10−3 83% (91%) 1.4 · 10−1 1.5 · 10−2

Table 5.3: Statistics on language communities that compose the Most Active users who declare

country of origin in aNobii and Last.fm. We report on the portion of links that reside inside a

cluster or, conversely, connect users belonging to different clusters in the real social network vs.

its shuffled version (in parenthesis). The average cosine similarity for tag and item sets computed

between pairs of users residing in the same or in different communities is reported as well.
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Figure 5.4: ROC curves comparing the link detection within different language communities in

aNobii and Last.fm. The user samples considered are composed by the top 500 taggers in the whole

system (All) or considering a single language community (Italian, Chinese, English, German). In

all cases we used the MIP similarity metric using a distributional aggregation over tags.

For every user pair, we compute the cosine similarity between their vocabularies and between

their item sets, and we measure the portion of inter- and intra-cluster links. To show that the

portion of links residing inside a language community is not simply due to statistical properties

caused by the size imbalance between different communities, we repeated the same measure on a

shuffled version of the social graph, where each node keeps its out-degree but rewires its links at

random. Statistics are summarized in Table 5.3. We notice that in aNobii the portion of inter-

community links in the real network is considerably smaller than in the shuffled network, meaning

that the clusters are nearly disconnected from each other due to language homophily. Furthermore,

on average, the similarity between pairs of users, calculated for both tags and items, is much lower

for users belonging to different language clusters compared to pairs of users that reside inside the

same cluster. The average inter-community topical overlap is thus very small. Hence, the detection

task is simpler with respect to a more homogeneous setting because both the social network and

the folksonomy features are clustered according to language.

The effect of language on facilitating link detection can be verified by focusing on communities

with homogeneous language. We performed the detection task on subsets of 500 active users

within language communities. The comparison between the ROC curves is depicted in Figure 5.4

for the MIP metric, using the aggregation on tags (the result is qualitatively the same for the
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Figure 5.5: Cosine similarity between the tag vocabularies used by the 10 biggest geographic

communities in aNobii (left) and Last.fm (right). A tag vocabulary is the set of tags obtained by

merging all the tag sets of all the users in the community. Color intensity denotes different classes

of similarity values.

other cases). The detections are significantly more accurate in the mixed community than in the

homogeneous communities: the detection task is simpler in the former case because links between

the two communities will almost never be detected, thus considerably decreasing the number of false

positives. Language thus plays a key role in the detection task for multi-language communities.

To further confirm this observation, we performed the same tests on Last.fm, taking into account

the most active users from the two largest language groups in our snapshot: the German community

and the English-speaking community, composed by the union of users from USA, UK and Australia.

As Figure 5.4 shows, in this case the detection accuracy is not clearly affected by the language.

Such a different result is well explained by the statistics reported in Table 5.3. Compared to

aNobii, the language communities are fuzzier in Last.fm since the level of language homophily is

considerably lower and close to that of the random shuffled network; furthermore, there is no clear

difference between inter- and intra-cluster feature similarities. Therefore, language does not play

a substantial role in the link detection accuracy.

The impact of language clustering on the tagging behavior in the two social networks considered

is also shown in the heat maps in Figure 5.5. Here, for both aNobii and Last.fm, we computed the

cosine similarity between the tag vocabularies in use by the 10 most populated geographic commu-

nities. The results clearly show an overall low similarity value between the aNobii communities,

except for those countries that share the same language (e.g., Canada, United States, and United

Kingdom or Taiwan and Hong Kong). On the contrary, the Last.fm geographic groups are more

homogeneous, with a substantially higher similarity and no clear distinction on the basis of their

official languages. A very similar scenario is found for similarity on item sets (not shown).

Linguistic constraints are more tangible in aNobii than in Last.fm, or in books compared to

music. The tagging behavior and the literary tastes of aNobii users are strongly affected by their

language, while in Last.fm, users across different languages tend to have more tags and more music

items in common. In synthesis, language can strongly impact the tagging behavior; the level of
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homophily in a social network depends on the extent to which language is correlated with topical

interests, which in turn depends on the nature of the objects shared between users.

5.3 Social link prediction and recommendation

In Section 5.2 we showed the potential of profile and topological features to detect links on the

social network. Here we go a step further and we aim to solve the more challenging task of link

prediction. In particular we use the acquired knowledge of network at time t to predict the creation

of new links between t and t+ Δ. Prediction is intrinsically more difficult than detection because

many features of the network can change in [t, t+ Δ], and the prediction can be based only on the

data up to time t. Conversely, in detection we have the complete information of network topology

and users features up to the moment considered for link detection.

Moreover, we deal with link prediction from the even more challenging perspective of contact

recommendation, that is a very hard task due to the extreme sparsity of the problem (see Sec-

tion 5.3.2). We will focus on the analysis of the aNobii social network because of the temporal

dimension we have in its dataset. However, the methodology for personalized contact recommen-

dation that we propose could be directly implemented on any other social media.

5.3.1 Feature selection and training

In Section 5.2.4 we presented a machine learning approach to combine different features to the end

of link detection and we showed the improvement that this combination gives over the detection

with single features. Here we carry one the same general framework but we study more in depth the

predictive power of a more exhaustive set of profile and topical features by measuring the accuracy

gain that each feature gives to the overall prediction.

The features that we consider are determined by the three main evolutionary patterns of the

social graph that we previously detected.

1. Proximity-driven link creation. In the vast majority of cases, new neighbors are chosen

among the nodes at distance 2 (i.e., closing triangles) or 3 in the social graph. Restricting

the analysis to pairs that reside near in the graph may miss some potential new connections

but dramatically lowers the time of practical algorithms for partner recommendation.

2. Strong interaction links. Users are influenced and inspired more by the social contacts with

whom they carry out a regular communication. Taking into account the strength of the

interaction links rather than (or in addition to) pure social ties could improve the prediction.

3. Homophily-driven attachment. Users create new connections preferentially with their most

similar acquaintances. Similarity is a notion that involves all the different facets of the user

profile (from geographic location to favorite books).

A list of features that synthesizes these three points is shown in Table 5.4. Most of the topolog-

ical features presented have been used independently in the literature to predict links in undirected
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Feature Description Rank

Location Binary attribute, whether u and v belong to the same city 14

Gender Binary attribute, whether u and v belong to the same gender 15

Age Absolute difference of ages 12

Library Cosine similarity between library vectors 5

Groups Cosine similarity between group membership vectors 7

Group size Size of the smallest group the two users have in common 6

Vocabulary Cosine similarity between sets of tags used 16

Contact list Cosine similarity of the vectors of social contacts 2

Outdegree Sum of the out degrees (kout(u) + kout(v)) 11

Preferential attachment Product of the out degrees (kout(u) · kout(v)) 13

Common neighbors Number of common neighbors, directed case (CN(u, v) =

|Γout(u) ∩ Γin(v)|)
4

Triangle overlap CN(u,v)
Γout(u)

1

Reciprocation Binary attribute, whether the inverse link (v, u) is already present 9

Resource allocation 1
kout(u)

∑
z∈(Γout(u)∩Γin(u))

(
1

kout(z)

)
[363] 3

Local path Linear combination of common neighbors and common distance-2

neighbors (CN + ε · CN2) [363]

10

Weighted flow wf(u, v) = CN(u, v) +
∑

x∈CN(u,v) min(w(u,x),w(x,v))

CN(u,v)
8

Table 5.4: List of features used in the prediction of a directed link between generic users u and v,

along with their description. Γin/out(u) denotes the set of u’s in/out neighbors, kout(u) = |Γout(u)|,
and w(x, y) is the weight of the tie between x and y. The rank reported is the result of the Chi

Squared attribute selection method applied to our test set; the bold font of the rank indicates that

the corresponding feature has been selected for the restricted feature set.
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networks but can be easily adapted to the directed case. To take into account as well the informa-

tion about the weighted interaction network, we introduce a new index, the weighted flow, inspired

by previous work on generalized degree centrality in social networks [252]. It is defined as:

wf(u, v) = CN(u, v) +

∑
x∈CN(u,v) min(w(u, x), w(x, v))

CN(u, v)
. (5.9)

Assuming that weights on arcs denote some information flow passing between nodes, weighted flow

combines the definition of common neighbors with the normalized sum of the minimum flow of in-

formation passing from the arcs connecting the two target nodes through their common neighbors.

Applied to the interaction network, this metric measures both the number of potential communica-

tion channels between the two nodes and the amount of information that could have been possibly

exchanged between them using their directed common neighbors as proxies.

All the features can be combined to the end of prediction through a supervised machine learning

approach using WEKA [140]. Among all WEKA’s classifiers we pick the best performing Rotation

Tree classifier [281] trained with all the available features to detect whether a pair of users will

be connected in the future or not. The positive sample of the training set is built by about

10k pairs of all the users that reside at distance 2 on the social graph at snapshot 1 and get

connected before snapshot 6. The negative sample is given by as many pairs residing 2 hops away

at snapshot 1 and that do not become connected. We focus on distance-2 neighbors because in

the link recommendation task we will restrict our prediction to the closest disconnected neighbors

for computational efficiency reasons. Note that taking into account only distance-2 pairs makes

the prediction task harder than selecting the connected and disconnected pairs at random; this is

because, due to the topical alignment described in Section 3.3.5, pairs of users at distance 2 along

the social graph, even if they never become linked, have a much larger similarity than randomly

chosen pairs of users.

The performance results of a 10-fold cross validation on the training set are given in Table 5.5.

The combination of structural and profile features leads to an appreciable improvement of the

precision of the prediction, for all the performance indexes considered. However, among all the

features, some have weaker prediction power and thus can be neglected without affecting the overall

performance. In particular, the Chi Squared analysis for feature selection [204] indicates a ranking

of predictive potential (see Table 5.4) in which features like vocabulary, gender, and preferential

attachment have much less relevance than others like the contact list or the library. In particular,

we notice that features based on the triangle closure phenomenon are the most predictive. Table 5.5

shows that the prediction accuracy remains very stable when using only the top 9 features, and we

therefore use this restricted set of features in the following.

5.3.2 Contact recommendation

A contact recommendation service should be able to serve suggestions in real-time and on demand.

Screening all the users that are not connected with the client requires a too high computational

effort to meet this requirement. Therefore, we adopt a local search limited to the distance-2
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Features FP rate FN rate Accuracy F-value AUC

Profile 0.279 0.364 0.679 0.678 0.741

Structural 0.241 0.298 0.730 0.730 0.805

All 0.223 0.264 0.757 0.757 0.835

Restricted 0.219 0.279 0.751 0.751 0.826

Table 5.5: Prediction performance on the training set using the Rotation Forest classifier, 10-fold

cross validation, and four different combinations of features. Positive and negative samples are

balanced in size.

neighborhood of the target user; among those potential contacts, the system outputs a fixed number

N of suggestions.

To evaluate the effectiveness of this approach we build a test set of active users who establish

at least 20 new social ties between snapshots 1 and 6 with other users that reside at distance 2

at snapshot 1. For each active user u, we apply our classifier to every pair (u, v)|d(u, v) = 2 and,

from the set of positively labeled pairs, we select N contacts to compose the recommendation list.

The list is sorted according to the confidence score given by the classifier for each prediction.

The number of actual ties created after time 1 by the sampled users is around 3k, against more

than 650k potential users residing at distance 2 of these users in the first snapshot. Such very

high sparsity in the data (density is less than 0.005) makes the recommendation task particularly

hard. Figure 5.6 depicts the variation of the precision with the size of the recommendation list.

As baseline, we report the precision of two other predictions performed in an unsupervised way, by

sorting the recommendation lists according to the number of common neighbors or to the cosine

similarity between libraries.

Another attempt of tackling the link prediction problem from a recommendation perspective

has been made in the Facebook social network [32]. The evaluation of the recommendation is very

similar to ours with respect to the size of the network sample, the time span of the prediction and

the activity of the target users. Among all the experiments that the authors report, recommenda-

tion through logistic regression combining several structural graph features compares well to our

approach. Nevertheless the precision is much higher than in the aNobii case (precision at 20 is

around 7.50 against 1.50 in the present case). The main reason is due to the different sparsity of

the problem. Specifically:

• In the same time span, the average number of new contacts per user in Facebook is more

than six times higher than in aNobii (26 new links in Facebook vs. 4 in aNobii).

• the portion of new contacts residing at distance >2 in aNobii is around 0.4, while in the

Facebook dataset it is negligible.

• in contrast to the Facebook social network, the aNobii network is directed and the predictions

must take into account the directionality of the edge.

In a nutshell, in Facebook users are much more active and faster in establishing new contacts

and they focus much more on their distance-2 neighbors, thus increasing the number of potential
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Figure 5.6: Recommendation results. (Left) Precision at N for the recommendation made with the

classifier combining together all the relevant features and for two unsupervised baselines (common

neighbors and library similarity). (Right) Relative improvement on the classifier-based approach

over the baselines.

true positives over the total number of potential new contacts. Nevertheless, we underline that even

in aNobii’s more challenging setting the relative improvement of machine learning combination of

different profile and structural features over the performance of common neighbors is comparable

to the improvement obtained in the case of Facebook by previous work.
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Chapter 6

Topics, profiling, and activity

prediction in search systems

6.1 Mining information from the Web

Information overload is an issue that extends well beyond the boundaries of online social media.

With the explosive growth of the World Wide Web [154] the number of multimedia resources that

any user can browse became higher than any possible expectation. Effective information retrieval

from the Web became one of the major issues in data mining [137, 131] and since the earlier stages

of modern search engines [255] a lot of effort have been spent in enhancing retrieval procedures.

Methods and algorithms for improving web search have been extensively studied in the last two

decades. In the vast majority of the cases, such methodologies are query-centric, i.e., they exploit

only the query itself to understand a user’s intent and to provide relevant results. Only recently

user search activity has been studied by looking at the entire set of actions she performs in order to

satisfy a need. Following this direction, previous work on query log mining has introduced general

and widely used terms to define different structural features of the query log and behavioral aspects

of the search engine users. Typically, sequences of query reformulations aimed to achieve the same

atomic search need are referred as query chains [272]. More relaxed notions of coherence within

the search session are represented by the concept of logical session [34] and search mission [162],

namely a set of queries that express a complex search need, possibly articulated in smaller goals.

Empirical studies have indeed shown that most of the needs are actually too complex to be satisfied

by just one query [95]. Hence users are inclined to organize their search activity in missions.

By way of example, let’s consider the activity of a user who wants to purchase a vacuum cleaner.

She will probably organize her queries in a number of sequential steps. Initially she starts acquiring

information about available brands and models. In a second phase she will look for reviews and

comparisons between different models with similar features. Finally, she will search for sellers

who offer the chosen model at an advantageous price or with an extended guarantee. Each single

step is a different granular task and the totality of tasks are meant to fulfill the “vacuum-cleaner
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purchase” need. In a similar scenario, an unsatisfied user who wants to return a vacuum cleaner

is going to submit queries such as “returning shark navigator” or “dyson customer service.” The

two needs in this example concern particular aspects related to the same general topic “vacuum

cleaner.” We use the term topic in its acceptation of mental object or cognitive content, i.e., the

sum of what can be perceived, discovered or learned about any real or abstract entity. In such

a sense, topics naturally emerge from user search activity, since queries are issued to discover or

learn facets (model, name, characteristics, pros and cons, price, seller’s location, return policy) of

a cognitive content (vacuum cleaner).

In this Chapter we present a contribution to reduce information overload in the Web search

context by the means of the aggregation of the data that describe the behavior and the interests

of the search engine users. We first describe a methodology to extract topics from query logs.

Our objective is inherently different from previous attempts to classify queries according to a

predefined set of categories, because our definition of topic encompasses and outstrips the definition

of category. Categories like shopping, sport, news, and finance can indeed be seen as the perspective

or focus of a search mission in the context of a particular topic.

Even if closely related to the document topic extraction task [293] or to multi-document sum-

marization [36], where items from a textual corpus are summarized in one or more, possibly hi-

erarchical [127] categories, our work gives a contribution to the query clustering area. Currently,

query clustering is one of the hot topics in query log mining [44].

Grouping together queries with strong semantic relations is a task that is intrinsically harder

than classic topic extraction or web document clustering [360], because of the short textual infor-

mation contained into queries. Many approaches to query clustering rely on the computation of

some notion of similarity between query pairs. When dealing with query classification, where the

semantic categories are defined a-priori, it may be sufficient to compute the similarity based only

on textual features to obtain good classification results [46]. Even classification based only on the

so-called clickthrough data such as the information inside the result pages associated to the queries,

can lead to good results [144]. However, if predefined concept categorizations or taxonomies are not

available, lexical and content-based information taken separately are not sufficient to obtain good

clusters. In this regard, an attempt to cluster queries from the Encarta user logs [342] showed that

query-to-query similarity metrics that linearly combine textual features with click-through data

can be used much more profitably in query clustering than single-attribute similarities. Similarly,

hierarchical agglomeration of queries based on the similarity of their search result snippets (that

mix words from the query and text from the page results) has also been profitably used [81].

Approaches focused only on the activity of single users, instead of the whole query log, are also

interesting; in fact, it is clear that detecting the topics that can well shape the interests of the user

is useful for personalization and recommendation. For instance, Song et al. [311] proposed a topic

model able to extract most relevant themes from the user activity through probabilistic Latent

Semantic Indexing [149]; once identified, such themes are used as a topical summarization of the

user search history.

More recently, content-agnostic approaches based only on the relations between queries and
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clicked URLs have been explored. The idea is that similarity graphs between queries obtained by

proper projections on the multiple dimensions of the query log accurately model semantic relations

between queries [35, 60]. Many approaches of this kind represent the query-URL relation as a

bipartite graph [44] and pick the densely connected components, like bicliques [356], as representa-

tive sets of similar queries or pages. Query graphs where queries are connected by some lexical or

semantic relation are also commonly used. In order to overcome the problem of query ambiguity in

topic detection, query graphs that introduce a lightweight query contextualization using the pairs

(sessionId, query) as nodes, instead of single queries, have also been proposed [333].

Our primary objective is to define a methodology to aggregate different missions within the

same cognitive content. This technique should be effective at different scales. In a individual

perspective, it should be able to aggregate different but related missions of the same user, while

in a wider context it can be used as a tool to cluster together all the missions that are topically

coherent, across users. The method must not rely on predefined categorizations or taxonomies of

user intent or topics.

For this purpose, we propose a mission-based clustering technique to aggregate missions that

are topically-related. As a first step we train a classifier to predict if two different missions have a

similar topical connotation. The learned function takes as input two sets of queries and computes

the probability that they are topically-related. Such a function is used as a similarity metric by an

agglomerative algorithm to merge missions into large topical clusters.

The resulting topics would be useful in a number of different scenarios where great advantage

can be derived by performing query categorization in a more natural, intent-driven fashion, without

any constraint imposed by artificial categories. As an application of the methodology, we show

how to build user profiles over topics and we use such profiles to predict user behavior.

Before defining our methodology in detail, we introduce some basic terms that will be widely

used in the following.

Query log. In a search engine context, search activity is typically recorded in a query log L

defined as a set of tuples τ = 〈q, u, t, V, C〉 containing the submitted query q ∈ Q, an anonymized

user identifier u ∈ U , the time t when the action took place, the set of documents V returned by

the search engine, and the set of clicked documents C ⊆ V [55].

Missions. According to the original definition of Jones at al. [161], a search mission is a

related set of information needs, resulting in one or more goals. In the example presented in the

Introduction, “Purchasing a vacuum cleaner” is a mission that represents an intent that a user wants

to satisfy. The three steps (“looking for models”, “models comparison,” and “sellers comparison”)

are the three sub-tasks (or goals) contained in the mission. All the queries in a missions have a

strong topical coherence, which means that all of them are issued with a main common objective.

It has been observed [95] that search activities that take place in complex domains like “travel” or

“health” often require several queries before complex user intents are fully satisfied.

Topics. Missions are characterized by a main objective and one or more sub-tasks related to

the objective itself. For example, a mission devoted to organize a trip, has the travel itself as main

objective and a number of functional sub-tasks (like booking the flight, reserving the hotel, finding
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Time

Mission Boundary

Topics
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Figure 6.1: The activity of three search engine users partitioned at different levels. Every stream

of user queries can be articulated in different missions that are aimed to satisfy a particular user

intent. At a coarser level, topics can include missions from different users and also portions of

activity originated by the same user at different times.

a guided tour). Travel missions generated by different users are all characterized by the same main

objective regardless the destination, the temporal order in which the sub-tasks are issued or even

the recreational activities booked. In such a sense all the missions devoted to organize a travel can

be seen as part of a same topic or cognitive content.

Missions within the same cognitive content are meant to fulfill one or more intents related to

such a content. Here on, we use the term topic to define a cognitive content that includes the

sum of what can be perceived, discovered or learned about any real or abstract entity. From an

operational point of view, this means that a topic can be seen as the aggregation of all missions

with the same cognitive content generated over time across different users. A sketch depicting the

relation between queries, missions and topics can be found in Figure 6.1.

6.2 Behavior-driven clustering of queries into topics

As we pointed out, the concepts of mission and topic are strictly related to each other. In fact,

sequences of queries that express coherently a single and well defined user intent must have a

high degree of topical coherence. This strong connection allows us to use missions as fundamental

building blocks for topics: distinct missions can be merged together if their semantic connotation

is very similar. In the following, we first summarize the state of the art technique that we use to

detect missions from the query log; then we describe a method that is able to effectively combine

together pairs of topically-related missions.

6.2.1 Detection of search missions

To partition the user activity into missions we use the machine learning approach proposed by

Donato et al. [95]. This method is able to detect the boundaries of a mission by analyzing the live

stream of actions performed by the user on the search engine. This approach relies on a module

based on a gradient boosted decision tree classifier [347], called the mission detector, that works
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at the level of query pairs. Given a set of features extracted from a pair of consecutive query

log tuples τ1, τ2 generated by the same user, the mission detector indicates whether τ2 is coherent

with τ1, from a topical perspective. When two queries are found to be incoherent, then a mission

boundary is placed, so that the query log L is partitioned into missions containing one or more

tuples.

The features used for the classifications come from three different domains: the textual features,

that include different flavors of lexical similarity between the two queries, the session features, that

measure several aspects of the click activity of the user in the time between the two queries and in

the overall session, and the time-related features that take into account the inter-event time distance

for some representative user actions. Using all of these feature together, the mission detector is

able to reach a 95% accuracy in detecting boundaries on real user datastreams [95].

It has to be noted that missions identified by this method are semantically much narrower than

topics, because queries in the same missions are not only constrained to be submitted by the same

user, but they are also consecutive in time. Indeed, while a mission in theory can be fragmented

in time, the mission detector by definition can only aggregate consecutive queries and, in practice,

generates short-lived missions. Thus, the topical coherence constraints imposed on missions are

much stronger than those that we require to be applied to topics.

6.2.2 Merging missions

Given the state of the art of mission boundary detection, it is possible to segment the user activity of

every query log into missions. Furthermore, the strong topical coherence of queries inside the same

mission can be exploited to generalize the approach used for mission boundary to a topic boundary

detection. The idea is to use a new classifier, the topic detector, trained in semi-supervised fashion

based on the data generated by the missions detector, to decide whether two query sets belong to

the same topic. Its scheme is sketched in Figure 6.2.

Specifically, positive examples are automatically built by splitting missions in two consecutive

query sequences and considering such two sequences as separate (sub)missions belonging to the

same topic. Conversely, negative examples are formed by sets of queries belonging to consecutive

missions of the same user, since we know they are topically unrelated because they are separated by

the boundary placed by the mission detector. The topic detector is implemented with a Stochastic

Gradient Boosted Decision Tree (GBDT) [353]. GBDT outputs the probability that the given

sample is from the positive class; applied to our case, this is the probability that the two missions

in input belong to the same topic. We can interpret this probability as a similarity score in [0, 1]

measuring the topical relatedness of the two sets and, consequently, the classifier can be seen as a

topical similarity function S .

The features given in input to the classifier are aggregated values over features computed from

all the query pairs across two missions. Namely, given a (positive or negative) pair of missions

m1,m2, all query pairs q1, q2|q1 ∈ m1 ∧ q2 ∈ m2 are taken into account. Then, all the values

of each feature are aggregated over all the pairs yielding four scores representing the average,
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Figure 6.2: Training and application of the topic detector. Positive and negative examples for the

learning phase are respectively missions and pairs of consecutive missions that are detected by the

mission detector. Once trained, the topic detector can take in input any pair of query sets and

compute a confidence score that can be interpreted as a topical similarity between the two sets.

standard deviation, minimum, and maximum values for that feature. For each query pair, features

from three different categories are extracted1:

• Lexical features. Very often, similarity between the text of different queries denotes a strong

semantic relation (e.g., “paris cheap travel” and “travelling to paris”). For this reason, we

train the classifier using several lexical features such as length of common prefix and suffix,

size of the intersection, edit distance, several similarity measures computed at word and

character 3-grams level, and many others.

• Behavioral features. The behavior of users during the search activity gives much implicit

information on the semantic relatedness of queries. For instance, if a user submits two queries

in close succession, it is likely that the two queries are very related to each other, based on

the assumption that the user activity is bursty [40] and events happening in the same burst

are meant to accomplish the same task. However, since user behavior is very heterogeneous,

it is necessary to aggregate behavioral information from several user sessions. We compute

the average values of the behavioral features over a year of query log for each query pair q1, q2

such that q2 has been observed at least once right after q1 in the log.2 The average time and

the average number of clicks between two queries are examples of behavioral features.

• Search result features. Intuitively, the page result sets returned for a pair of topically-

related queries will be topically related as well, to some extent. Thus, we consider a bunch of

result-related features such as the intersection between result sets and the similarity between

the vectors of the K most frequent words from a given content dictionary [24] appearing in

the N top results.

1We do not report the complete list of features since they are commonly used in session analysis [162, 55].
2Behavioral features are defined only for successive query pairs observed at least 2 times. Else, a default value is

used.
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Algorithm 1: Iterative topic extraction
Require: Initial set of seed topics T0; similarity threshold θ ∈ (0, 1); termination threshold α ∈ (0, 1);

topic similarity function S : T × T → [0, 1]

1: Ti+1 = T0

2: repeat

3: Ti = Ti+1 − T0 ; Ti+1 = T0

4: for T1 ∈ Ti do

5: Tx = T2 ∈ Ti+1|S (T1, T2) ≥ θ ∧ S (T1, T2) ≥ S (T1, T ),∀T ∈ Ti+1

6: if a valid Tx has been found then

7: Ti+1 = Ti+1 − Tx + (Tx ∪ T1)

8: else

9: Ti+1 = Ti+1 + T1

10: end if

11: end for

12: until |Ti+1|
|Ti| ≤ α

We trained our topic detector using a balanced sample of 500K mission pairs extracted from

random user sessions over the 2010 query log of the Yahoo! search engine. Results of 10-fold cross

validation give an AUC value of 0.95, thus confirming that the topic detector is able to accurately

discriminate between sets of queries that come from the same topic and those that do not.

One may think that the mission detector could have been used as-is to extract topics by means

of detecting pairs of topically coherent queries among all the possible query pairs and iteratively

clustering them. However, this approach has two main flaws. First, the computational effort to

classify every possible query pair in Q is prohibitive given the dimension of real search query logs.

Second, the mission detector is trained given query pairs that are adjacent realizations of the same

user activity stream, while in topic extraction we are interested in comparing queries of different

users, possibly in different times. On the other hand, classifying pairs of query sets allows us to

leverage the mission data as an already available source. In any case, even if it were possible to

classify every query pair, the clustering step would still require similarity computation for query

sets.

6.2.3 Greedy agglomerative topic extraction

The topic similarity function S can be used iteratively to extract topics from the mission data.

Consider a set T0 of seed topics where each topic contains only the set of queries submitted during

a single user mission. This set is a very strict partition of the query corpus, where each partition

is not only a coherent topic but it is the expression of an intent of a single user.

Our topic extraction algorithm is in the spirit of classic hierarchical agglomerative cluster-

ing [347]. As shown in the Algorithm 1 pseudo-code, at any iteration i, the two sets Ti and Ti+1

are considered. Initially, Ti+1 = {T0} and Ti = {T0 − T0}.
Each topic T ∈ Ti is compared with all topics Tx ∈ Ti+1 through the function S (T, Tx); if
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topic similarity is below a certain threshold θ for all pairs, then T is moved from Ti to Ti+1.

Otherwise, the pair (T, Tx) with the highest score is greedily selected, T is removed from Ti and

its elements are added to Tx, creating a broader topic. The algorithm is iterated as long as the

relative decrease in the number of topics is large, or until |Ti+1|
|Ti| > α ∈ (0, 1).

The complexity of a single iteration, in terms of number of computations of the S function, is

O(|Ti|2) and Ω(|Ti|), since |Ti|2−|Ti|
2 computations of the topic similarity are needed if no topics

are merged, while just |Ti| comparisons take place if every topic merges into a single supertopic.

The number of iterations needed depends on the stop condition α, but it is always bounded by

O(log(|T0|)), thus leading to an overall algorithm complexity of O(|T0|2 · log(|T0|)).
Even if the number of iterations required is considerably smaller than the theoretical upper

bound, in practice the quadratic complexity of computing S for every topic pair is still too costly

for large query logs. However, the efficiency can be improved through a heuristic approach based

on the observation that a very small portion of all possible topic pairs are actually merged in each

iteration. To reduce the number of comparisons, the topic set Ti is partitioned into several smaller

sets that are given in input to independent instances of Algorithm 1, so that the S function is

applied only between elements inside the same partition and not across partitions. In addition to

reducing the number of topic pairs considered, this approach enables a parallel implementation of

the clustering algorithm, thus dramatically decreasing the actual computation time, even though

the theoretical complexity remains the same. For brevity, in the following we will refer to our

Greedy Agglomerative Topic Extraction algorithm using the acronym GATE.

The choice of a good partitioning criterion is crucial for the outcome of GATE. To maximize

the number of topics merged at each iteration, partitions should contain topics that are more

likely to be combined than randomly selected topics. This can be done by putting in the same

partition topics that share some of the features given in input to the classifier used to compute

topic similarity; for instance, topics can be partitioned on the most common character-level 3-gram

that appears in their query sets, given that topics with some lexical similarity are more likely to

be merged than random topics. The partition criterion can also possibly change at each iteration.

Aggregation on the basis of user identity is one of the most relevant to our study. If the first

iteration of the algorithm is run keeping the missions of different users in different partitions, then

the resulting agglomeration produces a minimal group of topically-coherent mission sets, called

supermissions. These supermissions allow to define more compact profile of user activity on a

topical basis.

6.3 Clustering experiments on Yahoo! data

We extracted the total activity of 40K users from 3 months of the anonymized Yahoo! query

log. Statistics for the data set are reported in Table 6.1. The queries in the log were sequentially

grouped into 3,005,724 missions using the mission detector described in Section 6.2.1. The number

of missions per user and number of unique queries per mission are broadly distributed with average

values as in Table 6.1. The first iteration of GATE is performed with a user-based aggregation
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Table 6.1: Dataset statistics

Unique queries (uq) 2,198,815

Missions (m) 3,005,724

Unique missions (um) 1,606,733

Avg uq per mission 1.72

Avg m per user 75

Avg um per user 57

criterion, therefore the topics produced in the first iteration are supermissions. The average number

of supermissions per user is 42, against the 57 missions per user, meaning that GATE can be used

to compress the user description by nearly 30% on average.

In the rest of this section, we present OSLOM [180], a representative network-based clustering

algorithm used for comparison with GATE. We then introduce the metrics used to compare such

methodologies. The two methodologies are profoundly different, therefore a fair comparison is

difficult. Nevertheless we show that our approach has a number of advantages when compared

with OSLOM.

6.3.1 Baseline: Topic extraction through network clustering

We compare GATE with a content-agnostic query clustering algorithm based on query graphs.

Graph-based clustering considers the queries as nodes and model relation between them with edges.

Depending on the relation used, the query graph can assume different topologies and semantics [34].

The choice of comparing our method with a baseline from a different paradigm is motivated by

the significant body of recent work and promising results using graph based approaches for query

clustering. A thorough comparison between agglomerative clustering and graph based approaches

is still missing in the context of query log mining.

The input to our baseline is a query graph based on the click co-occurrence relation, also known

as URL cover graph [34]. Such graph models the topical relatedness of queries from the perspective

of the common results to which they lead users: two queries are connected if users click on the

same results. Edges are weighted depending on how many distinct clicked URLs are shared by the

queries. In principle, several different query-query relations can be mapped onto a single query

graph; for instance, it is quite common to mix lexical similarity and click co-occurrence (or other

content-related similarity measures). In the present evaluation we consider a simple URL cover

graph as input to our baseline.

To detect topically coherent clusters from the URL cover graph, we use a network community

detection algorithm. Intuitively, the basic idea of community detection is to spot groups of nodes

that have many connections with each other and few to the rest of the network, thus forming a

dense cluster. Accordingly, a cluster on the URL cover graph would include a set of queries that

have many more clicked URLs in common compared to all the other queries in the corpus.

Among the many community detection algorithms in the literature [112], we adopt the recently
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proposed OSLOM (www.oslom.org). This choice is motivated by its good performance over other

state of the art algorithms on both synthetic benchmarks [179] and real network datasets [180].

Furthermore, unlike the vast majority of other community detection techniques, OSLOM auto-

matically detects overlapping communities and hierarchies of clusters. This allows a more direct

comparison with our greedy algorithm, which also outputs overlapping topics through a hierarchical

agglomeration process.

OSLOM performs clustering based on the optimization of a local fitness function that measures

the statistical significance of the detected cluster compared to a global randomized null model

known as configuration model [234]. Clusters are detected by selecting several random seed nodes

in the graph and finding the locally optimal clusters that include the seed nodes. Similar clusters

found over different realizations of random seeds are then merged together, thus originating a

minimal set of clusters that may overlap. The procedure is iterated over higher hierarchical levels

by collapsing clusters into nodes. Iterations stop when no higher level clusters are found. For

further details about the algorithm we refer to the original paper [180].

For the sake of simplicity, here we focus on this single baseline. One could consider even more

sophisticated baselines, for instance combining click co-occurrence with lexical similarity features,

or even using query clustering algorithms based on alternative paradigms [46, 144, 70]. A more

direct evaluation could be achieved with the golden standard of human judgments on the quality of

the topics. A preliminary effort in this direction has pointed to the difficulty of human inspection

of topic quality, as well as the challenge of identifying a suitable trade-off between topic specificity

and broadness.

6.3.2 Metrics

In the following, we present the criteria used for a quantitative and qualitative comparison between

the two methodologies. Although prior work has relied on human editors, manual evaluation for a

huge corpus of topics is unfeasible, therefore here we focus on automatic evaluation metrics.

Clustering measures

The first group of metrics are meant to give a quantitative comparison of the two methods. We

define three measures:

query set coverage: fraction of queries that the methodology is considering in the clustering

phase;

singleton ratio: fraction of queries that remains isolated in singleton at the end of the iterative

procedures;

aggregation ability: percent of topics that are aggregated in two consecutive iterations or in two

consecutive hierarchical levels.
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Algorithm 2: Algorithm to compute the concept vector
Require: Concept dictionary D, query q, parameters k, K

1: Retrieve set R of top-k results for q

2: T = Terms from D contained in R

3: Eliminate from T terms in q

4: for term t ∈ T do

5: d(t) = number of results in which t appears

6: r(t) = sum of ranks of the results in which t appears

7: R(t) = ((k+1) d(t))−r(t)
d(t) k

8: S(t) = d(t) R(t)
k

9: end for

10: Return the K terms with highest score S(t)

Cluster purity

The quality of a topic depends on its purity, or semantic coherence. When no ground truth about

the correct composition of a topic is available, an automatic way to assess purity is to consider the

results for all pairs of queries in a topic. We compare the result sets of two queries to assess how

related they are, and average the relatedness over all pairs.

Perhaps the simplest way to establish the relatedness of two queries is to compare the result

sets returned for each query and use the intersection to derive a measure of similarity [273, 111].

However, a more fine-grained criterion that uses the information inside the clickthrough result

provides a more accurate evaluation basis. We construct a bag-of-words vector for each query,

consisting of the concepts in the documents returned for this query. Concepts are selected using a

predefined dictionary [24]. For a given query q and a concept dictionary D, Algorithm 2 computes

the vector of concepts with their scores. The parameters are set to k = 10 and K = 20. The score

of a term t ∈ D depends on the number of documents in which the term t appears, and on the

sum of ranks of those documents. Table 6.2 shows examples of two pairs of topical related queries,

and their top concept terms ordered by descending score. Given the concept vectors of the queries

that it contains, the concept vector of a topic is obtained by marginalizing all concept vectors and

keeping the top concept terms.

Let us define the purity of a topic by considering all pairs of terms in the corresponding concept

vector and measure how much they are related to each other on average. One could achieve this

using the well-known pointwise mutual information (PMI) given by:

PMI(t1, t2) =
f(t1, t2)
f(t1)f(t2)

where f(t1, t2) is the number of queries that have both terms t1 and t2 in their concept vectors, and

f(t1), f(t2) are the numbers of queries that have t1 and t2 in their concept vectors, respectively.

One weakness of PMI is that it may become very unstable for a pair of rare terms. For example, if

both f(t1) and f(t2) are small, a few coincidental co-occurrences may lead to a superficially high

PMI value. To take this into account, we use the log-likelihood ratio, which is the expected value
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Table 6.2: Examples of the concept vector

Query Terms in aboutness vector (ordered)

iphone iphone, store, 4, camera, phone, apps, inc, facetime, mode, recording,

software, 3gs, resolution, battery, shop, network, ios, 3g, broadband,

ipod

iphone 4 reviews phone, iphone, store, 4, camera, apple, reviews, apps, review, 3g, record-

ing, model, inc, screen, resolution, ipad, coverage, network, photo, 3gs

toyota prius hybrid, car, prius, toyota, mpg, photo, price, sales, specs, vehicle, yaris,

cars, review, reviews, msrp, specification, milage, model, economy, re-

search

toyota yaris yaris, hatchback, car, price, hybrid, toyota, models, spec, mpg, liftback,

dealer, model, vehicles, review, photo, reviews, city, prius, transmis-

sion,vehicle

of the PMI:

LLR(t1, t2) = p(t1, t2)PMI (t1, t2) + p(t1, t2)PMI(t1, t2)

+ p(t1, t2)PMI(t1, t2) + p(t1, t1)PMI(t1, t1)

where t denotes the set of all terms except t. LLR fixes the unstability problem of PMI. Note

that when the marginal query frequencies f(t1) and f(t2) are small, the other terms in the LLR

equation will start to dominate. Averaging LLR across all the pairs of terms in the topic concept

vector, we obtain the log-likelihood ratio for the topic.

URL coverage

The topic LLR only focuses on the purity of the topic, which by itself is not too meaningful for the

evaluation. A trivial solution of considering each query as a topic would yield very high topic LLR

values. Similarly, one can easily cluster only synonymous queries, such as the query “facebook” and

its misspellings, again leading to a high purity measure. Similar to singletons, such topics consisting

of queries with almost identical results are not useful. To generate meaningful abstractions of the

query space, it is desirable to aggregate related queries with different result sets. We therefore need

a measure of coverage to complement purity, as suggested by previous work on clustering [296].

We measure the coverage by the number of unique URLs in the result sets for the queries in

the topic. Given the 2010 query logs of the Yahoo! search engine, we extract all distinct URLs

clicked by users for each query. To remove the tail of the clickthrough distribution, URLs that

received less than 0.01 clickthrough rate are discarded. We define the coverage of a topic as the

aggregate number of distinct URLs across the queries in the topic. Note that the trivial solutions

of singleton topics or synonymous queries have very low coverage. Overall, our goal is to extract

topics with both high purity and high coverage.
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Figure 6.4: Distribution of topic size for GATE and OSLOM. Different curves in the same plot

show the distributions at different hierarchical levels.

6.3.3 Experimental Results

In this section we compare the two clustering algorithms according to the metrics presented in

Section 6.3.2.

The GATE algorithm has a full query coverage on the dataset, because, by definition, every

query can be found in at least one mission. Conversely, when dealing with graph-based clustering

algorithms, the sparsity of the graph can lead to the emergence of isolated components that directly

affect query coverage. In fact, since the vast majority of queries share very few clicked results, it

turns out that the URL-cover graph is composed by a galaxy of tiny disconnected components.

These little islands cannot be merged with other components due to lack of connections and, since

they are mainly singletons, they do not represent any meaningful cluster just by themselves. The

size distribution of the components in the URL-cover graph generated by our dataset is shown in

Figure 6.3. We note that less than 400K queries are in the Giant Connected Component (GCC),

thus leading to query set coverage below 0.2.

Figure 6.4 shows the distribution of the topic size with increasing number of iterations in GATE

and in the three different hierarchical levels detected by OSLOM. The first thing to observe is that
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Figure 6.5: Number of topics and average topic size vs. GATE iterations. The values from the

lowest hierarchical level of OSLOM are reported as a reference.

the singleton ratio in GATE decreases from 0.55 in the first iteration to 0.27 in the last one, while

in OSLOM it remains stable around 0.88. Second, while in GATE the number of both medium-size

(10-100) and big size (¿100) topics grows with the iterations, in OSLOM the medium-size topics

that are detected in the first hierarchical level tend to be merged in very large comprehensive and

heterogeneous topics, with up to some tens of thousands queries. Note that the low frequency of

size-2 topics in OSLOM is probably due to the tendency of the algorithm to merge dyads in larger

clusters to optimize the partition fitness function.

Lastly, the aggregation ability of the two algorithms is shown in Figure 6.5. In GATE the

number of topics decays quickly in the early iterations and then stabilizes, until the stop condition

is reached. The final number of topics is around 500K, against the 180K found by OSLOM; recall

that OSLOM only deals with the fewer queries in the GCC. The number of topics in the different

hierarchical levels in OSLOM varies very slightly. Furthermore, the average size of OSLOM topics

is more than double the size of the topics generated by GATE, mainly because of the presence of

very large topics that skew the mean value.

Results on topic purity are shown in Figure 6.6. To check how the purity of the topic decreases

with its size we computed the correlation between the topic size and LLR by averaging the LLR

values of the topics with the same size:

〈LLRs〉 = 1
|T ∈ T : size(T ) = s|

∑
T∈T :size(T )=s

LLR(T ).

As expected, the larger the topic, the more heterogeneous the queries included, so we observe

a negative correlation. OSLOM’s topics have on average higher LLR than topics from GATE;

this emerges clearly when computing the ratio between the average scores obtained by the two

approaches for each topic size. This is mainly due to the fact that OSLOM generates many topics

that include just concept reformulations, i.e., queries that are different from the lexical perspective

but express exactly the same concept (e.g. “duran duran”, “duan duran”, “duran”, etc.). As we

remarked, such queries surely belong to the same cluster, but still they do not express a complex

cognitive content. For this reason, it is necessary to complement the purity measure with the

URL coverage. In Figure 6.7, the same analysis made for the URL coverage shows that the greedy

algorithm has much higher coverage than OSLOM.

If considering purity and coverage metrics separately is useful to learn the peculiarities of the two
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approaches, a joint measure that captures the tradeoff between the two scores is useful to compare

the overall quality of the query clusters. Such unified measure can be obtained by multiplying

the purity by the coverage for all the size classes of the topics and then comparing the resulting

curves. Results in Figure 6.8 show that GATE outperforms OSLOM for all the medium-small topic

sizes, that represent the great majority of topics. For clusters containing about 100 queries the

two approaches are comparable, and only for some bigger, more rare topics OSLOM achieves the

best performance.

To summarize, if we consider all the quality measures together, we can conclude that GATE

leads to a better topical query clusters because it is able to process all the queries in the corpus,

and most of the topics it generates have a better tradeoff between purity and coverage compared

to OSLOM.

As a final remark we note that a fair comparison of the computational time needed by the two

techniques is hard, first because OSLOM’s theoretical complexity is difficult to estimate [180] and

last because GATE can run in parallel while the current OSLOM implementation does not enable

parallelism. However, we underline that parallelization is a strong advantage of GATE, because

when dealing with real-life data sizes, it is hard to regard non-parallel algorithms as practical

solutions for clustering web search queries.
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6.4 User Profiling

A practical way to use the topics extracted from the query log is to profile users on a topical basis:

each user can be described by the set of topics that match her queries. Since OSLOM has a small

query coverage and allows only for an exact match between the user queries and the queries inside

the clusters, it is not practical to employ it in profiling. Therefore, here we focus on user profiling

based on our approach.

To build the profile of a user, we apply the topical similarity function S between the user

missions and every topic that contain at least one query from that mission, then selecting the best

match. Formally, let us define the topic that best matches mission m as:

Tm = arg max
T∈T

S (m,T ).

Given the best match scores, let us define the topical profile of a user u as a weighted vector over

the topics matching her missions:

Pu =

{(
Tm,

S (m,Tm)∑
m′∈Mu

S (m′, Tm′)

)
, ∀m ∈Mu

}
,

where Mu is the set of missions of user u. For a more compact user representation, supermissions

can be used instead.

The topical profile can be used not only to detect the topics relevant to the user, but also to

predict her future search goals. To check such a prediction potential, we perform an experiment

to examine whether a user profile matches her future missions better than random missions from

other users.

The match between a mission and a profile is performed by computing the S function between

the mission and every topic in the profile, and scaling the resulting scores by the weights of the

corresponding topics in the profile. This yields a vector of match scores over the profile topics. The

match vector can be generalized to sequences of missions by averaging the elements of the vectors

across the missions.

We produce the topical profile for the 40K users in the dataset starting from the 3 months of

query log. For each user we select two sequences of missions from the 30 days right after the 3
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Figure 6.9: Example of match of missions sequences on a topical user profile. On the x axis are

the topics in the profile; on the y axis are the match scores of the mission sequences for each

topic. The sequence originated by the same user has more spikes compared to the sequence of the

random user. When the values of the each curve are sorted, the best matching sequence is evident

by looking at the top-N scores.

months considered. One sequence comprises of all the missions generated by the same user in the

30-day period. The other is a sequence of equal length generated by another user chosen at random

among all other users.

Intuitively, a mission is likely to match at most a few of the several, possibly different topics in

a user profile. Given this intuition, to decide which of the two sequences best matches the profile,

we focus on the top-N (N = 5) elements of the match vectors between topic profile and mission

sequences. We then apply a simple majority rule, i.e., which sequence has the most elements with

higher match scores. This idea is exemplified by Figure 6.9.

Using this technique we are able to detect the user’s own sequence in 65% of the cases. We stress

that the mission sequences of randomly selected users are strongly biased toward high-frequency

queries such as “facebook,” “amazon,” and so on. Since these are shared by a large number of

users, any user profile is likely to match them, leading to a decay in detection performance. For

this reason we divided the random sequences into three sets according to the average frequency

of their queries. The accuracy rises to 72% when considering the sequences with lower frequency

queries and drops to around 55% when considering the sequences with higher frequency queries.

65% success in prediction can be considered a good result. Even if the interest of a given user would

presumably be quite stationary within a particular domain, in web search, where a much wider

range of suitable topics is available, the user focus can be often inconstant in time, independent by

past search sessions and made even more variable by bursty search activity triggered by external

events (e.g., “Michael Jackson death”), hardly predictable by looking only at the user history. This

issues make this prediction task much more difficult compared to domain-specific predicition or

recommendation.
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Chapter 7

Expanding information of

collaborative systems

7.1 Tagging relations to achieve complex search goals

In previous Chapters we investigated how complex information can be handled and mined to

provide data-driven services in both social and search contexts. A very interesting and widely

used type of service that lies in the intersection between these two fields is the collaborative

tagging system. As well as classic search engines, folksonomies are indeed an instrument to reduce

information overload in search by means of a collaborative, social mechanism.

Since the scientific community has turned his attention on folksonomies, many aspects of collab-

orative tagging systems have been studied and developed. Recent research on social bookmarking

includes the analysis of behavioral patterns, topical trend detection in tagging [295, 126], and

studies about the relationship between folksonomies and taxonomical categorization of items [147].

Several efforts have also been spent in improving the tagging systems quality of service by struc-

turing and properly ranking search results in tag-based search [151] or proposing services based on

the information extracted from folksonomies, like personalized recommendation services [320, 218]

or social link suggestion [299].

Some work has been done in extending tag-based search from a navigational point of view.

Services like Yahoo! TagExplorer (tagexplorer.sandbox.yahoo.com) allow to specify narrower

tags at each search step with the aim of quickly converging to a small set of resources, and other

work has been done in realizing platforms for tag navigation, automatic tag clustering [45], and in

improving the user experience in navigational search [227].

The problem of improving the quality of the relations between concepts has been somehow

addressed in context different from collaborative tagging systems. The work by Völkel et al. [335],

for instance, is aimed to extend the links between Wikipedia pages with semantic modifiers that

could be used by editors to specify the nature of connections between Wikis.

Despites this relevant efforts, we believe that the search potential of such systems is greatly
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underestimated and still unexploited. It has been observed that, among all the search intents, a

considerable portion of traffic on traditional query-based engines is characterized by complex search

tasks that can be satisfied only through the aggregation of information from multiple sources [95].

Recently, new Web services designed to meet this demand are successfully emerging under

two different paradigms. The first uses automated techniques to assist the user during a complex

query session. The latter, so-called social search, does not rely on algorithms to retrieve accurate

responses to queries, but instead routes queries to other users that can provide their knowledge to

answer them. Whether relying on the “wisdom of the crowds” —where the best reply is reached

by a sort of consensus— or on a “ask an expert” principle, social search is expected to be more

effective than automatic information retrieval in providing results that well satisfy complex search

goals.

Originally, the idea of “social search” was referred to the task of searching a particular person

through a path between users in a social network [3], but soon its meaning evolved to denote a

process of search for knowledge through a social platform. In fact, complex queries that cannot be

easily satisfied by conventional search engines can be efficiently answered if they are submitted to a

social substrate of human computers, especially if they are experts in the query subject. It has been

shown that users perceive many advantages in social search like getting personalized answers by

trustworthy experts or the possibility of getting satisfactory responses to subjective questions [235].

Q&A bulletin boards like Yahoo! Answers have been the earliest examples of social search, but

recently this paradigm evolved in services like Aardvark [150], where queries are automatically

routed to users that declared their expertise in the subject of the submitted question.

The power of social search facilities is complementary with the services offered by traditional

search engines. The synergy between the two paradigms have been already exploited by services

like Google Confucius [306], where users are redirected to a social search platform for some query

categories. Another social approach to deal with complex query activity has been adopted by

Yahoo! SearchPad [95], a service that automatically recognizes the boundaries of a complex search

mission in a query stream, allowing the user to save the session history and, subsequently, to share

the steps of a successful search with other users.

In such a scenario, collaborative tagging stopped at an early stage of the Web 2.0 revolution and

did not follow the trend outlined by social search. Despite folksonomies produce very high-quality

categorization of items [148] and evidence of their effectiveness in improving Web search has been

provided in the past [38], up to now tagging is used mainly to accomplish simple search tasks.

In this Chapter we propose a model to realize the unexplored potential of folksonomies in

satisfying complex search intents. We present the relational folksonomy, an extension of the classical

folksonomy that allows to compose complex user-defined relations between objects and tag them.

While the most known tag-based search engines allow to tag atomic resources like single URLs or

multimedia objects, the purpose of our model is to allow users to organize their knowledge or their

search experience in meaningful relational structures that represent complex concepts. Resources

produced by users or retrieved via classic query-based or tag-based search engines can be connected

with relations that express the response to a complex search goal, thus creating a knowledge base
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that provides solutions to complex search needs of other users.

The advantages of this model over existing systems are manifold. First, arbitrary relations

between objects can shape complex knowledge more flexibly than simple set-like collections of

items. Second, our model allows to tag not only relations between resources (e.g., URLs) but also

between users, tags, and any combination of them. This implies that users can associate other

users to items, thus easily triggering the possibility of social search mechanisms, and they can

also share their search experience in terms of the relations between the tags used during a search

session. Third, the composition of relations can be performed collaboratively by many users; this

allows to solve search problems that are too complex or time consuming to be handled by a single

user. Last, the relations between objects provide an easy and meaningful way to navigate inside

the result. In a scenario where the result is a complex object, this kind of navigation could be

reasonably more helpful to the user if compared to classic ranked-list visualizations of results.

7.2 User behavior in tagging item collections

Tagging complex relations between resources can be useful based on the assumption that a struc-

tured cluster of objects conveys richer semantics than a directory of unrelated resources. This

assumption resembles the holistic philosophical current, effectively summarized by the notorious

sentence: “The whole is greater than the sum of its parts”. We therefore expect that a sort of

Gestalt effect, i.e. the human capability of understanding a wider, unifying meaning from a system

of distinct but related items, can be observed in this context.

As partial evidence that this principle holds in social bookmarking, we perform an analysis on

a popular collaborative tagging system to verify what is the relation between the tags assigned to

user-generated clusters of resources and the tags assigned to the atomic items that compose the

cluster.

We selected the Flickr photo sharing service for our analysis because, to the best of our knowl-

edge, it is one of the few social media websites that allow users to group together tagged resources.

In particular, user can compose photosets from single photos of their own; furthermore, photosets

have a short title that describes the collection. Even if their structure is very simple and not

flexible, since it does not allow a real tagging operation on the set, photosets are good candidate

to verify the theory.

Using the Flickr API, we collected the information about 230,020 photosets corresponding

to 13,317 users and containing an overall amount of 7,188,004 pictures. For every picture, we

extracted the tags that its owner has attached to it. We then compared the photoset title —free

from stop-words— with the tags inside the photoset.

The first result is that only the 43% of photoset titles overlap with the tags attached to the

images inside the set. This means that in more than half of the cases, photo collections have a

name that is completely different, from a lexical point of view, from the labels that define the

atomic items inside it. Analyzing the overlap between title and tags at a finer grain, we can also

observe that, when an overlap occurs, in roughly 50% of the cases the title contains at least one
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Figure 7.1: Overlap between photosets title and tags inside the set. The measures are restricted

to the 43% of photosets whose title has some overlap with tags. Left plot shows the portion of

tags and distinct tags that overlap with their photoset’s title and the portion of photos that are

labeled with at least one overlapping tag. Right plot shows the average values of same measures

for photosets with the same item size.

word that does not appear in any of the tags of the photoset resources. This is a hint that very

often the title add some semantics to the information specified by the tags of single pictures.

On the other hand, even when an overlap occurs, the tags specify different information than

the photoset title. As shown in Figure 7.1, the 90% of photosets contains tags that overlap only

20% of the times with the photoset title and, as one can expect, the overlap ratio decreases as the

photoset size grows. From the curves in Figure 7.1 we also learn that it is quite frequent that a

picture in the photoset is labeled with a tag that appears also in the title. This is coherent with

the observation that users tend to tag resources with words taken by the title of the resource or

of the collection which contains it [203]. Moreover, In Flickr this behavior is somehow broaden by

the possibility to tag pictures in batch. Nevertheless, it appears that this phenomenon is limited

to a minority of cases.

This preliminary analysis is not meant to be a formal characterization of the user behavior in

classification of aggregated items; however it clearly shows that when resources are aggregated even

in a simple set structure, the description that users give at the set level considerably deviates from

the labels assigned at atomic level. This observation validates the hypothesis that the meaning of

relationship between resources goes beyond the mere aggregation of atoms.

7.3 Relational folksonomies

A common definition of the classic model of a folksonomy is the following [151]:

Definition 1. A folksonomy is a tuple F := 〈U, T,R,A〉 where U , T , and R are finite sets

of users, tags, and resources respectively. The ternary relation A ⊆ U × T × R represents the

annotation of resources with tags performed by users. Instances (u, t, r) ∈ A are called triples.

We propose an new definition of folksonomy that is a consistent extension of the previous one.

Definition 2. A relational folksonomy is a tuple F�=〈U, T,R,A,�〉 where U , T , R, and �
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are finite sets of users, tags, resources, and relational bundles respectively. The ternary relation

A ⊆ U × T × � represents the annotation of bundles with tags performed by users. The set of

relational bundles � is recursively defined as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r ∈ R ⇒ r ∈ �
u ∈ U ⇒ u ∈ �
t ∈ T ⇒ t ∈ �
N ⊆ � ∧ ρ ⊆ N ×N ⇒ (N, ρ) ∈ �

(7.1)

Shortly, in a relational folksonomy users start creating bundles by specifying relations between

atomic resources in R ∪ U ∪ T . The relation ρ can be picked among the (extensible) core set of

relations specified in Table 7.1. In turn, once a bundle is created, it can be recursively included in

a higher order relation together with other bundles or atomic resources, according to Formula 7.1.

This model is very flexible and expressive, since any combination of simple and complex items

through any relation can be created by the users. Of course, bundles can be tagged for indexing

or description purposes.

Currently, some of the major social bookmarking services support some sort of grouping func-

tions. Del.icio.us allows to create tag bundles, which are tagged sets of tags, Bibsonomy supports

relations between tags in a hierarchical fashion, and, as seen above, Flickr allows the construction

and tagging of photosets. Nevertheless, these solutions lack of generality since they are designed to

fit their own single domain and hardly adaptable to more complex relations than the simple set.

For instance, more general features like nesting of relational structures or composition of different

types of relation are not explicitly supported by these models.

Perhaps, the only relevant attempt in changing the paradigm at the basis of folksonomies has

been proposed in the GroupMe! project [2]. Similarly to our work, GroupMe! is based to an

extension of the classic Folksonomy formulation that allows the creation of groups of multimedia

resources. GroupMe! is able to capture just one of the many relations we introduce in our model

and, even more important, it deals only with the resource dimension of the folksonomy, thus not

being able to embed social search features like tagging and sharing of successful search paths or

indexing users and associate them to particular resources.

The main goal of the model is to allow users to link together different resources with a relational

structure that conveys complex semantics that would not emerge from a simple collection of the

resources. This is particularly useful to organize and share the knowledge on complex topics or to

collaboratively build a common relational structure on very articulated matters, in a Wikipedia

fashion. Since also users can be inserted into bundles, social information like connections between

people can be directly related to resources, for example to identify expertise in some knowledge

areas, thus implicitly enabling social search mechanisms. Moreover, the possibility to tag relations

between tags allow to index any search process seen as a relation of co-occurring tags in a search

session; successful search paths can then be shared to provide other users a guidance to achieve a

complex search goal.

Traditional folksonomies are clearly a subset of relational folksonomies that are obtained fol-

lowing the first branch of Formula 7.1. In this case, � can contain only elements from R thus the
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Relation Description

Set (S) ρ = 
List (L) ρ =<, antisymmetric and transitive partial order relation on N

Graph (G) If items are interpreted like nodes, then ρ ⊆ N × N determines the set of edges

between them. It can be undirected if (n1, n2) ∈ ρ → (n2, n1) ∈ ρ

Tree (T ) A hierarchical structure obtainable as an acyclic graph G
Hypergraph Graph-like relation between elements in the power-set ℘(�), obtainable by the S

relation

Table 7.1: Core relations obtainable in relational folksonomies (Formula 7.1)

folksonomy reduces to the 〈U, T,R ≡ �, A〉 tuple. This means that our model still allows tagging

of atomic resources like in classic folksonomies.

The structure of relational folksonomies allows to 1) effectively collect the resources or the

knowledge gathered during a complex search activity on a traditional tag-based or query-based

engine, 2) add a structured, semantic connection to the accumulated knowledge through user

defined relations and 3) share the structured knowledge that comes out from this process with

other users, using tags.

7.3.1 Use case

For illustrative purposes, we present an example of how the relational folksonomies can be used to

solve a real-world task.

Suppose that Alice is willing to share her experience about a recent travel through Italy. She

went to Venice, then Florence and, at the end, Rome. She visited the main touristic attractions of

each city, taking pictures and videos, writing notes about the hotels she stayed in or the restaurants

she went to, collecting online contacts of people she met during the trip.

At the end of her travel, Alice wants to organize and share her experience with friends. Using the

proposed approach, she creates a Set bundle for each city, containing the media items related to that

location; according to Definition 7.1 and Table 7.1, we refer to these as (V enice,S), (Florence,S),

and (Rome,S), respectively (supposing that city names are just macro to identify the collection of

resources). To represent the temporal sequence of the trip, she arranges the stages of her journey us-

ing a List that represents the path covered: Path = ({(V enice,S), (Florence,S), (Rome,S)},L).

Since the model allows to include also people in relations, Alice creates another Set bundle

(Participants,S) that contains the reference to her fellow travelers. At this point, she shares

the bundle ({Path, (Participants,S)},S) labeled with tags Italy, trip and vacation.

Now assume that Bob is planning a vacation in Italy. He submits a query to the system with

the tags Italy and trip, thus finding the bundle previously posted by Alice. He navigates through

the bundle collecting information and possibly tagging or personalizing items. Since Bob has not

much time for his vacation, he would like to gather opinions on which of the three cities is most

worth seeing, in order to spend more time visiting it. To do so, he sends a request to the users in

(Participants,S) to ask for their opinion and suggestions.
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Figure 7.2: Query graph for a user that wants to visit Italy and enjoy opera and chocolate

Since Bob is keen on opera music, he wants to find an opera house in Venice. So, he submits a

query with tags Venice, opera, and theater. At the end of the trip, Bob would also like to visit a

place where he can taste good chocolate, so he searches for the tags Italy and chocolate. He finds

that Turin is the Italian capital of chocolate and so he plans to go there by train and lodge in an

hotel. Figure 7.2 summarizes the Graph bundle of tags used by Bob during his search, where tags

co-occurring in the same query are linked. This bundle, automatically built by the system during

the search session, represents an example of a complex search path performed by a user willing to

visit Italy and enjoy opera and chocolate. Bob, who is interested in continuing its search session

later, saves this Graph tagging it with Italy, chocolate, and opera. Bob can also choose to share

its search experience by publishing the bundle. Doing so, other users can begin their own research

starting from the knowledge gathered by Bob, possibly learning relations between concepts which

are unknown to them (e.g., Turin and chocolate).

7.3.2 Portal

The relational folksonomy model has been implemented in an online Web service available at

http://mumb.di.unito.it. Although, at this moment, the portal is an early-stage prototype

that does not cover the complete set of intended functionalities, it can still provide to the reader

a concrete idea of the scenarios that the relational folksonomy model enables. The current portal

is structured in three main functional sections: Search, Share, and Socialize.

In the Search section (Figure 7.3) users can submit queries to the system obtaining a ranked

list of atomic results or complex bundles that meet the search criteria. By selecting a bundle

the user can navigate its content, tag it or publish a personalized version. On the left side,

filters allow to organize the result set by type, source or ownership. On the right side, the upper

box contains a weighted list of tags that are related to the words in the current query string.

The similarity relation is derived from the semantic concept network built in the Great Minds

Think Alike project [345, 344] (http://greatminds.givealink.org) that leverages the games

with a purpose paradigm to collect high-quality social annotations on Web resources, tags, media

content, people, and geographical locations. In the lower box, the current session is represented

by the Graph bundle that contains the tags used during the search session, where edges between

tags indicates their co-occurrence in a query. At this moment, the user is not able to publish the
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Figure 7.3: Search section

search path, however, this functionality is under development and it will be introduced in the next

release since it represents a key functional aspect and a concrete shift from the current approaches.

In the Share section users can compose, share and tag bundles. Bundle creation is performed

by aggregating content from existing bundles or from social media like Flickr, YouTube, Twitter

or any other web services that exports a public API. Since the atomic elements are URIs, the

system allows to append anything to a bundle, even users and locations, enabling a geo-social

aspect to the engine. Figure 7.4 shows the process of adding a YouTube video to a bundle set.

The current prototype provides the ability to create only bundle sets containing photos, videos or

tweets. However, it is worth noting that the prototype architecture has been carefully designed to

easily support new relations or media channels in future releases.

The Socialize section (not implemented yet) is intended to foster the creation of social links

between users building a community around them. The system will suggest people interested in

similar topics and will enable discussion panels to share the knowledge of experts.

The portal allows anonymous users to search, navigate and create a bundle; instead, sharing,

tagging and connecting to people requires a login procedure. Users may login using an account

from some of the most popular social media sites like Facebook, Yahoo!, Google and many others.

Any service that implements the OpenID protocol is accepted. In the Control Panel the user

can manage her multiple digital identities and connect them to the local id, enabling services like

discovery, personalized recommendation, social networking, and so on.
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Figure 7.4: Adding a YouTube video to a bundle set
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Summary on Part I

The exploration of the dynamics of complex social systems reveals interesting patterns about

the macro-structure of the social substrates and the behavior of their human components. We

studied the structure and the dynamics of three online social media (Flickr, Last.fm, and aNobii)

to understand the underlying mechanisms of their evolution.

We first inspected the interplay between individual user features and social interaction. We

observed a strong correlation between the social connectivity and the intensity of explicit user

activities like tagging and participation in groups. Assortative mixing patterns between neighbors

can be found for all the examined features as well. We showed a dependency between the topical

similarity between pairs of users and their shortest-path distance on the social graph, using a null

model built to discern purely statistical assortativity from actual homophily. We found a clear

topical alignment trend between neighbors for all the examined features.

The observation of that topical alignment between individuals residing near in the social graph

led us to investigate the dynamics of link creation in the network, thus revealing strong propen-

sity to homophily, reciprocity, and proximity-driven attachment. We support with strong

evidences the thesis that similarity patterns that are detected in the static network are also de-

termined by influence that connected users exert on each other. In particular, we observe that

link creation triggers a noticeable sudden increase in the similarity between the endpoints. Fur-

thermore, information tend to spread along social ties rather than with more chaotic patterns. In

this regard, we found that the fraction of neighboring users that may have influenced an adopter

is very small on average, thus supporting the intuition that the “information contagion” is of-

ten triggered by a few of trusted, influential users. Accordingly, we observe that interaction ties,

i.e., social connections over which some communication takes place, exhibit a stronger topical

alignment and influencing potential.

Based on the previous findings on dynamics of interaction and of link creation, we studied the

possibility of predicting the creation of social ties based on the similarity of users. We discuss

different similarity metrics to be applied to structural and profile features. In particular, we

explore a number of similarity metrics that can profitably model the user-to-user similarity in

the three-dimensional space of folksonomies and we inspect many different topological similarity

measures.

Results show that all the user profile features have substantial power in detecting links. Regard-

ing the folksonomy-derived features, the similarity metric that we introduced to compare objects
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in the folksonomy space, namely the MIP similarity, produced the most accurate results in link

detection. Moreover, the aggregation technique used to extract folksonomic features from their

original three-dimensional space is very relevant to the prediction results. Overall, the library fea-

ture, i.e., the collection of the focus items in the social media (e.g., books in aNobii and artists in

Last.fm), turned out to be the most effective, and was very accurate even when users have a small

number of library items.

Contextually to the study of link detection we also tested the effect that confounding aspects like

spoken language and nationality have on the prediction task. We showed that the link detection

task is easier in social networks that are strongly clustered by language, because users in different

clusters tend to have very different topical interests and to establish very few social ties.

Focusing on a single language cluster, we observed that combining profile features with network-

based features through a machine-learning approach leads to a considerable boost in link pre-

diction accuracy. Using the Chi squared attribute selection method, we are also able to rank all

the features considered according to their predictive power, thus being able to select a minimal set

of them to train our classifier. Based on this, we present an efficient contact recommendation

technique based on topological and profile features that reaches a good precision in conditions of

extreme sparsity.

The possibility of mining user data to understand hidden information and, based on that,

predicting the evolution on the system or the future behavior of its components, is not limited

to social networks. In particular, we study the scenario of Web search, where the information

overload in extremely high on both server and client sides. A possible way to synthesize the

huge amount of information available in this context is to cluster together the information units

depending on their relevance with respect to some more general topic. The behavior of the users

in submitting queries to a search engine, including the implicit and explicit information that their

actions reveal about their search intent, is a crucial element to determine what is the topic of a

query or of a sequence of search actions.

We introduce a novel definition of topic in the context of query log analysis and propose a

topic extraction algorithm based on agglomerative clustering of sequences of queries that exhibit a

coherent user intent. Our algorithm relies on a semi-supervised classifier that can tell if two query

sets are topically coherent with excellent accuracy (AUC 0.95). We compare our method with a

graph-based clustering baseline, showing its advantages on query coverage and on the trade-off

between purity and resource coverage of the clusters. We define the topical profile of a user in

terms of a topic vector that best defines the user search history. With our classifier we are able to

discriminate a query sequence submitted by the profiled user from a random query sequence 72%

of the time in the best case scenario.

Finally, we give a contribution in improving the effectiveness of information retrieval in a sys-

tems that resides in the intersection between the macro-areas of social and search: folksonomies.

We propose an extension to the folksonomy model that enables to tag complex user-defined

relations between users, tags, and items. As a premise, we analyze the connection between tags

associated to Flickr photosets and tags related to the single pictures composing the photoset. We
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observe that even this simple form of aggregation conveys richer semantic than a directory of unre-

lated objects. Accordingly, we define the concept of relational folksonomy presenting a concrete

example of how they can be used to solve real-word tasks. To the best of our knowledge, this is

the first attempt to leverage the power of folksonomies to enable social search and the achievement

of complex search missions in a collaborative way. An online Web portal is presented as a

reference implementation of the model.
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Part II

Privacy-aware online social

platforms
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Chapter 8

Privacy leaks of centrally managed

systems

People have really gotten comfortable not only sharing more information and different

kinds, but more openly and with more people and that social norm is just something

that has evolved over time.

Mark Zuckerberg, creator of Facebook (2010)

In Part I we discussed how mining user generated data in social and search systems could help

to extract useful information for the providers and to build better services for the users. However,

the virtuous circle between the availability of user data and the quality of services has a cost in

terms of privacy.

In the case of social systems1 the privacy hazards on user information can be divided in three

main categories, namely direct data exploitation, information leakage [170], and information link-

age [169]. Direct exploitation of data is the simplest and most perceptible threat; it occurs when an

undesired information mining is performed by the provider that stores the user data for purposes

that may be also unrelated with the context in which the information has been defined.

A more subtle risk is given by the information leakage, i.e., the diffusion of sensible data out

from the context they were originally defined. The leakage can happen along social ties and groups

when some piece of information originated by some user reaches a wider audience than desired or

expected; this is mainly due to the limits or to the opacity of the privacy policies provided. However,

the leak can happen also on a larger scale when the data are brought outside the boundaries of

their original context. In fact, very often, the content management policies adopted by online social

network providers allow third parties to access the user information, which can then be used for

any other purpose, for example faceted advertising.

1We focus our discussion on privacy on social systems because they represent a more extensive case study than

search systems in terms of privacy issues. Also keep in mind that social and search systems are increasingly entangled

(just think of the strict relation between Google’s services Search and Plus) and they should be considered as a

single ecosystems of user information plunged in a social context.
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Last, information linkage is a data combination technique used by the data holder or even by

unauthorized third parties to aggregate data from different data repositories to infer non-expressed

information about the identity or the behavior of a user. Facebook’s instant-personalization service

[104] and the access policies to private resources for third-party applications [110] are evident

examples of such possibility.

Therefore, the actual risk in this setting is that users may lose the control over the diffusion of

at least part of their own information. Even if most of existent SNSs offer the possibility to change

some privacy settings or profile visibility options, a full customization of the settings is often not

allowed. Furthermore, the recent trend of providers policies has been to relax more and more the

privacy constraints in the default user settings [251].

Although, until the recent past, users could be misinformed about who actually has the permis-

sion to access their online information [136], the awareness on SNSs privacy leaks is rapidly growing

and spreading among OSN users, thanks also to the relevance attributed by the media to this topic.

Recently, also many voluntary protest initiatives have bloomed on the Web [25, 232, 135], reflecting

the fact that the user demand for privacy is becoming stronger.

For these reasons, to restore the control of the users on their own information has become a

major challenge for the research community today [26].

To mitigate the information leakage, some efforts have been made to improve the privacy

settings in OSNs. Felt et al. [110] address the privacy problems related to the disclosure of personal

information through APIs provided by online social services like Facebook and OpenSocial. They

propose an alternative social platform design that prevents third party applications from obtaining

real user data. They introduce a privacy-by-proxy anonymization technique that do not reveal any

non-public information to external applications or to the application users that are not granted

with the proper privileges. This goal is achieved by customizing the interaction protocol between

the social service provider and the applications.

To limit the data leak along the social connections, Fang et al. [107] propose a machine learning

methodology to infer resources access control policies to be applied to the set of social contacts.

Based on a small learning set of representative friends for which access control settings are actively

specified by the user, their method infers the proper privacy settings for all the other users in

an automated way. The features used in the training phase include the position of a friend on a

specific network cluster in the friendship graph and all the profile information specified directly by

the user.

The definition of smarter techniques to control the diffusion of user data is useful but may

also collide with the reticence of OSN service providers to change the privacy features they offer

to their clients. For this reason, another line of work proposed a set of workarounds to avoid

undesirable information mining or defining guidelines to enhance the privacy services offered by

SNS providers, but without changing any feature of the original services. This choice is motivated

by the advantage in preserving all the existent services and by the observation that many OSN

service providers may be unwilling to change the privacy policies.

One of the most evident examples of how a centralized social media service could be “patched”
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with some additional privacy features is the NOYB system [139] (adresearch.mpi-sws.org/noyb.

html). It aims to solve the problem of user information exploitation with a direct encryption

approach. NOYB is a tool based on a substitution cipher that allows to post encrypted textual

information on the social network. A secret key shared between NOYB groups, together with a

public dictionary, stored by a Trusted Third Party, are used for encryption and decryption and to

produce ciphered text that is hard to be discerned from real text with automatic techniques. Doing

so, the provider is prevented to tell fake encrypted data from valid information. Its feasibility is

supported by a proof-of-concept sketched on the Facebook case.

Even if this approach applies only to textual fields and it is not suitable for any other kind

of sensitive information, like social connections, group affiliations, or pictures, it reveals a general

need to find simple and effective solutions to the mentioned privacy issues. On the same line,

similar solutions have been presented [210].

To avoid direct data exploitation, some solutions to build privacy-preserving services over un-

trusted storages has been proposed. Persona [33] is a privacy-aware OSN where user data are

kept into a centralized untrusted storage. Information privacy is accomplished using encryption.

In particular, Attribute Based Encryption is used to flexibly manage group membership and re-

vocation of privileges. A possible integration with existing OSNs is drawn. A similar approach is

described by Anderson et al. [23], who propose a client-server model with untrusted server as a

privacy-aware OSN architecture. In this work, the server is used as a public storage without any

access control policy (it offers only simple put and get primitives). The task of preserving the

privacy of user information is delegated to clients, that upload encrypted and equally-sized data

blocks to hide both resource content and size. Only users with proper keys can access to the items.

Identity verification and key distribution are managed in a P2P fashion.

More sophisticated approaches has been also proposed. As an example we mention Lockr [326]

(www.lockr.org), a discretionary access control system adaptable to centralized OSNs as well as

to the BitTorrent streaming system. The idea is to decouple the user social information (i.e., the

contact list) from the resources the users share with others. In this approach, the list of friends is

not explicitly stored anywhere; instead, every user distributes a signed social attestation to each

of her social contacts; only users that have a proper social attestation are allowed to access the

resources. In order to avoid replay attacks, the attestation is verified through a zero-knowledge

protocol. In a centralized setting, a dedicated server is responsible for the attestation validity

check. In BitTorrent, thanks to the introduction of a signed social torrent, attestation verification

can be managed in a decentralized manner.

All the solutions mentioned above are useful both to explore the different facets of the problem

and to raise the awareness on the privacy flaws of OSNs. However, they cannot be enforced easily.

First, applying a blurring mask to the user data layer in order to hide sensitive information stored

in a centralized environment is a solution that would be not accepted by the service providers

themselves, whose terms of service often impose very strict conditions on information inserted by

users [105]. Furthermore, the implementation of privacy-aware solutions that imply to build up a

centralized infrastructure for data management would be too costly if a very large audience must
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be supported.

For this reasons, independently from the above proposals, an important line of research focused

on solutions based on the replacement of centralized platforms supporting OSNs with peer-to-peer

(P2P) systems.

The most commonly understood meaning of P2P systems is a class of distributed systems

where all the nodes cooperate to accomplish some task by acting as both providers and con-

sumers of some resource. A single P2P system, understood as the substrate of the peers and the

logical connections between them, together with a communication protocol, can potentially sup-

port a wide range of different applications simultaneously. File sharing applications like Napster

(www.napster.com), and eMule (www.emule-project.net), real-time communication services like

Skype (www.skype.com) and ICQ (www.icq.com), or content distribution networks like BitTorrent

(www.bittorrent.com) and Joost (www.joost.com) are noticeable examples of applications that

follow (at least partially) the P2P paradigm, even if relying on very different protocols and on

different structure of the network of logical connections between peers. Nevertheless, despite their

differences, all P2P applications are united under the same philosophy that is well summarized by

Shirky’s definition [305]:

P2P is a class of applications that takes advantage of resources — storage, cycles,

content, human presence — available at the edges of the Internet. Because accessing

these decentralized resources means operating in an environment of unstable connectivity

and unpredictable IP addresses, P2P nodes must operate outside the DNS system and

have significant or total autonomy from central servers.

The autonomy from central coordination and control is an excellent basis for the construction of

privacy-aware services. Replacing centralized SNS providers with peer-to-peer services [26, 67],

where no central authority can claim the right to exploit the data, is a proposal that has achieved

widespread success among the scientific community. Furthermore, a P2P solution could be realized

with a negligible infrastructural cost if compared to centralized architectures.

In particular, considerable attention was paid to structured P2P systems, or Distributed Hash

Tables (DHTs). In fact, DHTs are the most natural choice to implement a decentralized storage for

user information, since they transparently provide content availability, caching and dissemination,

assuring a very high scalability of the system. However, implementing complex SNSs on such

purely decentralized layers lead to several practical problems, that can be summarized with the

keywords security, access control and services.

First, DHTs suffer from many security issues [330] that can considerably undermine the stability

of the network, and of course of the applications layered above. This point is even more important

for social applications, that usually have high robustness requirements motivated by the high-

quality user experience they must offer. Second, in a open environment like a DHT-based storage

system, data can be potentially accessed by everyone. For this reason, proper access control

policies should be implemented in order to offer a full customizability of content privacy levels

and to support a fine-grained and highly-dynamic group membership. Last, P2P overlays offer a
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very restricted and low-level API. Since social applications usually require high level primitives like

inter-application notifications or identity management functions, the distributed social layer should

expose a suite of higher-level services that prevent an excessive overhead in the implementation of

applications. Of course, while realizing such services in a centralized environment can be trivial,

it can be very challenging to do the same in a fully decentralized environment.

Given this context, the main contribution of this part is the following. First, we describe the

general model of structured P2P layers and we survey their security weaknesses (Chapter 9). For a

specific and very dangerous kind of attack we prove through a simulation study that the network can

be subverted with a very low effort by an attacker. Accordingly, we propose a new Distributed Hash

Table system that strongly mitigates the effect of all the most known attacks that can be directed

to structured overlays (Chapter 10). The idea at the basis of this new DHT is the embedding

of a strong user identity management at overlay level; we show that this feature has very good

implications on DHT properties and potentialities, at a reasonable cost in terms of network latency

and required computing power. On the top of our security-enhanced DHT, we define a distributed

SNSs that effectively tackles the mentioned privacy problems (Chapter 11). The identity-based

primitives provided by our architecture allow us to define a set of basic core social services for

custom OSN applications. In particular, our service suite includes fine-grained discretionary access

control, reputation management, synchronous notifications and high level search primitives. We

will focus in particular on how an efficient and privacy-preserving tag-based search engine can be

build in such decentralized environment (Chapter 12). We show that our approach allows an easy

application mash up and relieves the applications from many service implementation details, thus

making their development quick and extremely easy.
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Chapter 9

P2P overlays and their security

issues

9.1 Structured P2P networks

Peer-to-peer systems have been studied and categorized according to several dimensions like their

purity (i.e., presence of super-peers or centralized components) [351] or the structure of the logical

connections between nodes [155]. Nevertheless, one of the most accepted dichotomy in taxonomies

of P2P systems is the separation between unstructured and structured systems [209].

The main distinction between the two categories is the way in which messages are routed along

the logical connections between nodes. In unstructured networks, messages are sent in broadcast

from the originator to a set of known neighbors; in turn, each receiver broadcasts the message to

its own neighbors, originating a message cascade that can, in principle, flood all the network before

the recipient of the message is received. The Gnutella network [280] is the most known example of

such kind of network.

Conversely, the message routing in structured overlays is constrained by a strict management

of the logical connections between nodes. For each message, the set of peers to be contacted

to continue the routing procedure is deterministically given by tight routing protocols and the

message can reach the target node(s) with a very limited overhead in term of number of exchanged

messages. For this reason, structured networks has been considered more convenient to use in a

wide range of applications than unstructured layers [287, 231, 171]. Structured overlays are often

referred as Distributed Hash Tables (DHTs).

More in detail, DHTs [318, 285] are a class of fully distributed systems which provide an exact-

match lookup functionality: given a certain key from a flat identifier space, they retrieve the value

associated with such key. From an application point of view, at a high level of abstraction, a

generic DHT system could be defined with a 6-tuple:
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DHT = 〈K,N,C, κN , κC , λ〉
κN : N → K

κC : C → K

λ : K → {N}∗

K is the DHT keyspace, a large (usually 2128 or 2160) set of numeric keys, N is the set of online

nodes and C is the set of all the resources (also referred as “content”) owned by the users. An

identifier chosen from the keyspace is assigned to every node (function κN ) and content (function

κC). Usually, nodes generate randomly their ID (the NodeId) while the content ID is calculated

from the cryptographic hash (for which a collision is unlikely, for large values of |K|) of the content

payload or from its metadata; however the definition of the function κC could be delegated to each

specific application, depending on the structure of the resources. λ is a function of responsibility

that associates the task of storing all the content marked with the same key to a set of replica

nodes; these nodes are called indexes for the key. A node interaction protocol can perform a lookup

procedure that, in O(log|N |) steps, is able to locate the index nodes for any key.

Various DHT specifications differ in the routing table structure and updating procedures and

in the nature of the lookup procedure (which can be either iterative or recursive). A real DHT

implementation must also provide several other features like techniques to maintain content over

time even with a high node churn rate (i.e., the frequency of join or leave of new nodes to the P2P

network), or caching strategies that avoid hot spots for popular keys.

We talk about structural components of a DHT referring to four elements:

• The mechanism for identifiers assignment

• The routing table, containing the contacts of the known nodes

• The storage of resources

• The interaction protocol between nodes which determines the lookup procedure and the

bootstrap, that is the join process of a new node to a existing network.

Several DHTs have been defined in the past. They mainly differ in the structure of the keyspace

and in the routing procedure but they all share the general principles we described in this Section.

In particular, we mention Chord [319], Pastry [285] and Tapestry [361] among the others [277, 214].

However, in the following we focus on the Kademlia DHT, that is the basis of our secure framework.

9.1.1 Kademlia

Kademlia is the reference protocol on which we base our secure DHT. Here we give an overview on

its core features. Some details (such as caching strategies) that are not functional for the following

sections are not presented here; for further details, please refer to the original paper [221].

Route table and state maintenance

In Kademlia, each node of the network has an identifier (ID) consisting of a 160 bit vector gen-

erated using the SHA-1 hash function on a random value. The nodes of the network can then be
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Figure 9.1: Kademlia tree. The black node is the local peer whose ID has the unique prefix

“0011”and the gray nodes are the other peers known by the local node. Four subtrees not containing

the local nodes are marked. These are obtained by iteratively splitting the largest tree containing

the local node. Each subtree contains nodes with some common prefix. Subtree A contains all the

IDs starting with “1”, B with “01”, C with “000” and D with “0010”.

represented as leaves of a binary tree with 160 levels. Clearly, in any real case the number of nodes

is much lower than 2160, so it turns out that the majority of the leaves correspond to free IDs. For

this reason, each node can be identified by the initial portion of its ID that is distinct from any

other ID present in the network.

A distance between two IDs is defined as the XOR between them. The distance intuitively

represents the number of levels that separate two leaves when navigating from one node to another

in the binary tree. The order of magnitude (base 2) of the distance expresses the number of levels

that must be navigated up in the tree to go from one node to another.

Figure 9.1 shows how the contacts known by a peer can be partitioned in sets where all the

IDs share the same prefix. These sets are called k-buckets and form the route table of Kademlia

peers. Each bucket contains at most k IDs1 that have the same distance (in order of magnitude)

to the ID of the local node. k-buckets are updated during the interaction with other peers. When

receiving any kind of message, the sender ID is put in the corresponding bucket; if the bucket is

full, the least recently seen contact is pinged and, if no reply is received, it is replaced by the new

contact. This strategy is used to keep the route table more stable as possible and to replace only

the inactive nodes.

When entering the network, a node starts with a minimal route table with a single bucket

containing the contact of a bootstrap node. During its lifetime, the node expands its route table

by adding new k-buckets through a bucket splitting procedure. When the k-bucket in which the

ID of the local node is contained becomes full, the next contact to be added triggers the splitting

of the bucket in two sub-buckets that cover exactly the half of the keyspace covered by the original

bucket. The splitting process is exemplified in Figure 9.2. Additionally, to avoid a too unbalanced

1The default value of k in the original Kademlia protocol is 20
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Figure 9.2: k-bucket split in a toy keyspace of 3 bits. In the last split state the IDs that can be

contained by the buckets are shown.

expansion of the route table, the Kademlia protocol allows the split also for all the buckets residing

at depth d in the tree for at most b− 1 times2, when the condition d%b = 0 is satisfied.

Routing protocol

Kademlia defines four Remote Procedure Calls (RPCs) that any node can call on any other peer.

They are used namely to ping a contact (ping RPC), ask for the k known contacts nearest to a

certain ID x (find node(x)), ask for resources marked with the key x (find value(x)) or store

a resource y under a given key x (store(x,y)). All messages are sent using UDP transport, for

efficiency reasons. Except ping, mostly used in the route table maintenance, all the RPCs are used

during the routing and content storing procedures.

To find the responsible nodes for a key an iterative lookup is performed. The initiator of

the lookup selects from the route table the α contacts nearest to the lookup key x and sends a

find node(x) message to each of them. In response, the initiator receives at most k · α new

contacts. Among those contacts she iteratively sends new find node(x) messages to the α closest

to the lookup key. The algorithm terminates when the k nodes closest to x whose contacts have

been learned during the process have been all contacted with a find node. These nodes are the

ones responsible for the lookup key. Once they have been detected, find value or store RPCs

can be used to ask them to return or to store a resource.

It is easy to see that if each node has at least one active node in each of its buckets and each

node knows all its closest neighbors (which are quite realistic assumptions), for any hop the distance

is reduced by half, so that the routing algorithm will converge in log2(distance) steps to the ID

closer to the target.

2The default value of b in the original Kademlia protocol is 5
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9.1.2 Kad

The most successful implementation of the Kademlia DHT is the Kad network, that has been

used in the eMule file sharing software [172]. In 2008, the estimated number of users in Kad was

between 3 and 5 millions, sharing more than 80 millions unique resources [315]. The most relevant

difference that Kad adds to the Kademlia protocol is the Kad tolerance zone.

Whenever a node A wants to share a resource x, it issues a routing request (actually multiple

routing requests in parallel) to find the node responsible for IDx. During the iterative request,

node A collects IDs of other nodes and performs the STORE() operation on the first 10 nodes it

encounters that have at least the 8 most significant bits in common with IDx. This 8-bit zone is

called the tolerance zone for IDx. As a consequence, the search operation is different. If node B

wants to retrieve resource x, it issues an iterative search for IDx; whenever it receives the IP of

a node that falls into the tolerance zone, it issues a find value(IDx) for IDx to that node; in

response, a list of possible resources is returned (for example, a list of IP addresses that contain the

resource). The iterative search for IDx and the find value(IDx) for IDx keep going in parallel

until: 1) a timeout is fired, 2) the routing to IDx expires because no new nodes are found, or 3) a

maximum number of resources are returned by the find value primitives. This value depends on

the kind of resource being searched.

Kad contains many distinct kinds of resources, among which there are keywords and files.

Keywords are used to reconstruct the ID of a file: when a client wants to share a file x, it calculates

the hash of the file IDx, as well as the hash of each of the words that compose the file-name, and

stores the association (IDword, (IDx, “complete title”)) in the network. When searching for a file,

the peer issues separate RPCs for the hashes of all the words that are in the filename. From the

intersection of the responses the the most appropriate one is selected by the user herself. Then a

look-up for IDx is issued to retrieve the list of IP addresses that contain that file. Then, the peer

can directly contact the given IP addresses to download the file.

Whenever a node shares a file x with IDx and a certain file-name, it is responsible for periodic

republication of the IDs of the file and of the title-words, each republication being performed on 10

nodes in the corresponding tolerance zone. This means that if a file is shared by many users, its ID

is republished (refreshed) frequently, and a higher number of nodes in the corresponding tolerance

zone stores the IP of the owners. When a node receives a store message, it starts a timeout, and

after a fixed amount of time, the resource is erased if no update is received. The expiration time

and the content refreshing time depend on the kind of resource, varying from 5 hours for keywords

to 24 hours for files. Lastly, Kad network uses an hash space of 128 bits instead of 160.

Each node periodically sends ping packets to the nodes in its buckets and purges the ones

that do not respond, so that nodes with longer lifetime are the last to be removed. Since a new

contact is added only to a non-full bucket, it is not trivial to perform bucket poisoning, i.e., send

unsolicited pings to a certain node in order to be present in its bucket.
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9.2 Attacks on DHTs

Full decentralization and self-adaptation to high churn conditions makes DHTs extremely resistant

to random failure of nodes. However, their structure is very vulnerable to targeted attacks. In

the following we discuss a simple attacker model and the most known attacks that can be directed

under this model. This discussion applies to the general definition of DHT given in Section 9.1

and is independent from the particular implementations.

Attacker model

Opponents that we take into account are users that aim to break off or degrade the DHT service

or to exploit the potential of the network to attack another peer or a target service outside the

DHT. We suppose that an attacker is able to perform the following operations with minimum

computational effort:

• run a large number of node instances on the same computer

• spoof its nodes’ NodeIds and their network addresses

• intercept and alter the communication flow between any two nodes

• conspire together with other malicious peers in order to accomplish coordinate attacks

This broad freedom of action allows an attacker to effectively put off a large spectrum of attacks

against every structural element of the network. Next, we classify and inspect the attack categories

that such adversary can put off. Several classifications of DHT attacks can be found in literature

(e.g., [308, 72, 330]), and many of them focus on the exploitation of arbitrary NodeId assignment

and on the routing procedure compromise. Our purpose is to consider a wider range of attacks,

including also those against DHT storage functionality and Man In The Middle attack.

Sybil attack

In a structured P2P network, NodeIds are generated locally from each node instance, arbitrarily.

As we stated before, we suppose that a user can generate many node instances on the same

machine, with as many different NodeIds. Multiple identities belonging to a single user are called

Sybils [96]. Such behavior is in itself harmful because it undermines the redundancy property of

the DHT system: if many different nodes are instantiated on a single machine, the disconnection of

the computer would lead to failure a large number of nodes and, consequently, to the unavailability

of replicas of the content kept in their storages.

However, Sybils can be used by an attacker to put off massive and organized attacks. Assigning

identifiers near to a target key to a sufficient number of Sybil nodes, an attacker could be able to

intercept and discard most of the lookup requests for that key, thus censoring the content stored

in the DHT for that key. More in general, Sybil entities are used to avoid involving multiple users

or using many computers, thereby reducing the attack cost.
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To avoid Sybil attacks, the system must therefore ensure that different identities refer to sep-

arate entities (intended as users or computers). Douceur [96] noticed that a honest entity can

recognize a Sybil only gathering information from three different sources: a trusted authority,

other untrusted peers (indirect validation), or itself (direct validation).

In the case of direct validation, a honest peer can make sure that n different identities refer to

n distinct entities by challenging them with a computational puzzle that could not be solved by a

number of entities less than n in a time shorter than a given threshold [284]. This method results

very unpractical, both for the heterogeneity of the computational capacity of the nodes, both for

the challenge simultaneousness requirement. Exploiting assumptions on the underlying physical

network in order to identify nodes which are instantiated at the same physical position have also

been proposed ad a possible countermeasure [338].

In indirect validation the correct node may accept only identities that have been validated by a

sufficient number of introducer peers. The obvious flaw of this approach is that a group of deceptive

nodes can introduce Sybils as valid peers.

Several ad-hoc protocols have been proposed in more recent years; for example, Jyothi et al. [30]

propose a scheme in which each node is dynamically associated to a monitor node that moderates

transactions involving its twin node, thus making ineffective any Sybil attack attempt. Another

recent approach leverages the information of the social network of users to detect the untrusted

contacts established by Sybils [358].

The introduction of an access control service which assigns certified identifiers only to authen-

ticated entities seems to be the most effective solution. This service could be implemented through

a centralized authority as well as with a distributed system. Steiner et. al [316] propose the use

of a centralized agent to bind nodeIds to IP addresses after having received a proper user request

sent via SMS; nevertheless, since a user of a node with dynamic IP address have to send an SMS at

every IP change, the central agent is an undesirable single point of failure because its disconnection

would prevent bootstrapping nodes to join the network.

Routing attacks

By appropriately altering the correct message routing procedure of a set of target nodes, an attacker

could be able to make the DHT unserviceable to them, or she may even cause all victim’s outgoing

messages to be redirected to a parallel, corrupted network. These effects are usually obtained

through a practice known as routing poisoning which consists in injecting ah-hoc entries in the

victim’s route table. Route table poisoning comes out easily in a DHT environment, because of the

push-based approach in routing information updating: since the route table is built and updated

on the basis of unsolicited messages received from other peers (such as the periodic publishing

of neighbors route tables), an attacker could easily replace most of the entry victim’s route table

entries with fake information.

In particular, a node is very vulnerable to poisoning attacks during its bootstrap phase, because

the initial information to initialize the route table entries is supplied only by the bootstrap node,

that can easily fill the joining node’s route table with fake entries.
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Another particular kind of routing attack is the lookup misdirection attack). A lookup can

be simply deviated by a malicious node that replies to a lookup request with contacts that are not

nearer to the responsibility area for the lookup key. In a worse scenario the malicious node can

even claim that she is responsible for a keyspace subset she is not.

To limit the effectiveness of poisoning-based attacks, Castro et al. [72] propose to assign random

certified nodeIds to peers and to establish strong constraints on the set of values that a specific

route table entry could assume. If a malicious node cannot choose arbitrarily its identifier and it

can insert only its own contact into the victim’s route table, then the index poisoning would be

unfeasible in practice.

A different, unusual approach to defeat this threat is proposed in the design of the Maelstrom

DHT [87]. In Maelstrom, P2P network activities are divided into time periods called epochs,

determined by an external time authority. At the end of an epoch, route tables are flushed and

nodeId are recomputed on the basis of the epoch identifier. Route table resets, combined with a

given limit to the routing information update rate, make ineffective any routing poisoning attempt,

because the adversary cannot effectively complete a routing poisoning before the end of the epoch.

However, the DHT activity is completely dependent on the time authority.

Eclipse attack

The eclipse attack [307] is a form of routing poisoning which aims to separate a set of victim

nodes from the rest of the overlay network. A set of attacker nodes reaches its purpose by fooling

correct nodes into adopting malicious nodes as their peers, with the goal of entirely dominating

their neighbor set. If carried out successfully, the eclipse attack allows an attacker to mediate

most overlay traffic, thus effectively eclipsing correct nodes from each other’s view. Briefly, the

eclipse attack is performed by an attacker that tries to intercept all the requests directed to a

specific resource and redirect them to a fake resource. It has already been shown that this attack

is possible in Kad if the attacker controls a set of IDs close to the target ID (i.e. IDe) before the

publication of IDe [316].

The eclipse attack can be also intended as an attack against the storage; when it is targeted

to overshadow content stored on DHT, making them inaccessible to lookup requests, it takes the

name of node insertion attack. It is carried into effect by initiating a substantial number of nodes

marked with identifiers numerically close to the IDe, so that all lookup requests for IDe are routed

to these nodes. Once received a lookup request they can answer with a fake content or they can

send no reply message at all, effectively hiding the content to the DHT.

Singh et al. [307] propose the anonymous auditing heuristic to contrast eclipse attack. This

technique is based on the definition of the backpointer set of a generic node X , that is the set of

all the nodes that keep a reference to X in their neighbor sets; in order to eclipse a huge portion

of the network, the attacker aims to become the neighbor of a large number of nodes, hence the

size of its backpointer set is much larger than that of a correct node. A peculiar protocol allows a

honest node to query anonymously its neighbors for their backpointer sets and then to recognize

an attacker if its set does not contain a reference to the querier or if its cardinality is higher than
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a certain threshold.

It should be noted that all the variants of eclipse attack can effectively take place only if the

attacker nodes may select their nodeId with an “ad-hoc” strategy, so they can populate the target

nodes’ route table entries or the keyspace depending on whichever is the key associated to the node

or to the content they aim to eclipse.

Storage and DDoS attacks

A node is free to insert into the DHT any content bound to arbitrary lookup keys, which are

chosen at application level. Attackers can disseminate fake resources or harmful information. We

talk about index poisoning attack when bogus resources are deliberately spread to the nodes

responsible for those lookup keys (the index nodes); this attack is particularly effective in P2P file

sharing systems. If index poisoning is massively carried into effect, the ratio between the number

of fake and true resources can soar, hiding the original content from the lookup process [283].

When resources contain references to other resources that are intentionally corrupted or fake we

talk about pollution attack [195], a index poisoning closely related attack.

Index poisoning is the main mean to perform DDoS attacks [239]. In content sharing appli-

cations, for example, nodes publish the network addresses of content providers in the DHT. If an

attacker spreads references to a very popular item, specifying a target service as the source of that

item, she will cause the redirection of all the item requests to the victim, easily realizing a TCP

flooding. For this reason, solving the index poisoning problem in DHTs provides also a robust

shelter against DDoS attacks.

Lu et al. [205], proposed RIEP, a secure content publish protocol to limit the risk of a DDoS

attack in a DHT-based file sharing network. RIEP is based on IBS and assumes that every peer

has a private key bound to its public identifier; every published content includes the publisher

identifier signed by the publisher’s private key. Before starting the file download, a node that

receives a signed content verifies that it is signed by the same identity that appears within the

content. A mismatch between the identity of the signer and the identity of the source reveals a

DDoS attack attempt. However, this solution is strictly bounded to the file sharing applications.

More in general, rating systems could be used to evaluate the quality of a content to detect

any attempt of poisoning. Ross et al. [196] point out that applying rating systems to resources,

thus allowing users to mark content depending on its quality, are often ineffective and could be

easily deceived by a polluter, while rating systems applied to users, that is adopt a reputation

systems that allows users to evaluate peers’ behavior and to blacklist bad users, could be more

valid. Ideally, one would like to have a distributed reputation scheme that responds to attempts

to evade detection by changing identity.

Man In The Middle attack

In our adversary model an attacker is able to overhear and modify the content of messages flowing

between any two endpoints. This is a tangible occurrence in real overlay networks, because of

the use of buddies to manage the communication to nodes who reside behind a firewall or a NAT
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service. Basically, a peer hidden by the NAT establishes a TCP connection with a chosen buddy

node who acts as an application gateway for incoming requests; as a consequence, the buddy can

easily alter the content of the responses addressed to the hidden node. A detailed description of

how buddy system works in Kad is given by Brunner [66], while Steiner et al. [317] report a crawling

analysis of Kad showing that the portion of nodes that relies on a buddy is very significant.

To avoid MITM an authenticated channel between the two communication endpoints must be

established and the integrity of exchanged data must be assured. MITM is related not only to

P2P systems but to every distributed service; for this reason, many studies about MITM resistant

two-ways authentication protocols are available in literature [54].

9.2.1 Simulations of Eclipse attack

To fully understand the security issues that affect the Kademlia and Kad DHTs, we perform a

simulation-based analysis focusing on the evaluation of the impact of the eclipse attack on the

network. The simulations are realized with the Omnet++ simulator (http://www.omnetpp.org)

on a single-layer Kad network. By means of simulations can be better evaluated the effectiveness

and the consequences if such an attack, to design adequate countermeasures. We analyze to kinds

of attacks, i.e., the pure eclipse attack and a variation with randomly chosen nodes. It will be

shown that the impact of the attack depends mainly on three factors: the number of attacking

nodes, the possibility of the attacker to choose IDs arbitrarily and the possibility to start the attack

before the resource is published.

Simulations have been performed observing the behavior of a single tolerance zone containing

4,000 nodes, corresponding to a network composed of approximately 1,000,000 nodes. To lower

computational load, not all the network was equally populated. Lifetime of the nodes and other

system parameters were chosen consistently with the measurements reported in previous work [66,

315]. The deviation of measured results between two simulations with distinct random seeds is

extremely low (below 2%) so in the figures are reported the profiles given by an average one. After

a set-up phase, the attacks start at second 10,000.

Accordingly to work by Steiner et al. [317] the simulations reveal that if the attacker is able

to choose the IDs arbitrarily and to place those IDs in the network before IDe is published, the

attack is 100% successful. This means that almost all the requests for IDe are captured by the

attacker; to achieve this, the attacker needs to control just 8 IDs. In Kad, users choose their own

IDs. If IDe is an ID of a keyword, then it is predictable and can be eclipsed prior to its publication.

Through simulations it is possible to estimate the impact of eclipse attacks even in the case

when IDe is a file hash. In this case, IDe it is not known before its publication and the attack

starts after it has been published. This means that there is a race condition between the attacker

spreading fake resources and the other nodes spreading correct ones. In this scenario the attack

does not have a high impact if not supported by a bucket poisoning strategy. With such a strategy,

the attacker IDs send unsolicited pings to the nodes in the tolerance zone of IDe so that such IDs

are added to the buckets of correctly behaving nodes. In Figure 9.3 (right) the eclipse attack is

started by 8 attacking nodes after the publication of IDe together with bucket poisoning. As time
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Figure 9.3: (Left) The ratio between the number of search requests for IDe and the number of

search requests that are intercepted by an attacker node. Measures are sampled every 500s and

averaged over a sliding window of 10 samples. (Right) The ratio between total number of lookups

in the tolerance zone and lookups intercepted by the attacker IDs

passes, the attack becomes more effective, but even on a long time span it does not reach a total

eclipse. This is explained by the fact that for every obtained request, the resource is republished

by the receiver on ten nodes in the tolerance zone, as it would happen for a downloaded file in

Kad. In a nutshell, there is a concurrency between the republication of correct resources and fake

ones, that prevents the attack from being completely successful.

A variation of the eclipse attack has been considered when the attacker is not able to determine

its own ID. Previous work [76, 37] suggests that IDs could be chosen as a hash of network parameters

(IP address and UDP port). Our simulations show that even in that case, if the attacker owns a

large number of IDs, the eclipse can still happen with high probability. With a single IP address, a

node can obtain 216 different IDs uniformly spread. This yields about 250 IDs per tolerance zone.

In Figure 9.3 it can be seen that even when the attack starts after the publication of IDe, with

bucket poisoning, the percentage of eclipsed requests is still high. Moreover, in this scenario there

is no concentration over a single ID so that attacker could eclipse any resource in the tolerance

zone. This means that the attacker could perform a monitoring activity, substitution of resources

or DoS against any resource in the tolerance zone with the success ratio shown in Figure 9.3 (left).

The last attack that has been evaluated through simulations, is a DDoS attack against a third

party. This last scenario can be used to produce a different attack. As pointed out previously, if

all the attacking IDs answer to find value RPCs with the IP of a victim node (even outside of

Kad), this node will be flooded by requests coming from multiple sources [322]. This will produce

a Distributed Denial of Service that is very hard to stop. From our simulations we were able

to estimate that with find value RPCs the attacker receives an average of 4.5 frames for each

frame sent by the attacker. This means that the upload bandwidth resources of the attacker are

multiplied by 4.5.

In short, Kad vulnerability to eclipse is given by two main factors: the possibility for the

attacker to choose its own IDs and the possibility to have multiple IDs. In the following part of

the paper it will be shown how the introduction of a certification service can help Kademlia (and
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consequently Kad) to be more resistant against the attacks that exploit these factors.

9.2.2 Applying countermeasures

The previous overview highlights the main instruments that can be taken to develop a comprehen-

sive defense against all the mentioned attack categories. Specifically:

1. NodeIds must be generated randomly. The possibility of arbitrary NodeId selection should

not not be given to any node.

2. The possibility for a user to generate many nodes on a single machine must be severely

restricted or made as expensive as possible.

3. The procedure for routing tables updating should provide appropriate constraints. A peer

should be able to insert into a second peer’s routing table only its own contact. The routing

table in which its contact is added should not be determined by the message sender.

4. During the bootstrap, the node must acquire routing information from trusted sources.

5. A unique, strong user identity must be associated to each node. This identity must be

certified and verifiable by other peers so that a system for the evaluation of user behavior

can be realized.

6. The communication protocol between nodes must be two-way authenticated and must ensure

the integrity of messages.

As we stated before, our attack analysis is quite general because it does not take in consid-

eration any detail of a specific DHT. So, Kademlia protocol is included in the previous security

considerations. The following Chapter describes the model of a DHT-based system that is able to

fulfill all the mentioned points.
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Chapter 10

Likir, an identity-based DHT

10.1 Toward a secure DHT

Recent research on reliability of P2P overlay networks has focused mainly on three aspects: scal-

ability of fully decentralized architectures [79], incentive mechanisms against free-riding [138] and

Distributed Hash Tables (DHTs) security problems. As we remarked, security is very relevant,

especially when proposed architectures are addressed to the implementation of applications that

are more critical than file-sharing and have strict requirements of stability. This need becomes

even stronger if applications use the DHT to store sensitive user data.

Besides proposing ad-hoc solutions for specific attacks, research on DHT security came up with

several secure DHT designs that tried to address a broader spectrum of security issues [330].

Some attempts focused on the customization of the routing protocol to patch security flaws.

S/Kademlia [43], for instance, is a secure Kademlia-based routing protocol where some key features

of the original protocol are adapted with custom security devices. S/Kademlia limits free NodeId

generation by using crypto puzzles in combination with public key cryptography. It extends the

Kademlia routing table by a sibling list and it reduces the complexity of the bucket splitting pro-

cedure. Its lookup algorithm uses multiple disjoint paths to increase the lookup success ratio. It

also allows the DHT to store data in a safe replicated way to reduce impact of attacks against the

storage.

Other solutions provide the enforcement of the notion of identity or of the responsibility function

used to map resources on nodes. Chord-based DHT Myrmic [339], for instance, adopts a “root

verification protocol” that allows to check that the responsibility function is correctly applied. This

is accomplished by the combined action of a trusted authority, which issues certificates specifying

the responsibility keyspace area for a node, with a set of designed witness nodes, that checks that

the responsibility area is respected. A very similar approach is adopted also in NeighborhoodWatch

DHT [48], where a third party authority issues signed tokens to certify the responsibility of a node

on a keyspace subset. Both of them do not offer any specific defense against storage attacks and

they have the evident drawback of the single point of failure: if the central authority is down,

nodes cannot join the network.
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Another identity enforcement approach has been proposed by Ryu et al. [289] in their secure

DHT. They leverage the node identity assignment procedure to reduce the impact of some dan-

gerous attacks. An ID assignment protocol based on identity-based cryptography is presented,

showing that the id-based cryptography is a suitable and affordable technique that preserves scala-

bility by introducing a slight overhead. The described bootstrap procedure is accomplished through

a weak authentication method (i.e., based on a callback to the presented IP address) that has to

be executed at each join.

Nevertheless, despite all the efforts spent in securing such systems, currently there is no widely

accepted and general countermeasure to all the attacks surveyed in Section 9.2. Our contribution

to this research area is the definition of Likir, a secure extension of the Kademlia protocol that

strongly mitigates the most detrimental attacks to the DHT through the embedding of a strong

identity notion at overlay level. In fact, the most evident structural flaw that originates most of

the DHTs security issues is the uncontrolled assignment of node identifiers.

In Likir, a strong node identity allows to build a secure, authenticated communication protocol.

By exploiting a Certification Service, peers are given verifiable and certificated identifiers, which

are tightly coupled with the user identities. Doing so, most of the security issues are overwhelmed,

or at least strongly mitigated, under our very general adversary model. Likir security services

are transparent, enabling developers to consider decentralized implementations of distributed ap-

plications, without having to cope with the security devices that are used in our architecture.

Furthermore, the Certification Service is not a single point of failure like in previous work, because

nodes can keep joining the overlay also during its downtime. In addition to the improvement of

the DHT security features, embedding a strong identity management into the overlay allows to

provide services to the application level.

The advantage of including identity in the overlay is then twofold. First of all, the same

identity-based services provided at lower level can be reused by several applications. Furthermore,

integration between different applications is made easier because of the sharing of the same identity.

This has a significant impact on the design of new applications, because it allows mash-ups based

on the explicit link that resources have with their owner.

Last, the overhead of the security layer on the computational cost and on the network delay of

the DHT is affordable and does not impact sensibly the overall network performance.

10.2 Architectural model

Likir, Layered Identity-based Kademlia-like InfRastructure, is the architectural model of a new

DHT system that offers both a very high protection level from all the most common attacks

against structured P2P networks and a simple framework supporting identity-based services. The

means by which Likir reaches these goals is the delegation of user identity management to the

overlay network layer. Likir architecture is structured in two main modules, shown in Figure 10.1.

The first is a user registration service, accessible via Web, which returns to the user the certified

identity that will be used to mark its node on the overlay network. The service is composed of a
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Certification
Service

Likir

Transport

Identity
Provider

User

Web
portal

Kademlia

LikirId

1

2

Applications

Figure 10.1: Likir architectural model. The components of the user registration service and the

extended DHT protocol are marked with numbers 1 and 2 respectively. The user registration

procedure produces a LikirId that is used by the DHT node for authenticated interactions with its

peers.

web portal, which interacts with an Identity Provider for user identity verification purposes and

with a Certification Service for the creation of the certified identity. The latter is a DHT protocol

which extends the Kademlia protocol, encapsulating it. This layer provides an essential set of

simple and general purpose API for developing any kind of application.

Next, we inspect such two components, defining in detail purposes, functions and interactions

between them. We made only a pair of assumptions, useful for the following discussion; we suppose

that each user has a pair of RSA keys and an OpenId account. Finally, we adopt the following

notation.

A,B : Likir users

NodeIdA : node A’s DHT identifier

UserIdA : A’s OpenId

K+
A ,K

−
A : A’s public and private key

EK−
A

(msg) : message signed with the key K−
A

H(o) : hash code of the object o

ts : timestamp

a||b : concatenation of strings a and b

10.2.1 User registration service

In order to use Likir services, the user must fulfill a registration procedure; Likir architecture

provides a web portal for this purpose.

A generic user A is authenticated by the registration website using the OpenId protocol. This

implies that A sends its OpenId (the UserId) to the registration service, which in turn contacts a

third-party OpenId provider, where A has a valid account, to validate the user identity (a detailed

description of the OpenId 2.0 framework is given in [279]). Once the UserId is validated, A sends

her public key to the registration portal through a simple submission form supplied on the website.

The OpenId and the public key are then forwarded to a trusted entity, the Certification Service
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(CS). We pass over the specific structure of the CS and we handle it as a black box service, which

peculiar function is creating signed identifiers for newly joining users; we only suppose that it owns

an RSA key pair
〈
K+

CS,K
−
CS

〉
.

Upon A’s request, the CS binds A’s UserId to A’s public key and to a random 160bit string

that represents the DHT identifier of the Likir node. The binding is made through the production

of a cryptographic token which is then sent to A through a secure channel:

LikirIdA = EK−
CS

(NodeIdA||UserIdA||K+
A ||tsexp)

CS keeps track of the association between UserIdA and LikirIdA, to prevent subsequent requests

from causing the production of unnecessary signatures. Only when LikirId’s validity is near to its

expiration (determined by tsexp) the CS must create a new LikirId.

When user registration procedure is successfully terminated, A can instantiate its own Likir

node just supplying the LikirIdA, its key pair and the CS’s public key, that we suppose to be

publicly available on the registration portal.

It is very important to notice that, once a user has obtained her LikirId, she does not need

to contact CS until her signed ID validity expires. If the CS fails, the user registration service

becomes unavailable but the network activities are not affected, because the users that previously

obtained their LikirId can join the overlay without querying any central service. Since the tsexp

can be chosen to last even many years, we can state that the CS is not a real single point of failure

of the system.

Of course, the CS infrastructure and the maintenance of the registration portal have a cost

that have to be sustained by some project promoter. Such infrastructural cost could be low enough

to be set up also by no-profit organizations like universities (realizing a single-server PKI and a

OpenId-compliant web service is relatively cheap). However, also commercial promoters could

be interested into supporting the project because of the potential revenues from advertisements.

Since Likir can be exploited also as a platform for the creation of a decentralized, privacy-aware

online social network, we believe that its potential attractiveness to consumers could be high. An

alternative way to finance the registration service cost could be to ask for a micropayment for each

new LikirId issued.

10.2.2 Node interaction protocol

To join the Likir network, a node must execute the Kademlia bootstrap procedure, namely per-

forming a lookup for its own NodeId starting querying an online bootstrap node. If the node is not

aware of any alive contact (e.g,. it is performing its first bootstrap), it can send a proper request

directly to the CS, which responds with a signed bootstrap list. The CS controls at least one

active Likir node which executes a periodical probing task (simply performing lookups for random

NodeIds) in order to learn of fresh contacts. However, it is important that every node keeps track

of a substantial number of previously known contacts to use as bootstrap nodes, to avoid the CS

to be flooded by bootstrap list requests.
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NodeId , N1A

NodeId , N2B

LikirId , Auth ,A AB RPC-REQ

NodeA

End session

LikirId , Auth ,B BA RPC-RES
Check

Check

I

II

III

IV

NodeB

End session

Figure 10.2: Likir node session between two peers. The four-ways interaction is shown as a sequence

diagram. The token exchanged are listed on the arrows.

A node A can successfully send a Kademlia RPC to a node B only if both A and B follow this

four way session.

I A→ B : NodeIdA, N1

II B → A : NodeIdB, N2

III A→ B : LikirIdA, AuthAB,rpc-req

IV B → A : LikirIdB, AuthBA,rpc-res

N1 and N2 are randomly generated nonces; rpc-req and rpc-res fields are respectively the

request and response RPC defined in Kademlia. Messages sent at steps I and II must be somehow

marked differently (e.g., distinct opcodes), to differentiate the request from the response.

AuthAB and AuthBA are two authentication tokens structured as follows:

AuthAB = EK−
A

(NodeIdB ||N2||H(rpc-req))

AuthBA = EK−
B

(NodeIdA||N1||H(rpc-res))

Figure 10.2 shows the session message exchange. Steps I and II just accomplish a preliminary nonce

exchange. Messages III and IV are thoroughly symmetric; the Kademlia rpc is sent with the

LikirId of the sender and with a signed authentication token. The Auth contains the addressee

NodeId (to avoid replay attacks), the previously received nonce (to assure the freshness of the

token) and the rpc hash (to protect rpc message from modifications). We observe that freshness of

authenticators can be granted also using timestamps instead of nonces thus avoiding the preliminary

message exchange. However this would require to assume at least a loosely synchronization of nodes’

clocks. Later, in Section 10.3, we show how this protocol assures authenticity of messages.

The rpcs exchanged during the session follows exactly the Kademlia rpcs specification, ex-

cept for the store rpc. In Likir, Kademlia store request message is enhanced to prevent the
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disownment of the insertion operation. It is structured as follows.

store rpc = k||content
content = Obj||Cred

Cred = EK−
A

(UserIdA||k||H(Obj)||ts||tsexp)

The store rpc embeds a content and its lookup key. The content is composed by the actual

object, which is application-specific, and by a signed credential Cred. Cred token includes all the

useful information on the published object: its ownership (UserIdA), its lookup key (k), its SHA-1

hash to grant its unalterability, the publish time (ts) and its validity period (tsexp).

Content store and retrieve operations on the DHT can easily built upon the defined primitives,

according to the Kademlia lookup protocol; we call those put and get, respectively.

10.2.3 Replacing RSA with IBS

Likir protocol exploits conventional RSA cryptography for token signatures, however, in agreement

with the identity-centered Likir design, an Identity Based Signature (IBS) approach could be

adopted as well.

IBS is a cryptographic technique that allows to compute a key pair whose public counterpart

could be obtained from an ASCII string. This cryptographic paradigm allows a user to verify a

signature of another user just knowing her user ID. The original IBS idea, based on the RSA func-

tion, was presented by Shamir [304], but it was subsequently revisited by Boneh and Franklyn [59]

and Cocks [84], who used bilinear pairings [212] for efficient Identity Based Cryptosystems (IBCs)

design. The presentation of IBS mathematical background goes beyond the goals of this work,

however we give a brief overview on how such paradigm works.

In IBS, when a user A wants to send a signed a message to a user B, the following steps must

be executed.

1. Setup: a trusted third party, the Private Key Generator (PKG), creates a pair of master

keys : a public key MK+ and a private counterpart MK−.

2. Extraction: A presents her identity (IdA) to the PKG, who produces a private key K−
A

from MK− and IdA; the new key is then sent to A through a secure channel.

3. Generation: using its private key K−
A , A creates a signature s on message m and sends

(m, s) to B.

4. Verification: B checks whether s is a genuine signature on m using IdA and MK+.

Likir can profitably take advantage of an IBS scheme. Since the UserId must be sent in every

communication session, the recipient of a request or response RPC always knows the sender’s

user name, so, using IBS, the Likir protocol overhead could be noticeably streamlined because the

information of the user public key in the LikirId could be omitted, and the UserId could be used

directly to verify tokens signatures.
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Nevertheless, IBS has two main drawbacks. The first concerns efficiency: the known IBS algo-

rithms [118] in current implementations (e.g., Stanford PBC Library (http://crypto.stanford.

edu/pbc)) are slower than RSA, both in signature and in verification phases. The second (the

most severe) is the key escrow property: the PKG is a genuine single point of failure, because if

an attacker takes possession of the private master key, she could generate the private keys related

to every UserId, thus violating the whole cryptosystem.

For these reasons, the current Likir implementation adopts a traditional public key scheme.

However, the scientific community is still very active in IBC research, therefore the possibility of

replacing RSA with IBS should be taken into account.

10.3 Security analysis

Likir contrasts the well known security threats against DHTs with its two main architectural

elements: the enhanced node interaction protocol and the CS service. Next we discuss more

formally how such features impact the security level of Likir protocol. To show the Likir protocol

effectiveness against poisoning, Sybil, MITM and storage attacks we must proof two properties.

Property 1. Node authentication. A node can communicate with others only providing its own

LikirId.

Proof. Suppose an attacker node X who is pretending to be A during a session with node B.

Clearly, since the node session protocol requires to provide a valid proof of the LikirId ownership

(the Auth token), X cannot simply reuse the intercepted A’s LikirId to spoof its identity, but a

valid couple of LikirId and Auth is needed.

X cannot produce a valid AuthAB because the AuthAB token must be signed with the private

counterpart of the RSA key included in the LikirIdA, that is unforgeable because it is signed by

the CS; so, the entity that is able to produce a valid AuthAB is A only. So, X has only two ways

to counterfeit its identity: to intercept and reply a valid AuthAB or to trick A into produce a valid

AuthAB.

In the first scenario, X must intercept an AuthAB that contains the same nonce received by

B (at session step I or II, depending if X is the session initiator or not); but if nonce’s size is big

enough and a good pseudo-random generator is used by Likir clients, the probability that X can

find such AuthAB is negligible.

In the second scenario, X must convince A to build an Auth containing the nonce received

by B. This can be easily achieved by establishing a proper session with A, but the token thus

obtained would be an AuthAX , and not an AuthAB. To get a proper AuthAB, X must pretend

to be B during the session with A, but this creates a cyclic dependency: to pretend to be A in a

session with B you must pretend to be B in a session with A.

Property 2. Message integrity. Every message flow alteration attempt causes the abort of the

session.
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Proof. If an attacker modifies the data at session steps I or II, the Auth tokens sent in the following

steps will be no more valid, because they include all the fields of the preliminary nonce exchange

messages. LikirIds and AuthIds are unalterable because they are signed; the same is for the RPC

message, because its cryptographic hash is included into the Auth. So, the message flow between

two nodes is unalterable by a third party.

Property 3. Content authenticity. Any node retrieving a resource from the DHT can determine

its original publisher, its original lookup key and whether the resource has been modified after the

publishing phase.

Proof. The only valid resources that can be considered during the retrieval phase are those bound

to a valid certificate, signed by the owner. The unforgeable certificate includes the original lookup

key, the hash of the original resource and the publisher’s UserId, which is sufficient to check the

authenticity of the resource.

From Property 1 follows straight that NodeId cannot be generated arbitrarily and cannot be

spoofed. In Kademlia a new routing table contact is added at the end of a communication session,

if there is enough room in the proper bucket. Since the overlay communication is authenticated,

the NodeId are randomly chosen and cannot be spoofed, and the position of the new contact in

the routing table is determined locally on the basis of the sender’s NodeId, an attacker cannot

insert an arbitrary contact in an arbitrary position of the routing table. Therefore, any routing

table poisoning based attack is unfeasible.

Property 1, combined with Kademlia design, prevents also lookup misdirections. The nodes

considered during the lookup process must be directly probed; since the node responsibility function

depends only on the NodeId and since the NodeIds cannot be spoofed, the initiator knows for

sure what key responsibility area she is addressing to. Of course, denial of service (e.g., a node

replies to a lookup query with valid contacts whose NodeIds are not close to the target) is always

possible, but this is an inherent problem of the distributed lookup mechanism. Nevertheless, the

Kademlia lookup procedure is pretty resistant to such attack because favors the retrieved contacts

that are nearest to the target. According to the Kadmelia protocol, at every lookup step, the α

nodes whose NodeIds are the closest to the target are probed. If, during the process, a honest node

is queried, the k contacts returned will be likely closer to the target than the contacts returned

by other non-collaborative nodes, so the next α nodes to be queried will be chosen from this set

(since, usually, α < k).

Protocol authentication and NodeId randomness limit also the sybil attack impact. To run

many different nodes, as many LikirIds are needed, but if the user subscription service provides

valid techniques to avoid the registration phase automation, the effort needed to produce many

sybils can be arbitrarily increased. For example, during user subscription phase, a credit card

number can be required. Different identities could be issued for the same user, but the CS can

limit the number of different LikirIds issued for the same credit card number, thus making very

expensive the hoard of a huge number of identities. Moreover, even if an attacker has many nodes
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under her control, she cannot position them in specific key space areas, because the NodeIds

randomness.

Property 1, together with Property 2, shows the protocol resistance to MITM; furthermore, the

bootstrap list provided by the CS for the first bootstrap is signed, thus partition attacks during

the join phase are avoided.

Finally, Property 3 grants the ability to discern polluted content from genuine entries. Com-

bined with Property 1, it allows to avoid any future overlay interaction with all the polluters

detected, thus preventing attackers to keep injecting bogus resources in the DHT. Further details

on the strategies of exclusion of the attackers from the network are given in Sections 10.5 and 11.4.2.

10.4 Performance evaluation

Compared to Kademlia, the Likir protocol introduces an overhead that affects both the number

and the size of messages exchanged between nodes. Besides, the cryptographic effort spent during

a node session due to the signature operations increases the computational load on every single

peer.

In order to quantitatively evaluate the performance decay due to additional messages, en-

larged message size and cryptographic overhead, we opted for a test in a real, large-scale dis-

tributed environment. We run small Likir and Kademlia overlay nets on PlanetLab network

(www.planet-lab.org), in order to compare the time effort needed for put and get primitives in

both protocols and to measure the average impact of cryptographic operations on the whole Likir

session time.

The reader should note that a scalability test is not needed here, for three reasons mainly. First,

we do not modify the Kademlia routing protocol neither its routing table management policy; thus,

the number of hops for a lookup operation in Likir is exactly the same as in Kademlia. Second, the

number of messages sent during a Likir session is incremented by a constant number, compared to

a Kademlia session; this implies that the number of messages per lookup still grows logarithmically

with the network size, like in Kademlia. Last, the cryptographic operations impact on the nodes

that perform RSA checks and signatures but clearly do not burden the network with any additional

traffic.

For these reasons, Likir has by design the same scalability properties that have been shown for

Kademlia. Of course, the time needed for a lookup operation is greater in Likir if compared to

Kademlia, so we want to quantify this gap in a real network environment. Prior to this, we present

also a static analysis on the message size overhead and on the cryptographic primitives cost.

10.4.1 Spatial and cryptographic overhead

The size of a Likir message is greater than the size of ordinary Kademlia RPC due to the addition

of LikirId, Auth and Cred tokens. In Table 10.1 the whole set of elements that composes these

tokens is shown, together with their size; furthermore, the specific composition of each signed token

is given, together with their total size. We suppose that 1024 RSA keys are used.
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Element Size LikirId Auth Cred

NodeId 20 • •
DHTkey 20 •
UserId 128 • •

K+ 128 •
Signature 128 • • •

Nonce 16 •
Hash 20 • •

ts 8 • ••
Total size: 412 184 312

Table 10.1: Cryptographic token size (bytes)

RPC Request Response

ping 596 596

find-node 596 596

find-value 596 596 + 312 · n

store 908 596

Table 10.2: Spatial overhead (bytes)

RPC Sender Receiver

ping gen + 2 · check gen + 2 · check

find-node gen + 2 · check gen + 2 · check

find-value gen + (n + 2) · check gen + 2 · check

store 2 · gen + 2 · check gen + 2 · check

Table 10.3: Cryptographic primitives used in each RPC

Once crypto token size is assessed, we can easily calculate the size overhead on each Kademlia

RPC. Every RPC contains at least a LikirId and and Auth, which form the message header. In

addition to this, the store RPC request contains also a Cred bound to the content to be stored,

and the find-value RPC response payload contains a Cred attached to every content returned

to the querier. Of course, the number of resources per find-value response is variable due to

the availability of objects bound to the requested key stored in the queried replica node, so the

overhead for such RPC can change; to seize this variability, we define n as a variable representing

the number of Cred per find-value response. Table 10.2 summarizes the given considerations,

showing the overhead for every RPC. It is worth noting that the additional header size is smaller

than 1KB in the worst case, and the find-value payload dimension overhead is linear with the

number of retrieved resources.

The node interaction protocol requires also that both sender and receiver generate and verify

signatures; for the sake of brevity, we refer to gen and check respectively for a signature generation

and a signature verification. Table 10.3 summarizes the number of cryptographic primitives to be

performed by a node during a whole session, for every RPC. We deliberately ignore the SHA-1

hashing operations due to the non-influential cost. The n additional checks reported to find-

value RPC client side represent the Cred verification of all retrieved content. The impact of such

primitives on the RPC session time is discussed in the next Section.
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Figure 10.3: CDF of get and put times in the PlanetLab experiment

Operation
Likir Kademlia

E μ 1
2

σ E μ 1
2

σ

get 2,291 1,366 2,930 1,276 659 2,402

put 3,877 2,408 4,123 1,844 1,091 2,626

Table 10.4: Likir session duration (milliseconds) for both put and get in the PlanetLab experiment

10.4.2 Network emulation

We built a Kademlia implementation simply by replacing the Likir node interaction protocol with

the classic Kademlia protocol on our Likir Java implementation; the Kademlia parameters k and

α we chose are respectively equal to 4 and 2.

We bootstrapped 250 overlay nodes on as many PlanetLab nodes; we used the support of a

centralized server for bootstrap lists distribution. Then, each Likir node executed 25 put and 25

get, randomly interleaved, on random keys. The sequence of called primitives followed a Poisson

process; the temporal distance between two events was determined by an exponential distributed

random variable. The same experiment was made for the Kademlia configuration.

We measured the whole execution time of each put and get. The cumulative distribution

function of these times is depicted in Figure 10.3. We observe that, in both plots, the relationship

between the two curves is different depending on the time range taken into account.

In a first interval, from 0 to the value highlighted with the arrow, the Kademlia curve assumes

values that are more than double than the Likir curve; in the second interval, up to infinity, the

curves get asymptotically closer. This happens because in short lookup procedures the cost of Likir

cryptographic operations assumes a non-negligible weight respect to the overall put/get time,

while in the second range the network delay prevails on the time spent in signatures generations

and checks. As expected, put requests are slower than get because they require an additional

hop to command the found index nodes to store the content. The mean lookup hop number is 2,

so the number of step required is 2 for the get and 3 for the put.

To give a more precise estimation on the overhead introduced by Likir we need some statistics

(presented in Table 10.4). We notice that the put and get mean and median time in Likir are
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roughly double respect to the same primitives executed with the Kademlia protocol. The standard

deviation assumes always high values because the huge network latency variability and the different

number of hops of the lookup processes. This is the result we expected, since in a Likir session

four messages must be exchanged, compared with the two messages of a Kademlia session. This

suggest that, on average case, the cryptographic overhead has a little impact on the overall time.

To give a more precise estimation of the impact of checks and signatures on the session time,

we measured the mean time for gen and check operations on a PlanetLab node. Since we know the

lookup hops mean, the average number n of retrieved resources in a get operation (we observed

n = 4) the number of primitives needed in put and get for each hop (Table 10.3), and the mean

time needed for cryptographic operations, an estimation of the mean time spent on the local node

for cryptographic primitives can be easily done. We calculated an overhead of about 172 ms for

get and 347 ms for put. These values are less then one tenth of the total operation time, and,

however, they even do not impact in full on the total put and get time because of the parallel

nature of the lookup process.

In conclusion, the network emulation results shows that the predominant Likir overhead is

given by the additional message exchange, that necessarily doubles, on average, the basic DHT

operations execution time.

10.5 Likir API

The Likir’s interface to the application offers a simple and essential set of primitives. Since in this

Chapter we focus on the security of the overlay layer, for the sake of a smooth presentation, here

we report a restricted Likir API that does not include some parameters that enables access control

policies over resources stored on the DHT. We will discuss the complete API (see Table 11.2)

contextually to the additional privacy services presented in Chapter 11.

In the following, we denote the node N of a user userId as NuserId and we suppose that key

is an identifier of the keyspace.

1. bootstrap(). It joins the local node to an existing Likir network by contacting previously

known peers as bootstrap nodes. If no peer is known, send a proper request to the CS to

gain a fresh bootstrap list

2. put(key, obj, type, ttl). It is the basic insertion primitive. It looks up the DHT nodes

responsible for storing objects marked with key and puts the binding between key and obj

in their storages. type is a string denoting the application-specific type of the object and ttl

determines the expiration time of the content.

3. get(key, type, userId, recent). It queries the DHT for resources marked with key. Only

objects marked with a certain type, or belonging to a user identified by userId could be

retrieved. Please note that even if an identity-based resource filtering could be implemented

also in classical DHT by attaching proper identity tags to published items, in Likir the

ownership of resources is verifiable in a secure way thanks to certificates. The recent boolean
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parameter allows to retrieve only the last published version of the objects. This is useful

since a common strategy to release an update of a content on a DHT is to publish a new

version of the object with same key and type.

4. blacklist(userId). It adds the specified user to a local blacklist. Every new incoming

message from userId will be discarded; this is possible because overlay interactions are au-

thenticated.

In the following, we refer to put and get also to denote the messages (RPCs) originated by

the corresponding API call.

Very sharp resource retrieval can be made through the index side filtering facility. If all get

parameters are set, at most one resource is returned (i.e., the last resource inserted by the specified

user, under the specified key and type). Obviously, identity-based resource filtering could be

achieved simply tagging the stored resource with a label that specifies the owner identifier. However,

such method is vulnerable to storage poisoning attacks, therefore it cannot grant the resource

ownership. On the contrary, Likir protocol assures verifiability through certificates.

A Java implementation of Likir is available online (likir.di.unito.it). It follows faithfully

the Kademlia specification except for the node interaction protocol, for the addition of a nested-map

data structure which implements the content storage and for the management of the blacklist.

10.5.1 Applications interaction and integration

In classical DHT-based applications, like file-sharing (e.g., eMule), despite the preliminary index-

side filtering that storage nodes perform based on the keywords specified in the search query, the

content retrieval process usually returns a big quantity of results that often contains several almost-

equivalent versions of the same resource. This is perceived as an acceptable output by the user,

who simply selects the resource that best fits her needs among the returned set in order to start

the download.

The same situation leads to a completely different scenario for identity-based applications that

might be used in OSNs. In this case users often search for specific resources that belong to people

they know yet (their “friends” or “contacts”). For this reason, they expect to receive a very precise

response to their queries; for example, a search for the last wall post on my friend’s blog is not

supposed to return the whole set of posts of that person or the last wall updates of the whole list

of the friends of mine.

Instead, a very sharp resource retrieval can be made with Likir thanks to its filtering facilities.

As pointed out before, if all the filtering parameters are set in get, at most one resource is returned.

This possibility allows to manage the access to frequently updated information (e.g., user status

modification). Two relevant, unique aspects characterize this kind of filtering. First, the identity-

based filtering is performed in a fully verifiable way thanks to certificates paired to the resources.

Second, the whole filtering is made by index nodes, thus relieving the local application from any

filtering responsibility.

134



10.5. Likir API

Algorithm 3: LiCal events management

Node n = new Node (UserIdA)1

n.bootstrap ()2

Object CalendarA = createUsrEvents (...)3

String weekID = getCurrentWeekID ()4

Int replicas = put (UserIdA|| weekID, CalendarA, “Cal”, defaultTS)5

List <Object > res = get (UserIdB|| weekID, “Cal”, UserIdB, true)6

It is worth noticing that widgets are not forced to communicate exclusively through the DHT

and can establish direct connections if needed. In this case, the distributed storage can be used for

preliminary Diffie-Hellman exchange in order to establish a secure out-of-band connection. Since

the key agreement protocol is performed on a fully authenticated layer, the new secure channel

will be also authenticated as well as encrypted.

Identity-based resource retrieval has a very good implication also on integration between dif-

ferent widgets. Since identity is managed at overlay level, all the data published by the same node

are marked with the same user identity, regardless of the nature of the widget that generated the

content. Furthermore, suppose that widgets publish their API, describing the internal structure

of the items they manage together with the lookup keys and types associated to them (this is a

realistic assumption given the fact that publishing an application API is a practice that is already

adopted by the vast majority of Web 2.0 services). Doing so, integration becomes easy, because

just by the invocation of a simple method every widget can gather and aggregate content from

other (possibly different) widgets owned by the known social contacts.

To give a practical demonstration on how Likir API allows a quick development of applications

and their integration on an identity basis we consider two simple demonstrative applications.

First, we consider LiCal (Likir Calendar), a client that allows a user to publish her commit-

ments and to consult the public events of her friends. Algorithm 3 shows that few code lines must

be executed to startup a node (lines 1,2), publish user A’s weekly arranged events (lines 3–5) and

to consult her friend B’s public events (line 6). We omit details about the event structure and we

suppose to deal with a time interval of one week, even if of course different time granularities can

be chosen.

Quite differently to DHT-based file sharing clients (e.g. eMule), when the calendar client queries

the DHT it is not interested in receiving a huge amount of results. If the weekly events of a known

friend are looked up, only a specific entry, inserted by a definite identity is wanted. Moreover, only

the last calendar update is sought. Setting all the get filtering parameters each index node return

only one result (the most recent one), so the DHT data retrieval can be realized with an accuracy

that is uncommon for classic DHT services and the application is relieved from any filtering task.

Even if quite embryonic, LiCal represents an example of a straightforward identity-based appli-

cation. It shows how, in principle, synchronization problems afflicting ordinary calendar manager

systems can be solved using a reliable DHT approach. In fact, a LiCal client can be interfaced

with a commonly used calendar client (e.g., Apple iCal, Microsoft Eudora), in order to access our
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Algorithm 4: LiCha bootstrap

Object OptionsA = get (UserIdA||“options”, “LiCha”, UserIdA, true)1

Int replicas = put (UserIdA||“contact”, contact, “LiCha”, defaultTS)2

Object friend3

for contactk in options.buddylist do4

friend = get (UserIdK||“contact”, “LiCha”, UserIdK, true)5

friendEvents = get (UserIdK|| weekID, “Cal”, UserIdK , true)6

data from different machines without a centralized provider (e.g., Google, Plaxo).

As a second demonstrative example, we introduce LiCha (Likir Chat) that is a more mature

social networking application we developed (likir.di.unito.it/applications) using the Likir

API. LiCha is an instant messaging client whose architecture is fully decentralized. The conven-

tional central server that, in classic chat clients, retains all user information is replaced with the

DHT.

Two kind of resources are managed: the user options, containing the buddylist and other local

user preferences, and the client contact, that is trivially a TCP socket address of the chat service

and a status specification (offline/online). Algorithm 4 shows how local options are retrieved from

the DHT (line 1) and how the client network contact is published (line 2). Contacts are then

retrieved (lines 3–5). Finally, the LiCha client pings each online friend to inform them of its status.

When LiCha clients exchange contacts each others, they can simply start chat sessions without

involving the Likir layer.

LiCal and LiCha can be profitably integrated. For example, the LiCha buddylist can be enriched

displaying the daily events of those users that are also LiCal users. Such feature can be achieved

with a single code line (line 6), supposing that the rules to build the correct LiCal lookup key

are known. This basic example shows how any cross-application integration can be implemented

in Likir; knowing the UserId of a friend and the correct lookup keys production rules, a generic

module can easily retrieve public information related to any other Likir application used by that

friend.

The extreme openness of this scheme, where every application can potentially cooperate with

any other module, enables an implementation of a OSN free from the so-called information silos

problem. Paradoxically, in fact, even if the user information leaks from centralized OSNs, trampling

on the user privacy rights, it is often difficult to share data between different OSNs or to reuse social

applications in a profitable way, due to the heterogeneity of the platforms or to narrow content

management policies [355]. Some centralized solutions, like the OpenId-compliant Global Social

Platform [236], have been proposed to overcome this problem, but without receiving sufficient

consensus so far. Instead, full decentralization and modularity allow to compose any kind of SNS

as an arbitrary combination of cooperating applications and even many different OSNs can be

linked together in the same way.

In the next Chapter we provide the details on how this idea is realized in practice.
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11.1 Building P2P social applications

The high practical relevance of the privacy issues in OSNs has recently strongly attracted the

interest of the research community and gave origin to a line of research focused on the realization of

decentralized privacy-preserving frameworks suitable for SNSs. As well as to deal with information

confidentiality and access control, one of the challenges in this context is to provide an efficient

support for all those services that are easily provided by classic server-based architectures (e.g.,

data availability) but that are not trivial to be implement on a distributed layer.

Some research about the implementation of social application on P2P layers has been made

even before the viral spreading of OSNs [211], but the idea of using a P2P framework to solve

ONSs privacy issues is relatively recent [67, 26].

The PeerSon [68] (www.peerson.net) system is one of the first P2P design for a OSN. The

goal of user information privacy is achieved through symmetric encryption of resources stored in

a DHT. The P2P network serves mainly as a lookup service: once the two endpoints’ contacts

have been retrieved from the DHT, direct connections are established. When a friend is offline,

update notifications are managed asynchronously through the DHT using a pull approach. Full de-

centralization and encryption prevent, respectively, the “Big Brother” effect and network crawling

activities aimed to data collection. However, advanced access control features like highly dynamic

group membership are not taken into account.

The Safebook [93] (www.safebook.us) P2P OSN focuses on resource availability as well as

content privacy and end-to-end communications confidentiality. It combines a DHT with another

P2P network called Matryoshka. Peers in the Matryoshka are connected by trust bonds: user items

are stored at highly trusted neighbors. The DHT is used to store the contacts of the Matryoshka

members and encryption is used to preserve content privacy. The Safebook design provides also

the presence of a trusted, offline identification service to avoid Sybil attacks.
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A similar approach is adopted by Narendula et al. [240]. Here, the problem of content availabil-

ity on fully decentralized social networks is faced with a P2P storage model based on the concept

of trust. Items replicas are stored at a set of nodes trusted by the content owner, called Trusted

Proxy Set (TPS). The initial selection of TPS nodes and their churn dynamics are handled accord-

ingly to the nodes’ geographical location, to place the data as close as possible to nodes that often

access the content. References to TPS nodes are published on a DHT layer. Data on the DHT are

indexed with a k-anonymization technique in order to grant both owner and content privacy.

Graffi et al. [134] propose a DHT-based storage with access control capabilities for social shared

resources. Encrypted items are published together with several copies of the secret key; each copy is

encrypted with the key of a users who have access permission for that resource. A drawback of this

solution is that when the access control list of a specific content must be changed, a new updated

item has to be built and stored again. User registration phase and secure P2P communications are

inspected as well.

Participants discovery in fully decentralized OSN is discussed by Abbas et al. [1]. Authors define

a gossip protocol, implemented on the Tribler network [264], for user discovery. When the target

friend is unavailable and the search initiator goes offline, a set of online helper peers is delegated

to perform a periodic probing activity aimed at the retrieval of the searched peer’s contact.

Vis-a-Vis [302] is a scheme for decentralized OSN that aims to high content availability. Each

use stores her personal data in a Virtual Individual Server (VIS) that is kept on the local user

machine and it is replicated on a cloud infrastructure. When the desktop is offline, the cloud

service is activated and the availability is not interrupted. Further replicas of the resources are

hosted among the VISes of the social contacts, that are connected together through a P2P overlay

network. However, the rental cost of the cloud service makes this proposal not very practical.

All these solutions focus mainly on the problem of access control or on single social services like

contacts discovery. A real distributed OSN needs a wider design that considers security, privacy

and services as a whole, providing a complete and coherent solution without the imposition of any

constraint or assumption on the nature of applications or on the structure of the social network.

In this context, Likir is an ideal platform for SNSs mainly for two reasons. First, the security

level offered by its protocol grants a very high robustness to the modules above, which is very

important for this kind of applications. Second, Likir identity support better matches the SNS

requirements rather than any other DHT. In fact, since services in OSNs are strictly coupled with

user identity, a low-level management of user identifiers is useful for an identity-based integration

of data from different applications.

In the following, we extend the Likir API and, on the top of that, we define a core set of

services that add a privacy preserving layer over the secure Likir substrate and satisfy several

critical requirements that any OSN should provide to its clients. Finally, we show how basic

services typical of centralized OSNs can be easily and efficiently realized in our framework.
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11.2 OSN requirements

A SNS can be defined, in its most general meaning, as a customizable suite of inter-operable,

identity-based applications. In this context, every user composes its own combination of applicative

modules, or widgets, into a customized application suite, where every widget can share data with

other possibly heterogeneous, widgets running locally or remotely. Note that this is a very general

model because no assumption is made about the nature of widgets or the structure of exchanged

data, and both synchronous and asynchronous communications are allowed. Given this general

definition, we inspect a set of desired privacy, security, and service requirements that are common

to a very wide range of social widgets. Such requirements are at the basis of the architectural

design of our distributed social framework.

11.2.1 Privacy requirements

Confidentiality. Any kind of content created by any widget should be accessible only to those

authorized to have access. This property has a wide meaning. First, it implies the definition of

access control policies that allow a flexible and fine-grained specification of grants. Furthermore,

in a OSN context, fully-customizable confidentiality is the most effective patch to stop information

leakage.

Ownership privacy. The creator or the owner of a content should be enabled to not disclose the

ownership information to other users. The relational tie between a user and a content of a certain

type could be in fact a very valuable information, whose disclosure could be potentially detrimental

to the user privacy.

Social interactions privacy. Social ties and the data flowing on them can tell much information

on the behavior of individuals and on the dynamics of groups in a networked environment [120].

For this reason, a user should be able to arbitrarily hide the interaction between local and remote

widgets.

Activity privacy. The type and number of widgets that compose a user application suite must be

considered sensitive user information, because they partly reveal the nature of user activity on the

network. Flexible privacy settings should be provided to tune the exposure of the application suite

composition to the public.

11.2.2 Security requirements

Channel authentication. Communication channels should be two-way authenticated, so that both

the initiator and the recipient can check the identity of the partner. Unauthenticated channels

are potentially vulnerable to social engineering attacks. Phishing aimed to sensitive data collec-

tion [159], for example, is mainly based on persuading the target user that the attacker is a known

and trusted entity. Strong authentication, combined with an educated behavior of users, greatly

reduces also the risk of identity theft, that is one of the main issues in today’s Web-based OSNs [52].

Data integrity and authenticity. Information that is published by widgets and exchanged with

remote entities must not be modifiable by any non-allowed user. The genuineness of content
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should also be assured through ownership verifiability, to avoid making wrong associations between

a content and a user that is not its owner.

Non-repudiation. Users are fully responsible of their actions on the network. In many distributed

services, the agreement on social or micro-economical transactions passes through messages that

are exchanged by the parties involved. The property of non-repudiation of the content ownership

lays the foundations for traceability of user actions and is therefore a deterrent to frauds, to the

spreading of false information on the network, and to spamming activities.

11.2.3 Service requirements

Content availability. Access to data should not be conditioned by the connection status of the

owner. Even when the owner is offline, users with a proper permission should be able to access the

data.

Flexible communications. End-to-end communication can be synchronous or asynchronous. A

widget should be able to listen for live notifications and to recover messages that were sent during

its offline time.

Easy integration. The mash up, namely the composition of existing building-block services into

more complex applications, is at the basis of the Web 2.0 paradigm. For this reason, the interop-

erability between social applications should be facilitated as much as possible.

Search facilities. Users are interested in acquiring new contacts and in exploring the resources pub-

lished in the OSN. Proper search engines should allow to find the desired items, but in compliance

with privacy requirements stated above, if possible.

Reputation management. The collaborative environment of OSNs can often rely on reputation and

trust notions to balance social interactions or negotiations. For this reason, widgets should be pro-

vided with common tools to quantitatively express their perceived reputation of other participants

and to convey their reputation beliefs to remote widgets.

11.2.4 The wall, the fence, the garden

Privacy, security, and service requirements (summarized in Table 11.1) lay on three orthogonal

axes; an ideal OSN platform should preferably meet at the same time all the requirements that

are listed in the previous sections, thus maximizing the level of fulfillment for each of the three

properties. However, it is clear that such peak cannot be reached due to the partial conflict between

some requirements that lays on different axes. For instance, security properties like traceability

and authentication may often conflict with ownership and social interaction privacy, which can in

turn affect the effectiveness of search facilities or the significance of a reputation system.

To effectively depict this trade-off we can use a walled garden metaphor. Users in OSNs are

like gardeners who work for their plants and flowers to thrive. As long as the garden is open to

the external environment it receives the benefit of sun and rain and new seeds can root on its

ground, carried by the wind or by other gardeners visiting. But, without any shelter, the garden

also suffers from the bad weather and can fall prey to vandals and thieves. Gardeners can rise
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Privacy Security Services

(Wall) (Fence) (Garden)

Confidentiality Channel authentication Content availability

Ownership privacy Integrity and authenticity Flexible communications

Interaction privacy Non-repudiation Easy integration

Activity privacy Search facilities

Reputation management

Table 11.1: Summary of the social network service requirements, partitioned in the three main

categories.

fences to turn away malicious visitors and walls to protect the garden from the weather, but high

fences (security policies) prevent good visitors to easily access to the garden (services and user

resources) and thick walls (privacy settings) can deprive the flowers of light and water; this is the

gardener’s dilemma.

Next we describe LotusNet, a framework for a privacy-aware implementation of SNSs. LotusNet

is designed to reach a good trade-off between the three aspects. It is based on secure interaction

protocols and enables a set of powerful services, but its architecture is not bound to a single

system-defined privacy setting. On the contrary, LoutsNet provides the users with the ability to

tune their own privacy configuration with fine granularity over a range of possible privacy policies,

thus giving wide freedom to the user to open doors and windows in their own privacy wall.

11.3 Architecture

In LotusNet, widgets are layered on the Likir P2P network and can interact by exchanging objects

through the DHT. The goal of LotusNet is to build higher-level functions upon Likir and realize

the requirement-driven OSN model defined in Section 11.2.

The API offered by the Likir middleware represents the first step toward the goal, however we

need to build higher-level functions upon it. The resulting idea is depicted in Figure 11.1: a custom

suite of widgets relying on a layer of social network services. In our design such services are an

extension of the Likir primitives and offer higher-level functionalities useful for OSNs. Such services

are directly based on the API of the overlay node, which encapsulates the identity management

and authentication features. The DHT cloud is the primary medium for P2P communications.

In the following, we inspect the three main aspects that realize this idea. First we present

a general framework for widgets interaction and integration, then we discuss in detail the access

control facilities of our architecture and finally we define a set of service modules that compose, to-

gether with the Likir interface, the complete API for widgets. During the dissertation, we highlight

the architectural aspects that satisfy the requirements we defined in Section 11.2. Contextually

to each service described, we will also define the extended and final version of the Likir API,
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Figure 11.2: Architectural scheme of the LotusNet platform

with new operations and parameters explicitly supporting the access control at overlay level and

demultiplexing services for inter-widget communications.

The detailed architecture of a LotusNet client is depicted in Figure 11.2; every element of this

scheme will be expounded in the following.

11.3.1 Building the social graph: access control and contact discovery

In Section 10.5.1 we outlined a scenario of maximum interoperability, where every application can

potentially interact with any other and access the whole information stored in the DHT. Even if this

flexibility grants a very high level of customizability of the OSN structure, it totally lacks privacy.

In order to preserve privacy, the shared information which is potentially available to everyone must

be channeled into the communication pipes that participants create by establishing social ties. In

other words, we must model the social acquaintance graph that links together OSN users and then

we must limit the resource sharing only to the pairs of linked users. Furthermore, users should be
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able to define with a fine granularity the portion of the personal information that is shared with

arbitrarily-defined groups of neighbors.

Cryptographic access control techniques suitable for groups with dynamic membership has been

extensively studied in the literature [116, 117]. In particular, solutions based on key regression

schemes manage the eviction of a group member by redistributing to remaining members a new

key that is used to encrypt new items but that can be used as well to get the previous group key.

Under the assumption that a former member can have access to all the data published before her

exclusion from the group, a lazy revocation [31] policy can be adopted: an old item is re-encrypted

with the new key only when an authorized member modifies it, thus avoiding the re-encryption of

all the items at every membership change.

Even if this strategy may be suitable in UNIX-like shared file systems, it is too less flexible in a

OSN context, for several reasons. First, since the vast majority of items (e.g., posts, photos) which

are shared in social network are written once by their owner and never modified, lazy revocation

is often not applicable. Furthermore, even if, in principle, users formerly granted to access the

content could have saved it locally, we argue that preventing a user whose grant is revoked to

download the old data would be even a better guarantee for privacy that would be appreciated by

many users. Finally, the most important point is that the mentioned key management techniques

are not suitable for overlapping groups, commonly used in OSNs: if an item is accessible by several

different groups it must be encrypted several times, thus greatly increasing the complexity of keys

and groups management.

To provide a more flexible access control we recur to signed grants to specify permissions.

Grants are associated with social contacts and not with shared resources, so their number does not

grow with the quantity of resources owned or with the number of rules in the privacy policy. A

grant certificate, produced by a user A for a user B is composed as follows:

GrantA(B) = {A||B||regExp||expireT ime}SigA (11.1)

It contains the identities of the owner and of the granted user, an expiration time and a regular

expression that is a compressed list of all the allowed content types. The token is signed by the

issuer.

In practice, the use of grants is made in the Likir API. When user A wants to publish any

resource, it calls the Likir put with an additional binary parameter public that indicates whether

the published content is accessible by anyone or just by granted users:

put(key, obj, type, public, ttl). (11.2)

On the other hand, when user B wants to access a protected resource submitted from A, it

adds the grant she received from A to the parameters of the get primitive:

get(key, type, userId, recent,GrantA(B), sizeonly). (11.3)

We also add the sizeonly option. If it is set, the response message will include only a list of pairs

(t, c), where t is a content type stored at key and c is the counter of the number of public objects
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of type t stored at the index node under key. This may be useful in some applications where the

number of people submitting some content is more relevant than the content itself (we show an

example in Section 12.3).

Of course, grant certificates can be used if the entities that have the duty to store the user

data are able to verify the validity of the grant. The key idea that allow grants in our setting

is the use of authenticated channels for the overlay communications. In fact, when an overlay

index-node receives a request for a protected resource, it can ask for a valid grant before returning

it, being able to securely verify if the identity of the querying peer is the same identity specified

inside the grant. Note that the index-node can check the signature validity because, during the

content insertion phase, the publisher’s LikirId which contains her public key is sent along with

the object. Finally, the regular expression allows to specify permissions for an arbitrary subset of

resource types.

Revocation of grants is implemented through expiration. The problem of choosing a proper life

span to balance best the grant renewal cost with the maximum period during which a user with a

revoked permission can still access to a protected resource has not a single optimal solution. In a

fully-customizable framework, such duration should be chosen by the applications or even by the

user itself, depending on the trust she places on the granted friends. Anyway, since the number of

grant is limited by the number of contacts (that is reasonably small in the vast majority of cases),

we suggest that short durations (e.g., one week) can be used.

Grants are very flexible and powerful, but they do not hide published content from the eyes of

the index-nodes, that can mine their local storages as they wish, even without a proper certificate.

To shelter user information from this potential privacy breach, content are encrypted. Note that in

this case encryption does not imply a complex key management system. In fact, each participant

can use a single encryption key to protect the full set of its data; the key is shared with the known

contacts and it does not need to be replaced when the access control policies change.

An access control mechanism based on grants associated to users, instead on permissions at-

tached to resources, draws implicitly the edges of the social network. With grants, the social

network topology should not be explicitly mapped anywhere: the existence of a GrantAB means

that a social tie has been established between A and B. Of course, the nature of ties can differ

depending on the set of capabilities that the corresponding grant specifies. Besides, the asymmet-

rical structure of grants allows to build both directed and undirected social networks, depending

on whether grants are reciprocated or not.

Implementation

In LotusNet, the Discretionary Access Control Module (DACM) is responsible for the management

of the individual social connections and to set privacy policies by assigning grants. The DACM

is layered directly on the Likir node and has a very simple behavior. At its startup, it creates a

daemon listening on a TCP port and puts its address on the DHT, using a lookup key extracted

from the user identifier. Then it enters in a passive state, waiting for incoming TCP connections or
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for calls performed by local widgets. In particular, DACM’s API to applications is the following:

contact(userId) (11.4)

grant(userId, regExp) (11.5)

getGrant(userId) (11.6)

getSelfGrant() (11.7)

When a widget W , in the user A’s application suite, wants to find a new friend B, it calls

contact(B)1. This method triggers a DHT lookup for B’s DACM contact. If the contact is

found, it means that B is on LotusNet. However, at this stage, nothing else is known about B, not

even the widgets she has installed on its client. In order to determine if B is using widget W , the

grant(B,^{W\.}) function is called2. Doing so, a direct message containing a grant certificate

for B is sent to B’s DACM; this is interpreted by B as a new incoming friendship request. If the

request is accepted, B reciprocates it by sending a proper grant for A. An analogous interaction

occurs between widgets for the periodical renewal of grants.

For the sake of brevity, here we omit many less relevant implementation details. For example,

here A directly sends a grant to ask for B’s friendship, but more complex interactions could be

implemented as well. For example, A may want to release the grant only if it will be reciprocated,

or even more complex transactions can occur. A very general framework for resources negotiations

which can be possibly applied to this case is described in [312].

The call of grant(userId,regExp) is used also to update the regular expression for a formerly

granted user, in order to extend or reduce its permissions; in this case, a new signed grant is

produced to replace the old one. The DACM stores in a local database both received and released

grants. Methods getGrant(userId) and getSelfGrant() are used, respectively, to get the

grant received by a social contact from a local database and to obtain a self-signed grant to access

to the information stored by the local widget on the DHT.

Just for completeness, we note that this API can be profitably extended to manage grant

distribution also to local widgets. If every widget is supplied with a grant that contains only the

minimal permissions that allow its correct activity, trojan horse widgets are prevented to fetch

private information stored on the DHT by other widgets in the same application suite and spread

it publicly on the network without any permission.

11.3.2 Tuning the privacy level: lift up the walls

To show to what extent the privacy requirements listed in Section 11.2.1 are satisfied by the

LotusNet design, we discuss two attack scenarios whose main actors are LotusNet users with two

different roles.
1We suppose that B’s identifier is known. A specific indexing application for user searching could be built,

however this implies the disclosure of some personal information that are revealed for indexing purposes (e.g.,

hometown, schools attended, etc.)
2We suppose that content types begin with the main widget’s name, that we assume to be unique, followed by a

dot. The regular expression is written in POSIX notation, and it means “any string beginning with W.”
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In the first scenario, the attacker is a generic node that aims to disclose the private information

of a target user, from which she has not received any grant. The attacker can query the index

nodes that are supposed to store the target’s data, trying to find a breach in the access control

mechanism. Supposing that index nodes behave correctly and properly follow access control pro-

tocol, confidentiality trivially holds because peers without a proper grant cannot access protected

resources. Furthermore, supposing that index nodes return a generic “content unavailable” mes-

sage in response to unauthorized requests for protected resources, an attacker cannot infer the

type nor the index key of the content stored by the target user; so, owner and activity privacy are

satisfied. Last, social interaction privacy is not breakable because the attacker cannot learn what

is the set of users that are granted to access the private content.

The attacker can also try to infer some information on the activity of the target user by analyzing

the incoming overlay network traffic. However, the messages that the attacker can possibly receive

from the target or from peers interested in retrieving the victim’s data are just Likir lookup requests.

Lookup messages are used to locate the index nodes for a given item and their payload contains

only the DHT lookup key. This little information is not enough to learn if the lookup requests are

aimed to store or to retrieve a content, what kind of content is looked up and who is the owner of

that content.

In the latter scenario, the attacker is an index node and aims to disclose private information from

the content she stores and the incoming requests she receives. Since stored information is encrypted,

confidentiality holds, but the other privacy requirements cannot be fully satisfied because they are

in conflict with the authenticated P2P communication that the Likir layer provides. In fact, the

index node knows the identity of the owner of every stored item because of signed certificates

(owner privacy), it is aware of the item types because they are specified by the publisher in the

put primitive for indexing purposes (activity privacy), and she can log all the identities of the

peers who make a get request for a certain item, thus inferring social relations between the owner

of the requested content and every querier of that content (social interactions privacy).

The second scenario confirms the intuition of conflicting OSN requirements presented in Sec-

tion 11.2.4: full privacy is not reachable if all the security and service requirements are maintained.

However, even in this case, LotusNet grants a good level of privacy. In fact, since the location on

the overlay is determined by the Kademlia identifier inside the LikirId, a node cannot arbitrarily

position itself on the keyspace because the identifier is generated randomly by the trusted CS.

Being placed in a random overlay position, a malicious index node cannot intercept the data be-

longing to a specific target user. Moreover, since different widgets presumably use several different

lookup keys to remotely store their data, user data are randomly scattered on the DHT; therefore,

recovering the full information about a user is practically unfeasible for an attacker. In a nut-

shell, the information held by a index node is little and fragmentary, therefore the risk of privacy

infringement is very low and we believe that it can be considered acceptable in most of the cases.

However, to reduce further the risk of privacy violation for information that is particularly

sensitive, LotusNet allows the tuning of the privacy level required by the widgets. This can be

done simply storing the sensitive data among a set of trusted contacts specified by the user [93].
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Figure 11.3: Trade off between security, privacy and services in OSNs depicted as a walled lotus

garden. The Position of lotus flowers respect to the wall and the fence represent respectively the

privacy and security levels, while the height of the flowers represent the potential number (and

quality) of service that the user can benefit by sharing her data with others.

This approach is easy to follow because in Likir it is easy to get the overlay ID from a known

user ID because they are permanently tied together by the signed LikirId. Practically, a trivial

customization of the Likir put and get primitives (put+ and get+ in the following) which allow

to explicitly specify the list of index nodes that are required to store/return the data is enough to

implement this strategy. Of course, in order to not disclose the sensitive information to untrusted

peers, index nodes must not apply the usual content dissemination policies for data published with

this customized put operation.

Exploiting this opportunity increases the privacy level while preserving all the security proper-

ties of the Likir network, but at the cost of decreasing the quality of service. First, trusted nodes

may not be enough in number to grant a good redundancy of the data and if uptime distribu-

tions are not very heterogeneous (which is likely if their geographical locations are very close),

the availability of data is partly compromised. Second, since trusted nodes will be located in dif-

ferent regions of the overlay keyspace, the put+ operation should perform a different lookup for

every selected index node, thus slowing down the data save. Symmetrically, the get+ operation

executed by data consumers should probably perform several lookups to locate at least one online

trusted index node, thus slowing down the search procedure. However, it is worth notice that these

drawbacks can be reasonably limited if the set of trusted peers is selected among the users who are

potential consumers of the data and if this maximum privacy policy is applied only for resources

with critical privacy requirements.

Figure 11.3 depicts the trade-off between security, privacy and service requirements recurring to

the metaphor of the garden recalled in Section 11.2.4; we symbolically map different frameworks for

OSN development on the three-dimensional space, in order to compare them. Specifically, OSNs

based on classic DHTs can satisfy few privacy and security requirements and offer a minimal set of
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services; the security level is considerably higher if the Likir DHT is used. LoutsNet benefits from

the Likir security property and offers the opportunity to arbitrarily increase the privacy level from

a minimum threshold (all published items are public) to a level where everything is protected by

access control policies and content is stored at trusted peers; as stated before, as privacy level is

increased, the quality of service (in terms of both efficiency of basic insertion/retrieval operation

and of remote widgets that could benefit from that hidden information) decreases. In any case,

privacy in LotusNet is always higher if compared to centralized social networks, since centralized

SNS providers hold the complete information about every user in the network.

11.4 Services: grow the garden

A OSN does not live of privacy alone. The success of a SNS platform is mainly determined by

the services it offers to users and applications. From our point of view, ongoing projects on P2P

OSNs have not yet focused enough on the realization of complex social tools. In this Section we

give a contribution in this direction by defining three core services of the LotusNet architecture:

notifications, reputation management and high-level content indexing. The defined services extend

the basic Likir API with operations 3-11, thus offering a high-level set of social primitives at the

basis of the construction of complex SNSs. The set of methods offered by the LotusNet interface

is summarized in Table 11.2.

11.4.1 Notifications

Social widgets can adopt synchronous and/or asynchronous protocols to communicate, depending

on the application logic. If synchronous interaction between peers is needed (e.g., instant messaging

application), it is reasonable to think that the two endpoints establish a direct connection to

manage the data stream flowing in both directions. Conversely, asynchronous communications

(i.e., notifications) fit better applications that are quiescent most of the time (e.g., wall posting

service in OSNs); in this case, usually an always-online entity stores the message and delivers it as

soon as the target user is online.

When using an overlay for message exchange, notifications can be stored on the DHT, but the

pull-based approach at the basis of any DHT would force applications to continuously probe the

network in search of new incoming messages. Several publish-subscribe schemes for DHTs aimed at

equipping the overlay network layer with a push-based notification service has been proposed in the

past [49]. Solutions proposed in literature are very articulated and include features like multicast

communication, dynamic groups management, continuous complex queries, and so on [287, 164].

Here we use a simpler and lightweight unicast notification service that is suitable for end-to-end

notifications between social widgets. The idea is rooted in the extreme precision that DHT routing

algorithms have in locating the overlay node whose identifier is the nearest to the lookup key,

even in presence of a high churn rate. In particular, it has been shown that the Kademlia lookup

procedure is characterized by a very high precision [80]: regardless of the distance between the
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querier identifier and the target key, the set of replica nodes located by the lookup contains the

peer whose identifier is the nearest to the target key with probability near to 1.

Since in Likir every peer has a fixed position on the keyspace, every user can determine the

exact overlay position of any of its friends. Notifications can thus be easily implemented by sending

put massages with a lookup key which is equal to the Kademlia identifier of the user to be

notified. Notification messages can be easily distinguished from all the other overlay message

received because they are marked with a key which is exactly equal to the local node ID; since the

Kademlia keyspace has a cardinality of 2160, it is quite unlikely that random messages are mistaken

for proper notifications.

We extend the Likir API with the operation register(handle), that simply specifies an ap-

plication handle to which all the notification messages are passed. Furthermore, we introduce a

Notification Module (NM) as a middleware between DHT notifications and applications. The

NM registers on the Likir node as notification handler and offers two main methods to the widgets

above:

register(applicationName) (11.8)

notify(userId, applicationName, obj) (11.9)

Using register, widgets are notified with all the incoming messages marked by the specified

application type, while the notify operation sends an arbitrary notification object, marked with

the application type of the notifying widget, to the target userId. The NM manages transparently

the binding between the userId and its corresponding Kademlia ID and probes the DHT at every

startup to search for missed notifications.

11.4.2 Reputation management

Reputation is at the basis of many social dynamics, in real world as well as in OSNs. Online market

places, question and answer bulletin boards and fora are just some examples in which reputation

and trust play a key role in social transactions and in the selection of reliable partners. Very

often, reputation is strongly context-dependent. For instance, a good photographer in a picture

sharing system could be a bad movie reviewer and vice versa. For this reason, reputation systems

are designed to operate within the boundaries of single applications and, typically, users are not

represented with a single “karma” but with many, possibly conflicting, reputations depending on

the application they are plunged in.

However, introducing a context-independent notion of reputation could play a very important

role in improving the service of collaborative P2P systems and of social networks in particular.

Spamming, phishing, frauds and trolling are among the today’s most serious threats for the security

and usability of SNSs. Although these attacks are often made through the channels provided

by single applications, their particular gravity has repercussions not only on the context of the

application itself, but also on the quality of service of the underlying OSN: a social platform which

does not effectively filters spam or does not provide any tool to detect fraudulent participants is

indeed unreliable and, ultimately, not attractive to the public.
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In centralized OSNs, malicious users like spammers could be traced and banned by the provider,

which is able to detect anomalous behavior since it can monitor all the activity happening on the

social network. Conversely, decentralized OSNs should be complemented with a handle to spread

the information about misbehaving users that are detected by honest participants. In LotusNet,

even if independent services can be accessed through different widgets installed in the application

suite, the actions performed by a user in different social contexts are always referable to its single

identity, determined uniquely by the LikirId. This feature allows to build a cross-application

reputation system, where a reputation is associated directly to the misbehaving peer and not

simply to a widget user.

The blacklist operation, offered by the Likir API, is meant to realize this idea. Interactions with

blacklisted users will be avoided at overlay level. This means that any message or content, coming

from any widgets belonging to the blacklisted user, will be automatically discarded by Likir. When

a appreciable consensus is reached among the network, the misbehaving node will be not able to

interact with the majority of honest peers, thus being confined to a dead network partition.

Relying on such low-level primitive, we can define a Reputation Module (RM) in our architec-

ture’s service layer. Its interface offers a single operation:

feedback(userId, score, evidence) (11.10)

The idea is that an application can specify an evaluation on the behavior of a known user with

a numeric score. Together with that, a proof of the good/bad behavior of the evaluated user can

be stored by the RM . The proof is simply the content for which its behavior is being evaluated;

for example, in a generic question and answers system, a post with inappropriate language can be

an evidence of user misbehavior. Note that, since the ownership of content published on the DHT

is verifiable, malicious users cannot forge fake proofs against honest peers, thus avoiding social

mobbing phenomena. When the reputation score falls below a certain threshold, the bad user is

locally banned using the blacklist primitive.

The adopted approach has several advantages. First, our scheme strongly contrasts the white-

washing phenomenon, thus limiting the risk that a user whose reputation is stained in a social

context can rejoin with a different identity or can damage other systems where its identity is still

unknown. Second, global reputation makes very high the cost of any bad behavior, thus being a

powerful deterrent against malicious peers. Last, since in pure P2P OSNs single peers take upon

themselves the critical responsibility of storing data from other participants, it is reasonable that

malicious peers should be not trusted anymore to store user data; information spreading techniques

that are implemented at overlay level are able to transparently replicate the data stored by the

blacklisted user to another more reliable index node.

Banishment of polluters

We are not interested into define the details of a specific reputation module (i.e., how scores are

managed), also because different schemes can fit better different types of OSNs (remind that several

complex OSNs can coexist in LotusNet). Several suitable reputation schemes that potentially suits
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Figure 11.4: Reputation test results

our context can be found in literature [313]. Instead, the crucial point we want to underline is that

the reputation information can be securely spread across the network thanks to proofs associated

to users. Even a simple gossiping protocol could be effective: when the RM blacklists a user, it

sends the proofs of its bad behavior to neighbors in the social networks that, in turn, can blacklist

the same identity too and forward the information to their neighbors. Since, due to the small-world

effect [341], the typical diameter of social networks is quite small, the information is diffused in few

hops across a great portion of the network, thus rapidly excluding the malicious user from social

activities.

We show this effect through an emulative experiment. Each peer runs a LoutsNet test widget

with a very simple behavior: broadly, the peer periodically stores and retrieves resources from the

DHT on random lookup keys; we suppose that the application is able to verify if a resource is

polluted in a fully automated way, without interacting with a human user, so when a fake resource

is retrieved, its publisher’s UserId is immediately inserted into the blacklist.

Each widget interacts with a local RM , just notifying it when a new UserId is blacklisted and

providing the related evidence. The RC stores a evidence list in a local database.

The RM behavior follows a simple, zero-tolerance gossip-based approach to spread local reputa-

tion information. Periodically, the evidence list is published in the DHT using a lookup key which

is easily obtainable from the publisher’s NodeId. Before the publishing phase, the RC retrieves

the lists of other users in order to learn of new polluters’ UserIds and, possibly, to increase its own

list. To do so, the lists of the k known NodeIds nearest to the local NodeId (the closest overlay

neighbors) are retrieved from the DHT and the local list is possible updated with new UserIds.

To make our experiment easier, and to get time-scale independent results, we organize the

emulation into time steps. At each step, every peer on the network performs a variable number of

DHT operations; we refer to Nput and Nget respectively as the random variables of the number of

store and retrieve operations executed and we suppose that these variables are normally distributed.

The lookup keys specified as put and get parameters are selected from a set of 105 randomly

generated 160-bit keys; accordingly to previous studies on the distribution of popularity of the

resources on P2P file sharing networks [155], we suppose that the frequencies of such keys are
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distributed accordingly to a Zipf’s law; we choose an exponent equal to 1. When a step is over,

the RC gossip service is activated and new blacklisted contacts are possibly learned.

The network is, of course, partitioned into two subsets: the Good and the Bad peers. The bad

nodes are distinguished from others because they publish only fake objects and they do not take

part in the RS activities. At each step, the bad out degree (D) of good nodes is measured. D is

simply defined as follows:

D = | {(x, y) |x ∈ Good ∧ y ∈ Bad} |

A link between a good and a bad node (the (x, y) edge) is determined by the presence of the bad

node’s contact into the good node’s routing table; the percentage of bad nodes is given by the p

parameter.

We instantiate a 150 nodes network and then we run our emulation for different values of p.

We set Kademlia routing parameters k and α to tiny values (respectively to 4 and 2) because

the network size is relatively small. Our experiment is aimed to model a coordinated pollution

attack, so we suppose that attacker nodes start polluting the DHT at step 0, and no new node is

instantiated during the emulation period. Of course, during the whole overlay network life, several

attacks like this can happen, however we focus only on a snapshot of a single attack which anyway

easily allows to understand the effectiveness of Likir blacklist and RS.

The results are shown in Figure 11.4; the plotted values of D are normalized on the initial D

value. In an initial phase, before fake resources are widely spread across the network, the number

of bad contacts in the good peer’s routing tables increases, because new contacts are learned due

to the lookup procedures executed by the nodes of each partition. But the diagram shows that

this trend is reversed after the first step; the value of D is reduced to about one fifth in just three

or four synchronization steps, for every value of p, and then decreases asymptotically to zero, thus

cutting off the cluster of bad nodes from the healthy part of the network.

The blacklisting method results effective also for very high values of p (e.g., p = 0.8) because,

even there is a slight probability that a non-polluter node has the contact of another honest node

in its closest overlay neighbors set, a great portion of resources on the DHT results corrupt, so

many evil nodes are discovered at each step.

11.4.3 Folksonomic content search

A resource search engine is a central component in modern SNSs. Search tools are used by OSN

participants to expand their knowledge to thematic contexts that reside beyond their local social

cluster. For this reason, we believe that an effective instrument for content search cannot be left

out of consideration in P2P designs of OSNs if they are intended to be competitive with their

centralized counterparts.

In our framework, like in many other decentralized OSN designs, content encryption is one of

the means to obtain content confidentiality. Obfuscating data enhances privacy but has also a

negative side-effect on searching procedures. In fact, any content-based resource indexing is not

applicable if the structure of shared objects is completely obscured by ciphers.
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Certainly, encrypted objects can be found specifying their type and DHT key in classic DHT

lookups. This approach is effective as long as the entity that initiates a search procedures is an

automated application, that knows by protocol the set of keys and types associated to the objects

it has to insert or retrieve from the overlay. But this system becomes too rigid when the search

query is submitted directly by a human user. In fact, DHT lookups are limited to the well-known

exact-match problem [141]: the knowledge of the exact lookup key is required in order to retrieve

the content from the distributed storage.

The straightforward solution adopted in most of the DHT applications, like file sharing, is to

compute the lookup key hashing the words of a representative content name. Nevertheless, the

name assigned to a resource by its publisher may be insignificant to people that are interested in

its retrieval and, in practice, this approach hides many objects from their potential consumers.

A more suitable alternative comes from the collaborative tagging paradigm brought into vogue

by the Web 2.0 philosophy. In tagging systems, resources are marked with arbitrary labels as-

signed directly by the users; the result is folksonomic categorization of resources. Recurring to

folksonomies is often necessary in very populated collaborative systems because the extremely

high and continuously growing number of objects would make unfeasible for a team of experts

to perform a classification. Furthermore, it has also been shown that the overall quality of the

folksonomic indexing structure is comparable with the classic taxonomies, in terms of accuracy,

completeness and consistency [148].

For this reasons, we define a folksonomy-based search engine for our social architecture. Given

the distributed setting in which we are positioned, the bindings between tags and resources are

directly stored by the users in the DHT. The idea is that a OSN user can mark a resource with a

tag just publishing a reference pointer to that resource (i.e., its DHT key and its type) using the

hash code of the assigned tag as lookup key. Subsequent searches for that tag will return the set

of resources labeled with it. It is worth noting that if indexed resources are not public, a proper

grant is anyway needed to get the content referenced by the pointer.

In addition to the basic indexing feature, folksonomies can be exploited to realize also a naviga-

tional paradigm of content search, where a user can drift from a selected category to another based

on the semantic correlation between them. Examples of such paradigm can be found in classic

query-based search engines like Google Wonder Wheel [130] as well as in tag-based search engines

like Yahoo! Tag Explorer [350].

In folksonomic navigation, the most similar tags to the selected one are returned to the querier

at each step. Anytime, the user can choose to continue the navigation or to retrieve the resources

marked with the current (and with all the previously selected) tag. Implementing this possibility

in our architecture implies to explicitly map the similarity relations between tags on the DHT. In

particular, in order to consistently maintain the information on the tag-tag similarity graph over

time and to efficiently manage the frequent addition of both tags and indexed resources, we rely on

the DHARMA approximated algorithm defined in Chapter 12. In DHARMA, tag-tag similarity is

based on the notion of co-occurrence [216] (i.e., the similarity score between two tags is the number

of resources that the two tags label in common) and the update of similarity arcs is managed with
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an approximated strategy that limit the cost of the both tagging and navigation operations to a

constant number of lookups.

As a result of these considerations, we can define a folksonomy-based search engine layered on

Likir together with its high-level API:

tag(label, obj) (11.11)

search(tag) (11.12)

The semantic of the operations is self explanatory. The search method returns both the set of

tags similar to the specified label and, of course, the set of tagged resources.

11.4.4 On storage service

Assuring content availability is one of the most important challenges in the implementation of

distributed SNSs. In our system, the DHT is intended to be the main storage layer for items

generated by LotusNet widgets. Availability, lookup accuracy and efficient content dissemination

are intrinsic properties of DHT storage platforms. Well-known incentives mechanisms for DHT

peers to stay online [357, 21] can be applied to Likir as well. Moreover, note that Likir is a general-

purpose DHT which can simultaneously support many other services beside LotusNet (e.g., classical

file sharing). Therefore, LotusNet clients could profitably advantage also of the storage provided

by DHT nodes that are not OSN participants.

Many DHT-based utilities that complement the basic storage services with more complex func-

tionalities like durability or unlimited content size have been presented in literature [286]. We

do not want to stuck on a specific storage scheme, because different applications could have very

different needs regarding the storage. Instead, our aim is to define a flexible framework that offers

a basic, privacy-aware storage facility and that can be used as fundamental building block to create

more complex storage services without losing the property of privacy-awareness.

This is accomplished with the use of grants. If the items published on the DHT are used as

pointers to external services, the same privacy mechanism that combines grant-based access control

with content encryption can be used. In a nutshell, grants are self-contained entities that can be

reused also in services that are external to the DHT. The possibility of reusing grants preserves

the content confidentiality across different storage systems.

Of course, if the DHT is used as main mean of storage, non-stop availability of data comes

at the price of relying on untrusted storage servers, i.e., the index nodes. Usually, this is not

considered to be a good policy [222] unless basic security/privacy requirements like confidentiality,

data integrity and authenticity are satisfied [123]. We have shown that the LotusNet architecture

transparently satisfies such requirements by design and, additionally, DHT redundancy property is

a good shelter against denials of service like the smashing attack [222]. Moreover, like pointed out

in Section 11.3.2, thanks to the strong binding between overlay ID and user identity, LotusNet is

flexible enough to allow widgets to store their data at trusted index nodes, like the known friends,

at cost of potentially losing full-time availability.
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Module Operation Description

Likir

put(key, obj, type, public, ttl) Publish an object on the DHT

get(key, type, userId, recent, grant, sizeonly) Retrieve an object from the DHT

blacklist(userId) Put userId in a local blacklist

register() Register a handle for incoming notifica-

tions

DAC

contact(userId) Search for userId in LotusNet

grant(userId, regExp) Issues a grant for userId for types spec-

ified by regExp

getGrant(userId) Gets the grant received from userId

getSelfGrant(userId) Gets a self-signed grant

Notification
register(applicationName) Register an application-specific handle

for incoming notifications

notify(userId, applicationName, obj) Send a notification to a specific user and

application

Tag Search
tag(label, obj) Tag the specified object

search(tag) Tag-based search. Return a set of tags

and a set of resources

Reputation feedback(userId, score, proof) Rate a user’s behavior

Table 11.2: Summary of the LotusNet services to applications

11.5 Crawling attack

Previously in Section 11.3.2 we showed that a malicious entity cannot crawl the DHT searching

for private information and cannot even position probe nodes on the overlay to intercept sensitive

data. However, a weakness of this scheme reside exactly in the delicate phase of creation of new

contacts. Indeed, the attacker can leverage the incautious behavior of some users inducing them

to accept the attacker’s contact request and, consequently, to issue grants for it. In this Section

we want to show to what extent malicious peers can extract user information from the network

using this technique. Additionally, we propose further security expedients that could be adopted

to improve the privacy preservation also in this scenario.

We suppose that the attacker is a common peer that runs a crawling application whose behavior

is sketched by the pseudo-code in Algorithm 1. Basically, the crawler starts from a seed user (lines

1-2), asking for its friendship and offering in exchange a grant for the full set of its resources

(lines 5-6). If the request is accepted (line 7), the set of widgets specified in the received grant is

extracted (line 8). For each widget, all the accessible information is retrieved from the DHT and

possibly added to a local database (lines 9-10). The crawler can also try to extract informations

about target user’s friends directly from the widgets’ data (line 11). The whole procedure is then

repeated for the new discovered contacts in a breadth-first fashion (lines 12,3,4).

Of course, extensive crawls must be executed by automatic procedures like the crawling applica-

tion described. For this reason, a first counterattack to limit the effectiveness of crawls is recurring
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Algorithm 5: Crawler widget
Input : seed, a user identifier

List contacts = new List ()1

contacts.add (seed)2

while contacts not empty do3

String userId = contacts.pop ()4

contact (userId)5

grant (userId,“.*”)6

if grant received from userId then7

Set widgets = getWidgets (userId)8

for w in widgets do9

retrieveInformation (w)10

List newContacts = retrieveContacts (w)11

contacts.add (newContacts)12

to a contact establishment procedure that is resistant to robots. Requiring that both parties solve

a puzzle which implies human interaction (e.g., captchas [336]) before they can connect to each

other with a social tie is a very lightweight and inexpensive solution that can severely limit this

kind of attacks.

Apart from this consideration, if the target user is somehow tricked to issue a grant for the

attacker, a portion of its private information is inevitably disclosed. The extent to which this

happens is proportional to the level of trust that the target user places in the new friend. Here,

two cases may occur.

In the first case, the attacker introduces herself with a user identifier that recalls to the target

node a person she knows already in real life (or in other online social contexts). The belief of

being interacting with a highly trusted peer can lead the victim to disclose a high quantity of its

personal information. This problem can be mitigated by adopting some basic web-of-trust features

borrowed from the PGP setting. Users can produce special tokens for their social contacts in order

to certify the binding between the user and its identity. When contacting a peer, a user exhibits

its own identity certifications; since link formation process in social networks often involves triadic

closure [282] (i.e., people becoming friends have often at least one friend in common), it is likely

that the recipient of the friendship request directly knows some of the certifiers. The absence of

known certifiers should warn the user about a potential privacy risk.

In the latter case, the attacker’s identity is completely new to the target user. In this situation,

the grants should be released gradually. To this end, a profitable collaboration between the Repu-

tation Module and the DAC Module could be exploited, posing an upper bound to the permissions

that can be issued for a social contact according to its the reputation level. Afterward, the growth

of reputation in time determined by positive feedbacks received from other known peers or from

the local user may cause the expansion of the grant.

If all these countermeasures fail, can the attacker seize also the identifiers of the victim’s social
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neighbors (line 11 in Algorithm 1)? Or, worse, can the attacker retrieve also data belonging to its

neighbors? We previously noticed that the information about the user’s personal contact network is

not explicitly mapped anywhere, so the attacker may learn it only analyzing the resources published

by the widgets it has been granted the access to. Moreover, widgets may often not require to store

user identifiers explicitly. For example, in publish-subscribe applications, where a user publishes

updates for a group of followers, there is no need to store the list of recipients together with the

published data, simply because the access to the content is managed using grants only.

However, even if the attacker succeeds in learning a part of the social network topology, the

most important thing is that the personal information of that contacts cannot be unveiled, since the

grants gained by the attacker are useful to retrieve only the victim’s protected content. In order

to access the information of discovered friends, the attacker must reiterate the whole crawling

procedure.

In this setting, considering all the countermeasures we presented, a crawl of the P2P network

aimed to data collection would be very costly and limited to very inattentive users. Of course, the

greatest defense ever against privacy leakages is a continual user awareness.
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Chapter 12

DHARMA a DHT-based

collaborative tagging system

12.1 Decentralizing collaborative search

Social applications are rapidly popularizing collaborative tools for indexing, retrieval, access and

distribution of content over the Internet. Multimedia resources are made available through websites

and P2P systems, together with annotations, metadata, tags, and other kind of information about

the owner and/or the content itself. Such information is often used to fill the semantic gap between

the personal user experience, and a more general description of a given resource. Nevertheless, such

huge volume of information is often hidden to traditional search engines, since a common query

infrastructure and language is missing.

During the years, the Web community has been supported with many retrieval techniques, that

can be categorized in two main paradigms: navigational search and direct search. The first family

of strategies assumes the existence of a taxonomy, usually predefined by a group of experts, that can

be iteratively browsed by a user from general categories to more specific subclasses of information

(e.g., Yahoo! Directory). Direct search let the user query the engine by means of a (set of)

keyword(s) (e.g., Google). Even if the latter has gained a vast amount of success during the last

years, very recently navigational paradigm has emerged again due to the diffusion of folksonomies

within popular tagging systems as Flickr, del.icio.us, and so on. In fact, folksonomies have been

showed to overperform monolithic hierarchical classifications in social domains where many users

with different mental attitudes and vocabularies are active.

In the recent past, much effort has been devoted to direct search strategies, very common in

unstructured P2P systems, and to exact match key-based lookup techniques, that are basically

used by almost every structured overlay network. But quite surprisingly, benefits coming from the

application of navigational search in the P2P domain have been quite underestimated. Moving

from the pioneering work of Crespo and Garcia-Molina [92]), few research has been conducted on

semantic routing for P2P systems and on merging collaborative tagging, folksonomies and P2P
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systems. In the following, we give an overview on such research papers.

Asiki et al. [28] propose an efficient indexing scheme for storing and retrieving concept hierar-

chies over a fully decentralized system is given, even they do not take into account folksonomies.

A P2P infrastructure for tagging systems (PINTS ) is proposed by Görlitz et al. [132]; in

particular, authors design a scheme to maintain feature vectors for characterization of users and

resource of a tagging environment on a DHT. Feature vectors may be useful for calculating the

similarity between users or for constructing algorithms for ranked retrieval.

PINTS comes as a building block of Tagster [133], a distributed content sharing and tagging

system where the user-resource-tag graph is stored in a DHT. A dedicated storage index is used for

each tagging relation, so each edge in the graph is stored at different overlay responsibility areas.

For this reason, one lookup for each edge retrieval is needed, and this could make the navigation

expensive in systems with a huge number of tags and objects. Furthermore, navigational aspects

between related tags is not explicitly taken into account.

Tag-based navigation is taken into account by Bouillet et al. [62], who present a centralized web

service discovery system based on folksonomies. Tags, together with variables, are used to assign

semantic information to input and output messages of the service operations. The key feature of

this work is the possibility to exploit the subsumption relation between variable types to compose

the discovery activity as an acyclic navigational workflow.

Navigation through tag cloud refinement, together with a recommendation service, are provided

by GiveALink [320], a social bookmarking tool that allows tag-based web browsing. The system

architecture, however, is fully centralized.

Our own work is rooted in a previous attempt of defining a fully decentralized search engine for

web services discovery [225]. In this previous proposal, resources are organized in a tree-like tag

structure which is mapped on a structured P2P system according to an iterative lookup technique

that aims to solve the structured P2P exact match key-based routing problem. That approach

revealed some drawbacks because the rigidity of the tree structure fits badly with the chaotic and

ever increasing tag addition activity.

Starting from such previous experience we want to define a more general tagging system model

that can be exploited to define navigational search strategies in fully distributed environments.

Such model should fit the social media domain in the broadest sense of the word, since it could

be used to implement a high level engine that allows the user to search in different environments

(web, social networks, P2P file sharing networks, and so on).

LotusNet would be the natural platform to implement such a distributed search module. How-

ever, our aim is to provide a general framework that can fit any DHT system. In fact, the main

challenge to reach this goal is intrinsic in the mapping of the logical structure of a folksonomy (seen

as a network of tags) on a P2P layer (that partitions a given keyspace among the participating

nodes) that can overcome the problems of loss of efficiency in tag insertion and retrieval. We

propose a way to perform such a mapping, introducing an approximation strategy that fits well

with dynamic and decentralized tagging. Our technique efficiently supports common insertion and

retrieval operations also in real-world scenarios with very unbalanced distributions of the number
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Figure 12.1: Bidirectional arcs in a Folksonomy Graph (right) aggregates asymmetrically weights

in the Tag-Resource graph (left)

of tags over resources.

12.2 Tagging system model

The first step in the definition of our distributed search engine is a high level description of the

tagging system; we define the tag-resource graph and also a folksonomy graph by means of a simple

tag similarity measure (Section 12.2.1), and how these graphs are modified during users interaction

(Section 12.2.2). Finally, we show how this model can be used for navigating through tags in search

of resources (Section 12.2.3).

12.2.1 Graphs definition

From a graph perspective, collaborative tagging systems can be defined as tripartite hypergraphs

[176, 224], in which three sets of actors are involved:

• U is the set of users of the system, that actually tag resources.

• T is the set of tags.

• R is the set of resources being tagged.

However, since in our work we focus mainly on tags and resources, we perform an aggregation

across the user dimension in order to obtain a bipartite graph that links tags to resources. We define

such a graph as the Tag-Resource Graph (TRG), where TRG = (T ∪R,ETR), s.t. (t, r) ∈ ETR iff

at least a user tagged r with t. Moreover, for each arc in ETR we define a weight u(t, r) that is the

number of times r has been tagged with t (see Figure 12.1 on the left). The reader can observe

that we are adopting the so-called distributional aggregation approach [216] that yields to a graph

in which the weight of an edge (t, r), t ∈ T, r ∈ R is equal to the number of users tagging r with t.

We can use such graph to extract Tags(r) and Res(t) denoting, respectively, the subset of tags

that label a resource r and the subset of resources that have been tagged with t:

Tags(r) = {t ∈ T |∃(t, r) ∈ ETR}, r ∈ R (12.1)

Res(t) = {r ∈ R|∃(t, r) ∈ ETR}, t ∈ T (12.2)
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Since our purpose is to define a tag-based search engine, we introduce a simple Folkson-

omy Graph (FG) that can be trivially derived through collaborative tagging. Inter-tag relations

should be detected by means of a distance measure between any pair of tags. We interpret

such a distance as an asymmetric similarity function between two generic tags t1 and t2, s.t.

sim(t1, t2) =
∑

r∈Res(t1)

u(t2, r).

Roughly, sim(t1, t2) says how many times resources labeled with t1 have been tagged also with t2.

Even if many different similarity measures could be adopted in folksonomies [216], such aggrega-

tion of tag-resource weights is a metric that is easy to calculate and, as we explain in Section 12.3,

handy to be mapped on a fully decentralized and dynamic context. This metric can be considered

as a generalization of tag-tag co-occurrence [74].

Now, we can define our folksonomy graph as FG = (T,EF ), s.t. (t1, t2) ∈ EF iff sim(t1, t2) ≥ 1.

Let us observe that, by construction, if sim(t1, t2) �= 0, then sim(t2, t1) �= 0, even if it may happen

that sim(t1, t2) �= sim(t2, t1). Hence, we represent connections between tags using bidirectional

arcs with two weights. Finally, we will need to deal with the tags related to a given tag t. Such

set is the neighborhood of t in FG, denoted with NFG(t).

For example, in Figure 12.1 (right), the arc (t1, t2) of FG has weight 5 because resources r1 and

r2, have been tagged also with t2 by, respectively, 3 and 2 users; let us observe that, conversely,

sim(t2, t1) = 7.

12.2.2 Graphs maintenance

The active collaborative behavior of the user community leads to a continuous evolution of the

TRG and the FG, due to the addition of new items and new annotations.

Resource insertion

When an user inserts a new item r and tags it with Tr = {t1, ..., tm}, then a new resource vertex

is inserted in the TRG. Of course, also for each new tag ti, a new vertex is inserted in the TRG,

so that R is updated to R ∪ {r}, and the set of tags to T ∪ Tr. Moreover, for each ti ∈ Tr, an

edge (r, ti) is added to ETR, with u(r, ti) = 1. As a consequence, FG must be changed, too: for
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each pair of tags ti, tj ∈ Tr, a new arc (ti, tj), if not previously existent, is added to EF with

sim(ti, tj) = sim(tj , ti) = 1. Otherwise, sim(ti, tj) and sim(tj , ti) are simply incremented of one

unit.

Tag insertion

Graphs grow also when an existent resource r is tagged with t. Firs, if t /∈ T , a proper tag

node is added. Therefore, if t /∈ Tags(r), then a new edge (t, r), with u(t, r) = 1 is added to ETR;

conversely, if t ∈ Tags(r), then u(t, r) is simply incremented. Similarities are changed consequently.

For each tag τ ∈ Tags(r), sim(τ, t) is incremented by one. Instead, sim(t, τ) is changed depending

on whether t was in Tags(r) before the tagging operation or not. If t was in Tags(r), then sim(t, τ)

is left unchanged, otherwise sim(t, τ) is incremented by u(τ, r). Arcs in the FG are created or

updated accordingly.

Examples of both operations are showed in Figure 12.2.

12.2.3 Faceted Search within the Folksonomy Graph

Our purpose is to exploit our model in order to let the user explore the given multi-dimensional

information space by iteratively narrowing the number of choices at each search step.

Many popular tagging systems (e.g., Flickr, Last.fm, and so on) make use of resource clustering

according to some measure of similarity. For example, considering our Folksonomy Graph, we

can easily identify clusters representing repeated patterns of tags that can be presented to the

users through lists or tag clouds. Such clusters can be intuitively used to refine the query or

to disambiguate search keywords. Nevertheless, clustering techniques can generate unpredictable

groups, produce cycles in the navigation process, and limit the browsing features of the system

since they may not allow refinements.

Generally speaking, users prefer hierarchical classifications with clear and meaningful labels at

each level of the tree. For example, a tag that is presented more than once during the same search

process can generate confusion, as well as a general term (e.g., “rock”) that is found in a cluster

after that a specific tag (e.g., “heavy-metal”) has been selected. Unfortunately, a traditional and

rigorous taxonomy is difficult to be provided in a highly dynamic social domain with many users

with different mental attitudes and vocabularies.

Faceted search can be seen as a middle ground approach that allows the user to “dive” the folk-

sonomy without semantic cycles and to iteratively refine the tag-resources space (e.g., TagExplorer

by Yahoo! Research). Accordingly to this approach, the user browses the tagging system through

a path in FG. We can interpret every tag of such a path as a different level of a hierarchical faceted

search process; in fact, selecting subsequent tags in the hierarchy results in a conjunction over the

selected annotations, and each step zooms in the tag-resource space, narrowing the focus of the

search.

Two important consequences of this approach are query convergence and vocabulary specializa-

tion. Let us assume that the user starts the search process selecting tag t0, and afterwards she

chooses t1, t2, . . . , tn. At each step, only co-related tags are presented to the user. Tag ti is always
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a neighbor of ti−1 in FG, that is ti ∈ NFG(ti−1). Moreover, at step i a set of tags Ti and a set of

resources Ri can be presented to the user:

Ti =

⎧⎪⎨
⎪⎩

NF G(t0) i = 0

Ti−1 ∩ NF G(ti) i > 0
; Ri =

⎧⎪⎨
⎪⎩

Res(t0) i = 0

Ri−1 ∩ Res(ti) i > 0

Even if we are not concerning on presentation aspects, we can assume that to improve usability

only a subset of Ti is displayed (using a tag cloud or an alternative representation), and that

a subsequent tag selection would be equivalent as a zoom in, eventually visualizing other (more

specific) tags. Obviously, since previously chosen tags are not taken into account in subsequent

steps, ∀i : |Ti| < |Ti−1|. The upper bound of the iterative process is O(|T0|), and so convergence

is trivially proved. It can be noted that browsing can be delayed by tags that are “semantically

equivalent” (i.e., all τ ∈ Ti−1 s.t. |Ti| = |Ti−1|). However, such situations are limited in numbers

and do not affect significantly search performance.

12.3 Mapping on a DHT

Next, we present a general insight of how the model defined in Section 12.2 can be mapped on

a Distributed Hash Table. We show that a naive implementation of our model would lead to

grievous inefficiencies which severely limit the scalability of the system; therefore, we propose an

approximated approach to overcome these issues.

12.3.1 Distributed model

In order to map the folksonomy on a DHT we need to shrink the TRG and the FG both in small

structural blocks that can be stored at different overlay nodes. In particular, each block contains a

node together with its outgoing edges. Accordingly, every resource node r ∈ TRG, together with

its outgoing edges to nodes t ∈ Tags(r) is contained into a single block. Symmetrically, every tag

t ∈ TRG with its outgoing edges to r ∈ Res(t) forms a block. Likewise, the FG is partitioned in

blocks containing a tag t with the arcs that links it to its neighbors in NFG(t). More formally, we

define four types of blocks:

1. r̄ : {(t, u(t, r))|t ∈ Tag(r)}, r ∈ R

2. t̄ : {(r, u(t, r))|r ∈ Res(t)}, t ∈ T

3. t̂ : {(t′, sim(t, t′))|t′ ∈ NFG(t)}, t ∈ T

4. r̃ : (r, URI(r)), r ∈ R

The TRG is split into blocks of type 1 and 2, the FG into blocks of type 3. Type 4 blocks are

introduced only to conceptually associate the resource itself (a URI of a generic object or service)

to its name r (a human readable identifier which denotes the resource). Each block is mapped on

a lookup key computed from the name of its node concatenated with a string which determines

the block type (e.g. the hash of t|“2” is the key of type 2 block for tag t). For brevity, we denote
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Figure 12.3: Folksonomy mapping on a DHT. Overlay nodes are labeled with the key they are

responsible for. The content of node storages are depicted into the baloons.

with r̄, t̄, t̂, r̃ the lookup keys for blocks of type 1-4; for simplicity, we use this notation to directly

denote the blocks without introducing any ambiguity.

Figure 12.3 shows how the FG and the TRG depicted in Figure 12.2.b are partitioned in blocks

and mapped on a generic DHT layer. Type 4 blocks are omitted for simplicity.

Given such mapping, navigation, tagging and resource insertion through the P2P network are

easy to describe. At each navigation step, when a tag t is selected, tags and resources related

to t are retrieved by fetching blocks t̂ and t̄; intersection with tag and resources set retrieved in

following steps are performed locally. Insertion of a resource r, marked with tags ti, i ∈ [1..m],

requires the creation of block r̃ to store the URI and of block r̄ to connect the resource with its

tags. Reverse tag-resource connections are mapped by inserting blocks t̄i for each tag ti given in

input. Each ti should then be connected to others in the FG by creating (or updating) its block

t̂i. Finally, when a resource r is tagged with a label t, the weight of edge (t, r) is incremented by

updating blocks r̄ and t̄. Then, tags τ ∈ Tags(r) are retrieved from block r̄. For every τ , the

weights of arc (t, τ) is incremented by updating block t̂, while reverse connections (τ, t) must be

updated by modifying blocks τ̂ , ∀τ ∈ Tags(r).
We suppose that retrieving or modifying the content of a block on the DHT costs only one

overlay lookup operation. This assumption is reasonable if the overlay is equipped with proper put

and get operations, which, respectively, insert and retrieve content from the DHT by exploiting

the overlay network’s lookup service.

In the particular case of Likir/LotusNet we can implement such scheme as follows. The addition

of an arc between two nodes x and y can be performed specifying the hash of x (concatenated

with the node type) as key and y (concatenated with some application-specific marker, the string

“DHARMA” for instance) as type in the put primitive, and using a one-bit token (•) as content.

Of course, the content is stored as public because any user should be able to use the search engine.

put(nodeType|x, •, DHARMA|y, T rue, ttl). (12.3)
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The publication of such content logically determines a unit increment of the weight of the (x, y)

arc in the TRG (or FG). When an application needs to retrieve the block related to the node x, it

calls the get primitive as follows:

get(nodeType|x,DHARMA∗,−,−,−, T rue), (12.4)

where DHARMA∗ instructs the index node to return all the resources which type starts with the

string “DHARMA”, and the sizeonly parameters set to True allows the client to retrieve only

the number of resources submitted for each content type. As a result, this call returns a list of

pairs (type, count) representing the weighted edges departing from node x, which compose the full

information of the block.

12.3.2 Approximated approach

Implementing the algorithms defined in Section 12.2.2 with our distributed framework produces

two severe issues, both concerning the tagging operation (i.e. the FG update).

The first is a complexity problem. We stated that when a new tag t is added to a resource r

the weights of the arcs (τ, t), τ ∈ Tags(r) must be updated. In the DHT domain this implies the

update of blocks τ̂ of each τ ∈ Tags(r). Accordingly, a number of lookups which is linear with

|Tags(r)| is performed. This cost is unsustainable because, as we show later in Section 12.4, a

resource can be tagged with several hundred labels. Even if different lookups can be executed in

parallel, the bandwidth usage would be definitely excessive for such simple and frequent operations.

The second is a consistency problem, caused by a race condition. To keep the graph consistent

with our model, if the arc (t, τ), τ ∈ Tags(r) was not present before new tag t insertion, then

sim(t, τ) should be incremented by u(τ, r). Nevertheless, it is hard to implement correctly this

practice in a fully decentralized system. It is easy to understand, indeed, that if two users try

to add simultaneously the same tag t on the same resource r, there is the risk that the value of

sim(t, τ), for any τ ∈ Tags(r), is uncorrectly incremented twice, for a total value of 2 · u(τ, r).

These considerations must be taken into account to improve the algorithm design. We adopted

two approximated strategies to solve these problems; call t the new tag and r the resource to be

labeled.

Approximation A. Instead of incrementing the weights of all the arcs (τ, t), τ ∈ Tags(r), perform

the increment only for a random subset of Tags(r). The cardinality of such subset can be chosen

to be at most a constant number k; this expedient reduces the number of lookups needed for a

tagging operation, preventing its complexity to scale with |Tags(r)|. We refer to k as the connection

parameter of the approximated graph �
Approximation B . If the arc (t, τ), τ ∈ Tags(r) was not present before the tagging operation,

then increment the weight of (t, τ) only by one (and not by u(τ, r)). This avoids the possible

inconsistencies due to simultaneous addition of a new tag t to resource r �
Approximations make the similarity graph evolve differently from the abstract model described

in Section 12.2. Thus, the distance from the theoretic and the mapped graph should be measured to

check how much the search procedure is affected by our approximations. In Section 12.4 we present
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Primitives Insert (r, t1..m) Tag (r,t) Search step

#lookups (naive) 2 + 2m 4 + |Tags(r)| 2

#lookups (approx.) 2 + 2m 4 + k 2

Table 12.1: Distributed tagging system primitives cost

experimental results to measure such distance. It is worth noting that only the FG is affected by the

approximation, while the TRG graph remains the same. Complexity of approximated operations

in terms of overlay lookups is shown in the second row of Table 12.1.

The source code of the distributed tagging application that implements the approximated

approach is available online (likir.di.unito.it\applications), with the name of DHARMA

(DH T-based Approach for Resource M apping through Approximation). An implementation of

the underlying DHT is available as well.

12.4 Evaluation

We give an evaluation on how the approximations introduced in our system design impact on the

validity of the model using analytic and simulative approaches. The analysis is based on a dataset

extracted from Last.fm. First (Section 12.4.1), we give a brief description of the main features of

the dataset, then (Section 12.4.2) we analyze how the FG created through the protocol we defined

in Section 12.3.2 well approximates the theoretic similarity model of the dataset and we show that

user search experience does not decay due to introduced approximations. Additionally, in Section

12.4.3 we report the results of a simulative experiment aimed at the estimation of the mean number

of steps needed for query convergence.

We base our experimental analysis on one of the snapshot of out the Last.fm dataset (see

Section 3.2). We explored a population of 99,405 active users, extracting nearly 11 millions of

annotations in the form of triples 〈user, item, tag〉 where an item can be an artist, an album or

a specific song. From this raw dataset, we built the bipartite TRG, which has 1,413,657 resource

nodes and 285,182 different tags, from which we derived the FG.

12.4.1 Last.fm dataset overview

We analyzed some structural properties of TRG and FG both. Some of the most relevant things to

know are nodal degree distributions: in particular we extracted the distribution of the cardinalities

of Tags(r), Res(t) and NFG(t) sets. Statistics of degrees (mean, standard deviation and max

values, all rounded to integer) are shown in Table 12.2 and cumulative degree distributions are

depicted in Figure 12.4.

A strong core-periphery structure emerges in the TRG. In particular, a huge portion of tags

(about 55%) marks only 1 resource and almost the 40% of resources are labeled with just 1 tag.

Conversely, the dataset has a core of much more connected tags and resources; these correspond

to the semantic top-level (or at least high-level) tags (e.g. “rock”, “pop”, “seen live”) and to the
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Figure 12.4: Last.fm nodal degree CDF

Degree Tags(r) Res(t) NF G(t)

μ 5 26 316

σ 13 525 1569

max 1182 109717 120568

Table 12.2: Last.fm graph degree statistics

most popular resources.

A similar scenario comes with the FG: the 80% of tags has a not-null similarity with at most one

or two hundred nodes, while the nodes belonging to the core of most popular tags are connected

with several thousand nodes.

Given this setting, it is clear that the updates and lookup operations performed within the

core structures of the network are the most “problematic” in terms of DHT operations. First, the

number of tags marking a resource can be too high to avoid Approximation A. Second, given a

very popular tag, the number of related tags and resources can be definitely huge; since, usually,

overlay messages are sent on UDP packets, the limited payload force to send only a subset of tags

and resources available during a search step. Therefore it is important that only the most relevant

objects are returned. The index side filtering provided by Likir is a good option to meet this

requirement.

12.4.2 Approximated graph simulation

Given the Last.fm TRG and FG we simulate the evolution of such graphs with our approximated

protocol in order to draw a comparison between the real dataset and the approximated one.

The simulation starts with a fully disconnected graph that includes all tags and resources from

the Last.fm dataset. At each step, a resource r and a tag t are selected and a tagging operation is

performed. The FG is updated according to Approximations A and B. Resource r is chosen with

a probability proportional to its popularity in the dataset (i.e., |Tags(r)| in the real TRG); tag t is

selected between all tags in Tags(r) on a local popularity basis (i.e., with probability proportional
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Figure 12.5: Comparison between original and simulated FG.

to u(t, r)). Simulation ends when resources are labeled with all their related tags instances that

appear in the real dataset. We executed the simulation for different values of connection parameter

k.

We compare the original and the simulated FGs. We consider nodes out-degree and arcs weights

in original graph against corresponding values in simulated graph: the result are depicted in Figure

12.5.

We notice that, even with k = 1, the points on the degree plot are aligned on a line whose slope

is close to the diagonal; so we deduce that the variation of k does not significantly affects the nodal

degree. On the contrary, arcs weight is significantly reduced for low values of k; to reduce the

spread with the original values under a reasonable threshold, k must be set to values that would

make an efficient implementation on a DHT system unfeasible. Nevertheless, we are not interested

in minimizing the residues between theoretic and actual arcs weight. Instead, our aim is that some

kind of proportions are kept. First, we want that the arcs weight ordering is maintained because

the ranking of the sim(t1, t2) weights directly influences the tags’ ranking that is displayed during

the search process. Second, we want that the proportion between the weight of every pair of arcs

is not lost; if weight ordering is preserved for a pair of arcs but the ratio between their values

significantly changes in the simulated network, then there is the risk of a flattening effect on the

tag similarity values, thus reducing the information provided to the user in the search step.

To give a quantitative measure of such advisable features, we compared, for each tag t in

the dataset, the set of its outgoing arcs (t, ti), ti ∈ NFG(t) with the same set taken from the

approximated graph. The metrics we used for the arcs weights comparison are the Kendall’s tau

rank correlation coefficient (Kτ ) and the cosine similarity (θ). Kτ evaluates the similarity between

two ranks of a same set of objects on the basis of the number of inversions that have to be made

to turn one ranking into the other; it ranges from −1 (when two rankings are the opposite) to 1

(for equal rankings). θ, which has the same range of Kτ , takes in input two vectors of the same

length and is equal to 1 if these vectors are perfectly scaled (e.g. θ([1, 2, 3], [100, 200, 300]) = 1).
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Figure 12.6: Effect of approximation on tag navigation path length

Furthermore, to give an estimation of how much information is lost with the approximation,

we calculated the recall value, that is the ratio between the number of arcs in the approximated

graph and in the theoretical graph. Finally, we calculated the portion of arcs, among the set of

those arcs that are not represented in the approximated graph, whose weight is 1 in the theoretical

model (we refer to this measure as sim1
%).

The mean values and the standard deviations of the cited measures, for some low value of k,

are reported in Table 12.3. The main results obtained are the following:

• Kτ and θ values, measured on the set of tags which are common to the two models, are very

high, independently on the value of k. This means that retrieved tags in the approximated

model are well ordered and proportioned compared to the theoretical model.

• The value of Recall reveals that, for very small values of k, up to the 40% of arcs are not

represented in the approximated model. Recall grows sub-linearly with k.

• The extremely high values of sim1
% reveals that the weight of almost all these missing arcs is

1, which is the minimum value in the similarity network. Further analyses showed that, for

every k, the 99% of the missing arcs has a weight ≤ 3. So, the missing arcs are positioned in

the very tail of the weight ranking.

In a nutshell, even if correct proportions are kept, the number of arcs in the approximated

FG can be considerably smaller respect to the original graph. Nevertheless, the arcs that are not

mapped represent very weak similarities. In fact, the great majority of these arcs are simply noise

caused by the insertion of meaningless or singleton tags, which cover a high percentage of the

k Recall Kτ θ sim1
%

1
μ 0.6103 0.7636 0.8152 0.9214

σ 0.2798 0.2728 0.1978 0.1044

5
μ 0.7268 0.7638 0.8664 0.9346

σ 0.2730 0.2380 0.1636 0.0914

10
μ 0.7841 0.7985 0.8971 0.9432

σ 0.2686 0.2138 0.1424 0.0850

Table 12.3: Comparison between approximated and theoretic Folksonomy Graph
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overall tags but that are useless during the search phase. Therefore, the approximation adopted

does not affect the quality of the FG, but rather reduces the noise on the mapped graphs and eases

the load on the P2P layer.

12.4.3 Faceted search convergence

Any kind of similarity relation between objects in a large corpus are difficult to navigate, because

of the high density of navigable similarity links. Folksonomies, represented as graph-based models

built from tags and resources and from the relations between them, are examples of such complex

systems, very difficult to navigate. Convergence in this context could be solved by extracting

a taxonomy from the folksonomic space [147] and then navigate from the root of the hierarchy

down to the leaves. However, this approach may be very complex and can lead to several different

hierarchies that may be equally good (or bad) for a user. Therefore, search convergence should be

granted for any path the user chooses to navigate through related tags.

Search convergence is important because the quickest the navigation converges, the lowest the

number of overlay lookups needed to locate a resource is. Convergence rapidity depends by which

is the first tag selected. If it resides in the periphery of the FG, the search procedures will converge

almost immediately, because the number of tags and the number of resources connected with it

will be very probably quite small. Making a parallel with a taxonomic search structure, it is like

the user had started her search from a node which is very close to a leaf of the tree structure, and

so she had few levels left to explore.

On the contrary, the dual (and probably more frequent) behavior starts the search from more

popular tags, those that resides into the core. In order to show that convergence is quick also in

this case we report further simulative results. We took the 100 most popular tags and, starting

from these, we simulated tag search procedures in order to estimate the average length of a search.

Three types of search were performed; independently from the search strategy, we suppose that

the size of the tag set shown to the user at each step, Ti, is upper bounded to the top 100 tags

retrieved from the DHT; larger sets of tags would be unsuitable for an effective user visualization.

In the first search type (first tag strategy) the tag selected at each step is the most similar with the

current tag. Formally, given a search path t0, ..., ti, the next tag selected is a label ti+1 such that

sim(ti, ti+1) ≥ sim(ti, τ), ∀τ ∈ Ti. The second type (last tag strategy) is the dual of the previous:

the selected label is always the tag which is the least related with the current one among the 100

Number of steps Last Rand First

Original

μ 3.47 6.412 33.94

σ 1.4175 4.4587 15.9942

μ1/2 3 5 33

Simulated (k = 1)

μ 3.38 5.2140 19.17

σ 1.2373 2.6994 10.3065

μ1/2 3 5 16

Table 12.4: Search simulation statistics
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tags displayed (i.e. tag ti+1 such that sim(ti, ti+1) ≤ sim(ti, τ), ∀τ ∈ Ti). In the third search type

(random tag strategy), the next tag is selected uniformly random within Ti.

For each tag among the 100 most popular we simulated the “first” and “last” search and 100

random searches, on both original and approximated Folksonomy Graph (for k = 1), using the

faceted search algorithm described in Section 12.2.3. The search procedure is stopped when |Ti|
reduces to 1 or when |Ri| ≤ 10. We choose 10 as lower threshold for the number of displayed

resourced because a set of 10 objects is small enough to be displayed to the user without the need

of further filtering.

Statistics on search paths length are shown in Table 12.4. From the experiments, it emerges

that the path length is characterized by a high variance, for every search strategy, due to the high

variability in the nodal degree of the FG.

With regard to searches performed in the original model, we observe that in the “last” and

“random” strategy, the mean (and median) values are very small if compared to the size of the

dataset; in particular, note that these values are < ln(|T |). The “first tag” strategy produces

longer paths; however, a deeper result inspection revealed that they are originated by tag selection

sequences which are very unlikely to be produced by a real user.

Roughly, the great majority of such sequences are those in which almost all tag selected are the

most popular tags; since such tags are connected with huge sets of tags and resources, the size of

the resource and tag sets decreases slowly at each search step. This is an expected behavior of the

system, because if the user does not specialize the search terms it is clear that the navigation is

maintained at a very coarse-grain level. Other slow-converging sequences are those in which many

synonyms appear (e.g. “electronica”, “electronic”, “electro”). Here, since semantically equivalent

tags mark more or less the same set of resources, it is clear that navigation from one to another

does not add any filtering information to the search procedure.

Such categories of search path occur because the meaning of the tag is not taken into account

in simulations. But when the tag navigation is executed by a human user, and a semantic thread

is followed in tag selection, the path leading to the objective could probably result shorter, more

similar to the “random tag” selection case.

Comparing the simulative results obtained in the original Folksonomy Graph with those ob-

tained for the approximated graph, the advantage on query convergence determined by approxi-

mation is clearly shown. Figure 12.6, which plots the cumulative density function of search path

lengths for both models in the three strategies, together with statistics of Table 12.4, shows that

the approximated approach shortens the navigation, thus quickening convergence. This effect, par-

ticularly evident in the “first tag” strategy, is determined by the deletion of lightweight arcs from

the graph. By wiping out the noisy connections the semantic distance between tags is increased,

thus leading to a faster vocabulary specialization during the tag selection process.

As final consideration, remember that the simulated search ends when the set of resources

reduces to an arbitrary threshold set to 10, but if this value is raised, even slightly, path lengths

could be considerably reduced.
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Summary on Part II

Services provided by social media have acquired an increasing potential in last few years, reaching

a surprising effectiveness in recommending the users and anticipating their actions. This has been

possible because of the great amount of information that users reveal to the systems in an explicit

or implicit way. Inevitably, this scenario raises several privacy issues, moreover when sensitive

user data leak between different systems or to other untrusted participants.

An increasing awareness about these issues is strengthening among social media users. In order

to satisfy this demand, we follow the path traced by a recently-formed research community that

proposed to migrate online social networks from the classic centralized paradigm to peer-to-peer

layers in order to escape the opaque management of sensitive information performed by service

providers. However, providing a complex social network service on a fully distributed layer is

very challenging under three different, yet strictly related perspectives: security, privacy and

services.

First, vulnerability to attacks suffered by overlay networks is a strong obstacle to the de-

velopment of critical applications on DHTs. We make an overview of all the most known attacks

to structured overlay networks and we show by the means of simulation the disruptive potential of

such attacks under a very general attacker model.

To tackle this security problems, we propose Likir, an identity-aware version of Kademlia

that offers an effective defense against a wide range of attacks, with a limited overhead. Even

if a registration service is introduced, our architecture does not present a single point of failure,

because the Certification Service (CS) is contacted only during the user subscription phase,

through a simple web service. If the presence of a centralized authority must be avoided, the

CS could be easily replaced by efficient distributed PKI infrastructures like the one proposed by

Lesueur et al. [192]. Likir relies on the CS to avoid the proliferation of “zombie” nodes controlled

by a single attacker, uses a new protocol enhanced with cryptography to provide secure message

exchange between peers and introduces certificates attached to resources to contrast the spreading

of polluted content on the distributed storage.

Then, we show that embedding identity at overlay level can be exploited also beyond security

purposes. We presented LotusNet, a new architectural scheme of a DHT-based OSN that extends

the very essential Likir API to provide a customizable privacy level of the user data.

We provide confidentiality by assigning the access control responsibility to overlay index-

nodes. A content stored in the DHT is returned to the querier only if a proper grant, signed by
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the its owner, is shown to the item keeper. Flexibility of grants and the possibility to store data

at trusted index nodes allow the users to tune the desired privacy level for the activity around

any particular widget or resource. Furthermore, grants exchanged between peers implicitly model

the social network’s topology, facilitating the establishment of new social contacts. Together with

confidentiality, our approach assures a protection against other kinds of unwanted information

leakage.

Besides access control, we define a set of core services useful for a wide range of social appli-

cations. We propose an asynchronous notification service entirely supported by the overlay layer,

a tag-based search engine service to overwhelm the exact-match lookup problem of structured

P2P network, and a handle for a reputation system intended to expel misbehaving users in a

cross-application fashion.

We focus in particular on the description of DHARMA, the distributed tagging service. We

present an approximated approach for the maintenance of the relational information that defines a

folksonomy on a DHT. Simulative and analytic studies show that the approximated representation

of the similarity graph does not upset the features of the theoretic folksonomy model. Besides,

approximation can largely mitigates overfitting phenomena and significantly reduce the number

of overlay operations for new tag insertion without degrading the user search experience. The

information which gets lost in the approximated mapping is prevalently noise. The low number

of lookups needed during the insertion/search phases allows an efficient implementation of a tag-

based, general-purpose indexing service over a structured P2P network.

The specification of a complex service like DHARMA on the top of Likir and LotusNet provides

the empirical demonstration that the P2P way is viable for the implementation of efficient and

privacy aware services.

LoutusNet is the product of design choices that are agnostic with respect to the layers above.

We do not make any assumption on the structure of applications or messages that compose the

social media. As a result, we presented a social services framework that can host several, possibly

interconnected social networking services thus creating an environment without closed informa-

tion silos but that is at the same time respectful for personal information privacy.

Likir, DHARMA and some of the LotusNet core services we defined, have been implemented

in the form of a Java libraries (likir.di.unito.it).
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Part III

Opportunities and risks in the new

Social Web
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Chapter 13

Robots and earthquakes

“More human than human” is our motto.

Dr. Eldon Tyrell in Blade Runner (1982)

13.1 The next-generation social Web

The transition from the early digital age of the Web to the collaborative paradigm of the Web 2.0

that, in turn, gave origin to the Social Web, naturally raises the question about what will be the

shape of the Web in the next few years. In previous Chapters we learned that predicting the future

is no easy task but, if we look carefully, it is not so hard to detect even today some signs that let

us understand what the traits of the next generation World Wide Web could be.

Online dynamics and the life in the real world have been entangled since the early stages of

the diffusion of commercial Web browsers. Just to mention a couple of examples, online services

radically changed the way in which we gather news and knowledge and the rise of online social

networks expanded our instruments to communicate and get in touch with our social circles. Today,

however, pervasiveness of the Web in real life is knowing an unprecedented expansion, up to the

point that monitoring, understanding, predicting and even manipulating human phenomena is

something that could be done through the digital world.

The first striking evidence of this radical change of perspective is given by politics. The im-

portance that Twitter has acquired in the election debates and opinion formation campaigns of

democratic elections is an example of the shift of communication power from conventional media

to the Web. Tweets with political connotation are primarily useful for Twitter consumers to the

end of their opinion formation, but much greater interest has been attracted in the research com-

munity by the opportunity of unveiling on a public and widely accessible platform all the opinions

that “ordinary people” have traditionally exchanged in confined and private physical spaces. The

possibility of monitoring the traffic of political messages of millions of users allows us to under-

stand the dynamics of opinion formation and the evolution of consensus on particular candidates

or parties [88]. A thorough analysis of political memes1 enables also the prediction of political
1In the Websphere, a meme “refers to a catchphrase or concept that spreads rapidly from person to person via
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alignment of single users [89] and, on a larger scale, several attempts has been done to predict the

outcome of the elections in US and Europe from social media trends (even though controversial

results have been obtained [327, 163, 258]).

If the digital world can reflect with great detail the trends and interactions occurring in the

society, on the other hand a targeted use of the online social instruments can effectively influence

and pilot some social dynamics of the real world. A proper exploitation of the interaction patterns

of a social network can lead to effective attacks to the system. The phenomenon of Web astroturf 2

on Twitter [276] is an example of how the functions of a social media can be subverted to spread

misinformation. Malicious users can indeed automatically generate traffic that can be disguised

as spontaneous to spread fake news or misleading information about some particular topic. Even

though much effort has been spent in contrasting these attacks [275] (see for instance the Truthy

project at truthy.indiana.edu), still much has to be learned about the potential misuses of social

media and the possible countermeasures.

Nevertheless, the penetration of the social Web into the dynamics of the real world has also

brighter sides. For instance, social media had a pivotal role in directing and coordinating the

protesters in the 2010-2011 demonstrations of the so-called Arab Spring wave [259, 337, 146], a

vast social and cultural movement of Middle-East and North Africa uprising against dictatorships,

human rights violations, and governments corruption. Moreover, the extreme pervasiveness of

social media and their rapidity in disseminating information outperforms any other automatic

systems when it comes to monitor a real-time event and to spread related notifications. The case

of the recent earthquake in Japan, whose seismic waive front was preceded by the tweets reporting

the earthquake itself [291] is a clear example on how our perception of reality has been changed

by the use of social media. In this scenario, it is not surprising that also the modern approach

to journalism is being reversed by the social media revolution. In fact, online social media are

becoming one of the primary information pool that journalists can use to produce news of public

interests. As a result, computational journalism [85] is emerging as a new technique of exploration

of the Web with advanced analysis and visualization tools to extract relevant news in real-time (see

for instance the cascade project by New York Times (nytlabs.com/projects/cascade.html)).

Last, the influence potential of the Web on the real world has been greatly expanded with the

broad diffusion of smart mobile devices. Outdoor connectivity enables many reality-augmentation

services besides basic geo-localized applications. The aggregation of the mobility traces with the

data from conventional social media could be used to monitor and predict the mood of the inhab-

itants of urban areas [267], while interactions between mobile devices can instead be exploited to

recommend new products [300, 288], events [268] or even new friends [266] in the real world.

In a nutshell, the current trend of the Web suggests a future in which opinion and events

the Internet, largely through Internet-based email, blogs, forums, Imageboards, social networking sites and instant

messaging” (definition from wikipedia.org).
2Astroturfing is defined as a “form of advocacy in support of a political, organizational, or corporate agenda,

designed to give the appearance of a “grassroots” movement. The goal of such campaigns is to disguise the efforts of

a political and/or commercial entity as an independent public reaction to some political entity [such as] a politician,

political group, product, service or event” (definition from wikipedia.org).
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generated on the Web have a fast effect on the dynamics of the real world. As previously outlined,

this may lead to great opportunities as well as to some hazards of undesired exploitation. We believe

that all the possible implications of this emerging paradigm of the Web are still widely unknown

and unexplored. To highlight some possible research directions in this field, in the next Section

we describe the outcome of a social experiment showing how the concepts of popularity, trust,

influence and privacy that we studied in depth in the previous Parts can be easily manipulated on

online social media just by a single user.

13.2 People are strange, when you’re a stranger: the “infa-

mous” case of lajello

Trust, popularity and influence are three aspects at the basis of the interpersonal relations in every

social network. To what extent such dimensions depend one on another? The interdipendence

between popularity and influence has been studied in depth in social media and it has been shown

that very popular users are usually not very influential, and vice-versa [6, 77]. Instead, popularity

can grow depending on the kind of profile features exposed to the public [177, 321] while influence

depends on a combination of the position on the social graph [156] and of the language used in

public communications [267]. The creation of trust bonds is strongly correlated with the similarity

of opinions and profiles [124] and, intuitively, trust seems to be a precondition for both popularity

and influence.

In partial contradiction with these findings, here we present the results of a social experiment

on the aNobii network showing that i) popularity can be achieved by untrustworthy users just by

showing interest in other community members; ii) untrustworthy users can easily become influential.

Moreover, in reference to our work presented in Part II, our experiment shows that the activity of

a single individual could rise some security and privacy concerns independently of the architecture

of the online social network at hand (centralized or peer-to-peer), thus opening new challenges in

the design of privacy-aware social networks. Finally, the experiment provides a further validation

of the link recommendation technique of Section 5.3.

13.2.1 Phase 1: Path to Fame

As mentioned in Section 3.2, we collected the data of several social media through Web crawling. In

the case of aNobii, the social networks for book lovers, some features are protected from anonymous

visitors and user must be logged-in to view them. For this reason, we created a stub user with

an empty profile. After the standard registration procedure the user was named lajello after the

email prefix of the subscriber. Our crawler used the credentials of the stub account to retrieve the

protected pages and thus lajello became a bot exploring the aNobii network.

aNobii default user settings specify that every visit of a logged user automatically leaves a trace

in a personal guestbook of the visited profile. As a result, our crawler left a trace of its passage in

every single aNobii profile approximatively twice a month. The users are not proactively notified of
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Figure 13.1: Message bursts in response to the bot’s visits

a new visit but they can check their personal guestbook and see the last 30 non-anonymous visitors

of their libraries. The unexpected response of the users to our bot’s visits led us to continue running

the crawler periodically even after having obtained the data we needed for our study just to collect

the reactions of the aNobiians.

In fact, every round of visits triggered a burst of comments on the bot’s public wall. The bot

never replied and continued its periodical two-monthly visits for approximatively one year and

half overall. Figure 13.1 shows the fluctuation of the number of public messages received on the

bot’s shoutbox in a 6-months period. At the end of its activity lajello’s profile has become the

most popular in the website, boasting almost 2500 public messages from around 1300 different

users, more than 200 private messages, more than 66k visits to its profile, 125 neighbors and 86

friends. Considering the very limited size of the social network (around 150k today, but just 80k

when the bot started its exploration), these values are extremely high and position the bot in

the very tail of all features distributions of our dataset (see discussion in Chapter 3 for detailed

distributions). Moreover, hundreds of users subscribed to several thematic groups (we counted 6)

specifically created to discuss about the bot and numerous threads about lajello appeared also in

external blogs unrelated to aNobii. Even being an untrustworthy empty profile and without saying

a word, our bot became soon very well known across all the social network and people never started

ignoring its presence and visits.

Interestingly, as shown in Figure 13.1, the rapid bursts of messages happening after the bot visits

do not trigger any self-feeding effect in the incoming communication stream. When the solicitation

of the network ends (i.e., the crawler stops), people quickly lose interest in the topic except to

respond with the same feedback when next crawl round is performed. This strict correlation

between social activity and shouts received can be detected in every profile in aNobii and in no

case we detect a relevant volume of incoming messages without a comparable volume of outgoing

messages in the same time frame. In Figure 13.2 the traces of the number of incoming and outgoing

messages for one of the most active users are shown as example of this phenomenon.
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(black solid line) and cumulative number of distinct users sending messages over time (red dashed

line). (Bottom) Same measures applied to the outgoing messages. Fluctuations in the number of

messages sent and received are very similar.

The scenario that emerges from this experiment is that the key for popularity in aNobii is not

trust but social activity instead.

13.2.2 Phase 2: Influence

The finding that a great popularity can be gained with automated activity of an anonymous and

non-trusted user naturally arises a question about the possibility for a empty profile to be influent

on other community members.

To answer this question we arranged a second phase of the social experiment in which the

bot tries to persuade users to take action. In particular, given the previous experience on link

recommendation on social media, we instructed our bot to send personalized recommendations of

new social contacts.

We listed approximatively 2000 Italian users evenly partitioned between users that gave some

feedback to the bot (i.e., wrote a message on its wall, subscribed to one of the thematic groups, and

so on) and those who did not. Then we randomly sampled 50% of users from this pool and pro-

duced for them a single contact recommendation using the machine learning technique described

in Section 5.3. For the remaining 50% we produced random recommendations. Finally, we ran-

domly sampled 50% of the recommendation pairs (u, v) (where u is the user to be recommended

and v the recommended contact) and we produced the corresponding reciprocal recommendations

(u, v). At the end of this process we obtained approximatively 3000 different recommendations of

non-existent social ties.

Using a random message generator that has been written specifically for this experiment, we
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Figure 13.3: Fraction of successful recommendations per category. “Followers” denotes those users

who posted some messages to the bot’s shoutbox or who were subscribed to some group dedicated

to the bot. “Recommendations” and “Random” denote respectively the suggestion performed

using a machine learning link recommendation technique and random suggestions. “Reciprocal”

denotes the set of successful recommendations that reciprocate other recommended edges.

produced a unique message for each user in the recommendation list. Even though different lexical

variants were used, all the messages contained a suggestion for the recipient to add a certain user

to her neighbors list.

We registered a fast and explosive user response to the messages. In the 24 hours following

the experiment about 350 shouts where published in lajello’s shoutbox and 361 users in our list

created at least one social link. Among the creators of new links, the 52% followed the suggestion

given by the bot, thus confirming the influence of the bot in the community. The distribution of

the successful recommendations over the different categories considered is shown in Figure 13.3.

We note that users that are more aware of the presence of the bot and have tried to communicate

with him are more prone to follow the suggestions. Moreover, recommendations generated by our

algorithm are globally much more effective than random recommendations. Finally, it is surprising

to see that recommendations are more likely to succeed when both directions of the link are

suggested to the two endpoints. This is probably due to the fact that bidirectional recommendations

are more likely to trigger some communication between the two endpoints that in many cases ends

up in the agreement to form a new social tie.

13.2.3 Final remarks

In our experiment we focused on the quantitative analysis of the user response to our bot to assess

its popularity and influence across the community. Even if we do not report here any qualitative

analysis on the semantics of the messages directed on lajello’s shoutbox, we remark three crucial
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results that clearly emerge from an inspection of the messages content.

• The vast majority of people believed lajello to be a human user. Only in the latest phase of

the experiment the incertitude about the possibility of lajello being a robot began to spread

over the network. This result is coherent with another recent “socialbot” experiment on

Facebook [61], in which 80% of unaware users accepted the friendship request of a bot.

• The corpus of messages received by the bot contains a wide variety of sentiments, from

veneration to hatred. Very soon the community of users that became aware of the presence

of lajello split into roughly two factions of people for and against the activity of the bot.

• Many users have expressed deep discomfort for the fact that an unknown user was periodically

visiting their profiles. Even if our bot explored just the public information available to anyone

in the community, several users expressly stated that they perceived the activity of lajello as

an unacceptable privacy violation. This result confirms previous studies on the perception of

privacy of users on online social media [193] reporting that users are very concerned about

the activity and the requests of strangers and they tend to give access to their data only

to users whose good reputation can be somehow verified or who provide at least picture of

themselves in their profile.

A more systematic sentiment analysis of these messages is planned in the future. However

even this high level overview on the semantics of the human reactions teaches us two things. First,

social networks suffer from subtle privacy hazards that can be easily generated in both centralized or

decentralized settings (in principle, lajello could have performed exactly the same kind of activity if

aNobii had been developed over a privacy-aware peer-to-peer architecture). Last, we experienced

that social dynamics in online networked services can be altered or even disrupted with a very

small effort made by a single node in the network. Specifically, our bot was widely mistaken as

a human user and its activity triggered both hostilities and aggregations between members of the

community. This side of privacy in online social systems has still to be explored to shed light on

its facets and to learn it implications on the security of such services. Presumably, research on this

field will have to face these issues more and more in the next few years by relying on a growing

collaboration between different disciplines.
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and Alberto Eugenio Tozzi. Close encounters in a pediatric ward: Measuring face-to-face

proximity and mixing patterns with wearable sensors. PLoS ONE, 6(2):e17144, 02 2011.

[159] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo Menczer. Social

phishing. Communications of the ACM, 50(10):94–100, 2007.

[160] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: understanding

microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-

KDD 2007 workshop on Web mining and social network analysis, WebKDD/SNA-KDD ’07,

pages 56–65, New York, NY, USA, 2007. ACM.

[161] Rosie Jones and Kristina L. Klinkner. Beyond the session timeout: automatic hierarchi-

cal segmentation of search topics in query logs. In CIKM ’08: 17th ACM conference on

Information and knowledge mining, pages 699–708, New York, NY, USA, 2008. ACM.

196



BIBLIOGRAPHY

[162] Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout: automatic hierarchical

segmentation of search topics in query logs. In CIKM’08: Proceeding of the 17th ACM

conference on Information and knowledge management, pages 699–708, New York, NY, USA,

2008. ACM.

[163] A Jungherr, P Jurgens, and H Schoen. Why the pirate party won the german election of

2009 or the trouble with predictions: A response to tumasjan, a., sprenger, t. o., sander, p.

g., welpe, i. m. “predicting elections with twitter: What 140 characters reveal about political

sentiment”. Social Science Computer Review, 2011.

[164] Jayanthkumar Kannan, Beverly Yang, Scott Shenker, Puneet Sharma, Sujata Banerjee, Sujoy

Basu, and Sung-Ju Lee. SmartSeer: Using a DHT to process continuous queries over peer-

to-peer networks. In INFOCOM ’06 : 25th IEEE International Conference on Computer

Communications. IEEE Communications Society, 2006.

[165] Hisashi Kashima and Naoki Abe. A parameterized probabilistic model of network evolution

for supervised link prediction. In Data Mining, IEEE International Conference on, pages

340–349, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[166] Andy Kazeniac. Facebook takes over top spot, Twitter climbs. http://blog.compete.com/

2009/02/09/facebook-myspace-twitter-social-network, February, 2009.
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[175] Jérome Kunegis, Ernesto De Luca, and Sahin Albayrak. The link prediction problem in
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