
Universitá degli studi di Torino
Department of Computer Science

HANDLING LARGE STATE SPACES IN
TRANSIENT ANALYSIS OF MARKOVIAN

PROCESSES

Ph.D Thesis

Candidate: Alessio Angius

Advisor: András Horváth
Co-advisor: Gianfranco Balbo

Submitted on March 2013

To my family.

Thanks for making this possible.

ii

Acknowledgements

As first, I want to thank András Horváth, I have been lucky to work under
his supervision since from the Master thesis. Besides, I consider him a dear
friend.

Secondly, I would like to thank the entire research group for their personal
and professional support, they created the best environment to learn and
improve as a researcher.

During the Ph.D., I have had the possibility to be guest of Verena Wolf
and Holger Hermanns in Saarbrucken. It has been an amazing experience
for which I will be always grateful to them.

Of course, I have also to thank my parents (Giampiero and Lina), my brother
Fabio, my grandparents (Giovanna Rosa, Piera, Paolo, Stefano), the uncles,
the aunts, and the little cousin Michele.

Last but not least, I want to dedicate a special thanks to Rosaria for her
love and patience during these years.

Contents

Contents iii

1 Abstract 1
1.1 Brief summary of the state of the art 2
1.2 Objective of the thesis . 3
1.3 Structure of the thesis . 4

2 Introduction to stochastic processes 6
2.1 Stochastic processes . 6

2.1.1 What is a stochastic process? 6
2.1.2 Stochastic process analysis 7

2.2 Markov chains . 10
2.2.1 Discrete-time Markov chains 11
2.2.2 Continuous-time Markov chains 12
2.2.3 Numerical computation of transient distributions . . . 15

2.2.3.1 Discrete-time 16
2.2.3.2 Continuous-time 17

2.2.4 Graphical representation 20
2.3 Formalisms for stochastic processes 21

2.3.1 Queuing networks . 22
2.3.2 Stochastic Petri nets 24

I Markov reward models 29

3 Markov reward models 30
3.1 Rewards governed by DTMCs 32

3.1.1 Moments of accumulated reward 35
3.1.2 Moments of completion time 37

iii

CONTENTS iv

3.2 Rewards governed by CTMCs 40
3.2.1 Derivation of MRM from SPNs 41
3.2.2 Accumulated reward, characterization in time and trans-

form domain . 42
3.2.3 Moments of the accumulated

reward . 45
3.2.3.1 Recursion for the moments of the accumu-

lated reward 46
3.2.3.2 Numerically stable recursion for the moments

of the accumulated reward 49
3.2.3.3 Error control 50
3.2.3.4 Computational complexity 51

4 Case studies 53
4.1 Manufacturing production lines - rewards governed by DTMCs 54

4.1.1 Skewness and higher order moments 55
4.1.2 Systems with machines producing in batches 57
4.1.3 Two-machine line with degrading machines 60
4.1.4 Larger production lines 61

4.1.4.1 Four machines - reversibility property for sec-
ond moments 61

4.1.4.2 Six machines - estimation completion time . . 63
4.2 Biochemical systems - rewards governed by CTMCs 65

4.2.1 Case 1 - Ad-hoc model 65
4.2.2 Case 2 - DFG degradation 69

II Product form approximation 73

5 Transient product form 74
5.1 Transient product form . 77

5.1.1 Sufficient conditions 78
5.1.1.1 Closed networks 78
5.1.1.2 Open networks 79

5.1.2 Necessary conditions - Boucherie’s results 82
5.2 Transient product form approximation 84

5.2.1 Definition of the approximation 84
5.2.2 Consistency with transient product form networks . . . 87

CONTENTS v

5.2.3 Limiting behaviour . 89
5.2.4 From queuing networks to SPN 89

5.3 Application of PF approximation 92
5.3.1 Stations with finite number of servers 92
5.3.2 Synchronizations and blocking mechanisms 96

6 Quasi-product form approximation 103
6.1 Definition of the approximation 108
6.2 Choice of the DAG . 116

6.2.1 Finite server networks 117
6.2.2 General context . 118

6.3 Algorithm . 121
6.4 Error evaluation . 125

7 Numerical illustrations 127
7.1 Finite number of servers . 128

7.1.1 Open central server network 128
7.1.2 Multi-path network . 129
7.1.3 On-demand production system 132

7.2 Modulation through switches 135
7.2.1 Exclusive switch model 135
7.2.2 Multi-attractor model 140

7.3 On demand multilevel manufacturing system 149

8 Conclusions and future works 160
8.1 Conclusive remarks . 160

8.1.1 First part . 160
8.1.2 Second part . 161

8.2 Future works . 161
8.2.1 First part . 161
8.2.2 Second part . 162

Bibliography 164

1
Abstract

This dissertation is placed in the context of systems performance evaluation.
In particular, we deal with models based on stochastic processes; thus, given
a mathematical abstraction of a system, our goal is to provide an exhaustive
quantitative analysis of the system properties in form of probability measures.

Stochastic processes can be treated from two points of view:

• transient analysis: which aims to observe the evolution of the process
during a finite time interval,

• steady state analysis: which considers the behaviour of the process once
it gets stable.

In this thesis, we focus on a special class of processes, namely, Markov chains.
Markov chains have been used for a long time to describe systems having ran-
dom behaviours, such as distributed computer networks, telecommunication
systems, and manufacturing or logistics infrastructures.

The main reason of their success is that, in principle, they are com-
putationally friendly. However, standard analysis techniques developed for
Markov chains are precluded in case of huge state spaces.

This problem occurs more often than not because the number of states
considered by Markov chains grows exponentially with the number of mod-
elled objects; this phenomenon is known as state space explosion.

1

CHAPTER 1. ABSTRACT 2

1.1 Brief summary of the state of the art

In order to make doable the analysis of large state spaces, a lot of effort has
been dedicated to the development of both analytical and numerical methods.
In this direction, several efficient analysis techniques have been proposed to
compute the stationary measures of specific models.

The most notable example is placed in the context of queuing networks
where a family of algorithms exploits the fact that, under particular assump-
tions, the steady state probabilities enjoy the so-called product form. Roughly
speaking, this means that the global distribution of the system can be com-
puted as a product of measures computed by considering its components as
isolated from the rest of the net. [56, 41, 13, 35, 36, 38, 37, 39, 28, 44, 11,
79, 26].

Moving to a more general context, another idea to manage complexity
and largeness of state spaces is the exploitation of model or system structure
in the description and analysis of the underlying Markov chain. A similar
idea was proposed by Plateau for the first time in [75, 76] where the generator
matrix of a Markov chain resulting from a network of stochastic automata
was represented in a highly compact form by exploiting the features of its
structure. The approach has been also adopted for Generalized Stochastic
Petri Nets (GSPNs) [58, 31, 32] and Stochastic Process Algebras (SPAs)
[19].

In contrast to stationary analysis, transient analysis is more complicated
because it enjoys properties such as product forms or flow equivalences in
very few situations. Exact computations are possible only for moderate size
models or for very particular situations, like networks of infinite server queues
[46, 67, 18, 17]. In these networks clients are independent of each other and
this leads to the fact that the number of clients at a station follows a Poisson
distribution whose mean can be calculated by a set of ordinary differential
equations.

By putting aside the explicit description of the state space, system of
ordinary differential equations has been massively used to analyze large scale
systems from the point of view of their deterministic approximation. The
outcomes of these analyses, called mean-field or fluid approximations, are
often trajectories that can be seen as the approximate average behaviour of
the model [61, 62, 83, 54, 48]. Higher order moment closure techniques exist
as well by providing an approximation not only for the mean but also for
higher order moments and joint moments [34, 80, 68, 24].

CHAPTER 1. ABSTRACT 3

Methods based on aggregation can also be developed, see, for example,
[15]. There are few techniques that maintain the original state space of
the model and, as a consequence, allow to calculate distributions and not
only moments. In [47] an iterative method is suggested to solve the time-
dependent Kolmogorov equations of the model but this approach suffers from
the state space explosion problem. A memory efficient approach is proposed
instead in [91, 21] where the number of ODEs that describe the transient
behaviour is decreased by assuming a limited dependency structure among
the queues of the network. As last, in [77] Buchholz and Sanders describe an
approach that combines the randomization approach for transient analysis
of Markov chains with a representation of probability vectors as Kronecker
products of small component vectors.

1.2 Objective of the thesis

This dissertation deals with the problem of transient analysis in case of large
state space. The goal of the thesis is dual; in particular, we aim to:

1. show that there are cases in which an accurate analysis of the structure
of the model can avoid the use of approximate techniques,

2. propose a new approximate technique for the computation of transient
probabilities.

In reference to the first objective, we point out that although the use
of approximations is appealing because of their lower computational cost,
their use should be the last attempt to perform the analysis of a model. In
fact, an accurate qualitative analysis of the model structure often suggests
an alternative use of standard techniques and, consequently, the preservation
of the exactitude of the results. In the first part of the thesis, we provide an
example of such situations by showing a case where we were able to build
an exact framework to analyze large systems by applying relatively small
changes to standard techniques. Specifically, we propose the results obtained
in [5, 3] where we considered manufacturing production lines and biochemical
systems as reward models. This expedient allowed us to study models whose
analysis is precluded by using common techniques. This part of the thesis
is based on the work of Telek and Rácz described in [84]. However, we
extended the original technique to multi-reward models in such a way that
joint moments are also computed.

CHAPTER 1. ABSTRACT 4

On the contrary, the second part of this dissertation, based on the works
described in [4, 6], considers those situations in which the only possible solu-
tion is to renounce the exactitude of the results. In this context, the scarcity
of techniques able to provide an approximation of transient probabilities mo-
tivated us to investigate a possible new strategy to perform such analysis.
Moreover, most moment based approximations such as mean-field and fluid
analysis are, more often than not, based on the fact that the number of con-
sidered objects is large. Indeed, this is not the common situation in case of
shared resources where, typically, several users compete for a limited num-
ber of items, or in case of blocking mechanisms that are often considered as
binary conditions.

For the reasons above, we developed a novel technique which takes inspi-
ration from the concept of transient product form. In particular, we assume
that the transient probabilities of the model can be decomposed into a quasi
product form. This assumption simplifies the dependency structure of the
model and leads to a relatively small set of ordinary differential equations
that can be used to compute an approximation of the transient probabilities.
The approximation allowed us to analyze huge state spaces (beyond 1016)
with a low computational cost. Moreover, we were able to reproduce accu-
rately features that, by definition, cannot be represented through approxima-
tion based only on moments; such as bi-modal distributions and extremely
rare events.

1.3 Structure of the thesis

Metaphorically speaking, the structure of this dissertation is a path that goes
from standard techniques to approximate methods. Chapter 2 introduces
basic concepts about stochastic processes and then focuses on Markov chains
in order to explain the notions required for the reading of this thesis.

Subsequently, the dissertation splits in two parts. The first part is com-
posed of two chapters: Chapter 3 which explains the notion of Markov reward
models, provides the formal definition of accumulated reward and completion
time, and shows how their higher order moments can be recursively com-
puted; Chapter 4 which illustrates the use of the framework on real case
studies.

The second part is composed of three chapters: Chapter 5 gives a formal
definition of transient product form and describes a first attempt to use prod-

CHAPTER 1. ABSTRACT 5

uct form as approximation of the transient probabilities of Markov chains;
Chapter 6 provides an extension of the previous approach, namely, quasi
product form, which can be used to approximate a larger family of models;
Chapter 7 provides several numerical illustrations and shows the accuracy
of the method. Finally, in Chapter 8 we summarize our conclusions and list
possible future extensions of the works described.

2
Introduction to stochastic processes

2.1 Stochastic processes

In this section we will briefly explain what stochastic processes are and how
they are used in the context of system performance evaluation.

We will illustrate basic definitions about stochastic processes by providing
also some criteria that allow to coarsely classify them. Then we will conclude
the section by listing the measures that constitute the elementary units of
any analysis performed through stochastic processes.

2.1.1 What is a stochastic process?

Stochastic processes are probabilistic models of systems that evolve in a
random way. More formally, a stochastic process (s.p.) is a collection of
random variables {X(α), α ∈ T}, indexed by a parameter α taking values in
the parameter set T which usually represents time. Each random variable
X(α) takes values in a set S known as state space of the stochastic process.

Stochastic processes can be classified through several sophisticated crite-
ria, here we propose the three most common.

As first, we consider the time domain T: if we assume to observe a system

6

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 7

at discrete time points α = 0, 1, 2 . . . then the set T is defined in N and the
stochastic process {X(n), n ∈ N} is called discrete-time s.p.1. Else-wise if T
coincides with R, we will refer at the collection {X(t), t ∈ R} as a continuous-
time stochastic process.

A similar reasoning can be done about the domain of the state space;
hence, if X(α) can assume only discrete (continuous) values then we call the
process discrete-space (continuous-space). The distinction above leads to the
second criteria.

The third and last criteria deals with the transitions of a process. Com-
monly, the transitions of a process are described by mean of functions that
given a possible evolution of the s.p up to a given time instant n (called
trajectory from now-on) provide, in a probabilistic way, those states in which
the process can evolve at time n+ 12.

It is clear that the complexity of a stochastic process, defined as the com-
putational effort required to compute the probability of the trajectories that
the process can follow, grows with the complexity of its transition function.

In this work we will deal with a particular family of stochastic processes
which is characterized by the simplicity of its transitions: the Markovian
processes. A process is classified as “Markovian” if the following property
holds: “Given a trajectory {X(0) = x0, X(1) = x1, . . . , X(n) = xn} the
probability that we will find the system in a particular state y at time n + 1
depends only on the state X(n)”.

This property leads to an intuitive interpretation that can be informally
summarized by the sentence: “The history of the process does not count, the
future depends only on the present”.

As we will see in the next chapters, even if the Markovian property is
restrictive, Markovian processes are massively used in the context of perfor-
mance evaluation. This is because non-Markovian processes are much harder
to deal with computationally.

2.1.2 Stochastic process analysis

Stochastic processes are commonly used to predict system measures of inter-
est that cannot be computed directly because of physical constraints, time
or financial costs, etc.

1From now-on, we will use a line on the top of random variables indexed by integers.
2In sake of simplicity we assumed a discrete-time stochastic process.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 8

Thus, the investigations that a system analyst can perform on a stochas-
tic model are heterogeneous and more or less complicated according to the
purpose of the study. Some simple examples are:

• the probability to find more than 10 customers in a queue;

• the mean waiting time of an internet service user;

• the variance of the time required to finish a job given that at time n it
was only half complete.

Furthermore, disciplines such as model checking increase drastically the ex-
pressiveness of the properties that a system analyst can formulate on stochas-
tic models (see for example [9, 20, 52, 33]).

Nevertheless, any analysis passes through at least one common step that
is independent from the measures of interest: the choice between transient
period and steady-state (known also as transient and limiting behaviour,
respectively).

The study of a given measure Γ during the transient period corresponds
to give an answer to the question “How does Γ behave at time t?”, whereas
the study of the steady state of Γ considers the case of t approaching infinity.

Roughly speaking, the transient period is the phase of the process history
affected by the initial state whereas the steady-state (if exists and the process
is ergodic) is the stable state where the impact of the initial state on Γ is
completely disappeared.

The choice of one instead of the other does not affect only the meaning
of the results, but it determines also the choice of the numerical method and
consequently the complexity of the problem. As we will see, transient be-
haviours are computationally difficult and analytically intractable in a large
number of cases due to the fact that the transient period lacks of properties
that in steady-state hold.

As last, it is worth to introduce the measures that, in the major part of
the cases, compose the performance evaluation targets:

Distribution of the stochastic process

Have knowledge of the process distribution means being able to know the
probability of finding the process in a given state s ∈ S at a certain time
instant. In many cases, if the computation of the process distribution is a

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 9

feasible task, then almost all the measures of interest can be derived (more
or less) directly from it without much additional effort. The computation
of the distribution is often not cheap from a computational point of view;
hence, when it is possible, this computation is bypassed.

State-based functions

A state-based function is a function f(s), s ∈ S, which associates a numerical
value to each state of the s.p.. Typically, these functions represent quantities
such as throughputs of servers, number of customers in a queue, boolean
properties. These quantities can be analyzed by calculating their distribution
or through their moments.

Definition 1 Given the probability distribution of a random variable X tak-
ing values in a state space S and a function f : S → R, the nth moment of
f(X) is defined as1:

E[f(X)n] =
∑
s∈S

f(s)nPr(s) n ≥ 1

where Pr(s) denotes the probability that X equals s.

It is frequently preferred to normalize higher moments (n ≥ 1) according
to the first because in this way the quantities relate only to the spread and
shape of the distribution, rather than its location.

Such measures take the name of central moments and, by definition, have
the form

E[(f(X)− E[f(X)])n] =
∑
s∈S

(f(s)− E[f(X)])nPr(s) n ≥ 1.

Despite their definitions, the computation of these measures does not always
require the explicit computation of the distribution, see for instance, ([61, 62]
or [85, 86] where some approximations are presented.

Typical moments of interest are the expectation (first moment) and the
variance which corresponds to the second central moment.

Nevertheless in the rest of the dissertation we will provide reasons which
explain why the knowledge of higher moments can be important.

1Assuming that the state space is countable, otherwise the summation has to be sub-
stituted with an integral.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 10

First Passage Time

In many applications it is important to know when the system reaches a
particular set of states. The measure that provides this information takes
the name of first passage time and is defined as:

T = min{n ≥ 0 : X(n) ∈ B}

where B is the subset of the state space in which we are interested. The
random variable T typically represents the time until the system fails, or
the time until it stops or the time until it acquires other specific attributes.
Several studies can be performed on the r.v. T ; typical examples are: the
probability that it is finite, its moments, its distribution, etc.

Rewards

Rewards can be seen as the dynamic counterpart of state-based functions
since they capture how the stochastic process behaves instead of where the
process is.

Stochastic processes model the evolution of systems in time; thus, it is
natural that a system can incur costs or generate rewards depending on states
it visits and how long it sojourns there or how it changes states. Rewards
are the tool that allows to perform this kind of analysis. A reward can be
accumulated, decreased or lost according to specific system policies.

As we will see in the following chapters, rewards can be analyzed from the
point of view of their distribution as well as from the one of their moments.

The majority of the problems about stochastic processes can be reduced
to the measures listed above [60], hence, the handling of these tools allows
to deal with more complex measures that are compositions of the simpler
problems listed above.

2.2 Markov chains

The aim of this section is to introduce the fundamental concepts about
Markov chains by providing the basic definitions that will be used in the
rest of the dissertation.

We will also exploit this section to introduce the notation, the graphical
representation, and some examples about Markov chains.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 11

Moreover, we will give a first mention of numerical methods for Markov
chains whose description will be deepened in the following chapters.

2.2.1 Discrete-time Markov chains

Definition 2 A stochastic process is said to be a discrete-time Markov chain
(DTMC) if the following property holds:

Pr{X(n+ 1) = xn+1|X(n) = xn, X(n− 1) = xn−1, . . . , X(0) = x0} =

Pr{X(n+ 1) = xn+1|X(n) = xn},∀xi ∈ S

(2.1)

where S is a countable state space.

The property above, known as discrete-time Markovian property, allows
to define one step probabilities of making a transition from state i to state
j at time step n. Let pi,j(n) denote them, their definition is given by the
conditional probabilities:

pi,j(n− 1) = Pr{X(n) = j|X(n− 1) = i},∀i, j ∈ S (2.2)

with the condition that
∑

j∈S pi,j(n− 1) = 1 for every i belonging to S.
Transition probabilities are conveniently represented through a matrix

P (n) = [pi,j(n)]|S|×|S|, n ∈ N, called transition probability matrix.
The transition probability matrix governs the evolution on the time of a

DTMC according to the following equation:

π(n) = π(n− 1)P (n− 1) (2.3)

where π(n) is a vector representing the probability distribution at time n in
such a way that its ith entry πi(n) = Pr{X(n) = i}, 1 ≤ i ≤ |S|.

It is straightforward to construct a matrix P (m,n) which represents the
probability to be in state j at time n given that at time m the process was
in state i, 0 ≤ m ≤ n. The following equalities derive from basic matrix
properties

π(n) = π(0)P (0, n− 1) P (n− 1)

= π(0)P (0) P (1, n) (2.4)

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 12

If the probability matrix does not change on the time, i.e. P = P (n) for
every n, then the process is said to be time-homogeneous and the following
recursive equalities hold:

π(n) =π(0)Pn

=π(n− 1)P (2.5)

The steady-state distribution π of a DTMC is defined as

π = lim
n→∞

π(n) (2.6)

In the case of time-homogeneous chains, if such limit exists, π corresponds
to the solution of the following system of linear equations:{

πP = π∑
∀i∈S πi = 1

(2.7)

2.2.2 Continuous-time Markov chains

Given a countable state space S, consider a continuous-time stochastic pro-
cess {X(t), t ∈ R} behaving in such a way that when the process arrives
to a state i at time t, it stays there for a random amount of time and then
jumps to a new state j : j 6= i with a certain probability. Such a process has
a bi-variate discrete-time counterpart that is composed of a set of random
variable pairs {(X(n), S(n)) : n ≥ 0} where:

1. X(n) ∈ S : represents the nth state reached by the process,

2. S(n) ∈ R : is the time when the nth state is reached by the process,

3. (X(0), S(0)) is the initial state and S(0) is equal to zero.

Figure 2.1 shows a possible trajectory of {X(t), t ∈ R} which is piece-
wise constant, providing also a quick glimpse of how the continuous process
is connected to the discrete one. More formally, the relation among the
processes is defined as follows

X(t) = X(n), t ∈ [S(n), S(n+ 1)).

The time that the process spends in the ith state takes the name of sojourn
time and is defined as Y (i + 1) = S(i + 1) − S(i). In sake of simplicity, in
the following we focus on the time homogeneous case.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 13

t

X(t)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

Y (1) Y (2) Y (3) Y (4) Y (5) Y (6) Y (7)

S(1)
S(2) S(3)

S(4)

S(5)

S(6)

Figure 2.1: Representation of a continuous-time process

Definition 3 We refer to the process {X(t), t ∈ R} as a time homogeneous
continuous-time Markov chain (CTMC) if its discrete counterpart satisfies
the following properties:

• the sojourn time and the probability of the next state are independent
of each other;

• given any time instant t, the probability to move from i to j is governed
by a discrete-time Markov chain (called embedded DTMC);

• the sojourn time is not affected by the history of the system prior to
the time t, hence each r.v. Y (n) is exponentially distributed.1

These independence assumptions can be described mathematically as

Pr{X(n+ 1) = xn+1, Y (n+ 1) > y|X(n) = xn, Y (n) = yn, . . . , X(0) = x0}
= Pr{X(n+ 1) = xn+1, Y (n+ 1) > y|X(n) = xn}
= pxn,xn+1e

−qxny (2.8)

where qxn is the parameter of the exponential distribution of the sojourn of
the state xn. Another consequence of Definition 3 is the so-called continuous-
time Markov property which is defined as

Pr{X(t+ s) = j|X(s) = i,X(u) : 0 ≤ u ≤ s} = Pr{X(t+ s) = j|X(s) = i}
(2.9)

1We refer the reader to [81] where the properties of the exponential distribution are
deepened.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 14

As in the discrete case, the transition probabilities can be represented through
a stochastic matrix H (t, t+ s) = [pi,j (t, t+ s)]|S|×|S| where pi,j (t, t+ s) de-
notes the probability to find the process in state j at t+ s given that it was
in the state i at time t.

Definition 4 The infinitesimal generator matrix Q = [qi,j]|S|×|S| defines the
rates with which a CTMC can move from state i to state j. In formula, it
corresponds to

Q = lim
∆→0

H (t, t+ ∆)− I

∆
(2.10)

It is possible to prove that the entries of the infinitesimal generator are
structured in such a way that the elements off the diagonal are greater or
equal to zero whereas those on the diagonal are specified as

qi,i = −
∑
∀j 6=i

qi,j.

As a consequence, each row of Q sums to zero.
The terms of equation (2.8) are related with those of the infinitesimal

generator as follows

1. the sojourn time in state i is exponentially distributed according to the
parameter qi = −qi,i,

2. the transition probabilities pi,j of the embedded DTMC arise from the
ratio

qi,j
qi

.

Also in the continuous-time setting the transition probability matrices are
decomposable into matrix products, leading to the following properties:

Property 1 Given three time instants s, u, t such that s ≤ u ≤ t, the
following property holds:

H (s, t) = H (s, u) H (u, t) (2.11)

Property 2 For every s, t, 0 ≤ s ≤ t the transition matrix H (s, t) is differ-
entiable both on t and s according to the Chapman-Kolmogorov equations:

∂H (s, t)

∂t
= H (s, t) Q (2.12)

∂H (s, t)

∂t
= QH (s, t) . (2.13)

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 15

More precisely, equation (2.12) is called “forward” whereas (2.13) takes the
name of “backward”. The introduction of an initial distribution π(0) into
the Chapman-Kolmogorov equations completes the characterization on time
of a CTMC,

∂π(0)H (0, t)

∂t
=
dπ(t)

dt
= π(0)H (0, t) Q = π(t)Q, (2.14)

leading to an ordinary differential equation system (ODE system) composed
of |S| equations. Each equation has the form

dπi(t)

dt
=
∑
j

qj,iπj(t). (2.15)

Time-homogeneity has two important consequences:

• the transition matrix H (t, t+ s) is equivalent to a matrix-exponentiation1.
In formula:

H (t, t+ s) = eQs =
∞∑
k=0

(Qs)k

k!
. (2.16)

• if the CTMC is irreducible and recurrent then its equilibrium distribu-
tion corresponds to the null-solution of the ODE system described by
equation (2.15) (we remind the reader interested in the definitions of
irreducibility and recurrence to [60]). Thus, casting the probabilities
to sum to one, the following linear equation system arises:{

πQ = 0∑
i∈S πi = 1.

(2.17)

2.2.3 Numerical computation of transient distributions

In this section we will briefly introduce some methods that are commonly
used to analyze the transient behaviour of both discrete and continuous-time
Markov processes.

Since the comprehensive discussion of numerical methods for Markov
chains is beyond the scope of this dissertation, we will limit ourselves to
describe those techniques that are the most important for the analysis pre-
sented in this dissertation.

For the readers interested to deepen the topic, we suggest [81, 60].

1The relation holds when the infinitesimal generator is uniformizable. Such property
will be introduced in the next section.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 16

2.2.3.1 Discrete-time

Equation (2.3) shows that the solution of DTMC consists of repeatedly mul-
tiplying the probability distribution vector obtained at step n − 1 with the
corresponding transition matrix to obtain the probability distribution at step
n.

The application of the formula in general does not pose problems but
its complexity grows quadratically in regard of the number of states of the
process and cannot be reduced without additional assumptions on the model.

However, when n is large and the number of states is relatively small (lim-
ited to few thousands) some savings in computational time can be obtained
by exploiting properties of linear algebra.

A trivial example is the iterative squaring of the time-homogeneous tran-
sition matrix P in order to construct the matrix P (0, 2j) by computing only
j matrix product. Note that even if the matrix P is sparse at the beginning,
it tends to loose its sparsity during the computation of Pn, as a consequence
this approach is not appropriate for large sparse Markov chains.

Another common technique to analyze the transient period of a DTMC
consists in the study of the z-transform (also called generating function of
the process)

P∗(z) =
∞∑
i=0

ziPi, (2.18)

where z is a complex number.
In many case P∗(z) cannot be easily computed but if the number of

states is low or the chain is highly structured, it can be inverted to obtain
the explicit expression for π(n). The series in equation (2.18) converges
whenever |z| < 1. Then,

P∗(z) = I +
∞∑
i=1

ziPi

= I + zPP∗(z). (2.19)

Hence,
P∗(z) = [I− zP]−1.

Once computed the matrix P∗(z) = [p∗i,j(z)] we have that p∗i,j(z) is a rational
function of z that can be expanded in such a way that can be inverted by
the method of partial fractions.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 17

Generating functions have the advantage of providing a compact way to
represent the transient distribution of stochastic processes but their compu-
tation is often complicated and become quickly unfeasible at the growing of
the state space. Moreover, the inversion of the function is often critical from
a numerical point of view.

However, due to its properties, that can be exploited to perform more
complex investigations, the theoretical study of the z-transform is important
independently of the numerical method that will be used in practice to ana-
lyze the process. This last sentence will be clearer in the next chapter where
we will show that higher order moments can be derived directly from the
generating function of the process.

2.2.3.2 Continuous-time

From a computational point of view transient analysis of CTMC carries more
problems than its discrete counterpart. The main reasons are that:

• as shown in equation (2.16), the transient period of CTMCs is con-
nected to a matrix exponentiation that, at least in principle, involves
the evaluation of infinite series;

• by construction of infinitesimal generators, the Chapman-Kolmogorov
equations are not numerically stable because the computation involves
values of different magnitudes that can be also negative.

Hence, transient analysis has to be performed carefully.
A first intuitive way to solve the problem is the integration of the Chapman-

Kolmogorov ODE system (2.15) by using common ODE solution techniques
such as Euler method and Runge-Kutta methods (see [45]). These techniques
work in such a way that, given a first-order differential equation y′ = f(t, y(t))
and an initial condition y(t0) = y0, the solution is a differentiable function
y(t) such that

y(t0) = y0,
d

dt
y(t) = f(t, y(t)).

In our context, the solution y(t) corresponds to the distribution vector π(t)
and the function f(t, y(t)) is simply π(t)Q.

Roughly speaking, all the procedure to solve ODE systems split the time
interval [0, t] in k parts to integrate the curve on time. The literature about
ODE solvers is so vast that is not possible to list the pros and cons of every

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 18

technique but, in general, they do not offer sound solution against numeri-
cal instabilities and are particularly sensitive to ill-conditioned infinitesimal
generators.

On the other hand, the main pro of ODE numerical integration is that
it is one of the few techniques able to analyze time inhomogeneous CTMCs
which is the case where f(t, y(t)) = π(t)Q (t).

Another technique to perform the transient analysis of CTMCs is through
their generating functions, as it happens for the discrete case. In fact, similar
results holds for continuous-time r.v. as well.

In continuous-time setting the generating function, called Laplace trans-
form, has the form

H∗(0, s) =

∫ ∞
0

e−stH(0, t)dt

and, by following a path similar to that used for the discrete case, it is possible
to prove that the Laplace transform of a CTMC satisfies the equation

H∗(0, s) = [sI−Q]−1 .

Unfortunately, also this expression has the same limitations of the DTMC
case, hence, it is not appropriate for large systems.

Note that none of the above two techniques deal explicitly with the matrix
exponentiation that is, at least in principle, all what we need to compute the
transient period of any CTMC.

This is because the computation of matrix exponentials is in itself a gen-
eral and massively investigated research area and several methods have been
developed over the years to compute it (see [69] where nineteen different
methods are described).

From a theoretical point of view, any of them is able to solve our task;
however, most of them suffer from numerical instability.

The method that fits perfectly in the context of CTMCs is the so-called
uniformisation method introduced in [57].

Uniformisation (called also randomisation) is based on a truncated Taylor
series expansion of the matrix exponential, has a quantifiable error, involves
only vector-matrix operations, and requires only two vectors and a sparse
matrix of size |S| × |S| to perform the computation.

Definition 5 A CTMC with rate matrix Q is uniformizable if the maxi{−qi,i} <
∞.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 19

A uniformizable continuous-time Markov chain can be decomposed into a
DTMC and a Poisson process (PP). The DTMC takes into account the tran-
sitions of the CTMC while the PP provides the distribution of the number
of transitions occurring in a given a time interval.

The transition matrix of the DTMC arises from P = 1
α
Q + I where I is

the identity matrix and α ≥ maxi|qi,i|. Thus, we have that

Pr{X(t) = j|k transitions in [0, t]} =

=
∑
i∈S

πi(0)pi,j(0, k)

=
∑
i∈S

Pr {X(t) = i|k − 1 transitions in [0, t]} pi,j (2.20)

By construction, P is a stochastic matrix, hence it guarantees numerical
stability.

Based on this decomposition the distribution at time t, can be written as

Pr {X(t) = x} =
∞∑
k=0

Pr {X(t) = x|k transitions in [0, t]} ·

Pr {k transitions in [0, t]}

where

Pr{k transitions in [0, t]} =
(αt)k

k!
e−αt. (2.21)

The infinite summation can be truncated after k iterations with a con-
trolled error γ in such a way that

γ ≤
∞∑

i=k+1

(αt)i

i!
e−(αt)

Hence, the computation of the distribution at time t by using uniformisation
has the same complexity of a discrete transient analysis of P up to time
k, where k is the number of steps required to bound the error below γ.
However, the complexity of the analyses remains dramatically affected by
the cardinality of the state space justifying the aim of this thesis.

In sake of completeness, let us list some considerations about uniformiza-
tion. A CTMC is always uniformizable if its state space is finite. This is a
trivial consequence of the fact that the exit rates has to be finite for each

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 20

state. On the other hand, in case of infinite state spaces and level dependent
rates, the property does not hold. In this situation, a common escamotage is
the truncation of the state space by considering only those states that have
a not negligible probability mass to be reached. The truncation can be done
in two possible ways:

• a priori : by exploiting the qualitative properties of the model,

• dynamically : by updating step by step the set of states having the
major part of the probability mass.

Usually, the dynamic strategy is based on the concept of sliding windows [50]
and allows to save time during the computation. As last, some techniques
able to handle time inhomogeneous chains have been developed in [2, 88, 87].

2.2.4 Graphical representation

The probability matrix (infinitesimal generator) of a discrete-time (continuous-
time) Markov chain can be represented graphically as a directed graph having
one node for each state in S and a directed arc from node i to j every time
pi,j > 0 (qi,j > 0). For instance:

Example 1 Suppose to model the accumulated score of a game based on
repeated die rolls. The game starts from a null score and stops when the
score reaches Z points. The rules are such that a player can:

• gain a point every time the result of the roll is equal to 5 or 6,

• loose a point if the launch gives a 1 or a 2,

• stay at the same score with a 3 or a 4 .

As additional assumptions, the score cannot be negative and the number of
rolls is unlimited.

It should be obvious that this process can be represented through a time-
homogeneous discrete-time Markov chain having the following transition ma-

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 21

trix

P =



2
3

1
3

0 0 · · · 0 0 0
1
3

1
3

1
3

0 · · · 0 0 0
0 1

3
1
3

1
3
· · · 0 0 0

... · · · · · · · · · . . . · · · · · · ...
0 0 0 0 · · · 1

3
1
3

1
3

0 0 0 0 · · · 0 0 1


.

where the states are ordered in such a way that they goes from 0 (on the
top of the matrix) to the target Z (last row of the matrix). The transition
diagram representing such a matrix is depicted in Figure 2.2

Z-1 Z10 2
....

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

2
3 11

3

Figure 2.2: Example of DTMC - transition diagram

Example 2 Assume to model the production of a manufacturing machine
taking into account that the production can be interrupted because of machine
failures and re-established through maintenance.

Furthermore, let λ1, λ2 and λ3 denote the mean time required to repair the
machine once it gets broken, the mean failure time, and the mean time with
which a new item is produced, respectively. Moreover, let us assume that all
times are exponential. As a consequence, we have that the described machine
behaves as a CTMC whose transition diagram is infinite and corresponds to
that depicted in Figure 2.3.

2.3 Formalisms for stochastic processes

Formalisms, such as queuing networks, Petri nets and process algebras, pro-
vide intuitive tools to describe stochastic processes in a compact way.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 22

MachineOff, 0

MachineOn, 0

MachineOff, 1

MachineOn, 1 MachineOn, 2

MachineOff, 2

1
λ1 1

λ1
1
λ1

1
λ2

1
λ2

1
λ2

1
λ3

1
λ3

Figure 2.3: Manufacturing machine - CTMC

Several formalisms have been developed and extended during the years
due to the fact that their introduction has been one of the key points of the
success of stochastic modeling in the context of performance evaluation.

In this dissertation we will use two of them: queuing networks and
stochastic Petri nets.

Queuing networks are convenient because some properties of Markov
chains match with particular classes of these networks. However, the descrip-
tion of complex blocking mechanisms becomes clumsy with them. Hence, in
those cases we will use Petri nets.

2.3.1 Queuing networks

Queuing networks are one of the first formalisms designed to represent stochas-
tic processes. They are based on the concepts of service stations and cus-
tomers.

A service station can have one or more independent servers working in
parallel. When a customer arrives to a station, it waits if all the servers are
busy; otherwise it is served and leaves the station after the service.

Commonly, a service station is defined through a standard notation

A/B/X/Y/Z,

proposed for the first time by Kendall in [59], where:

• A describes the interarrival distribution, such as exponential (com-
monly denoted with M), Erlang (Erl), Phase-type distributions (PH),

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 23

General (G).

• B describes the distribution of the service times.

• X is the number of independent servers.

• Y is the maximum capacity of the waiting room and can assume values
from zero to infinity. When the number of customers in queue reaches
the threshold Y no more customers are accepted.

• Z is the queue discipline, it determines how the customers in the queue
are selected for the service. Typical disciplines are First Come First
Served (FCFS), Last Come First Served (LCFS), Processor Sharing,
Random Order.

Stations are connected through routing probabilities determining how the
customers move inside the system after a service in a station.

If exponential distributions (or distribution decomposable into exponen-
tial phases) govern both the arrival processes and the service times then the
queuing system can be represented through a CTMC in such a way that,
given a network composed of a set of M stations {s1, s2, . . . , sM}, the state
of the CTMC is defined by the number of customers in each queue at time
t. Therefore the r.v. representing the state of the CTMC is a vector of M
integers X(t) = |X1(t), X2(t), . . . , XM(t)| where the ith entry is associated
with the station si. Let:

• λi(x) be the rate of the arrivals to the ith station when the system is
in the state x,

• µi(x) be the service rate of the ith station when the system is in the
state x,

• ri,j(x) be the probability with which a customer moves to the jth sta-
tion after being served at station si when the system is in the state
x,

• ri,0(x) be the probability that a customer leaves the system after a
service at station si when the system is in the state x.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 24

The construction of the infinitesimal generator of the CTMC is straightfor-
ward. Given two states of the system x and y, the rate with which the chain
moves from the first to the second is described by the following relation

qx,y =


λi(x) y = |x1, . . . , xi + 1, . . . , xM |
µi(x)ri,j y = |x1, . . . , xi − 1, . . . xj + 1, xM |
µi(x)ri,0 y = |x1, . . . , xi − 1, . . . , xM |.

(2.22)

A network is called closed if the number of customers inside the system
is constant, meaning that both departures from or arrivals to the system are
not possible. Typically, in the case of closed networks the maximum number
of customers inside a queue is equal to the number of customers inside the

system. In these cases the state space S =
{
x = |x1, ..., xM |

∣∣ ∑M
i=1 xi = N

}
is composed of

(
N+M−1
M−1

)
states, where N is the number of customers inside

the system.
On the contrary, we will refer to a network as open if every customer that

enters the system will leave it eventually. In this case the system state space
grows over a number of dimensions equal to the number of stations.

Example 3 Let us consider the simple network depicted in Figure 2.4 rep-
resenting a server connected to two devices. Jobs arrive to the server with a
constant rate λ1 and compete for the resources of the system.

After each service at the first station, the job can leave the system with
probability r1,0 or use one of the two devices with probabilities r1,2 and r1,3,
respectively. Jobs leaving the two devices go back to the server. Furthermore,
assume that the first station is a M/M/∞ whereas the other two have only
one server and finite waiting room capacities Y2 and Y3.

Then the network can be represented through the CTMC corresponding to
the transition diagram depicted in Figure 2.5.

Note that the graph has been truncated after the third arrival at the first
station; from now-on, when we will need to truncate an infinite transition
diagram, we will summarize arcs pointing to states that have not been depicted
(and those that came from them) by using one unlabeled arc.

2.3.2 Stochastic Petri nets

Petri nets were proposed in 1962 by Carl Adam Petri [74] and are a formalism
for the description of concurrency and synchronization.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 25

1

2

3

r1,2

r1,3

r1,0

server

Device

Device

λ1

Figure 2.4: Open central server - queuing network

0, 0, 0 1, 0, 0 2, 0, 0

1, 1, 00, 1, 0

1, 0, 10, 0, 1

λ1
λ1 λ1

r1,0 · µ1 r1,0 · 2µ1

r1,0 · 3µ1

r1,2 · µ1

r1,3 · µ1

µ3

µ2

r1,3 · 2µ1

r1,2 · 2µ1

λ1

λ1

3, 0, 0

r1,0 · µ1

r1,0 · µ1

µ2

µ3

Figure 2.5: Open central server - CTMC graph

Since first described by Petri, they have became popular due to their
well-founded analysis techniques and intuitive graphical representation. A
Petri-net (PN) comprises the following components:

• places : drawn by circles. Places model conditions or objects, e.g., a
program variable.

• transitions : drawn by rectangles. Transitions model activities which

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 26

change the values of conditions and objects.

• arcs : specifying the interconnection of places and transitions thus in-
dicating which objects are changed by a certain activity. Each arc is
associated with a multiplicity that describes the conditions under which
a certain activity can occur or the outcome of an activity.

• tokens : drawn by black dots. Tokens represent the specific value of the
condition or object, e.g., the value of a program variable.

Petri nets are bipartite graphs, hence we may only connect a place to a
transition or vice versa.

The state of a PN, called marking, corresponds to the amount of tokens
in each place, so it can be represented by a vector of integers. Tokens move
among places through the firing of transitions, in such a way that each arc
that goes from a place s to a transition t defines the number of tokens that
will be removed from s after the firing of t and, in a similar way, the outgoing
arcs of a transition t define the number of tokens that will be received by
places after the firing of t. More formally:

Definition 6 A Petri net is defined as 5-tuple, PN = {P, T, I−, I+,M0}
where:

• P = {s1, s2, . . . , sM} is a finite and non-empty set of places,

• T = {t1, t2, . . . , tR} is a finite and non-empty set of transitions,

• I−, I+ : P ×T → N0 are the backward and forward incidence functions
of transitions, respectively,

• M0 is the initial marking.

The functions I−, I+ are conveniently described by introducing the vectors
i−n = |i−n,1, ..., i−n,M | and i+n = |i+n,1, ..., i+n,M |, where every entry i−n,m (i+n,m)
represents the number of tokens removed from (inserted to) the mth place
by the firing of transition tn.

The sets composed of the transitions having a non-negative entry in i−n
and i+n are called Pre and Post set of transition tn and denoted by •tn =
{sm|i−n,m > 0} and t•n = {sm|i+n,m > 0}, 1 ≤ n ≤ R, respectively.

Then, the overall effect of transition n corresponds to a vector en = i+n−i−n
and, hence, given a marking x = |x1, x2, . . . , xM |, the transition tn can occur
if x ≥ i−n and its occurrence produces a new marking x′ = x+ en.

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 27

The set of reachable markings, possibly after the firing of several transi-
tions, from a given initial marking {x : M0 x} takes the name of reachabil-
ity set ; similarly, the graph having as nodes the elements of the reachability
set and as arcs x→ y those transitions able to generate the marking y from
the marking x is called reachability graph.

Example 4 As an example consider once more the manufacturing machine
described in Example 2. Such a system can be easily represented as a Petri
net having three places and three transitions. As depicted in Figure 2.6, the
modeling of the failure/repair cycle is described by two transitions, Fail and
Repair, that move the unique token, representing the state of the machine,
from place MachineOff to MachineOn and vice-versa.

When the machine is in the operative state (MachineOn), it is enabled
to produce through the transition Product which adds a token into the place
AmountOfProd every time it fires.

MachineOff MachineOn AmountOfProdProduct

Fail

Repair

Figure 2.6: Manufacturing Machine - Petri net

As three places are involved, the marking of the PN is a triple x =
|x1, x2, x3| describing the number of tokens present in places MachineOff ,
MachineOn and AmountOfProd, respectively.

Then the effects of the transitions over the places are:

e1 = |1, 0, 0| − |0, 1, 0| = |1,−1, 0|
e2 = |0, 1, 0| − |1, 0, 0| = | − 1, 1, 0|
e3 = |0, 1, 1| − |0, 1, 0| = |0, 0, 1|.

As defined by Petri, PNs provide a sound and effective framework to analyze
qualitative properties of concurrent systems (see [10, 14]). However, they

CHAPTER 2. INTRODUCTION TO STOCHASTIC PROCESSES 28

are unable to provide any quantitative information. For this reason Mol-
loy and Natkin [70, 71] defined stochastic Petri nets (SPN) by adding a set
Λ = {λ1(x), . . . , λR(x)} to the original definition. All the firing times are ex-
ponentially distributed according to the parameters defined by the functions
λi(x), 1 ≤ i ≤ R. As a consequence, the reachability graph is isomorphic to
a CTMC in such a way that the entries of its infinitesimal generator have
the form:

qx,y =


∑

n : y = x+ en∧
x ≥ i−n

λn(x) x 6= y∑
y 6=x qx,y otherwise.

(2.23)

Example 5 Let us consider again the net in Figure 2.6. The association
of the rates λ1, λ2 and λ3 with the corresponding transitions Fail, Repair
and Product generates a SPN whose reachability graph is isomorphic to the
transition diagram depicted in Figure 2.3.

As last consideration, it is worth to say that SPN has been extended in several
ways by introducing inhibitor arcs, immediate transitions (which lead to the
definition of Generalized SPNs provided in [10]), colored tokens, queuing
places etc.

All these extensions increase the expressiveness of the formalism, but,
at the same time, make heavier the notation; hence, we have chosen not to
include them in this work, even if their use is possible as well.

We suggest [10, 14] to the readers that are interested in these facets.

Part I

Markov reward models

29

3
Markov reward models

The analysis of Markov chains is still an open problem due to the fact that the
state space blows up exponentially with the number of modelled objects and,
as mentioned earlier, several approximate techniques have been proposed to
tackle the problem.

However, we argue that the use of approximations has to be the ultimate
attempt to analyze a Markov chain.

The reason is that even if traditional techniques may fail, there are sit-
uations where less general methods are able to handle Markovian processes
having cumbersome state spaces due to particular properties that the models
hold. The identification of these cases is not always immediate and requires
a preliminary analysis of the models. Such analysis, called characterization
of the process by Kulkarni [60], aims to find properties that help to simplify
the problem. Some trivial examples of these situations are redundancies in
the structure of the chain or the subset of parameters playing the main role
in the model dynamics.

One of the goals of this chapter is to provide a “proof of concept” about
the importance of this phase by showing a simple case where the structure of
the model suggests a way to reduce considerably the state space of the chain;
namely, the modeling of productions whose accumulation does not affect the
dynamics of the rest of the model.

30

CHAPTER 3. MARKOV REWARD MODELS 31

As second aim, this chapter allows to deepen the discussion about the
numerical methods introduced in Section 2.2.3 by showing how they can be
used in practice and, more important, how they are not to be intended as
monolithic methods that cannot be manipulated to better fit the analysis.

In order to point out what we want deal with, consider once again the sys-
tem introduced in Figure 2.6 and its underlying CTMC (Figure 2.3). The dia-
gram consists of an infinite duplication of the cycleMachineOn/MachineOff
representing the accumulated production of the machine. It is clear that the
complexity of the problem can be drastically reduced if the production is not
described explicitly in the state space because, in that case, the chain would
be limited to two states only.

Thus, our target is to consider the stochastic process which describes
only the state of the machine and build another stochastic process which
depends on the first and describes the amount of the production. This goal
can be achieved by considering the accumulations as rewards that the process
can gain according to the states that it passes through or according to the
transitions that occur.

Stochastic reward models allow this kind of analysis; they were introduced
in the ’80s for the performance analysis of communication systems and a large
number of numerical methods were developed to make effective use of them.

They can be classified according to four criteria: (1) the stochastic be-
haviour of the underlying process, (2) the type of the reward accumulation,
(3) the possibility and the type of the loss that the reward can suffer (no
loss, partial loss, complete loss), (4) and the evaluated measure (for a more
detailed description, see [72, 73, 55]).

In this dissertation we consider the cases in which (1) the underlying
process is Markovian, (2) the reward accumulation is through instantaneous
impulses of pre-determined “gains”, (3) no reward loss is possible and (4)
the measure of reference corresponds to the moments of the accumulated
reward and completion time. Accordingly, the context is very akin to the
one considered in [84, 22]. It is evident that the Markovian reward model
(MRM) that we present has a limited sphere of applicability, however it can
be applied to a high number of models.

In the following sections we deal with the definitions and provide recur-
sive formulas needed to compute the moments of accumulated reward and
the completion time. The two derivations follow a common path but their
description in a unique section would be overloaded; hence, we decided to
maintain them separated and to focus on different facets among the two

CHAPTER 3. MARKOV REWARD MODELS 32

sections in order to not to be redundant.
We will start with the discrete-time setting by focusing on gains that

occur deterministically during a sojourn in a state. This means that during
a sojourn in a given state i the accumulated reward is always increased by
ri ≥ 0.

Moreover, we will provide the formulas to compute the moments of the
completion time, defined as the minimum time required to complete a pre-
fixed amount of accumulation. This corresponds to the computations of
moments of first passage times.

Instead, in the section dedicated to the continuous-time setting, we will
extend the model by allowing more than one reward variable in such a way
that the computation of correlations is also possible.

Furthermore, we will describe the possibility to build such reward models
starting from a common SPN.

As last, it is worth to say that the reading of the first part is not strictly
related to the second; thus, the reader that is not interested in the argument
can skip it without affecting the understanding of the following chapters.

3.1 Rewards governed by DTMCs

Consider a stochastic process having a discrete-time Markov chain (DTMC)
that modulates the discrete accumulation of a reward gained in each time
slot and let ri, 0 ≤ ri ≤ c, identify the integer reward rate associated with
state i where c is the maximum reward per step.

The reward grows in such a way that a sojourn of length l ∈ N in state i
provides lri reward. Denoting by X(n) the state of the chain after the nth
transition and by Z(n) the reward accumulated in the first n steps, we have
Z(n) =

∑n−1
i=0 rX(i) for n ∈ N and we assume that Z(0) = 0. Furthermore, let

us split the transition probability matrix into c + 1 matrices P(i), 0 ≤ i ≤ c,
having the following entries

p
(i)
k,l =

{
pk,l if k ∈ Si,
0 otherwise.

where Si, 0 ≤ i ≤ c, denotes the set of states with reward rate i. Our aim
is to characterize the joint probability of the accumulated reward (AR) and
the background state defined for n, k ∈ N as

Fij(n, k) = Pr{Z(n) = k,X(n) = j|X(0) = i}.

CHAPTER 3. MARKOV REWARD MODELS 33

It is easy to see that the following recursion holds for n = 1, 2, 3, ... and
k = 0, 1, 2, ...

Fij(n, k) =

min(k,c)∑
m=0

∑
l∈Sm

Fil(n− 1, k −m)pl,j

which, introducing the matrix notation F(n, k) = [Fij(n, k)], becomes

F(n, k) =

min(k,c)∑
m=0

F(n− 1, k −m)P(m) (3.1)

Another measure of interest is the minimum time required to complete the
production of a pre-determined quantity k. This measure takes the name of
completion time (CT) and corresponds to the characterization of the first-
passage time C(k) = min

[
n : Z(n) ≥ k

]
.

Due to the no-loss property the reward accumulation is monotone on
the time which allows to represent completion time as the dual problem
of Fi,j(n, k). In fact, it is easy to see that the following relation holds for
n, k ∈ N

Pr(Z(n) < k) = Pr(C(k) > n).

The joint distribution of the completion time and the background state is
defined for n, k ∈ N as

Gij(n, k) = Pr{Z(n) ≥ k, Z(n− 1) < k,X(n) = j|X(0) = i}

and satisfies the relation

Gij(n, k) =

min(k,c)∑
m=1

c∑
h=m

∑
l∈Sh

Fil(n− 1, k −m)plj (3.2)

where n, k ∈ N.
By introducing the matrix notation G(n, k) = [Gij(n, k)], equation (3.2)
becomes

G(n, k) =

min(k,c)∑
m=1

c∑
h=m

F(n− 1, k −m)P(h) . (3.3)

The accumulated reward and the completion time can be analyzed in z-
transform domain.

CHAPTER 3. MARKOV REWARD MODELS 34

Theorem 1 The double z-transform of F(n, k) is given by

F∗∗(z1, z2) =

(
I− z1

c∑
m=0

zm2 P(m)

)−1

(3.4)

Proof. Multiplying the left hand side of (3.1) by zn1 z
k
2 and summing for

n = 1, 2, . . . and k = 0, 1, . . . gives
∞∑
n=1

∞∑
k=0

zn1 z
k
2F(n, k) =F∗∗(z1, z2)−

∞∑
k=0

zk2F(0, k) =

F∗∗(z1, z2)− I (3.5)

because F(0, 0) = I and F(0, k) = 0 for k = 1, 2, 3, By performing the
same operation on the right hand side of (3.1) we have

∞∑
n=1

∞∑
k=0

zn1 z
k
2

min(k,c)∑
m=0

F(n− 1, k −m)P(m) =

c∑
m=0

∞∑
n=1

∞∑
k=m

zn1 z
k
2F(n− 1, k −m)P(m) =

z1

c∑
m=0

zm2

∞∑
n=1

∞∑
k=m

zn−1
1 zk−m2 F(n− 1, k −m)P(m) =

z1

c∑
m=0

zm2

∞∑
n=0

∞∑
k=0

zn1 z
k
2F(n, k)P(m) =

z1

c∑
m=0

zm2 F∗∗(z1, z2)P(m) . (3.6)

From (3.5) and (3.6) we have

F∗∗(z1, z2)− I = z1

c∑
m=0

zm2 F∗∗(z1, z2)P(m)

which by simple rearrangements proves the theorem. �

Theorem 2 The double z-transform of G(n, k) is

G∗∗(z1, z2) =

I +
c∑

m=1

c∑
h=m

z1z
m
2

(
I− z1

c∑
m=0

zm2 P(m)

)−1

P(h) (3.7)

CHAPTER 3. MARKOV REWARD MODELS 35

Proof. Multiplying the left hand side of (3.3) by zn1 z
k
2 and summing for

n = 1, 2, . . . and k = 0, 1, . . . gives

∞∑
n=1

∞∑
k=0

zn1 z
k
2G(n, k) =G∗∗(z1, z2)−

∞∑
k=0

G(0, k) =

G∗∗(z1, z2)− I

because G(0, 0) = I and G(0, k) = 0 for k = 1, 2, 3, By performing the
same operation on the right hand side of (3.3) we have

∞∑
n=1

∞∑
k=0

zn1 z
k
2

min(k,c)∑
m=1

c∑
h=m

F(n− 1, k −m)P(h) =

c∑
m=1

c∑
h=m

z1z
m
2

∞∑
n=1

∞∑
k=m

zn−1
1 zk−m2 F(n− 1, k −m)P(h) =

c∑
m=1

c∑
h=m

z1z
m
2 F∗∗(z1, z2)P(h)

from which by applying (3.4) the theorem follows. �
Analysis by double inverse z-transform are viable for small or highly struc-

tured DTMCs. For this reason we provide recursive methods to compute the
moments of both the accumulated reward and completion time.

3.1.1 Moments of accumulated reward

The following theorem provides an efficient approach for the calculation of
the moments of the accumulated reward defined as

K(l)(n) =
∞∑
k=0

klF(n, k), n = 0, 1, 2, ...

Theorem 3 The moments of the accumulated reward, K(l)(n), n = 0, 1, 2, ...,
satisfy the following recursive relation

K(l)(n) =
l∑

i=0

(
l

i

)
K(l−i)(n− 1)

c∑
m=0

miP(m). (3.8)

CHAPTER 3. MARKOV REWARD MODELS 36

Proof. The moments K(l)(n) can be derived starting from (3.1) by multiply-
ing both sides by kl and summing up for k = 0, 1, 2, ... which leads to

K(l)(n) =
∞∑
k=0

kl
min(k,c)∑
m=0

F(n− 1, k −m)P(m)

from which by changing the order of the summation and applying

kl =
l∑

i=0

(
l

i

)
(k −m)l−imi

we get

K(l)(n) =
c∑

m=0

∞∑
k=m

l∑
i=0

(
l

i

)
(k −m)l−imiF(n− 1, k −m)P(m) =

c∑
m=0

l∑
i=0

(
l

i

) ∞∑
k=m

(k −m)l−iF(n− 1, k −m)miP(m) =

c∑
m=0

l∑
i=0

(
l

i

)
K(l−i)(n− 1)miP(m)

which yields the expression given in (3.8). �
The base cases of the recursion are given by the matrices

K(l)(0) =

{
I if l = 0
Z otherwise

where Z denotes a matrix of zeros.
The recursion given in (3.1) for the distribution of the accumulated reward

is based on the so-called forward scheme. It is easy to verify that the following
backward counterpart also holds

F(n, k) =

min(k,c)∑
m=0

P(m)F(n− 1, k −m) (3.9)

and it leads to the following theorem which is the backward counterpart of
Theorem 3 and thus provides a backward scheme for the computation of the
moments of the accumulated reward.

CHAPTER 3. MARKOV REWARD MODELS 37

Theorem 4 The moments of the accumulated reward, K(l)(n), n = 0, 1, 2, ...,
satisfy the following backward recursive relation

K(l)(n) =
l∑

i=0

(
l

i

) c∑
m=0

miP(m)K(l−i)(n− 1). (3.10)

Proof. Follows the same path used for Theorem 3. �
The expressions given in Theorems 3 and 4 directly provide a proce-

dure for the calculation of the moments. The time complexity of calculating
K(l)(n) for l = 1, ..., N is roughly

∑N
i=0(i + 1) times the complexity of the

transient analysis of the underlying DTMC. The space complexity is instead
N + 1 higher than for the transient analysis of the DTMC.

3.1.2 Moments of completion time

In the following we derive an efficient, recursive scheme for the computation
of the moments of the completion time. For this purpose, let us use the
notation

Gij(n, k, e) = Pr{Z(n) = k + e, Z(n− 1) < k,X(n) = j|X(0) = i}

which characterizes not only the time instance of reaching a given amount
of reward but also the excess amount upon the moment of completion. In
matrix notation we write G(n, k, e) = [Gij(n, k, e)]. The mth moment of the
completion time with a given amount of excess will be denoted by

L
(m)
ij (k, e) =

∞∑
n=0

nmGij(n, k, e) e ∈ [0, c− 1], k = 0, 1, 2...

with associated matrix notation L(m)(k, e) = [L
(m)
ij (k, e)]. It follows that, by

summing up for all possible values of the amount of excess, the moments of
the completion time, L(m)(k), can be obtained as

L(m)(k) =
c−1∑
e=0

L(m)(k, e)

The following theorem provides a recursive relation for the quantities L(m)(k, e).

CHAPTER 3. MARKOV REWARD MODELS 38

Theorem 5 The moments of the completion time with a given amount of
excess, e, 0 ≤ e ≤ c− 1, satisfy the forward recursion

L(m)(k, e) =
m∑
i=0

c−e∑
f=1

(
m

i

)
L(i)(k − f, 0)L(m−i)(1, f − 1 + e)

Proof. The recursion is based on the equation

L(m)(k, e) =
∞∑
n=0

nmGij(n, k, e) =

∑
x1=0,1,..

∑
x2=0,1,..

(x1 + x2)m
c−e∑
f=1

∑
l∈S

Gil(x1, k − f, 0)Glj(x2, 1, f − 1 + e) (3.11)

where we exploited the fact that all the possible ways of reaching an amount
k of reward with a level e of excess is composed of

• reaching a level k − f with zero excess where 1 ≤ f ≤ c− e,

• reaching level k with excess e (i.e., arriving to level k + e) without
“touching” any level between k − f and k + e.

The theorem follows from (3.11) by applying matrix notation and the formula
(x1 + x2)m =

∑m
i=0

(
m
i

)
xi1x

m−i
2 . �

The following theorem is the “backward” counterpart of Theorem 5.

Theorem 6 The moments of the completion time with a given amount of
excess, e, 0 ≤ e ≤ c− 1, satisfy the backward recursion

L(m)(k, e) =
m∑
i=0

c−1∑
f=0

(
m

i

)
L(m−i)(1, f)L(i)(k − f − 1, e)

Proof. The proof follows the line of the proof of Theorem 5. �
In order to carry out the computations we need the matrices that provide

the base cases of the recursion. Some of these matrices are trivial to compute
and for what concerns these we have:

L(0)(k, e) =

{
I if k ≤ 0, k = −e
Z if k ≤ 0, k 6= −e

L(i)(k, e) = Z if i ≥ 1, k ≤ 0

CHAPTER 3. MARKOV REWARD MODELS 39

where negative values of k are considered for computational convenience
of the recursion. Apart of the matrices listed above we need to compute
L(i)(1, e) with i ≥ 0 and 0 ≤ e ≤ c − 1. For this purpose, it is useful to
introduce the matrices P(0,i) with 0 ≤ i ≤ c with entries according to

P
(0,i)
kl =

{
Pkl if k ∈ S0 and l ∈ Si
0 otherwise.

With these matrices, we have

L(i)(1, e) =
∞∑
k=1

(k + 1)i
(
P(0,0)

)k−1
P(0,e+1)P(e+1) + P(e+1) (3.12)

where the first term of the right hand side considers the cases in which the
process starts in a state with zero reward, it stays in the subset of states S0

for k − 1 steps, then it jumps to a state in Se+1 and reaches level 1 with
excess e in the subsequent step. The second term considers instead the cases
in which the process starts in a state belonging to Se+1 and it reaches level
1 with excess e in a single step. In order to compute L(i)(1, e) let us denote
the summation in (3.12) by

R(i) =
∞∑
k=1

(k + 1)i
(
P(0,0)

)k−1

By noting that

R(i) =
i∑
l=0

(
i

l

) ∞∑
k=1

ki−l
((

P(0,0)
)k−1

)
=

i∑
l=0

(
i

l

) ∞∑
k=2

ki−l
((

P(0,0)
)k−2

P(0,0) + I
)

=
i∑
l=0

(
i

l

)(
R(i−l)P(0,0) + I

)
a recursive formula for R(i) follows

R(i) =

[
i∑
l=1

(
i

l

)(
R(i−l)P(0,0) + I

)
+ I

] (
I−P(0,0)

)−1

CHAPTER 3. MARKOV REWARD MODELS 40

The above expression points out that the presence of many states with
zero reward increases the computational complexity. Indeed, in order to
compute the R(i) matrices, the inversion of a matrix with as many rows as
many zero states there are is required. We briefly mention that, if a vector
based implementation is applied than the matrix inversion can be avoided
but the calculations would still require the solution of linear systems during
the computations.

The expressions given in Theorems 6 and 5 directly provide a procedure
for the calculation of the moments of the completion time. If the number of
zero states is low then analyzing the moments of the completion time is as
complex as analyzing the moments of the aggregated reward.

3.2 Rewards governed by CTMCs

In this section we move to the continuous-time setting but we remain in a
Markovian context; hence, the process that governs the accumulation is a
CTMC denoted with {X(t), t ≥ 0}. Within this context the reward accumu-
lation is performed in a slightly different manner. As first difference we have
that the accumulation is not given determistically by the sojourn in a state,
but dependent on a number of state-dependent activities whose occurrence
can result in gain of reward and, possibly, in a state transition of the CTMC.
Another difference is that we extend the previous model in such a way that
W different types of rewards are considered.

The activities are identified by a vector of W integers describing the gain
they provide and the total intensity of the activities providing g amount of
reward and moving the CTMC from state i to state j is denoted by r

(g)
i,j

with i, j ∈ S and g ∈ ZW . (We denote by Z and C the set of non-negative
integers and the set of complex numbers, respectively; the corresponding set
of vectors of length W are denoted by ZW and CW). The intensities r

(g)
i,j are

organized into matrices as R(g) =
[
r

(g)
i,j

]
i,j∈S

.

As defined, AR is a discrete random vector, denoted with Z(t) ∈ ZW ,
which represents the quantity of reward which was gained up to time t. As
an example, assume W = 3 and Z(t) = |3, 1, 4|. If an activity with reward
vector g = |1, 0, 2| occurs in the infinitesimal interval [t, t + ∆] then the
random vector will take the value Z(t+ ∆) = |3, 1, 4|+ |1, 0, 2| = |4, 1, 6|.

Since we do not consider activities with negative gain, the quantity of the

CHAPTER 3. MARKOV REWARD MODELS 41

produced reward can only grow or remain stable preserving the duality with
the completion time.

3.2.1 Derivation of MRM from SPNs

The MRM as defined above can be constructed starting from a SPN; the
first step is to identify the set of places where the accumulation of tokens
is monotone and have no impact on the intensity of the transitions. Place i
belongs to this set if the following property holds1:

∀n, 1 ≤ n ≤ R : i−n,i = 0 and ∃n, 1 ≤ n ≤ R : i+n,i > 0. (3.13)

If there are places satisfying the above property, then an MRM with a smaller
state space than that of the original CTMC can be built. The construction
of the MRM can be done in automatic manner as follows.

The places satisfying the property in (3.13) will be called monotonic and
their set will be denoted by M while the rest of the places will be called
non-monotonic and the corresponding set will be denoted by M.

The cardinality of set M, denoted by W , is the number of types of rewards
of the MRM. In the MRM, the underlying CTMC models the non-monotonic
places while the rewards take into account the growth of the monotonic ones.

Next, the effect of each transition has to be split into two parts. The first
part gives the effect of the transition on the places belonging to M and gives
rise to a transition in the underlying CTMC of the MRM.

The effect of these transitions will be described by the vectors e′i, 1 ≤ i ≤
R which are obtained simply from the vectors ei, 1 ≤ i ≤ R, introduced in
Section 2.3.2, by taking those entries which refer to places belonging to M.

The second part takes into account the growth of the monotonic places.
The reward produced by a transition i, 1 ≤ i ≤ R, can be simply described
by a vector gi collecting those entries of ei which corresponds to monotonic
places. To sum up, the effect of transition i, 1 ≤ i ≤ R, described by ei in the
original CTMC is decomposed into two vectors e′i and gi referring to the non-
monotonic and the monotonic places, respectively. Based on e′i, gi, 1 ≤ i ≤ R,
and the corresponding intensities provided by the set Λ, the construction of
the matrices R(g) describing the MRM is straightforward. The entries are

1In sake of simplicity, we are assuming that the function λn(x) describing the rates of
the nth transition depends only on the places belonging to the set •tn, 1 ≤ n ≤ R.

CHAPTER 3. MARKOV REWARD MODELS 42

obtained as
r

(g)
i,j =

∑
∀n:j=i+e′n∧gn=g

λn(i) (3.14)

Note that the underlying CTMC of the MRM can have finite state space
even if the state space of the original CTMC is infinite. This is the case for
the manufacturing machine model introduced in Figure 2.6.

Example 6 Considering the manufacturing machine model, we have two
non-monotonic places, MachineOn and MachineOff , and one monotonic,
Production. A state of the underlying CTMC of the MRM is given by a
vector of two entries x = |x1, x2| since it represents the two possible states of
the machine. The effect of the transitions on the underlying CTMC is

e′1 = | − 1, 1|, e′2 = |1,−1|, e′3 = |0, 0|.

We have a single type of reward corresponding to the amount of production.
Accordingly, W = 1 and the vectors describing the effect of the transitions
on the reward variable are composed of a single entry:

g1 = |0|, g2 = |0|, g3 = |1|.

Then the matrices representing the MRM are simply

R((0)) =

∣∣∣∣ 0 µ1

µ2 0

∣∣∣∣ , R((1)) =

∣∣∣∣ µ3 0
0 0

∣∣∣∣ .
3.2.2 Accumulated reward, characterization in time and

transform domain

Given the matrices R(g) for every possible gain vector g, the transient accu-
mulated reward is characterized by the matrix B(t, w) with entries

Bi,j(t, w) = Pr{Z(t) = w,X(t) = j|X(0) = i, Z(0) = 0}

giving the probability that, having started in state i with 0 reward1, at time
t the reward is w and the underlying chain is in state j. Note that w is a
vector: w ∈ ZW .

1Our framework can be easily extended to starting the system from non-zero reward
levels or with reward levels distributed according to some distribution but we avoid to
handle these cases for sake of simplicity.

CHAPTER 3. MARKOV REWARD MODELS 43

Theorem 7 The transient behaviour of the AR fulfills the following differ-
ential equation

dB(t, w)

dt
= −B(t, w)S +

∑
∀g:w−g≥0

B(t, w − g)R(g) (3.15)

where S is a diagonal matrix with entries

Si,j =

{∑
k∈S
∑
∀g r

(g)
i,k if i = j,

0 otherwise.
(3.16)

Proof. In order to derive equation (3.15) let us consider first the change of
Bi,j(t, w) in an infinitesimal time interval. We have

Bi,j(t+ ∆, w) = Bi,j(t, w)

(
1−

∑
k∈S

∑
∀g

r
(g)
j,k∆

)
+

∑
k∈S

∑
∀g:w−g≥0

(
Bi,k(t, w − g)r

(g)
k,j∆

)
+ o(∆)

where the first term is the probability that state j and w amount of reward
has been reached by time t and no activity occurs in [t, t + ∆], the second
term is the probability to get exactly the necessary amount to reach the
target w and moving the process to the state j, meanwhile o(∆) represents
the fact that the probability of two events in [t, t+ ∆] negligible.

Dividing by ∆, taking the limit ∆→ 0 and rearranging leads to

dBi,j(t, w)

dt
= −Bi,j(t, w)

∑
k∈S

∑
∀g

r
(g)
j,k+

∑
k∈S

∑
∀g:w−g≥0

(
Bi,k(t, w − g)r

(g)
k,j

)
from which introducing matrix notation the theorem follows. �

We mention here that matrix S represents the sojourn times whereas
the matrices R(g) represent the transition rates between states. Thus the
infinitesimal generator of the underlying CTMC is

Q = −S +
∑
∀g

R(g).

CHAPTER 3. MARKOV REWARD MODELS 44

A compact solution of (3.15) can be provided only in transform domain.
In the sequel the following transforms of B(t, w) will be applied: the Laplace
transform according to the time variable given by

B∗(s, w) =

∫ ∞
0

e−stB(t, w)dt

and the double continuous/discrete transform, i.e., Laplace transform accord-
ing to the time variable and z-transform according to all the reward variables,
defined by

B∗∗(s, z) = B∗∗(s, (z1, . . . , zW)) =∑
i∈ZW

W∏
j=1

z
ij
j

∫ ∞
0

e−stB(t, i)dt

with z ∈ CW . In the following, in order to abbreviate, having z ∈ CW and
i ∈ ZW we will write

∏W
j=1 z

ij
j simply as zi.

Theorem 8 The continuous/discrete transform of the accumulated reward
is given by:

B∗∗(s, z) =

[
sI + S−

∑
∀g

zgR(g)

]−1

(3.17)

where I is the identity matrix.

Proof. The continuous/discrete transform of the left hand side of (3.15) with
z ∈ CW is given by∑

i∈ZW

zi
∫ ∞

0

e−st
dB(t, i)

dt
=
∑
i∈ZW

zi (sB∗(s, i)−B(0, i))

= sB∗∗(s, z)− I (3.18)

CHAPTER 3. MARKOV REWARD MODELS 45

because B(0, 0) = I and B(0, i) = 0 when i 6= 0. The same operation on the
right hand side of (3.15) leads to

∑
∀i∈ZW

zi
∫ ∞

0

e−st

(
−B(t, i)S +

∑
∀g:i−g≥0

B(t, i− g)R(g)

)
dt

=
∑
∀i∈ZW

zi

(
−B∗(s, i)S +

∑
∀g:i−g≥0

B∗(s, i− g)R(g)

)

= −B∗∗(s, z)S +
∑
∀i∈ZW

zi

(∑
∀g:i−g≥0

B∗(s, i− g)R(g)

)

= −B∗∗(s, z)S +
∑
∀g

zg

 ∑
∀i∈ZW :i≥g

zi−gB∗(s, i− g)R(g)


= −B∗∗(s, z)S +

∑
∀g

zg

(∑
∀i∈ZW

ziB∗(s, i)R(g)

)
= −B∗∗(s, z)S +

∑
∀g

zgB∗∗(s, z)R(g) (3.19)

From (3.18) and (3.19) we have

sB∗∗(s, z)− I = −B∗∗(s, z)S +
∑
∀g

zgB∗∗(s, z)R(g)

which by applying trivial algebra provides the theorem. �

3.2.3 Moments of the accumulated
reward

In this section we first define a method for the analysis of the factorial mo-
ments of the AR starting from the double transform expression given in
(3.17). Since the numerical calculations of this method can easily be un-
stable, we make then modifications in order to define a numerically stable
algorithm. Finally, we show that the truncation error is controllable and
provide some indications for what concerns the computational complexity.
Throughout the section we follow an approach similar to that of [84] extend-
ing it to the multiple reward variable case.

CHAPTER 3. MARKOV REWARD MODELS 46

3.2.3.1 Recursion for the moments of the accumulated reward

Let us denote by Zi,j(t) the amount of the jth type of reward at time t given
that the initial state is i. Then, having a vector n ∈ ZW , the associated joint
factorial moment, assuming state i as initial state, is given by the expected
value

f
(n)
i (t) = E

[
W∏
j=1

nj−1∏
k=0

(Zi,j(t)− k)

]
. (3.20)

Let us illustrate the use of the factorial moments assuming W = 2. Using
n = |1, 0| the expected value in (3.20) provides simply the mean quantity
of the 1st type of reward. Using n = |2, 0| we obtain its second factorial
moment which can be used to compute the second “normal” moment for the
1st type of reward as

E
[
Zi,1(t)2

]
= f

(|2,0|)
i (t) + f

(|1,0|)
i (t).

For a general description of the relation between factorial moments and “nor-
mal” moments, see [49]. The formula in (3.20) allows for expressing joint
measures of the various reward types as well. For example, the covariance of
the 1st and the 2nd type of rewards can be obtained as

E [(Zi,1(t)− E [Zi,1(t)]) (Zi,2(t)− E [Zi,2(t)])] =

f
(|1,1|)
i (t)− f (|1,0|)

i (t)f
(|0,1|)
i (t).

The column vector formed by f
(n)
i (t) will be denoted by f (n)(t) =

(
f

(n)
i (t)

)
.

Based on basic properties of the z-transform and denoting
∑W

i=1 ni by #n we
can write

f (n)(t) =
∂#nB∗(t, z)∏W

i=1 ∂z
ni
i

∣∣∣∣∣
z=1

· 1 (3.21)

where 1 is the row vector of 1s. In the sequel, in order to abbreviate, the
partial derivative in (3.21) will be written in “vector” notation leading to

f (n)(t) =
∂nB∗(t, z)

(∂z)n

∣∣∣∣
z=1

· 1. (3.22)

CHAPTER 3. MARKOV REWARD MODELS 47

From (3.17), based on basic properties of the Laplace-transform, we have

B∗(t, z) = exp

((
−S +

∑
∀g

zgR(g)

)
t

)
(3.23)

where exp(•) denotes the matrix exponential function1. Applying (3.23) in
(3.22), using the definition of the matrix exponential function and changing
the order of the derivative and the summation leads to

f (n)(t) =
∞∑
i=0

ti

i!

∂n

(∂z)n

(
−S +

∑
∀g

zgR(g)

)i
∣∣∣∣∣∣
z=1

· 1

By using the notation

N(n)(i) =
∂n

(∂z)n

(
−S +

∑
∀g

zgR(g)

)i
∣∣∣∣∣∣
z=1

(3.24)

we clearly have

f (n)(t) =
∞∑
i=0

ti

i!
N(n)(i) · 1 (3.25)

and in the following we show that N(n)(i) can be computed in a recursive
manner. We can write N(n)(i) =

∂n

(∂z)n

(
−S +

∑
∀g

zgR(g)

)(
−S +

∑
∀g

zgR(g)

)i−1
∣∣∣∣∣∣
z=1

=

− ∂n

(∂z)n
S

(
−S +

∑
∀g

zgR(g)

)i−1
∣∣∣∣∣∣
z=1

+ (3.26)

∂n

(∂z)n

∑
∀g

zgR(g)

(
−S +

∑
∀g

zgR(g)

)i−1
∣∣∣∣∣∣
z=1

(3.27)

1Note that the relation holds if all the matrices uniformizable.

CHAPTER 3. MARKOV REWARD MODELS 48

It is easy to see that the term in (3.26) equals −SN(n)(i − 1). The term in
(3.27), by changing the order of the summation and the derivative and by
applying properties of derivatives of products, can be written as

∑
∀g

∂n

(∂z)n
zgR(g)

(
−S +

∑
∀g

zgR(g)

)i−1
∣∣∣∣∣∣
z=1

=

∑
∀g

∑
k∈ZW :k≤n

 W∏
j=1

(
nj
kj

)
· (3.28)

 ∂k

(∂z)k
zgR(g) · ∂n−k

(∂z)n−k

(
−S +

∑
∀g

zgR(g)

)i−1
∣∣∣∣∣∣

z=1

whose product of binomial coefficients will be abbreviated in the sequel as(
n

k

)
=

W∏
j=1

(
nj
kj

)
.

The first derivative of the right hand side of (3.28) evaluated at z = 1 will
be denoted by cg,k and results to be

cg,k =
∂k

(∂z)k
zg
∣∣∣∣
z=1

=
∂#kzg11 z

g2
2 . . . zgWW

∂zk11 ∂z
k2
2 . . . ∂zkWW

=

W∏
i=1

ki−1∏
j=0

(gi − j). (3.29)

Based on (3.26), (3.27), (3.28) and (3.29) we have

N(n)(i) =− SN(n)(i− 1)+∑
k∈ZW :k≤n

(
n

k

)∑
∀g

cg,kR
(g)N(n−k)(i− 1) (3.30)

which provides the required recursion. The initial condition for the recursion
is N(0)(0) = I and N(n)(0) = 0 for any n 6= 0. Note that the recursion results
in N(0)(i) = Qi which corresponds to the fact that the factorial moment as-
sociated with the 0 vector provides the transient behaviour of the underlying
CTMC.

CHAPTER 3. MARKOV REWARD MODELS 49

3.2.3.2 Numerically stable recursion for the moments of the ac-
cumulated reward

The solution provided by (3.25) and (3.30) is not numerically stable but if the
matrix S and all the matrices R(g) are uniformizable then the problem can
be solved by applying the idea of uniformisation introduced in the previous
chapter.

Algebraically uniformisation is represented by introducing the quantity
α ≥ maxi∈S(Si,i) and considering the matrices

S′ = −S

α
+ I and R′

(g)
=

R(g)

α
(3.31)

whose entries are between zero and one and their sum

Q′ = S′ +
∑
∀g

R′
(g)

is the transition probability matrix of a DTMC. By using the quantities
defined in (3.31), equation (3.23) can be written as

B∗(t, z) = exp

((
α(S′ − I) +

∑
∀g

zgqR′
(g)

)
t

)
= (3.32)

exp

((
S′ +

∑
∀g

zgR′
(g)

)
αt− αtI

)
=

exp(−αt) exp

((
S′ +

∑
∀g

zgR′
(g)

)
αt

)

from which, by introducing

N′
(n)

(i) =
∂n

(∂z)n

(
S′ +

∑
∀g

zgR′
(g)

)i
∣∣∣∣∣∣
z=1

we have

f (n)(t) =
∞∑
i=0

(αt)i

i!
e−αtN′

(n)
(i) · 1. (3.33)

CHAPTER 3. MARKOV REWARD MODELS 50

Following the same steps, given in (3.26-3.29), that lead to a recursion for

N(n)(i), the following recursive relation can be obtained for N′(n)(i)

N′
(n)

(i) =



I i = 0, n = 0
0 i = 0, n 6= 0

S′N′(n)(i− 1)+∑
k∈ZW :k≤n

(
n

k

)∑
∀g

cg,kR
′(g)N′

(n−k)
(i− 1)

otherwise

(3.34)

3.2.3.3 Error control

As in case of uniformisation based transient analysis of CTMCs, the infinite
sum in (3.33) can be approximated by a finite sum. However, the error
control is not as straightforward as in case of the transient analysis. For the
transient probabilities, given by f (0)(t) in our framework, it is known that
the sum of the entries is one. No such information is available in advance for
the quantities f (n)(t) with n 6= 0.

The fact that the entries of f (n)(t) can be computed with arbitrary pre-
cision with a finite sum is ensured by the following trivial relation that holds
entry-wise for the matrices N′(n)(i)

N′
(n)

(i) ≤ (Q′)i
W∏
j=1

nj−1∏
k=0

(igmax − k)

where gmax denotes the maximal entries of the vectors representing the gains,
i.e., gmax = max∀g,∀i:1≤i≤W gi. For any ε > 0 there exists such K that∣∣∣∣∣

∣∣∣∣∣
∞∑
i=K

(αt)i

i!
e−αt(Q′)i

W∏
j=1

nj−1∏
k=0

(igmax − k)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε (3.35)

where ||v|| is the sum of the entries of vector v. With such K we ensure

||f (n)(t)|| − ||f (n)
K (t)|| ≤ ε.

where f
(n)
K (t) is the finite approximation given by

f
(n)
K (t) =

K∑
i=0

(αt)i

i!
e−αtN′

(n)
(i) · 1.

CHAPTER 3. MARKOV REWARD MODELS 51

However, since not all transitions lead to maximal reward gain, the trun-
cation point calculated based on (3.35) gives a pessimistic estimate for the
number of terms that have to be considered for a given accuracy. A better
approach in practice is to keep under control both the Poisson probabilities
and the relative increment of the vectors f (n)(t). Accordingly, we truncate
the infinite sum at K when

1−
K∑
i=0

(αt)i

i!
e−αt ≤ ε1 and

||f (n)
K+1(t)|| − ||f (n)

K (t)||
||f (n)

K (t)||
≤ ε2.

3.2.3.4 Computational complexity

The computational complexity in time of the proposed method can be re-
lated to that of randomisation based transient analysis of CTMCs (which is
not easy to characterize; the interested reader is referred to [30] for further
information).

As already mentioned, f (0)(t) provides the transient behaviour of the un-
derlying CTMC and its computation requires as much effort as randomisation
does. The calculation of a given factorial moment, f (n)(t), characterised by
the vector n, necessitates the calculations of all factorial moments, f (k)(t),
for which k ∈ ZW : k ≤ n.

Moreover, the larger n the more terms in (3.33) are needed to obtain the
predefined complexity. This effect, however, depends heavily on the reward
structure of the model and is hard to capture formally.

Let us report here our experimental findings for a few cases. The first l
factorial moments of a single reward variable requires about l+ 1 times more
calculations than randomisation. Having W reward variables, computing
the first l factorial moments for all of them requires approximately 1 + Wl
times more time than randomisation. For what concerns joint moments, to
compute the covariance for every pair of reward variables is about 1+W+

(
W
2

)
times heavier than randomisation.

For what concerns space requirements, two situations have to be distin-
guished. If we are interested in the behaviour for every possible initial state
then the computation requires the storage of square matrices whose size cor-
responds to the size of the state space. For a given factorial moments, f (n)(t),
we need a matrix for every vector k ∈ ZW : k ≤ n. If we are interested in the
behaviour with a given initial situation (deterministic initial state or a partic-
ular initial distribution) then the calculations can be carried out on vectors.

CHAPTER 3. MARKOV REWARD MODELS 52

Once again, to compute f (n)(t) we need a vector for every k ∈ ZW : k ≤ n.
This means that the space requirement is as many times larger than that of
randomisation as many vectors k ∈ ZW : k ≤ n we have to consider.

4
Case studies

In this section, we provide some numerical results obtained by using MRMs
in two different contexts: manufacturing production lines where discrete-
time models are used and biochemical systems for which the continuous-time
counterpart is exploited.

The two bulks of tests are different also from the point of view of the
outcome that we wanted to achieve through the tests. For the first situation,
we have a sort of real case studies which come from a collaboration with
the Mechanical Engineering department of Politecnico di Milano, thus, the
tests were driven by the will to show that the mathematical model behave
as the real evidence. Secondly, the hope was to discover and maybe explain
unexpected behaviours.

On the contrary, for the biochemical cases we aimed to promote the use of
MRMs as a smarter solution for the analysis of CTMCs. This idea was moti-
vated by the fact that in the context of systems biology these techniques are
almost unknown although a large number of biological models has monotonic
productions.

In the following we compute several measures of interest as expectation,
variance, correlation, standard deviation, skewness, covariance. Further-
more, we show also that the estimation of the distribution is also possi-

53

CHAPTER 4. CASE STUDIES 54

ble. The solver for the MRM has been implemented in JAVA prototype1

tool whereas the distribution estimation has been computed by using MRM
Solve 2.0 [55, 82]. All the experiments have been performed on a common
notebook powered by a Intel Centrino Dual Core with 4Gb of RAM.

4.1 Manufacturing production lines - rewards

governed by DTMCs

The production lines that we analyze are concatenations of manufacturing
stations separated by a finite dimension buffer that connects them and has the
task to carry the production of the first station to the second. Graphically,
they corresponds to the block depicted in Figure 4.1 where Bn denote the
nth buffer capacity.

Stationn Buffern Stationn+1

Bn

Figure 4.1: Machine-Buffer-Machine block

Each manufacturing station (machine from now-on) is described trough
a DTMC having operational states associated to, possibly different, non-null
rewards and failure states having null reward.

We assume that in each time slot the first machine puts parts in the
buffer (if it is in an operational state) and then the second machine takes
away parts from the buffer (if it is in an operational state) producing the final
outcome of the machine-buffer-machine block. When the buffer is full the
first machine cannot produce and the same happens to the second machine
when it does not find parts in the buffer. As last, in order to fully characterize
the behaviour of a machine inside the system, we need to define two features.
The first is the policy with which a machine produces:

1A tool based on MRM for the modeling and analysis of flexible manufacturing systems
is available at the url http://www.di.unito.it/˜angius

CHAPTER 4. CASE STUDIES 55

• Full batching: the machine produces only if it is allowed to produce
the maximum production of its current state. This implies that if the
buffer does not have space to hosts all the produced items the machine
does not produce. The same happens when the buffer is not able to
supply the number of items required for the subsequent machine.

• Partial batching: if the machine is in an operational state, it produces
the maximal quantity possible.

The second is the type of failures that we are assuming:

• Time failures: the machine reaches non-operational states even if its
production is blocked.

• Failure by use: the machine can fail only after a production.

Once these properties are set, the definition of the matrices P(m) describ-
ing the MRM model is straightforward by considering the production of the
machine at the end of the line.

4.1.1 Skewness and higher order moments

As first example, we illustrate the use of higher order moments in the analysis
of a machine-buffer-machine block. We assume that both machines have
geometric failure times with mean time to failure equal to 100. Also for what
concerns times to repair we assume that the two machines are identical but
we consider three different distributions with mean equal to 10: the geometric
distribution, the order two hyper-geometric distribution with coefficient of
variation (CV) equal to 2, and the order two hypo-geometric distribution
with CV equal to 0.5. Both machines produce one part per time slot in the
up state. The capacity of the buffer is 5.

The idea behind these tests is to refute the hypothesis that the normal
distribution is a good estimator of the distribution of the number of items
produced at a given time unit(from now-on service level). This has been
done by estimating the symmetry of the distribution through the computa-
tion of the skewness1. If the service level of the lines was following a normal

1The skewness corresponds to the standardized third moment and is equal to
E[(X−µ)3]
E[(X−µ)2]3/2

CHAPTER 4. CASE STUDIES 56

distribution then the skewness of both the accumulated reward and the com-
pletion time would be constant to zero. Figure 4.2 confirms our belief, i.e.,
in a short time horizon, the hypothesis above is a biased estimator. This is
showed on the r.h.s. where all the three curves of the skewness start quite
far from zero and get reasonably close to zero after time 2000 only.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000

time

geom
hypogeom CV=0.5

hypergeom CV=2.0

-7

-6

-5

-4

-3

-2

-1

 0

 0 500 1000 1500 2000

time

geom
hypogeom CV=0.5

hypergeom CV=2.0

Figure 4.2: Number of produced parts as function of time for the machine-
buffer-machine blocks with different coefficients of variation: mean (left) and
skewness (right)

Figure 4.3 gives a quantification of the error in regards to the size of the
lot. In particular, we can observe that the error can be consistent for small
and medium lot sizes. Thus, the normal distribution assumption overesti-
mates the service level leading to the risk of generating optimistic system
configurations.

CHAPTER 4. CASE STUDIES 57

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

items

geom
hypogeom CV=0.5

hypergeom CV=2.0

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

items

geom
hypogeom CV=0.5

hypergeom CV=2.0

Figure 4.3: Time required to complete a task as function of the number
of items for the machine-buffer-machine block with different coefficients of
variation : mean (left) and skewness (right)

On the left side of the figures it is possible to observe that as far as the
mean sojourn times are the same, the expected service level is independent
from the CVs.

4.1.2 Systems with machines producing in batches

The second test deals with the impact of batch productions in case of full
batching policy. We consider a block of two machines having failure and
repair times distributed according a geometric distribution with mean as in
the previous case but the size of the buffer is only 20. We tested different
batch sizes and assumed two situations: in the first, the machine at the
beginning of the line produces only in batch whereas the second is able to
produce only one item per unit time; in the second scenario, we reverse the
assumption. Figures 4.4 and 4.5 depict both the mean and the index of
dispersion for the first scenario. It is possible to observe that the uncertainty
of the service level decreases by increasing the batch size of the first machine
although the expected production remains almost equal.

CHAPTER 4. CASE STUDIES 58

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

time

batch 2

batch 5

batch 10

batch 15
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

time

batch 2

batch 5

batch 10

batch 15

Figure 4.4: Number of produced parts as function of time for the machine-
buffer-machine block with different batch sizes on the first machine : mean
(left) and index of dispersion (right)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

items

batch 2

batch 5

batch 10

batch 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100

items

batch 2

batch 5

batch 10

batch 15

Figure 4.5: Time required to complete a task as function of the number of
items for the machine-buffer-machine block with different batch sizes on the
first machine : mean (left) and index of dispersion (right)

The results for the second scenario are depicted in Figures 4.6 and 4.7.
The figures show that, the expected service level is characterized by step
curves. In particular, they show the presence of cold points (minimal result
with maximum effort) and hot points (maximum result with the minimal
effort) both for short time intervals and for small lot sizes. As an example,
assuming a batch size equal to 15, a lot of 16 items requires the same time as
a lot composed of 30. Thus, this kind of analysis helps the decision about the
dimensions of lots in such a way that they can be optimized by maximizing
the number of items and minimizing the time.

CHAPTER 4. CASE STUDIES 59

The right sides of the figures show the uncertainty of the service level,
it is possible to observe that the larger the batch and the more random is
the production. In particular, much larger is the dimension of the batch and
much larger are the spikes that characterize the accumulate reward index of
dispersion.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

time

batch 2

batch 5

batch 10

batch 15
 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

time

batch 2

batch 5

batch 10

batch 15

Figure 4.6: Number of produced parts as function of time for the machine-
buffer-machine block with different batch sizes on the second machine : mean
(left) and index of dispersion (right)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

items

batch 2

batch 5

batch 10

batch 15

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100

items

batch 2

batch 5

batch 10

batch 15

Figure 4.7: Time required to complete a task as function of the number of
items for the machine-buffer-machine block with different batch sizes on the
second machine : mean (left) and index of dispersion (right)

CHAPTER 4. CASE STUDIES 60

4.1.3 Two-machine line with degrading machines

In the next case, we consider a station-buffer-station block that operates
according to a degradation/reparation scheme. The underlying DTMC of a
station has the following transition probability matrix:

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− p p
1− p p

. . .

1− p p
1− q q

1− q q
. . .

q 1− q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with Nu up-states and Nd down-states. We assume that the quantity pro-
duced in the up-states is Nu, Nu − 1, Nu − 2, ..., 2, 1, i.e., the productivity of
the machines is degrading as it is passing through the up-states. Naturally,
there is no production in the down-states. The machines operate in partial
batching mode.

We calculated, having empty buffer and fully operational machines as
initial state, the mean and the index of dispersion of the number of parts
produced by the second machine for Nu = 10, Nd = 5, p = 0.1, q = 0.5
varying the size of the buffer B. The results are depicted in Figure 4.8 and
4.9. As expected, the mean amount of production is increasing as the buffer
is enlarged. The variability of the production instead is low for low buffer
size (B = 5), it has a sharp increase for medium buffer size (B = 10) and
then it decreases as the buffer is enlarged (B = 50, 100). The non-monotone
behaviour of the variability is due to the fact that both the time to complete
failure and the time to repair of the machines are of low variance. The size of
the state space is (Nu +Nd)

2(B + 1) which is 22725 in our case for B = 100.

CHAPTER 4. CASE STUDIES 61

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

B=5

B=10

B=50

B=100

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

B=5

B=10

B=50

B=100

Figure 4.8: Number of produced parts as function of time for the machine-
buffer-machine block with different buffer sizes: mean (left) and index of
dispersion (right)

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

B=5

B=10

B=50

B=100

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

B=5

B=10

B=50

B=100

Figure 4.9: Time required to complete a task as function of the number of
items for the machine-buffer-machine block with different buffer sizes : mean
(left) and index of dispersion (right)

4.1.4 Larger production lines

4.1.4.1 Four machines - reversibility property for second moments

The fourth test deals with four machines with geometric failure and repair
times with mean equal to 100 and 10, respectively. We test different buffer
sizes.

The idea behind the test is to show that the behaviour of this kind of
production lines is symmetric according to the size of the buffers. As an

CHAPTER 4. CASE STUDIES 62

example. this means that a production line having three buffers with capacity
5, 5, 2 provides the same service level of a line whose buffers have been
inverted, i.e. 2, 5, 5. This property, called reversibility, is always true when
the time approaches infinity whereas in a finite time horizon it is true only if
the machines start from the same state. Figures 4.10 and 4.11 illustrate the
property.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

2-5-5

5-5-2

10-5-5

5-5-10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000

2-5-5

5-5-2

10-5-5

5-5-10

Figure 4.10: Number of produced parts as function of time for a production
line composed of four machines and three buffers having sizes : mean (left)
and index of dispersion (right)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

2-5-5

5-5-2

10-5-5

5-5-10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200

2-5-5

5-5-2

10-5-5

5-5-10

Figure 4.11: Time required to complete a task as function of the number
of items for a production line composed of four machines and three buffers
having sizes : mean (left) and index of dispersion (right)

CHAPTER 4. CASE STUDIES 63

4.1.4.2 Six machines - estimation completion time

In case of this last test the dimension of the model that we consider does not
allow the computation of completion time. The reason is that the number
of states with zero production is high and the inversion of the matrix P(0,0)

generates a dense matrix whose handling is not possible. However, we are
still able to estimate the distribution of this measure by using the method
described by Telek and Tari in [55, 82]. Given a r.v. X, the method takes
in input a finite number of moments of X and returns an upper and lower
bound for the probability Pr{X = x}. The method works in such a way that
the more x is far from the expectation and the more accurate the bounds
are. Of course, the accuracy of the method (tighter intervals) improves if the
number of moments increase.

We considers a model composed of six machines and all the buffers with
a capacity of 5 items; hence the whole state space is composed of 26 × 65 =
497664 states. We computed the first 20 moments of the accumulated reward
of the system. Then we used the results to compute an estimation of the
accumulated reward distribution. We provide an illustration of the result in
Figure 4.13, in particular:

• on left : we have the estimation of the accumulated reward c.d.f. at
time 2000,

• on right : we have an estimation of the completion time c.d.f. for a lot
of 2000 (the estimation has been computed by exploiting the fact that
the accumulated reward is the dual problem of the completion time).

CHAPTER 4. CASE STUDIES 64

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000

5-5-5-5-5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000

5-5-5-5-5

Figure 4.12: Number of produced parts as function of time for a production
line composed of six machines and three buffers having sizes : mean (left)
and index of dispersion (right)

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 50 100 150 200 250 300

Pr[Z(2000) <= x]

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 1700 1750 1800 1850 1900 1950 2000

Pr[Z(2000) >= x]

Figure 4.13: C.d.f. estimation of the accumulated reward and completion
time for the case of six machines geometrically distributed with buffers ca-
pacity of 5

The computation of the moments required half an hour. Note that the
computation of the moments of the accumulated reward is feasible for bigger
state spaces.

CHAPTER 4. CASE STUDIES 65

4.2 Biochemical systems - rewards governed

by CTMCs

In this section we provide two examples of the use of multi-reward in the
context of systems biology.

The first model has been designed ad-hoc in order to show the soundness
of the method. On the contrary, the second case describes a real biological
phenomenon. For both the models, starting from the factorial moments we
compute higher order “common” moments of all the monotonic places and
the first joint moment E [Bi,a(t) ·Bi,b(t)] for each couple of distinct monotonic
places a, b. The firing times of both the models are defined according to the
following function λi(x) = ki

∏
j∈•ti xj where ki, 1 ≤ i ≤ R are the kinetic

constants.

4.2.1 Case 1 - Ad-hoc model

As anticipated the first model have been built ad-hoc to test the method.
Despite this, to be realistic we designed the model as a composition of com-
mon biological structures. In particular, we take inspiration from enzymatic
reactions whose structure makes them feasible to be analyzed by MRMs.
Roughly speaking, this kind of systems describes the productions of one or
more biochemical species whose growth is regulated by the concentrations
of substrates and enzymes present in the system. Often blocks of reactions
describing the behaviour of enzymes are combined to model a biochemical
phenomenon. For the interested reader, we refer to [78] in which a high
number of enzymatic reaction systems are described.

Our system, depicted in Figure 4.14, contains two enzymes, E and E1,
competing for the substrate S with which both the enzymes are able to
bind. The first enzyme, E, binds with S in order to produce P . The second
enzyme E1 is able instead to generate three different species, Q, R and P ,
after having bound with either substrate S or B. When E1 is bound with S,
it can produce two units of Q and one unit of P and when it is bound with
B a single unit of R plus one unit of P can be generated. We assume that
there is such high amount of B present in the system that its quantity can
be considered constant. Note that this way it is not possible to use up B and
the production of R and P is potentially infinite, giving rise to an infinite
state space.

CHAPTER 4. CASE STUDIES 66

I

S

E1

DFG

E1S

EI

ESI

Q

P

R

E

B

ES

E1B

β

α

α

β

β

α
γ1

β

α

µ

α

β γ2

2

β α

Figure 4.14: Petri net describing the ad-hoc model

A further assumption is that enzyme E can be inhibited by I in such
way that the effectiveness of E gets lower in proportion of the quantity of I.
The entire system is composed of 15 reactions. The intensities of the binding
and unbinding reactions are α = 1 and β = 0.1, respectively. Whereas the
production reactions are with intensity γ1 = γ2 = 5 and µ whose value will
be 1, 5 or 10. The initial state is E = E1 = 5, I = S = 50 and 0 for the other
species.

It is clear that the monotonic species areQ, P andR and the “productive”
activities are given by the reactions with intensities γ1, γ2, µ. Cutting off the
monotonic species from the state descriptor the state space becomes finite
with 55076 states. We computed 20 moments for Q, P , and R and the

CHAPTER 4. CASE STUDIES 67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

E[Q] (mu=1)
E[Q] (mu=5)

E[Q] (mu=10)
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

E[P] (mu=1)
E[P] (mu=5)

E[P] (mu=10)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

E[R] (mu=1)
E[R] (mu=5)

E[R] (mu=10)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

VAR[Q] (mu=1)
VAR[Q] (mu=5)

VAR[Q] (mu=10)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

VAR[P] (mu=1)
VAR[P] (mu=5)

VAR[P] (mu=10)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

VAR[R] (mu=1)
VAR[R] (mu=5)

VAR[R] (mu=10)

Figure 4.15: Ad-hoc model: expected values (upper part) and variances
(lower part) of Q, R and P as function of time for the cases µ = 1, 5, 10.

first joint moment for each couple of distinct variables in the time interval
[0, 25]. We splitted the computation in 100 time intervals, each of them was
computed in 3 minutes.

In Figure 4.15 we depicted the expectations and the variances as function
of time. All the three species, Q, P and R, show faster growth for larger
values of µ. This is not surprising for P and Q which are directly produced
by a reaction whose intensity is µ. For what concerns R, the reason for which
it grows faster with larger values of µ is the fact that with larger µ enzyme E1

is released faster. For what concerns the variance patterns, one can observe
that while there is substrate S in the system, the production of Q and R
shows peaks of variability. Whereas, the variability of the production of P
follows a more uniform pattern. The variance of Q returns then to lower
level because its production is bounded.

The correlation coefficient (CC) is a particularly interesting measure for
this kind of systems because it illustrates the degree and the kind of depen-
dency between two species. It is computed as the ratio of the covariance of
the random variables and the product of their standard deviations. In Figure
4.16 we show the CC as function of time for each couple of monotonic species.
(Note that at time 0 the CC is undefined as its value is 0/0; in the figures we
set to 0 the CC at time 0 and it results in some discontinuities in the curves.)
One can see that the consumption of substrate S has a strong impact on the

CHAPTER 4. CASE STUDIES 68

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

CC[Q,P] (mu=1)
CC[Q,P] (mu=5)

CC[Q,P] (mu=10)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

CC[Q,R] (mu=1)
CC[Q,R] (mu=5)

CC[Q,R] (mu=10)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

CC[P,R] (mu=1)
CC[P,R] (mu=5)

CC[P,R] (mu=10)

Figure 4.16: Ad-hoc model: correlation between each couple of monotonic
species as function of time for the cases µ = 1, 5, 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Q - cdf interval

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

Q - cdf interval

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

Q - ccdf interval

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

R - cdf interval
 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

R - cdf interval
 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

R - ccdf interval

Figure 4.17: Ad-hoc model: bounds of the cdf of the quantity of Q and
R at time 25; left: cdf with linear scale, middle: cdf with log scale, right:
complementary cdf with log scale.

CHAPTER 4. CASE STUDIES 69

correlation between the three species of interest. In fact, while S is not used
up, Q and P are strongly related and, on the contrary, the correlation be-
tween P and R is low. The situation gets inverted when the quantity of S
is close to zero due to the fact that the only possible production that can
occur is through reaction γ2 which produces P and R simultaneously. For
what concerns the correlation of Q and R, the only case in which significant
values occur is µ = 1. This correlation is due to the fact that the more Q has
been produced, the more E1 has been unbound to produce R. This effect is
not visible for larger values of µ because the initial phase where there is a
significant amount of S is short.

As last measure we provide the bounds of the c.d.f. The results are
depicted in Figure 4.17 for Q and R for the situation after 25 time units with
µ = 1 (the results for P are similar to those for R). For both species we
depicted the bounds of the cdf in linear scale (giving an overall view of the
distribution), the bounds of the cdf with logarithmic y-axis (giving detailed
view for values smaller than the mean), and the bounds of the complementary
cdf with logarithmic y-axis (giving information on the tail of the distribution).
Consider Q at c = 40, the lower bound for the cdf at this point is 0 while the
upper bound is about 10−5. This implies that the probability of having less
than 40 units of Q at time 25 is less than 10−5. As for a value larger than
the mean, we can read that the probability of having more than 100 units of
R at time 25 is less than 0.001.

Let us mention here that obtaining bounds similar to those depicted in
Figure 4.17 by simulation has high computational cost. Consider, for exam-
ple, that having more than 150 units of Q at time 25 is less than 10−5. This
means that we need about 108 simulation runs to have a reasonable estimate
of having more than 150 units of Q at time 25. This requires about 10 times
more time than our approach.

4.2.2 Case 2 - DFG degradation

The second model that we propose can be found in the database available on
www.sbml.org, it models a real biological phenomenon with 14 biochemical
species (places) interacting through 16 reactions (transitions). The system
is reported in Figure 4.18. The system models the N-(deoxy-D-fructos-1-
y1)-glycine (DFG) degradation pathway, and typically its transient analysis
starts from the state with DFG = n, n > 0, and 0 for the other species (the
numerical parameters can be found in [65]).

CHAPTER 4. CASE STUDIES 70

DFG

Gly

Cn

DG3

DG1

DFG

AA

Mel MG

E2FA

Man

Fru

E1

Glu

n

Figure 4.18: Petri net describing the DFG degradation model

In this case, the state space of the original CTMC is bounded but even for
low values of n its analysis is unfeasible because of the huge number of states.
By using the proposed approach, we can analyze the system using a MRM
whose state space is much smaller than the state space of the original CTMC.
The monotonic species are AA, FA, MG, Mel and Fru and not considering
them explicitly significantly reduces the state space. It is obvious that for
larger values of n even our approach can become unfeasible but in several
cases our method can make the difference between unfeasible and feasible.

We used the model with n = 13 in which case the original state space is
composed of 5.200.300 states and, by using our method, it can be reduced to
497.420. In this case, we computed the first 2 moments and all the first joint
moments in 40 equidistant points in the interval [0, 100]. Each time point
needs about 5 minutes of time. The results are depicted in Figures 4.19 and

CHAPTER 4. CASE STUDIES 71

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E[AA]
E[FA]

E[Mel]
E[MG]
E[Fru]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100

VAR[AA]
VAR[FA]

VAR[Mel]
VAR[MG]
VAR[Fru]

Figure 4.19: DFG Degradation: expected values (left) and variances (right)
of AA, Mel, MG, FA, Fru, starting from the state DFG = 13.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 20 40 60 80 100

CC[AA,FA]
CC[AA,Mel]
CC[AA,MG]
CC[AA,Fru]
CC[MG,Fru]

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CC[FA,Mel]
CC[FA,MG]
CC[FA,Fru]

CC[Mel,MG]
CC[Mel,Fru]

Figure 4.20: DFG Degradation: correlations between couple of monotonic
species, starting from the state DFG = 13.

4.20. Based on Figure 4.20 one can figure out that species FA and MG have
strong positive correlation, i.e., large (small) amount of FA implies large
(small) amount of MG. Whereas, there is negative correlation between AA
and Mel because there is competition between their production.

Since the original CTMC of this case study is finite, the results presented
so far can be computed based on the original CTMC as well. In order to
illustrate how much we gain using the proposed approach, in Table 4.1 we
provide a comparison between the size of the state space of the original
CTMC and that of the derived MRM.

CHAPTER 4. CASE STUDIES 72

n CTMC MRM

1 13 10

5 6.188 2.002

10 646.646 92.378

15 17.383.860 1.307.504

Table 4.1: Size of state space of the original CTMC and the derived MRM

Part II

Product form approximation

73

5
Transient product form

From basic probabilistic rules, we know that: given two random variables
Y1 and Y2 the probability Pr{Y1 = α ∧ Y2 = β} corresponds to the product
between Pr{Y1 = α} and Pr{Y2 = β} if and only if the two random variables
are independent among each other. This notion can be easily generalized to a
set of M random variables. In particular, by assuming to collect the random
variables in a vector X, the following equation is straightforward

Pr{X = x} =
M∏
i=1

Pr{Xi = xi}. (5.1)

Indeed, this form seems particularly suitable because allows to express
the distribution of a M−dimensional state space by considering the distri-
bution of its components in isolation. On the other hand, it seems also quite
unrealistic that such form can be useful for non-trivial purposes.

As an example, the random variables describing the number of customers
present at the stations of a queuing network are collected through vectors
similar to the one proposed above; however, they do not enjoy the property
to be independent among each other, due to the fact that the distribution of
each queue is affected by the customers that arrive from the other stations
and by the overall number of customers present within the system.

74

CHAPTER 5. TRANSIENT PRODUCT FORM 75

Despite this, significant results have been achieved in this field by exploit-
ing the fact that, under particular assumptions, the queue length distribu-
tions of a network behave as they were independent from each other. This
property leads to the so-called product form which, in general, is defined as
follows:

Pr{X = x} =
1

G

M∏
i=1

fi(xi). (5.2)

where G is a normalization constant and the functions fi(xi), 1 ≤ i ≤ M ,
provides non-normalized measures describing the number of customers in
each queue.

It is evident that equation (5.2) is a sort of adjustment of equation (5.1)
required to manage the additional assumptions under which the stations be-
have as independent from each other. However, find a way to define the terms
of equation (5.2) for a general queuing network is neither straightforward nor
always possible.

Despite this, product form has been massively investigated in the context
of queuing networks because they allow the analysis of models with large
state space.

As a consequence, the literature has become richer and richer of classes of
networks that enjoy this property. The most classical works in this direction
include: Jackson networks [56] which are open networks with Poisson arrivals
and infinite capacity, exponential servers; Gordon-Newell networks [41] which
are closed networks with exponential servers; and BCMP networks [13] which
can be either open, closed or mixed and can contain multiple classes of cus-
tomers.

More recent works have shown that more sophisticated mechanisms pre-
serve the product-form property as well. Some examples are: negative cus-
tomers which are able to delete a customer from a queue [35, 36]; triggers
which redirect other customers among the queues, catastrophes which flush
all the customers out of a queue [38, 37]; resets [39] and synchronized arrivals
in a set of queues [28].

Moreover, this idea has been extended also to other formalisms, such as:
SPNs (see, as examples, [44, 11]) and process algebras ([79, 26]). As last, it
has been shown that queuing networks can enjoy a sort of flow-equivalence
property [23]. However, the works cited above, as almost all the rest of the
literature, consider steady state probabilities only.

At the best of our knowledge, in the context of transient analysis the only

CHAPTER 5. TRANSIENT PRODUCT FORM 76

notable exceptions are:

• [46] where Harrison and Lemoine prove that a sufficient condition to
express the transient behaviour of both open and closed networks in
product form is to have arrivals from outside according to Poisson pro-
cesses (in case of open networks) and an unlimited number of servers
in each stations independently of the service times distribution;

• [67] where Massey and Whitt extend the previous result by proving that
as long as every station has an infinite number of servers, the transient
product form holds also for more general models, as the Poisson arrival
location model (PALM);

• [18, 17] where Boucherie and Taylor prove that the infinite server policy
is not only the sufficient but also the necessary condition to have a tran-
sient product form in case of completely Markovian queuing networks
having unitary arrivals and departures.

Since the purpose of this part of the dissertation is to use product form
in context of the transient analysis of Markovian models, the works above
are of great interest for our purpose. In particular, they show that the time
dependent version of equation (5.2), called transient product form from now-
on, is a simple and elegant distribution that, except for pathological cases,
has not to be expected in networks where customers wait for service or can
be blocked as a consequence of other events. Moreover, it seems unlikely that
more general routing policies, such as congestion dependent routing, can lead
to more general product forms.

As a consequence of this limited sphere of application, we decided to
renounce the exactitude of the results in favor of a wider application area.
Thus, our purpose is to investigate the applicability of transient product form
as approximation of the transient probabilities of CTMCs.

The chapter is structured as follows. In Section 5.1, we introduce the
formal definition of transient product form and the results described in [46,
67, 18, 17]. In Section 5.2, as first, we derive an ODEs system, based on the
formalism of SPNs, that allows the use of transient product form whether
or not the model enjoy the property; then, we list the main features of the
proposed approximation. As last, in Section 5.3 we apply the approach
on simple models to show that, even intended as an approximation, the
applicability of the approximation is limited.

CHAPTER 5. TRANSIENT PRODUCT FORM 77

5.1 Transient product form

In this section, we show that the transient product form is strictly related
to:

• networks composed of infinite servers. We focus on M(t)/G(t)/∞
which are stations where customers arrive according to a, possibly time
dependent, Poisson distribution and are served immediately after their
arrival according to a, possibly time dependent, general distribution.

• time inhomogeneous Poisson processes.

The stochastic process associated to a M(t)/G(t)/∞ station is a birth and
death process with a strictly positive birth rate and a death rate which
increases linearly with the number of customers inside the station. Hence,
customers do not wait in queue and the station is always stable independently
of the distributions according to which customers arrive and depart from the
station. Because of this property, an M(t)/G(t)/∞ can be interpreted as a
source of Poissonian events.

As a consequence, the motion of each customer within a network com-
posed only of infinite servers is independent from the other customers.

In the following, we exploit this fact to prove that networks composed
of infinite server stations can be described as the superposition of all the
Poisson processes generated by the nodes of the system and by the arrivals
from the outside.

As first, we take into consideration closed networks without any assump-
tion about the distributions of the departures times at the service stations.
Then, we deal with open networks by assuming that customers arrive from
the outside according to a time inhomogeneous Poisson process. The proofs
follow the path suggested by Lemoine and Harrison in [46]. However, for
the open networks case, we propose also the transient product form theo-
rem provided by Massey and Whitt in [67] which gives a better picture of
the measures involved in the product form. Finally, we summarize the re-
sults obtained by Boucherie and Taylor about the necessary conditions under
which a model enjoys of the transient product form, [18, 17].

CHAPTER 5. TRANSIENT PRODUCT FORM 78

5.1.1 Sufficient conditions

5.1.1.1 Closed networks

In this section we follow the path described by Lemoine and Harrison in [46]
to prove that closed queuing networks composed of infinite server stations
enjoy the transient product form.

We consider a closed system composed of infinite server stations having
Y customers which, for sake of simplicity, we assume to be at station 1 at
time 0.

This is equivalent to consider a collection {C1(t), . . . , CY (t)} of indepen-
dent and identically distributed random variables such that Ci(t) ∈ {1, . . . ,M}
for all t > 0 and Ci(0) = 1, 1 ≤ i ≤ Y where each Ci(t) is associated to a
customer and indicates its position in the net at time t.

The independence is a consequence of the fact that customers do not
interact among each other; hence, each customer behaves as it was alone
within the network. On the other hand, they are identically distributed
because we are assuming that all of customers are at the first station at the
beginning.

The relation between the random variable describing the queue length of
the jth station and the random variables representing the customers is given
by the summation

Xj(t) =
Y∑
i=1

δ(j, Ci(t)) 1 ≤ j ≤M,

where δ is equal to one if Ci(t) = j and zero otherwise. The state of the
system corresponds to the vector X(t) = |X1(t), . . . , XM(t)| and since all the
elements of C(t) are i.d.d., it is immediate that X(t) has the multinomial
distribution

Pr{X(t) = x|X1(0) = Y } = B(x)
M∏
j=1

(Pr{Cy(t) = j|Cy(0) = 1})xj (5.3)

where y can assume any value in 1, . . . , Y and B(x) represent the normaliza-
tion constant for the state x

B(x) =
Y !

x1!x2! . . . xM !
.

CHAPTER 5. TRANSIENT PRODUCT FORM 79

5.1.1.2 Open networks

In this section we consider the case of open systems. In particular, we assume
that customers arrive according to a non-homogeneous Poisson process A =
{A(t), t ≥ 0} with intensity function {λ+(t)} in such a way that the arrival
process has independent increments and for m ∈ 0, 1, 2 . . . it satisfies the
following relation

Pr{A(t) = m} = e−Λ+(t) [Λ+(t)]m

m!
, t ≥ 0

with Λ+(t) =
∫ t

0
λ+(y)dy.

All customers are represented by a process C = {C(t), 0 ≤ t ≤ T} where
T is a r.v. denoting the total amount of time spent by a customer within the
system. Once arrived, the initial position of a customer is assumed random,
the routings independent and E [T] finite (eventually customers leave the
system). In order to derive the product form, let us denote the probability
to find a customer at the jth station at time t with

χj(t) = Pr{T > t, C(t) = j} (5.4)

in such a way that if a customer arrives within the network at time y, then
his location at time t > y has the (possibly defective) distribution χ(t −
y) = |χ1(t − y), χ2(t − y), . . . , χM(t − y)|. The size of the defect of the
distribution corresponds to the probability with which the customer has left
the network. As a consequence, assuming the system to be empty initially,
it is easy to show that the following measure is the expected number of
customers occupying station j at time t

ρj(t) =

∫ t

0

λ+(y)χj(t− y)dy (5.5)

and as a consequence the expected number of customers within the network
is

ρ(t) =
M∑
j=0

ρj(t) =

∫ t

0

λ+(y)Pr{T > t− y}dy. (5.6)

By conditioning on A(t) = m > 0, the arrival times of the first m cus-
tomers are distributed as the order statistics of m independent samples from

the distribution on [0, t] having the density function λ+(t)
Λ+(t)

, 0 ≤ y ≤ t, [27].

CHAPTER 5. TRANSIENT PRODUCT FORM 80

Thus, at time t, the location of a customer selected at random from among
the first m arrivals has the defective distribution

ρ′j(t) =

∫ t

0

λ+(y)χj(t− y)

Λ+(t)
dy (5.7)

In general, if we condition on A(t) = m and randomly permute the indices
of the first m customers, the locations at time t of these customers are inde-
pendent and identically distributed according to ρ′(t).

Also ρ′(t) is defective and the size of the defect is equal to the condi-
tional probability that the customer has left the system by time t. Us-
ing these observations, one can easily write down a multinomial expression
for Pr{X(t) = x|A(t) = m} and multiply it by Pr{A(t) = m} where
m = x1 + · · · + xM + b. The term b represents the number of customers
that have left the systems.

Finally, we arrive to the final form by summing up over all b values. In
formula

Pr{X(t) = x} =
∞∑
b=0

Pr{X(t) = x,A(t) = x1 + · · ·+ xM + b}

= e−ρ(t)

M∏
j=1

ρj(t)
cj

cj!
. (5.8)

Thus, the number of customers occupying station i at time t has a Poisson
distribution with mean ρi(t), and the lengths of the queues are independent
random variables.

In [67], Massey and Whitt arrive to the same conclusions and provide
additional details. In particular the authors:

• specify equation (5.5) in a form that considers explicitly the arrivals
from the other stations and prove that the overall equations system
has a unique integrable solution,

• show that not only the queue lengths follow a Poisson distribution but
also the external departure process.

Since the measures described in the following theorem are considered imme-
diately after a departure from a station, we need to introduce the definition
of stationary excess :

CHAPTER 5. TRANSIENT PRODUCT FORM 81

Definition 7 The distribution of a r.v. Xe is the stationary excess of the
r.v. X if and only if Pr{Xe ≤ t} = Pr{X≥t}

E[X]
; For example, if the intervals

between successive bus arrivals at a bus stop are independent and identically
distributed according to X, then in the long run the time that a person arriving
at the bus stop (independent of the arrival process) must wait for the next
bus is distributed according to Xe [66].

Theorem 9 Given a network composed of M(t)/G/∞ stations only, with
stationary Markovian routings, and a non-negative deterministic external ar-
rival rate function α(t) governing a non-homogeneous Poisson process. The
queue lengths Xi(t), 1 ≤ i ≤ M are independent Poisson random variables
with finite means

E [Xi(t)] = E

[∫ t

t−Si

λ+
i (u)du

]
= E

[
λ+
i (t− Si,e)

]
E[Si] (5.9)

where Si represents the r.v. of the service time at queue i and Si,e its station-
ary excess. The term λ+

i (t) is the aggregate arrival rate function to queue i,
defined as the unique integrable solution to the system of input equations

λ+
i (t) = α(t)r0,i +

M∑
j=1

E
[
λ+
j (t− Sj)

]
rj,i , 1 ≤ i ≤M. (5.10)

where the constants ri,j denotes the routing probabilities.
In addition, the vector X(t) is independent of the external departure pro-

cesses before time t that are in themselves Poisson processes with integrable
time dependent rate functions

δi(t) = E
[
λ+
i (t− Si)

]
ri,0 , 1 ≤ i ≤M. (5.11)

Moreover, if the routings are acyclic then also the aggregated arrival (depar-
ture) processes from (to) queue i, i.e. counting arrivals from (departures to)
other stations as well as from (to) the outside, are Poisson processes.

In the same work, on the basis of the theorem above, the authors show
that more complex networks based on infinite server stations enjoy the tran-
sient product form. An example is the Poisson arrival location model (PALM),
where:

CHAPTER 5. TRANSIENT PRODUCT FORM 82

• a customer’s location is specified by a continuous-time stochastic pro-
cess with values in a general state space S where the queues are associ-
ated with subsets of S; hence, the model can have an infinite collection
of queues.

• Time dependent arrivals, and departures are stochastically dependent
both on the routing and the time.

Then, the authors show that by applying more constraints to the model
and going towards common discrete queuing networks a larger number of
measures can be computed easily.

We want to point out the strength of the formulas (5.3) and (5.8). These
results allow the computation of the whole distribution of a network by com-
puting only the expectation of the number of customers within every station
according to a linear differential equation system. This fact implies that the
overall computational complexity of the analysis grows linearly with the num-
ber of stations that compose the system. As a consequence the computation
of the product form is extremely cheap.

Furthermore, it is worth to say that:

• the model is more general than it might appear because the concept
of “queue” has to be intended as classes which include other customer
attributes as well as location.

• the proofs assume particular initial states but these conditions can
be circumvented by considering different conditions separately. For
instance, for the open network case, we can consider the customer in
the system separately from the new arrivals.

As last consideration, we want to point out that, in the context of CTMCs,
a network composed only of infinite servers belongs to the density dependent
family of processes defined by Kurtz in [61]. For this reason, the equations
describing the expectations of the number of customers within the stations
corresponds to the well-known limit provided by Kurtz’s theorem.

5.1.2 Necessary conditions - Boucherie’s results

In this section we summarize the results obtained by Boucherie and Taylor
about the necessary conditions to enjoy a product form in the context of
queuing networks.

CHAPTER 5. TRANSIENT PRODUCT FORM 83

The work described by Boucherie and Taylor in [18] considers Marko-
vian queuing networks only. Based on the formulas provided in the previous
section, the authors derive a canonical form to express the transient proba-
bilities of a system distribution as a product. This form allows to prove the
following theorem

Theorem 10 The only “real” queuing networks whose transient distribution
can be expressed in product form are infinite server networks.

Note that systems of queues that are not “really” networked can have prod-
uct form transient distribution. An example is a network of disconnected
M/M/1 stations whose marginal distributions are independent and then can
be expressed as a product; despite this, it does not enjoy a transient distri-
bution in form as those proposed in Section 5.1.1.

Another pathological case is the one of closed networks of M/M/K sta-
tions with a number of customers N ≤ K. Indeed, in this case we have a
transient product form distribution but only because the system behaves as
a M/M/∞ network. As last, the theorem takes into account stable queues
only (arrival rate that eventually are smaller than the service rate). In fact,
it is long time known that stations whose queue length tends to infinity be-
have as a source of Poissonian events. Thus, in this limit situation, also finite
servers stations can enjoy transient product form.

In [17], Boucherie provides also an extension of the theorem above by
showing that:

Theorem 11 A transient product form cannot exists for queuing networks
where customers are blocked or lost.

This last theorem leaves few chances to extend Theorem 10 to a general
context and motivated us to investigate product form as approximation.

We briefly mention that in [17] it has been shown that a specific case of
the Engset loss model, which involves customers blocking, can be solved as
a sum of product forms. This is an interesting result that motivates further
research for specific closed forms but does not increase much the possibility
to have a general product form that holds for a larger set of models.

CHAPTER 5. TRANSIENT PRODUCT FORM 84

5.2 Transient product form approximation

5.2.1 Definition of the approximation

In this section, we derive an approximation, called product form approxima-
tion (PF), based on the assumption that the transient probabilities of the
nodes of the system are in product form.

The first step to derive the PF approximation is the characterization of
the terms of the product. Since we derive the equations according to the
formalism of SPNs, each term corresponds to the probability that at time t
there are xm tokens in place m, 1 ≤ m ≤ M . We derive these terms from
the proper summation of the Chapman-Kolmogorov equations. In fact, the
probability to find xm tokens in place m at time t satisfies

dPr{Xm(t) = xm}
dt

=

d
∑

|y1, ..., yM | :
ym = xm

πy(t)

dt
=

∑
|y1, ..., yM | :
ym = xm

dπy(t)

dt
, 1 ≤ i ≤M.

(5.12)
From the equation above, the substitution of the rates reported in equation
(2.23) leads to

dPr{Xm(t) = xm}
dt

= −
∑

|y1, ..., yM | :
ym = xm

πy(t)
∑
n:y≥i−n

λn(y)

+
∑
n

∑
|y1, ..., yM | :
y − en ≥ i−n∧
ym = xm

πy−en(t)λn(y − en). (5.13)

Since we are assuming that token distributions are in product form among
each other, every term πy(t) can be decomposed. As a consequence, if the

CHAPTER 5. TRANSIENT PRODUCT FORM 85

product form assumption holds then we have

dPr{Xm(t) = xm}
dt

=

− Pr{Xm(t) = xm}


∑
n

∑
|y1, ..., yM | :
y ≥ i−n∧
ym = xm

∏
i 6=m

Pr{Xi(t) = yi}λn(y)


+
∑
n

Pr{Xm(t) = xm − en,m}
∑

|y1, ..., yM | :
y − en ≥ i−n∧
ym = xm

∏
i 6=m

Pr{Xi(t) = yi − en,i}λn(y − en)

(5.14)

where we isolated the terms that are not influenced by the summation on y.
Then, we can observe that each summation on y corresponds to the ex-

pected intensity of a transition. As a consequence, since every transition n
depends only on the places composing the set •tn (the set of places which
determine its enabling), the following relation holds∑
|y1, ..., yM | :
y ≥ i−n∧
ym = xm

∏
i 6=m

Pr{Xi(t) = yi}λn(y) =
∑

|y1, ..., yM | :
y ≥ i−n∧
ym = xm

∏
i∈•tn\m

Pr{Xi(t) = yi}λn(y)

(5.15)

because if i 6∈ •tn then the terms Pr{Xi(t) = yi} sum to one.
By denoting with Λm(x) the set of transitions that depends at the most

CHAPTER 5. TRANSIENT PRODUCT FORM 86

on place m and with Λm(x) its complement, we have

dPr{Xm(t) = xm}
dt

= −Pr{Xm(t) = xm}
∑

xm ≥ i−n,m∧
n ∈ Λm

λn(x)

− Pr{Xm(t) = xm}
∑

n ∈ Λm


∑

|y1, ..., yM | :
y ≥ i−n∧
ym = xm

∏
i∈•tn\m

Pr{Xi(t) = yi}λn(y)


+

∑
n ∈ Λm∧

xm − en,m ≥ i−n,m

Pr{Xm(t) = xm − en,m}λn(x− en)

+
∑

n ∈ Λm

Pr{Xm(t) = xm − en,m}
(

∑
|y1, ..., yM | :
y − en ≥ i−n∧
ym = xm

∏
i∈•tn\m

Pr{Xi(t) = yi − en,i}λn(y − en)

)
. (5.16)

Equation (5.16) gives a clear interpretation of how the approximation
works; i.e. the distribution of a place depends on the events generated by
the transitions triggered by itself in an exact way (first and third term),
whereas the intensities of the transitions depending also on the other places
are considered from the point of view of the expected contribution that each
place gives to the transition at time t (second and fourth term).

The ODEs system composed of the equations (5.16) can be interpreted
as M interacting, time inhomogeneous Markov chains in which each chain
corresponds to the number of tokens present in the place. The number of
tokens can be increased or decreased by two type of signals: the first, time
independent, that represent the firing of transitions that depend at the most
on the place in itself; whereas the second, time dependent, that are generated
with the contribution of the others places. As a consequence, the signals
generated by places different from m, 1 ≤ m ≤ M , are perceived by the
distribution m as generated from an inhomogeneous Poisson process.

CHAPTER 5. TRANSIENT PRODUCT FORM 87

Denoting with Yi, 1 ≤ i ≤M , the maximum number of tokens reachable
by the ith place, it follows that the total number of equations that describe
the approximation is

∑M
m=1(Ym + 1).

Numerical solution techniques developed for time inhomogeneous Markov
chains, like the one proposed in [7], can be applied to calculate the transient
probabilities.

The approach is able to deal with huge state spaces due to the fact that
the overall ODE system grows linearly with the number of places.

5.2.2 Consistency with transient product form networks

In this section, we prove that PF approximation is consistent with the def-
inition of transient product form when the network enjoys the property. In
particular, we consider the open network case.

In this context, it is evident that: given the mth station, its set Λm is
composed of the departures from it and the arrivals from the outside of the
network, whereas the set Λm contains all the arrivals from the other queues.
Thus, by assuming infinite server policy for all the queues we can re-write
equation (5.16) as follows

dPr{Xm(t) = xm}
dt

= −Pr{Xm(t) = xm}
(
λm + (1− rm,m)xmµm

+
M∑

i=1,i 6=m

∑
|y1, ..., yM | :
ym = xm

Pr{Xi(t) = yi}yiµiri,m


+ Pr{Xm(t) = xm + 1} (xm + 1)µm(1− rm,m)

+ Pr{Xm(t) = xm − 1}

λm +
M∑

i=1,i 6=m

∑
|y1, ..., yM | :
ym = xm − 1

Pr{Xi(t) = yi}yiµiri,m


(5.17)

where the states having a negative number of customers in queue have null
probability.

To prove that in this case PF approximation is equal to the transient prod-
uct form, we have to show that the mean value of each marginal distribution

CHAPTER 5. TRANSIENT PRODUCT FORM 88

corresponds to the parameters of the inhomogeneous Poisson processes gen-
erated by the stations. Since we know that the parameters corresponds to
the expected values, we apply the following summation.

∞∑
k=0

k
dPr{Xm(t) = k}

dt
=
∞∑
k=0

k

(
−Pr{Xm(t) = k}

(
λm + (1− rm,m) kµm

+
M∑

i=1,i 6=m

∑
|y1, ..., yM | :
ym = k

Pr{Xi(t) = yi}yiµiri,m


+ Pr{Xm(t) = k + 1}(k + 1)µm(1− rm,m)

+Pr{Xm(t) = k − 1}

λm +
M∑

i=1,i 6=m

∑
|y1, ..., yM | :
ym = k − 1

Pr{Xi(t) = yi}yiµiri,m




(5.18)

It is straightforward that equation (5.18) corresponds to the derivative of
the mean number of customers present at the mth station. Additionally, by
using methods similar to those applied in Chapter 3, it is possible to prove
that the following equation is satisfied

dE [Xm(t)]

dt
= λm − E [Xm(t)]µm(1− rm,m) +

M∑
i=1,i 6=m

E [Xi(t)]µiri,m.

(5.19)

Thus, by applying Laplace transform, we obtain:

sE∗ [Xm(s)]− E [Xm(0)] =

λm − E∗ [Xm(s)]µm(1− rm,m) +
M∑

i=1,i 6=m

E∗ [Xi(s)]µiri,m.

(5.20)

By rearranging the terms of equation (5.20) and applying basic Laplace trans-

CHAPTER 5. TRANSIENT PRODUCT FORM 89

form properties, the following relation arises

E [Xm(t)] =

∫ t

0

(
E [Xm(0)] + λm +

M∑
i=1,i 6=m

E [Xi(y)]µi

)
eµm(1−rm,m)(t−y)dy

(5.21)

that, by assuming the term E [Xm(0)] equal to zero, is exactly the measure
ρm(t) as defined in equation (5.5). Thus, if the network enjoys transient
product form the PF is exact (but of course its use would be more expensive
that the direct application of the formula provided in the previous section).

5.2.3 Limiting behaviour

In principle, the steady state determined by the PF assumption can be calcu-
lated by setting the left hand side of (5.16) to zero and solving the resulting
set of equations. In practice, this is not feasible because the set of equations
is not linear and the number of equations can be large. Exact steady state is
determined by the Chapman-Kolmogorov equations by setting the left hand
side to zero.

One can observe that the right hand side of (5.16) contains summations
of the right hand side of Chapman-Kolmogorov equation for given set of
states. This implies that the limiting behaviour of the PF approximation is
such that it satisfies sums of those equations that determine the exact steady
state. Moreover, if the exact steady state is uniquely determined by these
sums of equations then the limiting behaviour of the approximation is exact.

5.2.4 From queuing networks to SPN

In this section, we deal with the features provided by the expressive power
of SPNs. In particular, we investigate the effect of synchronizations. Syn-
chronizations are those transitions that, having two or more places in input,
generate events that depend on the local situation of more places.

It is worth to spend few lines about this discussion because theorems
about transient product form deal only with queuing networks where events
are triggered at the most by one component of the net.

As described in equation (5.16) if the transition i is a synchronization
we have to take in consideration the overall probability with which all the

CHAPTER 5. TRANSIENT PRODUCT FORM 90

places belonging to •ti contain a sufficient number of tokens to enable the
transition.

Although, this is not a problem as long as we can express the probability
to find transition i enabled as a product of marginal probabilities, the fact
that an event depends on two or more places (and potentially changes their
states) is in clear contrast with the assumption that they are independent
among each other.

Let us explain the concept by introducing the following simple example:

Example 7 Consider a Petri net composed of two places and three transi-
tions where t1 and t2 consume a token from P1 with rate µ1 and one from
P2 with rate µ2, respectively. Transition t3 instead is a synchronization and
removes a token from both the places with a single firing that occurs with rate
µ3 (Figure 5.1).

t3

P1

P2

t1

t2

Figure 5.1: Example of synchronization.

We further assume that no arrivals are possible and only a token is present
in P1 and P2 in order to keep small the number of terms with which we will
deal with. This implies that the state of the system X(t), t ≥ 0, is composed
of two random variables and can assume only four configurations, i.e. |1, 1|,
|1, 0|, |0, 1| and |0, 0|.

In spite of its simplicity the time dependent distribution of the net cannot
be expressed in product form due to the presence of t3.

The proof arises from the fact that the distribution of P1 is independent
of P2 if and only if

Pr{X2(t) = x2} =
Pr{X1(t) = x1, X2(t) = x2}

Pr{X1(t) = x1}

CHAPTER 5. TRANSIENT PRODUCT FORM 91

but the probability to find a token in one of the two places, let’s say P1, is
equal to

Pr{X1(t) = 1} = Pr{X1(t) = 1, X2(t) = 1}+ Pr{X1(t) = 1, X2(t) = 0}
= e−(µ1+µ2+µ3)t + e−µ1t

(
1− e−µ2t

)
, ∀t ≥ 0

which implies

e−(µ1+µ2+µ3)t + e−µ2t
(
1− e−µ1t

)
=

e−(µ1+µ2+µ3)t

e−(µ1+µ2+µ3)t + e−µ1t (1− e−µ2t)
that is satisfied only for the trivial cases t = 0 and µ3 = 0.

We proved that the net depicted in Figure 5.1 does not enjoy a time
dependent product form as long as the transition that synchronizes the two
places is part of the model.

Indeed this is a particular case, but the same reasoning can be applied to
fit any Petri net having synchronizations. For this reason, if synchronizations
are involved we exclude to achieve an exact solution by applying the product
form.

Despite this, in the following tests, we apply PF approximation to models
involving this type of transitions in order to evaluate its applicability as
approximation.

Other features provided by SPNs and not considered explicitly by tran-
sient product form theorems are:

• transitions triggered by arcs having a multiplicity greater than one: at
least one entry of vectors i−n , 1 ≤ n ≤ R, is greater than one. They are
a particular case of synchronizations where a place synchronize with
itself. In particular, if, for instance, a transition requires two tokens
to be enabled, then the first token that arrives to the place is blocked
until a second token arrives.

• bulk arrivals: at least one entry of vectors i+n , 1 ≤ n ≤ R, is greater
than one.

• forks: more than one entry of vectors i+n , 1 ≤ n ≤ R, is greater than
zero.

Also in these cases, we do not expect a transient product form even if the
transitions are defined as infinite server. However, by observe that:

CHAPTER 5. TRANSIENT PRODUCT FORM 92

• the mentioned PALM model described by Massey and Whitt goes far
beyond the concept of single arrivals to the stations and still preserves
transient product form due to the fact that it can be considered as a
complex superposition of generalized Poisson processes ;

• the unicity of the solution of equation (5.10) is not precluded by using
bulk arrivals and forks because the intensities of the arrivals from other
stations are scaled of constant factors;

• the motion of the customers (or tokens) are still independent among
each others as long as only infinite server transitions are involved.

On the basis of these observations, we conjecture that if all the transitions
are infinite server and they are not synchronizations then a stochastic Petri
net could enjoy a (maybe complex) time dependent product form.

5.3 Application of PF approximation

In the following, we test PF as approximation of the transient behaviour of
CTMCs by moving step by step away from the conditions that satisfy the
Boucherie-Taylor’s theorems.

We aim to show those situations that, above all, characterize our approx-
imation until we arrive to a case in which the results are rather poor. This
case will constitute the motivation for developing a more flexible product
form approximation whose final form will be described in the next chapter.

The following investigation is based on three models for which we provide,
in numerical illustrations, the comparison between the results obtained by
solving the original CTMCs and those approximated through PF.

5.3.1 Stations with finite number of servers

The slightest violation of Boucherie-Taylor’s theorem is represented by a
network having one or more stations with a finite number of servers.

For this reason, as first model we consider a network, depicted in Figure
5.2, composed of six M/M/1 stations. The net represents an on demand
production system where customer requests arrive with rate λ at station 1
where they are processed and sent to the production stations with service rate
µ1. In the optimal case, each customer request needs only two production

CHAPTER 5. TRANSIENT PRODUCT FORM 93

r3,4

1 2

3

4

5

6

r5,6

r5,4

r3,2

λ1

Figure 5.2: On demand production system.

steps that are performed at station 2 and 4 with rate µ2 and µ4 , respectively.
The model considers also a backlogging scenario in which, after a service at
station 2 (station 4), each semi-finished product is subject to a quality check
which is not successful with probability r2,3 (r4,5). When the quality check
at station 2 (4) is not satisfied the semi-finished product is sent to station 3
(5) where it is monitored with rate µ3 (µ5).

If the problem is a false positive or fixable, then the product is reinte-
grated at the next station of the production line with probability r3,4 (r5,6).
Otherwise the production request is sent back to station 2 (4). At the last
station, the final product is delivered to the customer with rate µ6.

We assumed r2,3 = r4,5 = 0.3, r3,2 = r5,4 = 0.8, µ1 = µ2 = µ4 = µ6 = 1,
and µ3 = µ5 = 1.5 and tested two values of λ, i.e. 0.6 and 1. In order to
provide a comparison we considered the original CTMC as well but, since its
state space is huge, we were not able to solve this model numerically; thus,
we used Monte Carlo simulations instead.

In Figure 5.3 we compare the results obtained by PF approximation
(empty dots) and results obtained from the simulations of the CTMC (filled
dots) by starting from the state in which all the queues are empty. We
generated 2× 106 simulation runs which required about 5 minutes and pro-
vide estimates for the variance with visible uncertainty (see, for example, the
curve corresponding to station 4 in Figure 5.3).

For the computation of the product form approximation we truncated the
queues in such a way that the maximal number of clients at a station is 50.
Accordingly, the number of ODEs is 6 × 51 = 306. The computations took
a second.

It is evident from Figure 5.3 that in both cases the product form leads
to an accurate estimation of the expectations of the queue length whereas,
especially for the case with λ = 1, the approximation of the variance is

CHAPTER 5. TRANSIENT PRODUCT FORM 94

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

stat.4

stat.5

stat.6

stat.4

stat.5

stat.6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140

stat. 4

stat. 5

stat. 6

stat. 4

stat. 5

stat. 6

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

stat.4

stat.5

stat.6

stat.4

stat.5

stat.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

stat. 4

stat. 5

stat. 6

stat. 4

stat. 5

stat. 6

Figure 5.3: On-demand production system: expectations (left) and variances
(right) of the number jobs at stations 4, 5, and 6 with λ = 0.6 (top) and
λ = 1 (bottom) parameters.

CHAPTER 5. TRANSIENT PRODUCT FORM 95

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

stat.4

stat.5

stat.6

stat.4

stat.5

stat.6

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

stat. 4

stat. 5

stat. 6

stat. 4

stat. 5

stat. 6

Figure 5.4: On-demand production system: expectations (left) and variances
(right) of the number jobs at stations 4, 5, and 6 with λ = 0.6 and starting
from the state [0, 0, 0, 10, 10, 10].

slightly worse although it still follows the original curve.
The results we did not depict (i.e., expectations and variances for stations

1, 2 and 3) are more precise than those depicted in Figure 5.3.
In order to put under stress our method, we tested a third scenario in

which the last three stations do not starts empty but with 10 customers in
their queue (and λ = 0.6).

Thus, at the beginning, we should have an adverse situation for our
method since a high number of customers wait in queue.

Figure 5.4 shows that the approximation is still able to represent the
behaviour of the original curves although the distance between the approxi-
mated and the simulated variances appears more pronounced.

Looking at the results presented above, the use of the product form seems
an appealing strategy to approximate the transient probabilities of Jackson
networks.

However, this class of networks is able to generate processes whose events
depend mostly on the local situation of each queue. Indeed, this context
facilitates our approximation since stations cannot be strongly dependent
among each other. For this reason, in the next section we start to work on
more complex models where events depend on more general conditions.

CHAPTER 5. TRANSIENT PRODUCT FORM 96

5.3.2 Synchronizations and blocking mechanisms

In the following we provide tests made on two models involving a synchro-
nization. The first in which the only synchronization can always fire in the
future whereas the second in which, moving forward in time, the probability
to find the synchronization enabled tends to zero causing a livelock of the
system.

Consider the Petri net depicted in Figure 5.5 and assume that every
transition i has firing times exponentially distributed with state dependent
parameters given by the function λi(x) = ki

∏
j∈•ti xj where ki, 1 ≤ i ≤ R,

are strictly positive constants1. By construction, the token distribution of

t1 t2

t3

t4

t5

t7

t6

P1

P2

P3 P4

Figure 5.5: Petri net having a synchronization .

places P1 and P3 behaves as a M/M/∞ station. On the other hand, P2 and
P4 have a slightly different behaviour due to transition t7 which allows that
two tokens, one taken from P2 and the other from P4, leave the net at the
same time. Of course, as long as t7 is disabled, tokens depart from P2 and P4

as they would do in a M/M/∞ station. As an example of the equations that
compose our approximation, consider the probability of having n tokens in

1Note that this interpretation of infinite server do not corresponds to the canonical
definition of infinite server transition of Stochastic Petri nets whereas it is widely used in
the context of biochemical systems as defined by [40].

CHAPTER 5. TRANSIENT PRODUCT FORM 97

P2. Then, by applying equation (5.16) we have

dPr{P2(t) = n}
dt

= −Pr{P2(t) = n}
(
nk4 +

(
k2 ·

∞∑
j=1

j · Pr{P1(t) = j}
)

+

(
k7 · n ·

∞∑
j=1

j · Pr{P4(t) = j}
))

+ Pr{P2(t) = n− 1}
(
k2 ·

∞∑
j=1

j · Pr{P1(t) = j}
)

+ Pr{P2(t) = n+ 1}
(

(n+ 1) · k4 +

(
k7 · (n+ 1) ·

∞∑
j=1

j · Pr{P4(t) = j}
))

.

It is evident that the summations on j are the expectations of the number
of tokens present in places P1 and P4 and, in particular, that the flow from
P1 to P2 is also exact according to the definition of transient product form.
Similar reasoning can be made for the distributions of the other places. In
order to evaluate our approximation, we assumed that the initial state is
|0, 0, 0, 0|, we considered the parameters

k1 = 20, k2 = 0.5, k3 = 2, k4 = k5 = k6 = 1

as fixed and we tested different values of k7 since it is the cause for which the
system does not exhibit a transient product form. The calculations required
less than two seconds.

In Figure 5.6 we show the mean and the variance of the quantity of P2

and P4. The mean is approximated well for both places while the variance
is captured well for P4 and is underestimated for P2. In Figure 5.6 it is also
possible to observe that the approximation gets poor at the increasing of k7.

As last, we propose a model in which the application of our approximation
provides results that are inaccurate.

This last case is the well-known Lotka-Volterra model whose SPN is de-
picted in Figure 5.7. This model has been proposed independently by Lotka
[64] and Volterra [89] and describes the evolution of two populations in com-
petition.

In Figure 5.8, where the states of the corresponding Markov chain are
depicted, it is possible to see that:

1. the state space is potentially infinite and grows over two dimensions;

CHAPTER 5. TRANSIENT PRODUCT FORM 98

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10

time

PF, P2, k7=0.1
PF, P2, k7=0.5

PF, P2, k7=1
sim, P2, k7=0.1
sim, P2, k7=0.5

sim, P2, k7=1
 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

time

PF, P4, k7=0.1
PF, P4, k7=0.5

PF, P4, k7=1
sim, P4, k7=0.1
sim, P4, k7=0.5

sim, P4, k7=1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

time

PF, P2, k7=0.1
PF, P2, k7=0.5

PF, P2, k7=1
sim, P2, k7=0.1
sim, P2, k7=0.5

sim, P2, k7=1
 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

time

PF, P4, k7=0.1
PF - P4, k7=0.5

PF - P4, k7=1
sim, P4, k7=0.1
sim, P4, k7=0.5

sim, P4, k7=1

Figure 5.6: Network of infinite queues with a synchronization: mean (top)
and variance (bottom) of the number of tokens in P2 and P4.

Prey Predator t3

t1

t2

2

2

Figure 5.7: Petri net of the Lotka-Volterra model.

CHAPTER 5. TRANSIENT PRODUCT FORM 99

0, 0 0, 1 0, 2 0, j

1, 0

2, 0

i, 0

i, j

i− 1, j + 1

i+ 1, j

i, j − 1

λ3 2λ3 3λ3 jλ3 (j + 1)λ3

λ1

2λ1

(i− 1)λ1

iλ1

jλ3

(j + 1)λ3

(i− 1)λ1

iλ1

ijλ2

i+ 1, j − 1

i, j + 1

i− 1, j

(i+ 1)(j − 1)λ2

λ3

λ3

λ3

λ2 (j − 1)λ2

Figure 5.8: Boundaries and a generic state of the Markov chain of the Lotka-
Volterra model (each state is labelled by the number of preys and predators).

2. the CTMC has an absorbing state in |0, 0|;

3. in case of predators extinction the model degenerates in a pure birth
process where preys grow monotonically.

The third point has a dramatic effect on the results provided by PF approx-
imation because it is not able to catch the effect generated by the disabling
of synchronization t2.

The numerical analysis of this model is very often unfeasible by using
common techniques also from the point of view of the steady state (see [29]).
For this reason, it is usually approximated by using mean-field techniques
[16].

Such approximation is used to compute the expected number of tokens
in each place by solving the system of ODEs

E [Prey(t)]

dt
= k1E [Prey(t)]− k2E [Prey(t)]E [Predator(t)] ,

E [Predator(t)]

dt
= k2E [Prey(t)]E [Prey(t)]− k3E [Predator(t)] . (5.22)

With proper parameters, the system in equation (5.22) leads to oscillation
along closed curves except if the system is started in equilibrium state.

We chose to introduce this topic because it happens that the curves pro-
vided by this approximation coincide with the expectations of the distribution
computed by using the product form as an approximation.

CHAPTER 5. TRANSIENT PRODUCT FORM 100

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3 3.5 4

time

appr. mean, R2
sim. mean, R2

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 0.5 1 1.5 2 2.5 3 3.5 4

time

appr. mean, R2
sim. mean, R2

Figure 5.9: The Lotka-Volterra model with λ1 = 10, λ2 = 0.01, λ3 = 10
and initial state (2000, 2000): mean value (left) and variance (right) of the
number of predators by simulation and by product form approximation.

It is not surprising, since the interactions among the two inhomogeneous
chains, according to the definition of PF approximation, occurs by mean of
the average quantities.

As first test, we start the model in state (2000, 2000) and use reaction
rates k1 = 10, k2 = 0.01, k3 = 10. The mean and the variance of the number
of predators obtained by simulation and by the product form approximation
are depicted in Figure 5.9.

Even if the population levels are high, the mean deviates away soon from
the stable oscillation pattern because the probability of predators extinction
gets high on the time.

The product form approximation predicts instead stable oscillation of the
mean and provides in expectation the same results of the mean-field approach
(which is not depicted in Figure 5.9 because it cannot be distinguished from
the mean provided by the product form approach). However, the product
form approximation provides more information such as the variance that
gives instead a more precise picture of what happens in the original model.

In Figure 5.10 we depicted the same quantities as in Figure 5.9 but start-
ing the model from state (200, 200) and with rates k1 = 10, k2 = 0.1, k3 = 10.
As the number of preys and predators are lower, the model deviates from
stable oscillation faster. The product form approximation is not able to cap-
ture this behaviour and provides imprecise estimate of both the mean and
the variance.

Figure 5.11 shows the probability of extinction of predators as function

CHAPTER 5. TRANSIENT PRODUCT FORM 101

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5 4

time

appr. mean, R2
sim. mean, R2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 0.5 1 1.5 2 2.5 3 3.5 4

time

appr. variance, R2
sim. variance, R2

Figure 5.10: The Lotka-Volterra model with λ1 = 10, λ2 = 0.1, λ3 = 10 and
initial state (200, 200): mean value (left) and variance (right) of the number
of predators by simulation and by product form approximation.

of time obtained by simulation and the proposed approximation.
The reason that the approximation fails to give precise estimates is that

the behaviour of the system depends strongly on the correlation of the pop-
ulation levels which is not captured by the product form probabilities. The
high correlation is evidently caused by transition t2.

This last test makes evident that a complete product form is not able
to catch the disabling of the synchronization. Surely there are situations
in which the error caused by PF is acceptable but it is also clear that the
analysis of general models requires a more flexible product form. For this
reason, in the following chapter we relax the product form assumption in
such a way that the approximation is able to approximate a wider range of
models.

CHAPTER 5. TRANSIENT PRODUCT FORM 102

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5 4

time

appr. extinction, R2
sim. extinction, R2

Figure 5.11: The Lotka-Volterra model with λ1 = 10, λ2 = 0.1, λ3 = 10 and
initial state (200, 200): extinction of predators by simulation and by product
form approximation.

6
Quasi-product form approximation

In the previous chapter we introduced the transient product form and inves-
tigated its use to approximate those models whose distributions cannot be
decomposed exactly in such a form. In particular, we proposed an approx-
imation technique which operates on the original state space of the model
and is based on the assumption that the transient probabilities of the model
can be written in product form. This assumption leads to a highly compact
description of the transient probabilities because the space complexity of the
computations grows only linearly with the number of modelled components.

It turned out that PF approximation can lead to highly imprecise results
when it is used on models where synchronizations are involved.

Since synchronizations are an important modeling feature, in this chapter,
we advance the technique proposed earlier by relaxing the assumption that
all the transient probabilities are in product form. The new assumption,
which we call quasi product form (QPF) assumption, leads to a computational
method

• whose space complexity is still lower than that of the original problem,

• that results in a good approximation for a wider range of models.

For what concerns the SPN formalism, the idea behind the approach is
that a place is allowed to preserve some dependencies with some other places

103

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 104

of the net. In other words, subsets of places are in product form among each
other and inside the subsets places remain correlated. A similar idea has
been originally proposed by Whitt in [91] where he conjectured that good
approximations can arise by splitting the original distribution of a queuing
network in disjuncts subsets of stations. However, an extensive numerical
analysis of this approach, called partial product form (PPF), has never been
done. Moreover, the approach that we propose is more general due to the
fact that the subsets have not to be disjoint among each other.

Our method is most akin to the one proposed by Casale in [21] where
first passage times of closed queuing networks are approximated by Bayesian
decomposition that in practice is equivalent to the one proposed in the fol-
lowing.

In the previous chapter we used the Lotka-Volterra model to show the
problems that arise by using the product form approximation on models in
which synchronizations lead to blocking. In these situations, the approxi-
mation quantifies the blockings in an imprecise way. Clearly this is a non-
negligible alarm bell. In fact, in a large number of cases the purpose of
synchronizations is to generate blocking; for example, in case of modeling
shared resources.

To illustrate the concept we present a model in which this problem occurs.
The model comes from biology but a similar structure is massively used also
in the context of artificial systems.

Example 8 We consider a gene regulatory network, called exclusive switch
[63].

Rougly speaking, the model consists of a switch that regulates the pro-
ductions of two genes. Each of the two gene products, P1 and P2, inhibits
the expression of the other if a molecule is bound to the promoter region of
the DNA (called simply Dna in the following). In other words, if the Dna is
bound to a molecule of P1 (P2) only molecules of type P1 (P2) can be produced,
and if the Dna is free both types of proteins are produced. An illustration of
the Petri net corresponding to the exclusive switch is depicted in Figure 6.1.

As shown, the model involves five places, namely Dna, Dna.P1, Dna.P2,
P1, P2 where the “dot” means that the Dna is bound to P1 (P2). Thus, a
state x is a vector of five non-negative integers, |x1, x2, x3, x4, x5|, with the
places ordered as above. The initial state is |1, 0, 0, 0, 0|.

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 105

t1 t2

t3 t4

t5 t6

t7 t8

t9
t10

P1
P2

Dna
Dna.P1 Dna.P2

Figure 6.1: Petri net model corresponding to the exclusive switch.

The exclusive switch dynamics are characterized through ten transitions
with infinite server semantics:

• t1 models production of P1 in case of x1 = 1 (free promoter region),

• t2 models production of P2 in case of x1 = 1 (free promoter region),

• t3 describes the degradation of P1,

• t4 describes the degradation of P2,

• t5 represents the binding of P1,

• t6 represents the binding of P2,

• t7 corresponds to the unbinding of P1,

• t8 corresponds to the unbinding of P2,

• t9 models the production of P1 when x2 = 1 (the promoter is occupied
by a molecule of P1),

• t10 models the production of P2 when x3 = 1 (the promoter is occupied
by a molecule of P2).

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 106

0 50 100
0

50

100

P1

P
2

Figure 6.2: Example of bistable joint distribution of P1 and P2 (the darker
is the region and the more likely is the state).

The initial state of the system leads to the P-invariant1

Dna+Dna.P1 +Dna.P2 = 1

and therefore the possible values for these three places, i.e. |x1, x2, x3|, are
|1, 0, 0|, |0, 1, 0| and |0, 0, 1|.

An interesting feature of this model is that if the binding to the promoter
is likely and the unbinding is rare then the distribution of P1 and P2 can
become bistable leading to joint distributions similar to the one depicted in
Figure 6.2. This means that a large amount of P1 corresponds to small quan-
tities of P2 and vice-versa. This happens in this setting because each gene can
“monopolize” the promoter region increasing its population while molecules
of the other population can only degrade.

It is evident that the promoter region is modelled to cause blocking, in this
situation the application of PF approximation is not reasonable and leads to
completely erroneous results such as those reported in Figure 6.3 where the
mean and the variance of the tokens present in P1 (P2 has the same behaviour

1Roughly speaking, a P-invariant is a set of places in which the sum of tokens remains
constant in each state of the reachability set.

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 107

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500

CTMC

PF

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500

CTMC

PF

Figure 6.3: Exclusive switch model: mean value (left) and variance (right) of
the number of tokens present in P1 (P2) by simulation and by product form
approximation.

as we used symmetric parameters) are reported. Figure 6.3 shows how the
networks is almost completely turned off according to the PF approximation
while it is producing proteins according to the original model. The reason is
that we used a of parameters with which the number of molecules (tokens) in
places P1 and P2 can grow only if their gene monopolize the promoter region;
otherwise the rate with which the two genes are produced is not enough to
win against degradation (the parameters are given as the set 1 in Table 7.1).
Since the PF approximation is not able to represent the monopolization of
the promoter region, the bi-stable behaviour is not captured.

It is evident that the network presented above models a shared resource
and the two genes can be considered as customers that compete for it.

The aim of the chapter is to provide a memory efficient, approximate

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 108

technique that is able to provide a good characterization of the distributions
for such models.

Although we motivated the QPF approximation by an example with a
rigid blocking mechanisms scheme, it can outperform the PF approximation
for models without synchronizations or heavy blocking, e.g. networks of finite
server queues.

The chapter is organized as follows. In Section 6.1 we introduce the QPF
approximation. In section 6.2 we summarize the guidelines to generate the
directed acyclic graph required to describe our decomposition. An algorithm
to implement the procedure based on the quasi product form assumption
is discussed in Section 6.3. In Section 6.4 a preliminary error validation
approach is discussed.

6.1 Definition of the approximation

In this section we introduce a more relaxed product form in order to ex-
pand the applicability of the approximation to a wider range of models. In
particular, we will assume that there exist sets of places whose conditional
probabilities depend only on a set of other places and not on all the rest of
the places. For example, if we assume that the conditional probabilities of
place 1 and 2 depend only on places 3, 4 and 5 then we can write

Pr{X1 = x1, X2 = x2 | X3 = x3, X4 = x4, ..., XM = xM} =

Pr{X1 = x1, X2 = x2 | X3 = x3, X4 = x4, X5 = x5}

A set of assumptions like the one above allows us to decompose the proba-
bility Pr{X1 = x1, X2 = x2, ..., XM = xM} into a product. As this product
is not in the classical product form given in (5.16), we will refer to it as quasi
product form and in the following we provide its formal description.

The quasi product form decomposition of the transient probabilities is
conveniently described by a directed acyclic graph (DAG), denoted by G.

The set of the nodes of the graph is denoted by V and a given node, v ∈ V,
represents a subset of the places. The index set of the places represented
by node v is denoted by I(v). The set V must be such that it provides a
partitioning of the set of places, i.e., ∪v∈VI(v) = {1, 2, ...,M} and ∀v1, v2 ∈
V, v1 6= v2 : I(v1) ∩ I(v2) = ∅.

The set of edges of the DAG, denoted by E, provides the assumed depen-
dency structure of the transient probabilities. Specifically, if e = (u, v) ∈ E

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 109

then the conditional probability of the places in v depends on those places
that are present in u.

The set of places present in the predecessors of v will be denoted by P (v),
i.e., P (v) = ∪u:(u,v)∈EI(u). The conditional probability of the places in I(v)
is independent of those that are not present in P (v), i.e.,

Pr{∧i∈I(v)(Xi = xi) | ∧j∈{1,2,...,M}\I(v)(Xj = xj)} =

Pr{∧i∈I(v)(Xi = xi) | ∧j∈P (v)(Xj = xj)}

where ∧ denotes conjunction. By considering every node of the DAG, the
probability of a given state of the system, |x1, ..., xM |, can be written as

πx(t) =
∏
v∈V

Pr{∧i∈I(v)(Xi = xi) | ∧j∈P (v)(Xj = xj)} =

∏
v∈V

Pr{∧i∈Q(v)(Xi = xi)}
Pr{∧j∈P (v)(Xj = xj)}

(6.1)

where we applied the notation Q(v) = I(v) ∪ P (v).
From (6.1), it is straightforward that also the following relation holds

Pr{∧i∈{1,2,...,M}\Q(v)(Xi = xi)| ∧i∈Q(v) (Xi = xi)} =∏
v′ 6=v∈V Pr{∧i∈I(v′)(Xi = xi) | ∧j∈P (v′)(Xj = xj)}

Pr{∧j∈P (v)(Xj = xj)}
(6.2)

In the following we give three examples for the DAG G.

Example 9 For the exclusive switch the assumption of complete product
form would be expressed by a graph with M nodes, v1, ..., vM , such that
I(vi) = {i}, and an empty set of arcs, E = ∅. With this graph the prob-
abilities are in the form given by the birth death processes described in the
previous chapter.

A possible PPF decomposition can be expressed by considering three dis-
connected nodes, v1, v2 and v3, such that node v1 is associated with the places
Dna,Dna.P1 and Dna.P2, node v2 is associated with P1 and node v3 with
P2. This leads to the following decomposition of the transient probabilities

Pr{Dna = x1, Dna.P1 = x2, Dna.P2 = x3, P1 = x4, P2 = x5} =

Pr{Dna = x1, Dna.P1 = x2, Dna.P2 = x3}Pr{P1 = x4}Pr{P2 = x5}

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 110

Dna,Dna.P1, Dna.P2

P1 P2

v1

v2 v3

Figure 6.4: The DAG representing the a possible QPF decomposition for the
exclusive switch

Finally, by maintaining the same nodes a possible DAG representing QPF,
is depicted in Figure 6.4. This leads to the following decomposition of the
transient probabilities

Pr{Dna = x1, Dna.P1 = x2, Dna.P2 = x3, P1 = x4, P2 = x5} =

Pr{Dna = x1, Dna.P1 = x2, Dna.P2 = x3}×
Pr{P1 = x4 | Dna = x1, Dna.P1 = x2, Dna.P2 = x3}×
Pr{P2 = x5 | Dna = x1, Dna.P1 = x2, Dna.P2 = x3}

From now-on, in order to shorten the notation, given a set W the term
Pr{∧i∈W(Xi(t) = xi)} will be denoted by πW

x (t) whereas for any W and W′

π
W|W′
x (t) will corresponds to Pr{∧i∈W(Xi(t) = xi)| ∧i∈W′ (Xi(t) = xi)}. As

last, we will refer to {1, 2, . . . ,M}\W with W.
In order to compute the transient probabilities based on the quasi product

form assumption expressed by the DAG G, we need the quantities appearing
in (6.1). Since P (v) ⊆ Q(v), the quantities in the denominator can be
computed simply by appropriate summing of the quantities in the numerator.
The quantities in the numerator can instead be computed by exploiting the
same reasoning made for the complete product form in the previous chapter,
i.e.,

dπ
Q(v)
x (t)

dt
=

d

dt

∑
|y1, ..., yM | :

k ∈ Q(v), yk = xk

πy(t). (6.3)

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 111

From which we have that

π
Q(v)
x (t)

dt
= −πQ(v)

x (t)
∑

|y1, ..., yM | :
k ∈ Q(v), yk = xk

πQ(v)|Q(v)
y (t)

∑
n:y≥i−n

λn(y)

+
∑
n

π
Q(v)
x−en(t)

∑
|y1, ..., yM | :

k ∈ Q(v), yk = xk
y − en ≥ i−n

π
Q(v)|Q(v)
y−en (t)λn(y − en) (6.4)

where we decomposed the product according to equation (6.2).
If the transient probabilities satisfy the quasi product form decomposition

expressed by the graph G, then for any transition i, 1 ≤ i ≤ R, we have two
possible scenarios:

1. •ti\Q(v) = ∅ : the transition i is completely triggered by the places be-
longing to the set Q(v) (or no place at all). In this case the summation
over y does not affect the transition and then can be simplified because
it sums to one,

2. •ti\Q(v) 6= ∅ : the transition i is partially or completely triggered by
other places. In this case the intensity of the transition is seen by
the marginal Q(v) as the expected flow generated by the other places.
These flows can depend on the places in Q(v).

Note that the possible irregularities of the state space, such as the case
where the network is closed, are considered implicitly by the summation over
y which takes only the states composing the state space.

Consider also that the terms π
Q(v)|Q(v)
x (t) bring much more information

than required; in fact, the computation of the incoming flows requires only
the quantities π

•tn\Q(v)|Q(v)
x (t) which arises from proper summations of the

marginals.
Denoting with ΛQ(v) the set of transitions which depends only on the

places in the set Q(v) and with ΛQ(v) its complement, we have that the quasi

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 112

product form approximation satisfies the equation

π
Q(v)
x (t)

dt
= −πQ(v)

x (t)
∑

n∈ΛQ(v):x≥i−n

λn(x)

− πQ(v)
x (t)

∑
|y1, ..., yM | :

k ∈ Q(v), yk = xk

π
•tn\Q(v)|Q(v)
y (t)

∑
n∈ΛQ(v):y≥i−n

λn(y)

+
∑

n ∈ ΛQ(v)n : x− en ≥ i−n

π
Q(v)
x−en(t)λn(x− en)

+
∑

n∈ΛQ(t)

π
Q(v)
x−en(t)

∑
|y1, ..., yM | :

k ∈ Q(v), yk = xk
yn − en ≥ i−n

π
•tn\Q(v)|Q(v)
y−en (t)λn(y − en). (6.5)

We arrived to an equation similar to (5.16) where a complete product
form is considered. The computation of the time-dependent incoming flows
of each marginal is the crucial point of our approximation. The faster we can
compute these measures and the less complex is the problem.

However, this time the computation is not simple as the previous case; in
fact, if the computation of the value of incoming flows at time t depends on
more marginals it can happen that they are interleaved among each others.
Then, we have to normalize them according to their dependencies. Since the
computation of these dependencies requires further summations, it becomes
heavy from a computational point of view if several marginals are involved.
As a consequence, a good idea is to choose the DAG in such a way that the
dependencies of the quantities π

•tn\Q(v)|Q(v)
y (t) are minimized, ∀v ∈ V.

In order to provide an example of how the approximation works, in the
following we derive equation (6.5) for all the nodes of the DAG introduced
in Example 9 and depicted in Figure 6.4. This way we provide the necessary
differential equations for the exclusive switch.

Example 10 According to the partitioning given in Example 9, the places
indicated by Q(v1) are Dna, Dna.P1 and Dna.P2 and the set of places given
by P (v1) is the empty set. The possible values, |x1, x2, x3|, for these three
places are |1, 0, 0|, |0, 1, 0| and |0, 0, 1|. Let us first consider the case when
the Dna is free, i.e., |x1, x2, x3| = |1, 0, 0|. By following (6.3) and applying

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 113

the Chapman-Kolmogorov equations we have

dPr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0}
dt

=
∑
x4,x5

(
− Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4, P2 = x5}(k5x4 + k6x5)+

k7 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4 − 1, P2 = x5}+

k8 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4, P2 = x5 − 1}
)

(6.6)

where the first term in the summation of the right-hand side corresponds to
binding of the Dna to P1 (with speed k5) or P2 (with speed k6) and the second
and third term describes the unbinding of P1 (k7) and P2 (k8). By applying
the quasi product form assumption given in Example 9, the right-hand side
of (6.6) becomes

−
(
k5 ·

∑
x4

x4Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}+

k6 ·
∑
x5

x5Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P2 = x5}
)

+

k7 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0}+
k8 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1}

Note that the first (second) term of the above quantity is proportional to the
expected amount of P1 (P2) given that the system is in a state with Dna =
1, Dna.P1 = 0, Dna.P2 = 0. By similar reasoning, for |x1, x2, x3| = |0, 1, 0|,
i.e, when the Dna is bound to P1, we get

dPr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0}
dt

=

− k7 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0}+
k5 ·

∑
x4

x4Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}

For the case when the Dna is bound to P2, i.e., for (x1, x2, x3) = (0, 0, 1), we

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 114

get the counterpart of the above expression as

dPr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1}
dt

=

− k8 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1}+
k6 ·

∑
x5

x5Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P2 = x5}

Now we turn our attention to node v2 (Figure 6.4). The places indicated
by Q(v2) are Dna, Dna.P1, Dna.P2 and P1 while the species given by P (v2)
are Dna, Dna.P1 and Dna.P2. We have to consider all possible values for
all four places given by Q(v2). We first consider the case when we have free
Dna (consequently, no Dna.P1 and Dna.P2), i.e., |x1, x2, x3| = |1, 0, 0|, and
a generic amount, x4, of P1. By following equation (6.4) we get

dPr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}
dt

= (6.7)

− k1 · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}+
k1 · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4 − 1}−
k3 · x4 · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}+
k3 · (x4 + 1) · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4 + 1}−
k5 · x4 · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}−

k6 ·
∑
x5

x5Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P2 = x5}
Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0} ×

Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}+
k7 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4 − 1}+
k8 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4}

where the terms on the right-hand side correspond to, respectively: outgo-
ing probability by production of P1 (with free Dna); incoming probability by
production of P1 (with free Dna); outgoing probability by degradation of P1;
incoming probability by degradation of P1; binding of Dna with P1; binding
of Dna with P2; unbinding of Dna with P1; and unbinding of Dna with P2.
It is worth to note that the effect of the quasi product form assumption is
that the term corresponding to the binding of Dna with P2 is determined by
the conditional expected value of P2 given that the Dna is free. Indeed the

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 115

summation in that term is equal to

E{P2 | Dna = 1, Dna.P1 = 0, Dna.P2 = 0}

which corresponds to the expected value of P2 conditioned by the state of the
promoter region. Next we consider the situation that the Dna is bound to P1,
i.e., |x1, x2, x3| = |0, 1, 0|, and a generic amount, x4, of P1. It leads to

dPr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4}
dt

=

− k3 · x4 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4}+
k3 · (x4 + 1) · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4 + 1}−
k9 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4}+
k9 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4 − 1}−
k7 · Pr{Dna = 0, Dna.P1 = 1, Dna.P2 = 0, P1 = x4}+
k5 · (x4 + 1) · Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4 + 1}

where the terms on the right-hand side correspond to, respectively: outgoing
probability by degradation of P1; incoming probability by degradation of P1;
outgoing probability by production of P1 (with bound Dna); incoming proba-
bility by production of P1 (with bound Dna); unbinding of P1; and binding of
P1.

The last situation to consider for what concerns v2 is when the Dna is
bound to P2, i.e., |x1, x2, x3| = |0, 0, 1|, and a generic amount, x4, of P1. We
get

dPr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4}
dt

=

− k3 · x4 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4}+
k3 · (x4 + 1) · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4 + 1}−
k8 · Pr{Dna = 0, Dna.P1 = 0, Dna.P2 = 1, P1 = x4}+

k6 ·
∑
x5

x5Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P2 = x5}
Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0} ×

Pr{Dna = 1, Dna.P1 = 0, Dna.P2 = 0, P1 = x4}

where on the right-hand side the terms are, respectively: outgoing probability
by degradation of P1; incoming probability by degradation of P1; unbinding

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 116

of P2; and binding with P2. As before, the effect of the quasi product form
assumption is that the speed of the binding of the Dna with P2 is proportional
to the conditional expected amount of P2.

The last node of the DAG (Figure 6.4), v3, leads to the counterpart of the
expressions reported above for node v2.

Assuming that the number of states that the ith place can assume is
B̃i, the number of equations of the original model is at the most equal to∏M

i=1(B̃i + 1). The number of equations describing the quasi product form
in (6.4) can be determined as follows. Let K denote that subset of the
nodes of the DAG that provides a complete and not redundant set of ODEs,
i.e., K = {v

∣∣ v ∈ V, 6∃u ∈ V such that Q(v) ⊂ Q(u)}. Having defined K,
the necessary number of ODEs for the quasi product form is at the most∑

v∈K
∏

i∈Q(v)(B̃i + 1). This means that the original M -dimensional state

space is reduced to maxv∈K |Q(v)| dimensions.
As last observation, by looking at (6.1), one can check that the ODEs

provided by equation (6.4) maintain unity of the total probability, i.e., for

every node v ∈ V summing π
Q(v)
x (t) for every possible values of xi, i ∈ Q(v),

gives one.
If there exists a place whose index, i, is present in both Q(u) and Q(v)

with u, v ∈ V, u 6= v, then the marginal probabilities of place i, i.e., P{Xi =

xi}, can be derived using the quantities associated with u, i.e., π
Q(u)
x (t),

or using the quantities associated with v, i.e., π
Q(v)
y (t). By considering the

derivative dP{Xi = xi}/dt which can be computed based on both u and v
by summation of their associated ODEs given in (6.4), it is easy to show
that the different ways of calculating P{Xi = xi} lead to the same result.
The above reasoning can be generalized to any marginal distribution of the
model.

6.2 Choice of the DAG

Assuming a completely general network the choice of the DAG is a tricky
problem. For this reason, we split the discussion in two parts. The first
part deals with the case where the exactitude of the results is precluded only
by the presence of finite server stations. On the contrary, the second part
considers a completely general context.

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 117

6.2.1 Finite server networks

In [21], Casale suggested a method based on a conditional entropy metric;
indeed, this is an elegant solution but it is based on the equilibrium distri-
bution of the process. Thus, there is no guarantee that the DAG (Bayesian
tree in his case) leads to the best possible decomposition.

We do not use this approach mostly because of two reasons: the first is
that we are interested also in models whose equilibrium distribution is un-
known or does not exist; the second is that the method, apparently, does not
exploit the only information about transient product form, i.e. the presence
of infinite servers. The dependency on a server whose output flow is similar
to an inhomogeneous Poisson process can be neglected without amplifying
the approximation error. For this reason dependency on infinite servers are
good candidates to be neglected. This fact is implied in the QPF assump-
tion since every place perceives the incoming flows generated by places with
which it is in product form as inhomogeneous Poisson processes whether or
not they are. We also expect that a station M/M/k is “one step” closer to
product form than a M/M/k − 1 station, k ≥ 2, because potentially there
are more departures that are independent among each other.

These facts suggest that: given the set of stations, there is a sort of
hierarchy of candidates to generate product form probabilities that goes from
infinite servers to M/M/1 stations. The rank must take into account also:

• the number of stations that might receive the output. As an example,
the output flow from an M/M/1 station cannot generate non product
form dependencies if customers leave the system after the service;

• the service time and the load of the station (visits in case of closed
networks) because long queues implies high dependencies between sub-
sequent departures;

• the initial state (for the same reason above).

The fear is that considering the equilibrium distribution all these facets might
be not considered because in equilibrium all these types of stations are in
product form [13].

As last consideration, it is important to point out that the above rea-
sonings do not consider the case of a saturated station whose number of
customers in queue tends to infinity. In fact, in this particular case a finite

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 118

server station becomes an optimal candidate to be in product form with the
other nodes of the net since it behaves as a generator of Poisson events.

6.2.2 General context

By exploiting the whole expressiveness of SPNs, we move in to a setting where
we can have bulk arrivals, forks and synchronizations (which probably are
the only feature that leads to results not even comparable to the originals).

The first problem moving out of the setting of queuing networks is that
the state space of the system is more irregular. As an example, consider
the net on the left side of Figure 6.5. It is composed of a cycle between A
and B which decides if eventually the place D will receive one token or two.
By using the DAG depicted on the r.h.s. we have that the marginal {C,D}
requires the computation of an event generated by B. In this case we would
desire to compute the rate of t3 only by summing on the fly the terms of
the marginal {A,B}; however we need to store the fact that, for example,
the state |0, 0, 0, 0| does not exists. In general, the handling of this kind of
irregularities is extremely heavy from a computational point of view because
requires the storage of all the exceptions.

t5

t2

t1

t3

C

D

A

B

t4

2

2

CB

A

D

Figure 6.5: Example of network leading to an irregular state space: Petri net
(left), A possible DAG (right)

This facet suggests that a qualitative analysis of the reachability set can
help during the generation of the DAG. Luckily, the Petri net formalism offers
a large number of well-founded mathematical methods for the analysis of the
structural properties that can be used to check deadlocks, livelocks, traps,

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 119

and other peculiarities of the structure of the net. Additionally, advanced
techniques such as Binary decision diagrams (BDD) allows the storage and
qualitative analysis of reachability sets with a low memory consumption (see
for example [25, 8] where state space greater than 1030 are handled).

Note that knowing the real number of states of each place is fundamental
because otherwise it is not possible to quantify the number of ODEs with
which we have to deal with.

This is important because the first, and most obvious, criteria to generate
the DAG is the computational effort that we are available to spend to analyze
the network. Indeed, this choice affects the definition of the nodes of the
graph since in the best situation each node is in complete product form with
the others; hence, the minimal number of equations with which we have to
deal with is equal to the sum of the number of states generated by each node.

Starting from a set of nodes whose state space is acceptable from the
point of view of the equations that they generate (and possibly far from the
limit that we prefixed), the second criteria deals with the flows that introduce
dependencies among the nodes.

We have already discussed about finite server transitions, the other con-
cern is about synchronizations. Every synchronization is potentially trouble-
some; thus, our first target would be to define a DAG able to generate a set
of marginals in which every transition is described completely by at least a
marginal.

Unfortunately this is not always possible in case of strongly connected
networks, such as the one in Figure 6.6, where our reasoning would lead to
the graph depicted on the r.h.s. Figure 6.6 which generates the marginal
{A,B,C} corresponding to the original problem.

A B

C

t1

t3 t2

C

B A

Figure 6.6: Example of a strongly connected network (left). A DAG describ-
ing a possible dependency structure (right),

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 120

If not all the synchronizations can be described completely through at
least one marginal (that is equivalent to say that the synchronization is trig-
gered by places in product form among each other) we suggest to give priority
according to the following criteria (written in order of importance):

1. synchronizations leading to blocking,

2. high probability to fire1.

As last consideration, in general, synchronizations leads to greater errors
than finite server transitions; hence it is better to put first the dependencies of
synchronizations instead of finite server transitions. Refinements of the DAG
can be performed by considering the number of corresponding equations. If
the number of the equations is low, it is reasonable to add dependencies or
merge nodes. If, on the contrary, the number of equations is more than the
threshold, we have three choices: increase the computational effort; return
to the step in which nodes are decided and try different strategies; accept a,
probably, poorer result.

It is clear that there is no guarantee that the overall propagation of the
error will be the optimal.

At the same time, it is also plain that moving outside the context of
queuing networks the number of variables having a role in the generation of
a the DAG is probably too high to get the approach automated.

As a consequence, the generation of the graph requires some knowledge
about the structure of the model and its qualitative properties. We argue
that in case of models with a reasonable mathematical abstraction of the
problem this preamble would not require much effort.

On the contrary, in case of huge models involving several random variables
that interact in complex and interleaved ways a qualitative analysis is not
only to be expected but would be required.

In any case we are conscious that the developing of tools that can help
these decisions are needed. A possible way is to drive the generation of the
DAG according to the results obtained by assuming the model as it would
be in complete product form (or in partial product form if synchronizations
are involved).

1This last criteria will be clearer in the next chapter where we show that there are
cases in which the more a synchronization is frequent the more it leads to errors. Note
that we are not talking about the speed; a transition can be likely also if it is slow with
regards to the rest of the transitions if it competes only with those slower than it.

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 121

We leave the decomposition of heavily structured models as future work
by focusing the attention on models in which the structure of the net gives a
clear hint about their decomposition. As very last observation, in this direc-
tion we mention that considering the covariances of infinite servers queuing
networks as described by Whitt [67] and the moment closures for biochemical
processes as defined by Hespanha in [53], is also an option.

6.3 Algorithm

In this section, we provide a sketch of the implementation of the algorithm
that follows from the quasi product form assumption. We focus on the repre-
sentation of the system of ODEs in such a way that it can be used in common
ODE solvers.

As described in the previous section, the computation of the transient
probabilities based on the quasi product form assumption requires the quan-
tities involved in (6.1) and, in particular, it needs the probabilities π

Q(v)
x (t)

since they allow the computation of any marginal probability referring to
a subset of the places in Q(v). Thus, the collection of all the marginal
distributions representing the sets Q(v), v ∈ V, is enough to carry out the
computations. Nevertheless, since it can happen that there exist v1 and v2

such that Q(v1) ⊂ Q(v2), considering all nodes in V can lead to a redundant
set of ODEs.

As an example, this happens in case of the exclusive switch by using the
DAG depicted in Figure 6.4; the node v1 has only outgoing arcs and, conse-
quently, Q(v1) is contained both in Q(v2) and Q(v3). The overhead caused
by this redundancy can be either negligible or non-negligible depending on
the applied quasi product form assumption. In Table 6.1, from line 1 to
10, we propose a simple way to eliminate the redundancy by computing the
minimal set of marginal distributions (stored in the variable Marg). The
algorithm consists of two nested loops which collect (in the variable Q) the
places representing the dependencies of a node (including the places in the
node itself) and construct a new marginal distribution only if the node has
incoming arcs or if the node does not have outgoing arcs at all (in order to
guarantee the presence of those places that are completely independent from
the others). The object representing the new marginal distribution itself is
instantiated in line 9 and added to the set of marginals collected in Marg .

In the following we concentrate on the so-called evaluation step, i.e., the

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 122

0 Preprocessing() begin
// Makes the marginal distribution set

1 Marg := ∅;
2 forall v ∈ V do
3 Q := ∅;
4 forall i such that(i, v) ∈ E do
5 Q := Q ∪ I(i);
6 end
7 if Q 6= ∅ ∨ (Q == ∅ ∧ 6 ∃(v, i) ∈ E) then
8 Q := Q ∪ I(v);
9 Marg := Marg ∪marginal .init(Q);
10 end
11 end

Table 6.1: Algorithm: preprocessing for the quasi product form approxima-
tion

computation of the derivatives that are necessary to perform the numerical
integration of the ODEs. This step requires to represent the marginal dis-
tributions and the following variables are necessary in order to carry out the
computations:

• Q: set containing the indexes of the places composing the marginal
distribution,

• states : list of all possible values that the quantities of the places present
in Q can assume,

• ΛQ(v): list of those transitions that depends only on the marginal Q(v),

• ΛQ(v): list of those transitions that depends on other marginals,

• conditions : data structure that, given an index of a transition, returns
the indexes of those places in Q that as an effect on it,

A partial implementation of a data structure with the above variables is
reported in Table 6.2 where we detailed the function init used in line 9 of
Table 6.1.

Note that, since several transitions can have a null impact on a marginal
distribution, it is worth to store in ΛQ(v) and ΛQ(v) only those transitions
that are able to move probability among at least two states of Q(v). The
representation of conditions is trivial since they can be expressed through
simple matrices.

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 123

0 data struct marginal begin
1 Q; // the indexes of the places composing the marginal
2 states; //states of the marginal distribution

3 ΛQ(v); // list of transitions in completely described by the places in Q(v)

4 ΛQ(v) ; // list of transitions depending also on other marginals
5 conditions; // data structure containing the indexes of the places that condtion the incoming flows

.
6 init(Q) begin
7 this.Q := Q

8 ΛQ(v) := {r|∃j ∈ Q, cr,j > 0 ∧• tr\Q(v) = ∅};
9 ΛQ(v) := {r|∃j ∈ Q, cr,j > 0 ∧• tr\Q(v) 6= ∅};
10 end
11 end

Table 6.2: Algorithm: data structure describing a marginal distribution

Finally, in Table 6.3 we provide a naive algorithm for the evaluation step
where s.prob, s.der, and s.succ(r) refer, respectively, to the probability of a
state at time t, the derivative of the probability of a state at time t and the
state reached by the occurrence of transition r in the state s.

In lines 10-14 where we consider the incoming flows generated by other
marginals. In particular, we assumed that the object IncomingF lows stores
all the intensities of incoming flows for the marginal m. The values col-
lected into IncomingF lows get updated in line 3 and can be retrieved by
the method get that takes in input the transition and the current state s. In-
coming flows are computed by appropriate summing of the other marginals
and can be stored in two possible ways. The first solution is to store the
intensities; this means that we store the quantities∑

(y1, ..., yM) :
k ∈ Q(v), yk = xk

π
•tn\Q(v)|Q(v)
y (t)λn(y) ∀x, n

which corresponds to the expected flow of transition t in the marginal state
x. The second solution is to store the marginal distributions π

•tn\Q(v)|Q(v)(t),

n ∈ ΛQ(v). The first case is preferable when several intensities have the same
condition and can be re-used for a large number of states. For example,
this happens for the exclusive switch with the decomposition presented in
Figure 6.4; in this case we need to store only two values: E{P1 | Dna =
1, Dna.P1 = 0, Dna.P2 = 0} and E{P2 | Dna = 1, Dna.P1 = 0, Dna.P2 =
0}.

The second is preferable when the state space is irregular and the re-

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 124

0 Eval() begin
1 condexp := ∅
2 forall m ∈ Marg do
3 IncomingFlows := ComputeIncomingFlows(m);
4 forall s ∈ m.states do

5 forall t ∈ m.ΛQ(v) do
6 rate = ComputeRate(s);
7 s.der = s.der − rate ∗ s.prob;
8 s.succ(t).der = s.succ(t).der + rate ∗ s.prob;
9 end

10 forall t ∈ m.ΛQ(v) do
11 rate = IncomingFlow .get(t , s);
12 s.der = s.der − rate ∗ s.prob;
13 s.succ(r).der = s.succ(r).der + rate ∗ s.prob;
14 end
15 end
16 end
17 end

Table 6.3: Algorithm: procedure describing the evaluation step

use of the intensities is low. In this case, the method get must perform an
additional summation to compute the overall incoming rate.

The number of values stored in the data structure IncomingFlows is
strongly related to the model and the applied quasi product form decompo-
sition. Considering that each marginal uses only a subset of the transitions
and they probably use a limited set of places not belonging to the set Q,
it is likely that the number of values that need to be stored is low and in
general negligible with regards to the number of states. There can be how-
ever situations in which many values must be computed and the same one is
applied many times for a sequence of states. For this reason, we suggest to
store these quantities as a cache from which recently calculated entries can
be retrieved.

In the future we aim to use advanced data structures like BDDs that
can help a more efficient computation/storage of incoming flows. This idea
is motivated by the fact that a decomposition in conditional probabilities
has already been done for the approximation of steady state by Ciardo et
al in [90]. The work points out how these structures provide a natural de-
composition of a vector of random variables and allow to rebuild conditional
probabilities by moving among the levels of the graph.

The last consideration is about the “cut” of the states having negligible
probability mass. This technique is based on a threshold under which the
states are not considered during the integration step. Consequently, the

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 125

overall computational time can be significantly reduced. Furthermore, in
case of unbounded state spaces, it allows us not to define the bound “a
priori”. The use of this technique in combination with the quasi product
form approach is feasible and effective but beyond the scope of this thesis;
the reader is referred to [51].

6.4 Error evaluation

A bounding of the error like in case of uniformisation is probably an unreal-
istic investigation and also the thorough error analysis of the approximations
based on quasi product forms is still an open problem.

We present, however, a preliminary approach to validate the results ob-
tained by the quasi product form assumption. This approach provides a first
quick evaluation of the goodness of the results and can point out where and
how much the quasi product form deviates from the original behaviour of the
system under study.

Let us assume that the transient probabilities have been computed up to
time t under the quasi product form assumption. The probability of a given
state, πx(t), can be then calculated by (6.1). We can compute the derivative
dπx(y)/dt under the quasi product form assumption by applying the formu-
las provided in (6.1). Let us denote this quantity by p′QPF(t, x). The same
derivative can be computed considering the behaviour of the original CTMC
based on (2.15), i.e., without assuming quasi product form. In other words,
we use the quasi product form assumption to compute the probabilities up
to time t and then calculate how much these probabilities would be moved
by the original CTMC in an infinitesimal interval. The resulting derivative
will be denoted by p′CTMC(t, x). The difference of the two derivatives can be
used to quantify how much the quasi product form assumption deviates from
the original behaviour. In particular, a trustworthy measure would be the
quantity

max
x

∣∣p′QPF(t, x)− p′CTMC(t, x)
∣∣ (6.8)

i.e., the maximum of the absolute value of the differences, to quantify the
error introduced by the quasi product form approximation at time t.

The informations provided by this measure can be useful; for instance, we
can reject the approximation if the error deviates from small values or does
not stabilize. In general, a positive trait of the measure in (6.8) is that it

CHAPTER 6. QUASI-PRODUCT FORM APPROXIMATION 126

does not require to calculate the transient behaviour of the original Markov
chain, and thus it can be calculated in a memory efficient manner. Moreover,
the computation can be limited to small subsets of the state space that are
of interest for the purpose of the analysis. A negative trait is that it does
not provide a bounding of the error.

7
Numerical illustrations

In this chapter we show numerical results obtained using the quasi product
form assumption. We apply the approximation to several models with various
settings of the parameters in order to give an hint about the accuracy of the
method. Moreover, we aim to show on practical cases how quasi product
form works and can be used.

As first, we consider queuing networks in order to deepen the discussion
about the approximation of finite server systems that we started in Chapter
5. In this setting, we aim to provide:

• a justification for the extension of partial product form to the quasi
product form; this is done by showing that the comparison between the
two approximations is in favor of the “quasi” version even if we consider
extremely simple network; this happens because partial product form
can describe only a very limited set of dependencies,

• a hint on how to choose the dependencies in cases where the routing of
the net is not a DAG,

• more illustrations about the accuracy of our method as approximation
of transient distribution in queuing networks.

127

CHAPTER 7. NUMERICAL ILLUSTRATIONS 128

Then, we change context to show results obtained on biochemical systems.
In particular, we focus our attention on the, already mentioned, exclusive
switch model and a model alike, namely a system of multi-attractors, whose
switch mechanism is more complex. These models describe phenomena where
different productions are modulated by switches. We propose these tests with
a dual purpose, i.e. to show that

• the decomposition in stochastic dependencies fits particularly well for
these kind of problems,

• analyses based on the computation of first and second moments only
brings informations that could be misleading in regards of the real
behaviour of the model.

As last, we propose a more general model where forks, synchronizations and
finite server are present together. The aim of this last test is to put under
stress our approximation and point out its limits.

For all the cases, we compare the results obtained by the proposed quasi
product form approximation with the exact behaviour computed on the orig-
inal CTMC of the model either by uniformisation or by simulation when the
state space is large. In order to provide a visual comparison of the original
behaviours and the approximated values, we provide in figures the expec-
tations, the variances and the marginal distributions of those objects that
better represent the dynamics of the models. The algorithm based on the
quasi product form assumption has been implemented in JAVA using the
odeToJava package1 to solve the system of ODEs. All the experiments have
been performed on a Intel Centrino Dual Core with 4Gb of RAM.

7.1 Finite number of servers

7.1.1 Open central server network

As first, we consider a network with a topology identical to the one presented
at page 25 in Figure 2.4 with the only difference that here we assume that
the first station is an M/M/3 station, i.e., three jobs can be under service
at a time at the server. We tested the approximation with the parameters

1Available at http://www.netlib.org/ode/ and developed by M. Patterson and R. J.
Spiteri.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 129

r1,2 = 0.2, r1,3 = 0.3, λ1 = 0.6, µ1 = 1, µ2 = 5, µ3 = 1. Note that with single
server policy the system would not be stable due to the presence of the loop.
The number of jobs at a queue is at most 15, further arrivals are lost.

We analyzed the model by using its original CTMC, by all possible partial
product form decompositions, and by the QPF decomposition suggested by
the routing of the net. Figure 7.1 depicts all the DAGs, the graph (d) is the
only one that cannot be expressed in partial product form.

1,2

3

1,3

2

2,3

1 2

1

3

(a) (b) (c) (d)

Figure 7.1: DAGs used to analyse the open central server model.

With the proposed QPF decomposition the set of required marginal dis-
tributions are the probabilities P{X1 = x1, X2 = x2} and P{X1 = x1, X3 =
x3}. We considered two situations: starting with empty queues and start-
ing with five jobs at the server. In Fig. 7.2 and 7.3 we depicted the mean
and the variance of the number of jobs at the server as function of time.
Starting with empty queues, both the QPF and PPF approximations lead to
good results with the exceptions of the third PPF decomposition that fails
to provide an accurate estimate of the variance. Starting with five jobs at
the server, the approximations are worse and only the QPF decomposition
captures the mean correctly and approximate the variance well.

The original CTMC is composed of 163 = 4096 states. The PPF approx-
imations lead to 162 + 16 = 272 ODEs while the QPF uses 2 × 162 = 512
ODEs. The number of equation of the QPF decomposition is about two
times more but the dimensionality of the the approaches are the same as
both consider the dependencies of at most two stations. The calculations
with QPF decomposition required about 1 second of CPU time.

7.1.2 Multi-path network

As second example, we consider a more complex pipeline where each request
can be satisfied by following four different production paths. The network is

CHAPTER 7. NUMERICAL ILLUSTRATIONS 130

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

ctmc
ppf - [1,2], [3]
ppf - [1,3], [2]
ppf - [1], [2,3]

qpf- [1,2], [1,3]
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20

ctmc
ppf - [1,2], [3]
ppf - [1,3], [2]

ppf - [1], [2,3]
qpf- [1,2], [1,3]

Figure 7.2: Open server network: mean number of jobs at the server; starting
with empty queues (left), with five jobs at the server (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20

ctmc
ppf - [1,2], [3]
ppf - [1,3], [2]
ppf - [1], [2,3]

qpf- [1,2], [1,3]
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

ctmc
ppf - [1,2], [3]
ppf - [1,3], [2]

ppf - [1], [2,3]
qpf- [1,2], [1,3]

Figure 7.3: Open server network: variance of number of jobs at the server;
starting with empty queues (left), with five jobs at the server (right).

depicted in Fig. 7.4. Requests arrive with a fixed rate λ1 = 0.6 to the first
station that constitutes a pre-processing step. After that, the possible paths
for a request are stations 2-4, 2-5, 3-4 and 3-5 followed by a post-processing
phase that takes place at station 6. The parameters that we consider are
such that the routing probabilities are symmetric with r1,2 = r2,4 = r3,5 =
0.5 but the processing intensities are asymmetric with µ2 = µ4 = 0.4 and
µ3 = µ5 = 2, i.e., the branch composed of stations 2 and 4 is slow while the
one containing stations 3 and 5 is fast. The pre-processing and the post-
processing stations are serving the jobs with intensity µ1 = µ6 = 1. The
maximum number of clients for each queue is 50.

By considering each station and each arc as part of the dependency graph,
the QPF decomposition suggested by the topology is not a DAG. Thus,

CHAPTER 7. NUMERICAL ILLUSTRATIONS 131

1

2

3

4

5

6

Figure 7.4: Multipath model.

2

1

3

4 5

6

Figure 7.5: Quasi product form decomposition for the multipath model.

we need to discriminate among dependencies in order to generate a DAG
that would lead to better accuracy. According to the arguments provided in
Section 6.2, we neglect the dependencies on the less loaded queues which are
in station 3 and 5. This strategy leads to the DAG depicted in Figure 7.5.
The necessary marginals with this DAG are all two dimensional: P{X1 =
x1, X2 = x2}, P{X1 = x1, X3 = x3}, P{X2 = x2, X4 = x4}, P{X2 =
x2, X5 = x5} and P{X4 = x4, X6 = x6}.

We tested the model starting from two different initial states. We first
consider the case in which initially all queues are empty. In the second case
the system starts with 10 requests in stations 2, 3, 4, and 5. Expectations
and variances of the number of jobs at stations 4, 5 and 6 for the two cases are
depicted in Fig.s 7.6 and 7.7. By comparing the two figures, one can observe
to what extent starting from the second initial state penalizes station 4. After
about 10 time units the average number of clients at station 4 is about 14
while the same average never exceeds 3 starting from an empty system. The
longer run effect can be seen instead looking at the variances: for station 4
this quantity is increasing up to about 100 time units and for station 5 as
well it reaches much higher values than in case of starting from an empty

CHAPTER 7. NUMERICAL ILLUSTRATIONS 132

network. All these behaviours are captured well by the QPF approximation.
In Fig. 7.8 we depicted the probabilities of having no clients at station 4 and
6. On these curves as well one can observe the effect of the choice of the
initial state.

The network is composed of 516 = 1.76 × 1010 states. The number of
ODEs for the QPF approximation is 5× 512 = 13005. The presented results
were calculated in about one minute.

7.1.3 On-demand production system

As last queuing network, we consider again the network proposed in Figure
5.2. But, to put under stress the QPF approximation, we added two more
loops that depart from stations 3 and 5 and lead to station 1 (the new version
of the net is depicted in Fig. 7.9).

The QPF decomposition we apply is described by the DAG depicted in
Figure 7.10.

The differences between the set of edges of the DAG and the routing of
the network are the arcs (3, 1), (3, 2), (3, 4), (5, 1), (5, 4), and (5, 6). Four
of these arcs are not present in the DAG because they form cycles. The
other two, (3, 4) and (5, 6), are excluded instead to keep low the number
of dimensions of the marginal distributions that are necessary to compute
the approximation. With the above described DAG the necessary marginal
distributions are P{X1 = x1, X2 = x2}, P{X2 = x2, X3 = x3}, P{X2 =
x2, X4 = x4}, P{X4 = x4, X5 = x5} and P{X4 = x4, X6 = x6}.

The parameters that we use are λ1 = 0.4, r2,3 = r4,5 = 0.5, r3,1 = r5,1 =

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

stat.4, qpf
stat.5, qpf
stat.6, qpf

stat.4, sim.
stat.5, sim.
stat.6, sim.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

stat.4, qpf
stat.5, qpf
stat.6, qpf

stat.4, sim.
stat.5, sim.
stat.6, sim.

Figure 7.6: Multi-path: expectations (left) and variances (right) of the sta-
tions 4, 5 and 6 over time starting from state {0, 0, 0, 0, 0, 0}

CHAPTER 7. NUMERICAL ILLUSTRATIONS 133

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

stat.4, qpf
stat.5, qpf
stat.6, qpf

stat.4, sim.
stat.5, sim.
stat.6, sim.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250

stat.4, qpf
stat.5, qpf
stat.6, qpf

stat.4, sim.
stat.5, sim.
stat.6, sim.

Figure 7.7: Multi-path: expectations (left) and variances (right) of the sta-
tions 4, 5, and 6 over time starting from state {0, 10, 10, 10, 10, 0}

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

initial state 1, qpf
initial state 2, qpf

initial state 1, sim.
initial state 2, sim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

initial state 1, qpf
initial state 2, qpf

initial state 1, sim.
initial state 2, sim.

Figure 7.8: Multi-path: Probability of empty queue in station 4 (left) and 6
(right) over time starting from the two different initial states

1 2

3

4

5

6

Figure 7.9: On-demand production system with two more loops

0.2, r3,2 = r5,4 = 0.7, µ1 = µ2 = µ4 = µ6 = 1, and µ3 = µ5 = 1.5. Note
that with these parameters clients enter the cycles with high probability. The
maximum number of clients for each queue is 50. We assume that the queues

CHAPTER 7. NUMERICAL ILLUSTRATIONS 134

2

1

34

56

Figure 7.10: DAG describing the quasi product form decomposition for the
on-demand production system

are empty initially. The number of states, the number of ODEs representing
the QPF and the computation times are the same as in case of the example
in Sec. 7.1.2.

In Fig. 7.11 and 7.12 we show the mean and the variance of the number
of clients at the stations as function of time. Fig. 7.13 depicts instead the
probability of the empty queue. It can be seen that the QPF approximation
provides a precise view of these quantities.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500

stat.1, qpf
stat.3, qpf
stat.5, qpf

stat.1, sim.
stat.3, sim.
stat.5, sim.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

stat.2, qpf
stat.4, qpf
stat.6, qpf

stat.2, sim.
stat.4, sim.
stat.6, sim.

Figure 7.11: On-demand production system: expectation of the number jobs
at the stations

CHAPTER 7. NUMERICAL ILLUSTRATIONS 135

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

stat.1, qpf
stat.3, qpf
stat.5, qpf

stat.1, sim.
stat.3, sim.
stat.5, sim.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

stat.2, qpf
stat.4, qpf
stat.6, qpf

stat.2, sim.
stat.4, sim.
stat.6, sim.

Figure 7.12: On-demand production system: variance of the number jobs at
the stations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

stat.1, qpf
stat.2, qpf
stat.3, qpf

stat.1, sim.
stat.2, sim.
stat.3, sim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

stat.4, qpf
stat.5, qpf
stat.6, qpf

stat.4, sim.
stat.5, sim.
stat.6, sim.

Figure 7.13: On-demand production system: probability of empty queue at
the stations

7.2 Modulation through switches

7.2.1 Exclusive switch model

The model is described in Example 8 and as anticipated there, if the un-
binding of the promoter is unlikely, the exclusive switch model behaves in a
bistable way because either of the two proteins, P1 and P2, can monopolize
the promoter region of the Dna and obstruct consequently the growth of
the other. In this situation, the amounts of the two proteins are inversely
correlated in such a way that a high number of molecules of P1 corresponds
to low quantities of P2 and vice-versa. Intuitively, this fact seems to indi-
cate that the quasi product form assumption represented in Figure 6.4 leads
to imprecise approximation because it does not consider directly the joint

CHAPTER 7. NUMERICAL ILLUSTRATIONS 136

Set k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
1 0.5 0.5 0.005 0.005 0.01 0.01 0.005 0.005 0.5 0.5
2 1.0 2.0 0.1 0.1 0.01 0.01 0.005 0.005 1.0 2.0

Table 7.1: Exclusive switch : The two sets of parameters used to perform
the tests

distribution of P1 and P2. Nevertheless, as it will be illustrated by the pre-
sented numerical results, the negative correlation between the two proteins
and the associated bistable marginal distributions can be captured, in an
indirect manner, by the state of the promoter whose description is given by
the places Dna, Dna.P1 and Dna.P2.

In order to have an exact comparison between our approximation and
the exact solution, we chose two sets of parameters (reported in Table 7.1)
in such a way that it is very unlikely that the growth of P1 and P2 goes up
to 200; this allows us to compute exact solution of the CTMC. The first set
is symmetric, i.e., the two proteins have the same probability to monopolize
the promoter region. With the second set P2 has an advantage over P1.

As mentioned earlier, the initial state is x = |1, 0, 0, 0, 0|. In Figure 7.14
the marginal protein distribution is depicted for three time points (because of
the symmetric settings the probabilities are identical for P1 and P2). One can
note that already after 100 time units, the protein distribution gets split in
two parts forming a bistable distribution. The quasi product form approach
is able to catch precisely the shape of this distribution. As time elapses
the bistability gets more marked. At time t = 250 the approximation still
provides a good picture of the behaviour of the model but the numerical
values are not as precise as for smaller values of t. In steady state, which
can be observed at t = 1000, the quasi product form assumption captures
well the bistability but gives a quite inaccurate approximation of the lower
probabilities (those less than 10−3) and of the probability of having zero of
one of the two proteins.

In Figure 7.15 we show the mean and the variance of the protein quantity.
The approximate mean is very accurate for all time points while the variance
is underestimated. The fact that the variances are less accurate is not sur-
prising since each marginal distribution perceives in an exact way only one
binding. (One such example is the summation in (6.7)). The overall effect
of this is that the approximate variance is lower than the exact one.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 137

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60 70

P
ro

b
a

b
ili

ty

Molecules

t=100,CTMC
t=100,QPF

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100

P
ro

b
a

b
ili

ty

Molecules

t=250,CTMC
t=250,QPF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

P
ro

b
a

b
ili

ty

Molecules

t=1000,CTMC
t=1000,QPF

Figure 7.14: Exclusive switch: marginal distributions of P1 (P2) at time
t = 100, 250 and 1000 using the symmetric set of parameters

CHAPTER 7. NUMERICAL ILLUSTRATIONS 138

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

M

ol
ec

ul
es

Time

CTMC
QPF

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

M

ol
ec

ul
es

Time

CTMC
QPF

Figure 7.15: Exclusive switch: The expectation and the variance of the quan-
tity of P1 (P2) as function of the time with the symmetric set of parameters

Parameter set Method free Dna Dna bound to P1 Dna bound to P2

1 CTMC 0.004956 0.497521 0.497521
1 QPF 0.009597 0.495201 0.495201

2 CTMC 0.023392 0.293140 0.657854
2 QPF 0.024851 0.284785 0.690362

Table 7.2: Exclusive switch : probability of having the Dna free, bound to
P1 and bound to P2 after 1000 time units

In Table 7.2 we provide the probabilities of having the Dna promoter
region free, bound to P1 and bound to P2 after 1000 time units. The approx-
imation captures the fact that the promoter region is free with low probability
but the numerical value is almost twice larger than the real value.

In order to show that the quasi product form approximation does not
take advantage of the symmetry of the previous setting, we provide now the
results for the asymmetric set of parameters. As shown in Table 7.1, in this
case the production of P2 is two times faster than that of P1. Figure 7.16
depicts the distribution of the two proteins after 50 and 100 time units (with
this parameter set steady state is almost reached at t = 100). One can see
that the quasi product form approximation provides a very precise view of
the protein distributions. Consequently, the expectations and the variances
(Figure 7.17) and the probabilities of the three promoter regions (Table 7.2)
are reproduced accurately as well.

The numerical integration of the ODEs associated with quasi product
form assumption required less than 20 seconds whereas the solution of the

CHAPTER 7. NUMERICAL ILLUSTRATIONS 139

CTMC through uniformisation took several minutes. Considering space com-
plexity, if the considered maximum for the protein quantities is pmax, then
the quasi product form assumption leads to 3×2×(1+pmax) equations while
the number of states in the original CTMC is 3× (1 + pmax)

2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

P
ro

b
a

b
ili

ty

Molecules

t=50,CTMC
t=50,QPF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

P
ro

b
a

b
ili

ty
Molecules

t=100,CTMC
t=100,QPF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

P
ro

b
a

b
ili

ty

Molecules

t=50,CTMC
t=50,QPF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40

P
ro

b
a

b
ili

ty

Molecules

t=100,CTMC
t=100,QPF

Figure 7.16: Exclusive switch: marginal distributions of P1 and P2 at time
t = 50, 100 using the asymmetric set of parameters

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

M

ol
ec

ul
es

Time

CTMC - E[P1]
QPF - E[P1]

CTMC - Var[P1]
QPF - Var[P1]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

 #
 M

ol
ec

ul
es

Time

CTMC - E[P2]
QPF - E[P2]

CTMC - Var[P2]
QPF - Var[P2]

Figure 7.17: Exclusive switch: the expectation and the variance of the quan-
tity of P1 (left) and P2 (right) as function of the time with the asymmetric
set of parameters

CHAPTER 7. NUMERICAL ILLUSTRATIONS 140

For this model we illustrate the preliminary error evaluation proposed in
Section 6.4. Figure 7.18 reports the maximum error on the derivative as a
function of the time. For both parameters sets, the error is low all along
the calculations and it stabilizes as the process reaches steady state. For the
second parameter set, the error is somewhat higher and it reflects the fact
that in this case the original probabilities are captured with less precision
(see Table 7.2).

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 1 10 100 1000

M
ax

. e
rr

or
 o

n
de

riv
at

iv
e

Time

Case 1
Case 2

Figure 7.18: Error measure for the exclusive switch for the two different sets
of parameters.

7.2.2 Multi-attractor model

As a second example, in order to test the quasi product form approxima-
tion with a more complex biological model, we propose a part of the multi-
attractor model considered by Zhou et al. [92] describing the interactions
among three genes, namely, Pax , Mafa, and Delta. Each gene has a corre-
sponding protein that is able to bind itself to promoter regions on the Dna.
The SPN representing the model is depicted in Figure 7.19 where the dotted
boxes denote the three switches corresponding to the three promoter regions.
Considering all possible bindings, the model involves 13 places. The first 10
of these can assume only boolean values and represent all the possible states
of the three promoter regions. The last three, instead, describe the number
of molecules of proteins present in the system.

The places Pax, Mafa and Delta represent the proteins whereas DD,
DM and DP denote the promoter regions. The “dot” has the same meaning
as in case of the exclusive switch model. We have four types of transitions:

CHAPTER 7. NUMERICAL ILLUSTRATIONS 141

Delta Mafa

DD.Pax

DD.Delta
DD.Mafa

Dna.P1DM.Delta

Pax

DM

DM.Mafa

DM.Pax

DD

DP
DP.Delta

b b

b

b

b

b b

d d

d

u u

u

u
u

u

u

p

p p

pp

p

p

Promoter region DP

Promoter region DM

Promoter region DD

Figure 7.19: The Multi-attractor model: Petri net

• d (degradation): represents the proteins degradations and depends on
the amount of proteins present (infinite server policy). For example,
the transition Delta→ ∅ occurs with intensity kd · [Delta] where kd is
a positive constant and [Delta] is the amount of Delta in the state.

• b (binding): by mean of these reactions, a protein occupies a promoter
region. For instance, the transition Delta + DD → DD.Delta moves
a token from DD to DD.Delta and removes a token from Delta with

CHAPTER 7. NUMERICAL ILLUSTRATIONS 142

intensity kb · [Delta].

• u (unbinding): through these reactions a promoter region returns “free”.
An example is the transition DD.Delta → Delta + DD which moves
a token from DD.Delta to DD and returns the token used to occupy
the region to Delta.

• p (production): these reactions describe the production of proteins.
Examples are the transition DD → DD + Delta (unbounded produc-
tion) or DD.Delta→ DD.Delta+Delta (bounded production).

As in the case of the exclusive switch, the overlap of the common pro-
moters leads to invariants:

MD + MD .Pax + MD .Mafa + MD .Delta =

DD + DD .Pax + DD .Mafa + DD .Delta =

PD + PD .Delta = 1

Accordingly, the production of the proteins is modulated in 2 × 4 × 4 = 32
different ways corresponding to all the possible combinations of the states in
which promoter regions can be.

The state space of the underlying CTMC is infinite and the number of
states having a non negligible probability mass blows up over three dimen-
sions. In this situation, if the parameters are not such that the protein
quantities remain quite low, any analytical solution of the CTMC is unfea-
sible by using common techniques whereas the analysis through the quasi
product form assumption remains possible.

The quasi product form assumption we propose is similar to the one used
in case of the exclusive switch. It is described by a DAG of 4 nodes in
such a way that node v1 is associated with all the species representing the
promoter regions, and nodes v2, v3 and v4 correspond to Pax , Mafa, and

v1

v2 v3 v4

Figure 7.20: The Multi-attractor model: the DAG describing the quasi prod-
uct form (right)

CHAPTER 7. NUMERICAL ILLUSTRATIONS 143

Delta, respectively. As depicted in Figure 7.20, the DAG has three edges
indicating that the dependencies among the proteins is taken into account,
in an indirect manner, through the state of the promoter regions. This
implies that the resulting system of ODEs has one equation for each protein,
for every possible protein quantity and every possible state of the promoter
region. Consequently, if the considered maximal protein quantity is pmax for
every protein then the number of equations is 3 × (pmax + 1) × 32. This is
much less than the number of states in the original CTMC which, considering
the same range of protein levels, equals (pmax + 1)3 × 32.

We test the quasi product form approach on this model with three sets
of parameters as reported in Table 7.3. Since the state space of the original
model is large, we compare the results of the quasi product form approach
with statistics obtained through the Monte Carlo simulation of the original
CTMC. The initial state of the model is such that all the promoter regions
are free and no proteins are present in the system.

Due to the low propensity of the binding reactions compared to the other
rates, the first set of parameters represents the most desirable situation to
apply the proposed quasi product form assumption. In fact, by using our
assumption binding reactions are the only transitions that occur according
to incoming flows that depend on other marginals. As an example, the
state Pr{DP = 1.DM = 1, DD = 1, Pax = 0} tends to switch to the
state Pr{DP.Delta = 1, DM = 1, DD = 1, Pax = 0} according to a time
dependent intensity equal to kb · E [Delta|DP = 1, DM = 1, DD = 1]. If
these reactions are much less frequent than the others then the distribution
of a protein is barely influenced by another one and the quasi product form
assumption is plausible. Figures 7.21 and 7.22 reflect this situation showing
a perfect match between the results obtained through the quasi product form
approximation and the simulations of the original CTMC.

Parameter set kd kb ku kp
1 0.1 0.01 1.0 5.0
2 0.1 0.01 0.001 5.0
3 0.1 1.0 1.0 5.0

Table 7.3: Multi-attractor model: the three sets of parameters used to per-
form the tests where kd refers to degradation reactions, kb and ku correspond
to binding and unbinding reactions, respectively, and kp to production reac-
tions.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 144

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

#
 M

o
le

c
u

le
s

Time

QPF - E[Pax]
QPF - E[Mafa]
QPF - E[Delta]
CTMC - E[Pax]

CTMC - E[Mafa]
CTMC - E[Delta]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

#
 M

o
le

c
u

le
s

Time

QPF - Var[Pax]
QPF - Var[Mafa]
QPF - Var[Delta]
CTMC - Var[Pax]

CTMC - Var[Mafa]
CTMC - Var[Delta]

Figure 7.21: Multi-attractor model: expectations (left) and variances (right)
of the three proteins with kd = 0.1, kb = 0.01, ku = 1, kp = 5

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

Figure 7.22: Multi-attractor model: marginal probabilities of Pax (left),
Mafa (right) and Delta (below) with kd = 0.1, kb = 0.01, ku = 1, kp = 5

The second set of parameters is able to generate strong correlations among
the distribution of the proteins (similarly, to those present in the exclusive
switch model). This is achieved by setting the unbinding constants to a lower
value (see Table 7.3) which implies that, even if they are rare, bindings will

CHAPTER 7. NUMERICAL ILLUSTRATIONS 145

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

#
 M

o
le

c
u

le
s

Time

QPF - E[Pax]
QPF - E[Mafa]
QPF - E[Delta]
CTMC - E[Pax]

CTMC - E[Mafa]
CTMC - E[Delta]

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

#
 M

o
le

c
u

le
s

Time

QPF - Var[Pax]
QPF - Var[Mafa]
QPF - Var[Delta]
CTMC - Var[Pax]

CTMC - Var[Mafa]
CTMC - Var[Delta]

Figure 7.23: Multi-attractor model: expectations (left) and variances (right)
of the three proteins with kd = 0.1, kb = 0.01, ku = 0.001, kp = 5

eventually occur and proteins can monopolize the promoter. Despite the
fact that this setting is less favorable for the quasi product form assump-
tion, the approximation, as it can be seen in Figure 7.23, catches both the
expectations and the variances of the three proteins. Moreover, as shown in
Figure 7.24, also the marginal distributions of the proteins are captured pre-
cisely. Note that all three proteins have bistable distributions but this is hard
to see in case of Pax because this protein is at level 0 with high probability.
The goodness of the approximation is evident from the curves representing
the marginal distributions (Figure 7.24). Both the probability mass at zero
and the rarer event around 50 are precisely reconstructed by the proposed
approximation. Figure 7.25 provides a better picture of QPF accuracy by
focusing on two intervals where the marginal probabilities of Pax assume
small values, namely [1, .., 10] and [35, .., 70].

CHAPTER 7. NUMERICAL ILLUSTRATIONS 146

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70

P
ro

b
a

b
ili

ty

Molecules

t=500,QPF
t=500,CTMC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70

P
ro

b
a

b
ili

ty

Molecules

t=500,QPF
t=500,CTMC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70

P
ro

b
a

b
ili

ty

Molecules

t=500,QPF
t=500,CTMC

Figure 7.24: Multi-attractor model: marginal probabilities of Pax (left),
Mafa (right) and Delta (below) with kd = 0.1, kb = 0.01, ku = 0.001, kp = 5

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
ili

ty

Molecules

t=500,QPF
t=500,CTMC

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 35 40 45 50 55 60 65 70

P
ro

b
a

b
ili

ty

Molecules

t=500,QPF
t=500,CTMC

Figure 7.25: Multi-attractor model: rare probabilities of Pax marginal dis-
tribution, intervals [1, 10] (left) and [35, 70] (right) , with kd = 0.1, kb =
0.01, ku = 0.001, kp = 5

As last example, we provide a case in which the quasi product form ap-
proximation is not able to provide a good estimation of the probability distri-

CHAPTER 7. NUMERICAL ILLUSTRATIONS 147

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Molecules

t=500,QPF
t=500,CTMC

Figure 7.26: Multi-attractor model: marginal probabilities of Pax (left),
Mafa (right) and Delta (below) with kd = 0.1, kb = 1, ku = 1, kp = 5

CHAPTER 7. NUMERICAL ILLUSTRATIONS 148

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500

M

ol
ec

ul
es

Time

QPF - E[Pax]
QPF - Var[Pax]
CTMC - E[Pax]

CTMC - Var[Pax]

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

M

ol
ec

ul
es

Time

QPF - E[Mafa]
QPF - E[Delta]

CTMC - E[Mafa]
CTMC - E[Delta]

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

T
im

e

Molecules

QPF - Var[Mafa]
QPF - Var[Delta]

CTMC - Var[Mafa]
CTMC - Var[Delta]

Figure 7.27: Multi-attractor model: expectations and variances of the three
proteins with kd = 0.1, kb = 1, ku = 1, kp = 5

butions. In order to challenge the quasi product form assumption, we choose
a set of parameters in which the binding and the unbinding reactions are
extremely frequent. Since in our approximation the marginal distributions
“communicate” only through expected values, we expect that the computa-
tions give a result which is similar to the original in average but is not able
to catch the effects of the fluctuations given by the frequent bindings and
unbindings. Figure 7.26 depicts the marginal distributions of the proteins
and their approximations. In case of Pax the approximation is reasonable,
while for Mafa and Delta the irregular shapes are not captured well. Never-
theless, we point out that, even if the peculiarities of the distributions are not
captured (e.g., the peak near zero for Mafa), the approximated distributions
provide a good picture of the support of the original distributions. Finally,
in Figure 7.27, it is possible to observe the expectations and the variances
of the three proteins. The slopes of the original curves are preserved by the
approximation and the error over the trajectories is reasonable.

The computation of the quasi product form required about half an hour

CHAPTER 7. NUMERICAL ILLUSTRATIONS 149

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 1 10 100 1000

M
ax

. e
rr

or
 o

n
de

riv
at

iv
e

Time

Case 1
Case 2
Case 3

Figure 7.28: Error measure for the multi-attractor model for the different
sets of parameters.

for all the test. By setting a limit of 100 molecules for the growth of all
the three proteins the number of equations considered is 3.2 × 104. The
corresponding original, three-dimensional state space of the proteins contains
about 3×107 states. Common, exact analysis techniques cannot handle such
amount of states using conventional hardware.

As last, Figure 7.28 depicts the maximum error on the derivative as func-
tion of the time by using the different parameter sets. The error is higher
and the difference between the well-approximated cases (first and second set
of parameters) and the poorly approximated case (third set of parameters)
is reflected by the error measure.

7.3 On demand multilevel manufacturing sys-

tem

As last model, we propose the multilevel manufacturing production line
whose SPN is depicted in Figure 7.29. The system is composed of five lev-
els which describe the assembling of a product from the instant in which it
is ordered to the moment of its delivery. The dotted block at the top of
Figure 7.29 represents the phase in which requests for products arrive, are
accepted, and immediately sent to the four manufacturing stations placed at
the beginning of the line.

This phase is described through: transition t1 which considers requests
arrivals as Poisson events; place L0 which represents requests that are waiting

CHAPTER 7. NUMERICAL ILLUSTRATIONS 150

for acceptance; transition t2 which models the acceptance of a request and
its virtual change of state from “pending” to “in production”.

Transition t2 is a fork because we assumed that the final product is com-
posed of four different parts that have to be built and assembled; thus, after
the acceptance the order is submitted to four different manufacturing stations
to alert them that a new item has to be produced.

Once submitted, requests arrive at the first level of the line where each
manufacturing station has the task to carry on the construction of one of the
components required for the product to deliver, namely A, B C and D. Each
station serves requests one by one and pushes forward the produced compo-
nents independently from the other stations; this means that a component
can arrive to the next assembling stage even if the other three components
required to satisfy the order are still waiting to be constructed.

This phase is described by places A1, B1, C1 and D1 which represent
request for production of component A, B, C and D respectively, and by the
transitions t3, t4, t5 and t6 which model the building of a component and its
transportation to the next level.

The block labeled with “Production Level 2” in Figure 7.29 represents
the first assembling of the parts produced in the previous level. In particular,
a component A is assembled with one of type B and C is put together with
D. Transitions t7 and t8 represent the task through the synchronization of
places A2 with B2 and C2 with D2.

In the same way the results of the assembling are combined together in
the next stage of the production (transition t9 which synchronizes places
AB3 and CD3). Finally, in the last level the final product is delivered or
backlogged in production because damaged. The backlogging is modelled
through transition t11 whereas transition t10 describes the delivery of the
product.

In order to put under stress our approximation we assume that every
transition of the model but t10 and t11 is single server. Furthermore, we
assume that each place has a finite capacity of 25 items but we choose the
parameters settings in such a way that every place reaches the saturation
point with negligible probability. For every production level the transition
rates are different, i.e. µ3 = µ7 = µ9 = 2, µ4 = µ8 = 3, µ5 = 4, µ6 = 5.
Requests are accepted with rate 1 and deliveries are performed according to
an infinite server policy with rate t10 = 0.5 and backlogging probability of
0.01.

Observing Figure 7.29, it is evident that all the places at production levels

CHAPTER 7. NUMERICAL ILLUSTRATIONS 151

L0

t1

t2

t5 t4 t3

t7t8

t9

C1 B1
A1

A2B2C2

AB3CD3

ABCD4

t11t10

Delivery

Production

Requests arrivals

Level 3

Level 2
Production

Production
Level 1

t6

D1

D2

Figure 7.29: On the demand multilevel manufacturing system.

1, 2 and 3 are heavily dependent among each other due to the fact that they
are generated by the same event (firing of t2). Moreover, the state space is
characterized by the following two invariant laws:

CHAPTER 7. NUMERICAL ILLUSTRATIONS 152

1. the sum of the tokens present in A1 and A2 (C1 and C2) is always equal
to the sum of the tokens in B1 and B2 (D1 and D2)

2. the sum of tokens in places AB3,A2 and A1 (or B2 and B1) is equal to
the summation of the tokens present CD3, C2 and C1 (or D2 and D1).

This scenario would suggest that the only way to apply the quasi product
form is to maintain the correlation among all the places belonging to the
production/assembling stages.

Indeed, this would lead to an accurate approximation, but the computa-
tional cost would get quickly unbearable for a common hardware. Thus, we
decided to generate the DAG in such a way that each marginal describes at
most the distribution of three places. The DAG that we chose, depicted in
Figure 7.30, represents a quite strong assumption, i.e. the components A,
B, C and D are produced independently from each other. Furthermore, the

A1

L0

B1
C1D1

A2B2C2D2

CD3 AB3

ABCD4

Figure 7.30: DAG representing the quasi product form assumption used to
analyze the multilevel manufacturing system.

proposed DAG implies that we have to take care explicitly of the invariants
present among levels; as an example, the marginal {A1, A2} is in complete
product form with that {B1, B2}; however, every couple (a1, a2) is affected
only by those configurations of B1 and B2 for which b1 + b2 = a1 + a2 .

CHAPTER 7. NUMERICAL ILLUSTRATIONS 153

As first test, we assume that requests arrive with rate λ = 0.2. hence, the
load of the net is quite low. Figure 7.31 depicts the mean and variance of the
number of tokens in places A1, A2, AB3 and ABCD4. It is possible to observe
that while the approximation of the two measures is quite accurate for place
A1 the curves describing place A2 diverge from the original behaviour quite
soon; in particular, they are overestimated.

This is because, by assuming our decomposition, the marginal {A2, B2, AB3}
is “delegated” to compute the departures to AB3 by mean of t7 but it con-
siders the arrivals from A1 and B1 as uncorrelated independent Poisson pro-
cesses. This is a consequence of the fact that, according to the proposed
DAG, we lost the knowledge about the fact that tokens arrive in A1 and B1

at the same time.
Thus, the correlation between the firing of t3 and t4 is lost and the arrivals

in A2 and B2 are considered only by mean of their expected incoming flows
that have intensities proportional to the parameters µ3 and µ4 multiplied by
the current probability to have at least one token in A1 and B1, respectively.
In particular, these values will be small since the load of the net is quite low
and consequently the probability to find A1 and B1 empty is high.

In other words, the underestimation of the firing of t7 is a consequence
of the fact that the marginal {A2, B2, AB3} perceives the arrivals in places
A2 and B2 properly from the point of view of their expectations (by mean of
the marginals {A1, A2} and {B1, B2}) but cannot catch the fact that after an
arrival in A2 (B2) the subsequent most likely event is an arrival in B2 (A2).
Then, according to the QPF decomposition, transition t7 is blocked with an
higher probability than in the original case.

The divergence of the variance reflects the fact that, by assuming inde-
pendent Poisson arrivals into the two places, the number of configurations
enabling t7 with a non negligible probability increases drastically.

In Figure 7.31 we report the mean and the variance of the token distribu-
tion of place ABCD4 (bottom right). These measures should suffer the errors
generated in the previous levels. Instead the slope of the original curves is
preserved by the QPF and the gap between approximated and original curves
is sensibly reduced. We conjecture that, preserving the correlations of the
places involved in synchronizations, the decomposition is able to reconstruct
part of the strong dependencies lost during the first levels.

As last, Figure 7.31 reports also the mean and the variance of place AB3,
the gap between original and approximated curves is slightly smaller than
for place A2. We skip the curves for the other places composing the first, the

CHAPTER 7. NUMERICAL ILLUSTRATIONS 154

second and the third level because they have similar errors.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.31: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top right),
AB3 (bottom left) and ABCD4 (bottom right) with requests arrival rate
equal to λ = 0.2

We further investigated the method by increasing the load of the net;
in particular, we tested λ = 0.4 and λ = 0.8. Figures 7.32 and 7.33 shows
that by increasing the arrival rate the approximation of ABCD4 gets more
accurate: for the first case at time 25 the relative error is reduced to 0.2%
whereas for the second case it is around 0.12% only.

In order to put under stress the QPF approximation, we tested the case
where a final product returns to the first level with probability 0.25. Figure
7.34 shows that although the approximation of A1 gets slightly worse those
of A2, AB3 ABCD4 maintain the same accuracy.

In the following two tests, we investigate the behaviour of our approxima-
tion in settings where we loosened the correlations among the places. In the
first scenario, we performed the analysis by starting from the situation where
all the places but L0 and ABCD4 contain five tokens and chose as arrival

CHAPTER 7. NUMERICAL ILLUSTRATIONS 155

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.32: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top right),
AB3 (bottom left) and ABCD4 (bottom right) with requests arrival rate
equal to λ = 0.4

rate λ = 0.2. Thus, all the synchronizations are enabled at the very begin-
ning of the analysis. For this reason, we expect to see a preamble where also
the measures of the nodes placed in the middle of the net are approximated
correctly.

Figure 7.35, where mean and variance of places A2 and AB3 are depicted,
confirms our belief. In fact, observing the plots it is possible to note that
until 4 time units both the approximated mean and variance follow precisely
the original curves; then, the variances start to diverge as in the previous
cases.

Figure 7.36 shows the results provided by a test alike to the previous with
the only difference that, this time, we started the analysis from a pseudo-
random state, i.e. |0, 3, 5, 2, 4, 2, 3, 2, 3, 3, 2, 0|. As a consequence, several
places in the middle of the line will contain at least one token all along the
time. This situation further reduces the difference between the original and

CHAPTER 7. NUMERICAL ILLUSTRATIONS 156

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]
 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.33: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top right),
AB3 (bottom left) and ABCD4 (bottom right) with requests arrival rate
equal to λ = 0.8

the approximated curves all along the transient period.
Figure 7.37 reports the probability to find empty the place ABCD4. In

general, all the approximated curves follow the behaviour of the original
model with acceptable accuracy1.

According to the decomposition, the QPF approximation required the
marginals : {L0}, {A1, A2}, {B1, B2}, {C1, C2}, {D1, D2}, {A2, B2, AB3},
{C2, D2, CD3} and {AB3, CD3, ABCD4}. Since every place was bounded
up to 25, the total number of equations is 26 + 4 × 262 + 3 × 263 = 55458
against the 9.5× 1016 of the original model. All the computations required
around 8 minutes.

1We do not report the curves of the case with backlogging probability equal to 0.25
because it is very similar to those of the case with λ = 0.8 and backlogging probability
equal to 0.01.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 157

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]
 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.34: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top right),
AB3 (bottom left) and ABCD4 (bottom right) starting from all empty places
with λ = 0.8 and backlogging probability equal to 0.25.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 158

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.35: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top right),
AB3 (bottom left) and ABCD4 (bottom right) starting from a state all the
places but L0 and ABCD4 have five tokens with λ = 0.2.

CHAPTER 7. NUMERICAL ILLUSTRATIONS 159

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

qpf - E[A1]
qpf - Var[A1]
ctmc - E[A1]

ctmc - Var[A1]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

qpf - E[A2]
qpf - Var[A2]
ctmc - E[A2]

ctmc - Var[A2]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25

qpf - E[AB3]
qpf - Var[AB3]
ctmc - E[AB3]

ctmc - Var[AB3]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25

qpf - E[ABCD4]
qpf - Var[ABCD4]
ctmc - E[ABCD4]

ctmc - Var[ABCD4]

Figure 7.36: On demand multilevel manufacturing system : Expectations
and variances of the number of tokens in places A1 (top left), A2 (top
right), AB3 (bottom left) and ABCD4 (bottom right) starting from x =
|0, 3, 5, 2, 4, 2, 3, 2, 3, 3, 2, 0| with λ = 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

qpf - λ=0.2, Pr { ABCD4 = 0}
qpf - λ=0.4, Pr { ABCD4 = 0 }
qpf - λ=0.8, Pr { ABCD4 = 0 }

ctmc - λ=0.2, Pr { ABCD4 = 0 }
ctmc - λ=0.4, Pr { ABCD4 = 0 }
ctmc - λ=0.8, Pr { ABCD4 = 0 }

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

qpf - in. state 1, Pr { ABCD4 = 0 }
qpf - in. state 2, Pr { ABCD4 = 0 }
ctmc - in. state, Pr { ABCD4 = 0 }
ctmc - in. state, Pr { ABCD4 = 0 }

Figure 7.37: On demand multilevel manufacturing system : Probability to
find the place ABCD4 empty as function of the time .

8
Conclusions and future works

8.1 Conclusive remarks

8.1.1 First part

In the first part of this thesis we provided a proof of concept of how an ac-
curate qualitative analysis of a Markov chain can preserve the feasibility of
standard analysis techniques and, as a consequence, the exactitude of the
results. Indeed, the cases that we proposed correspond to particular situa-
tions. However, models describing monotonic productions (and, more gen-
erally, monotonic measures) are not rare and their analysis through Markov
reward models does not seem to be well-known in several communities. We
proposed those of systems biology and flexible manufacturing. Additionally,
we extended the state of the art by proposing a recursive way to compute
joint moments as well.

The results obtained by using the framework in the context of manu-
facturing production lines led to extremely encouraging results due to the
fact that the original problem is directly connected to the measures of ac-
cumulated reward and completion time. This allowed the computation of
properties that otherwise can be analyzed only through the direct observa-
tion of the production line or by Monte Carlo approaches. It is also evident

160

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 161

that, until now, we limited the analysis to very small machine blocks but the
approach permits the investigation of much bigger systems. From the point
of view of biochemical systems, our approach can tackle the problem and
avoid the use of approximation in a larger number of situations.

8.1.2 Second part

In the second part of the thesis, we focused on the concept of transient
product form. This is in itself an achievement since, according to the authors
that we have cited, transient product form does not seem well-known.

On the base of the concept of transient product form, we developed an
approximation, called quasi product form, that can be used in a large number
of situations and is able to describe accurately the transient probabilities of,
possibly time dependent, CTMCs. In particular, we showed that the use of
quasi product form is particularly suitable in case of productions modulated
by switches. In fact, often such situations lead to distributions that are not
compact and can generate multi-modal shapes. In these scenarios approxi-
mations based on moments are untrustworthy because they provide the most
unlikely among the possible trajectories. Additionally, we have shown that
our approximation is an accurate approximation of the transient behaviour
of queuing networks composed of stations having a finite number of servers.

8.2 Future works

8.2.1 First part

Markov reward models are a well-known framework that has been massively
investigated during the years in the context of performance evaluation. For
this reason, many variants of the proposed approach exist and are a sound
solution for the analysis of large models. However, there are still open prob-
lems. The most important is probably the closure of the moments in case of
non-negative accumulated rewards and possible total loss. Another interest-
ing investigation is the developing of an efficient method for the computation
of rewards when their amounts affect the underlying process.

From the point of view of the analysis of flexible manufacturing systems,
the number of possible extensions is large. Several of them are straightfor-
ward, for instance: cyclic production lines, multi-class productions, covari-

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 162

ances between the state of the machines and the accumulated production.
On the other side, an interesting extension of MRMs in the context of

biochemical systems would be the computation of the measures known as
trends. These measures address specific behavioural questions, such as the
likelihood for a biochemical species to reach a peak/deadlock state, or to
exhibit monotonic/oscillatory behaviours [12, 1].

8.2.2 Second part

The investigations made in the second part of the thesis suggest many inter-
esting future works.

First of all, it is evident that the conditions under which a model enjoys
the transient product form are extremely strict. This is justified by the
fact that the overall transient behaviour of every component of the model
is totally described by a single differential equation. Nowadays, common
hardware is able to carry on the computation of much larger ODEs systems.
Thus, a first possible future investigation is to find a similar approach that:

1. maintains the exactitude of the results,

2. might be more expensive than transient product form but remains com-
putationally friendly,

3. has a larger sphere of application.

Secondly, we want to improve the quasi product form approximation by
investigating:

1. more sophisticated patterns to generate the DAG describing the quasi
product form decomposition,

2. the developing of more accurate methods to control the error generated
by the approximation

3. its integration with advanced data structures such as BDDs.

As last, the accuracy of some results pointed out that there are cases in
which Markov chains carry more information than necessary. This fact would
suggest the existence of situations where the validation of our method can
be done directly from the real phenomenon instead of the CTMC describing

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 163

it. In other words, we want investigate the use of quasi product form as
an independent stochastic process. This idea is enforced by the existence
of several common points between the product form approximation and the
framework of Markovian agents described by Bobbio, Gribaudo and Cerotti
in [42, 43]. This framework considers each modelled object as an independent
Markov chain that communicates with the rest of the net according to mean-
field approximations, as it happens in case of a product form.

Bibliography

[1] O. Andrei and M. Calder. Trend-Based Analysis of a Population Model
of the AKAP Scaffold Protein. T. Comp. Sys. Biology, 14:1–25, 2012.

[2] A. Andreychenko, P. Crouzen, and V. Wolf. On-the-fly Uniformization
of Time-Inhomogeneous Infinite Markov Population Models. In Mieke
Massink and Gethin Norman, editors, QAPL, volume 57 of EPTCS,
page 1, 2011.

[3] A. Angius and A. Horváth. Analysis of stochastic reaction networks
with Markov reward models. In François Fages, editor, CMSB, pages
45–54. ACM, 2011.

[4] A. Angius and A. Horváth. Product Form Approximation of Transient
Probabilities in Stochastic Reaction Networks. Electronic Notes on The-
oretical Computer Science, 277:3–14, 2011.

[5] A. Angius, A. Horváth, and M. Colledani. Moments of Cumulated Out-
put and Completion Time of Unreliable General Markovian Machines.
In IFAC World Congress ’11, to appear, 2011.

[6] A. Angius, A. Horváth, and V. Wolf. Quasi product form approximation
for Markov models of reaction networks. Transactions on Computational
Systems Biology, 7625(XIV), 2012.

[7] M. Arns, P. Buchholz, and A. Panchenko. On the Numerical Analysis
of Inhomogeneous Continuous-Time Markov Chains. Informs Journal
on Computing, 22(3):416–432, 2010.

[8] J. Babar, M. Beccuti, S. Donatelli, and A. S. Miner. GreatSPN En-
hanced with Decision Diagram Data Structures. In Petri Nets, pages
308–317, 2010.

164

BIBLIOGRAPHY 165

[9] C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.

[10] G. Balbo, M. Ajmone Marsan, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with generalized stochastic Petri nets. Wiley Series in
Parallel Computing . John Wiley and Sons, 1995.

[11] G. Balbo, S. C. Bruell, and M. Sereno. Product Form Solution for Gen-
eralized Stochastic Petri Nets. IEEE Trans. Software Eng., 28(10):915–
932, 2002.

[12] P. Ballarini and M. L. Guerriero. Query-based verification of qualitative
trends and oscillations in biochemical systems. Theor. Comput. Sci.,
411(20):2019–2036, April 2010.

[13] F. Baskett, K.M. Chandy, R.R. Muntz, and G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. Jour-
nal of the ACM, 22(2):248–260, 1975.

[14] F. Bause and P. S. Kritzinger. Stochastic Petri nets - an introduction
to the theory (2. ed.). Vieweg, 2002.

[15] P. Bazan and R. German. Approximate transient analysis of large
stochastic models with WinPEPSY-QNS. Computer Networks, 53:1289–
1301, 2009.

[16] Benaim, M. and Weibull, J. Mean-field approximation of stochastic
population processes in games. Working Papers hal-00435515, HAL,
2009.

[17] R. J. Boucherie. Product-form in queueing networks. PhD thesis, Vrije
Universiteit, Amsterdam, 1992. Th. : stochastic operations research.

[18] R. J. Boucherie and P.G. Taylor. Transient product form distributions
in queueing networks. Discrete Event Dynamic Systems: Theory and
Applications, 3:375–396, 1993.

[19] P. Buchholz. Markovian Process Algebra: Composition and Equiva-
lence. In Proc. of the 2nd Workshop on Process Algebras and Perfor-
mance Modelling, pages 11–30, 1994.

BIBLIOGRAPHY 166

[20] P. Buchholz, J. Katoen, P. Kemper, and C. Tepper. Model-checking
large structured Markov chains. J. Log. Algebr. Program., (1-2):69–97,
2003.

[21] G. Casale. Approximating passage time distributions in queueing models
by Bayesian expansion. Perform. Eval., 67(11):1076–1091, 2010.

[22] F. Castella, G. Dujardin, and B. Sericola. Moments’Analysis in Homoge-
neous Markov Reward Models. Methodology And Computing In Applied
Probability, 11(4):583–601, 2009.

[23] K. M. Chandy, U. Herzog, and L. Woo. Parametric Analysis of Queue-
ing networks. IBM Journal of Research and Development, 19(1):36–42,
1975.

[24] H. Chen and A. Mandelbaum. Discrete Flow Networks: Bottleneck
Analysis and Fluid Approximations. Mathematics of Operations Re-
search, 16(2):408–446, 1991.

[25] G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting interleaving se-
mantics in symbolic state-space generation. Formal Methods in System
Design, 31(1):63–100, 2007.

[26] G. Clark and J. Hillston. Product Form Solution for an Insensitive
Stochastic Process Algebra Structure, 2002.

[27] D. R. Cox and P. A. W. Lewis. The statistical analysis of series of
events. 1966.

[28] T. Dao-Thi, M. Tran, and J. Fourneau. Multiple Class Symmetric G-
networks with Phase Type Service Times. Comput. J., 54(2):274–284,
2011.

[29] T. Dayar, L. Mikeev, and V. Wolf. On the Numerical Analysis of
Stochastic Lotka-Volterra Models. In Proc. of the Workshop on Com-
puter Aspects of Numerical Algorithms (CANA10), pages 289–296, 2010.

[30] J. D. Diener. Empirical comparison of uniformization methods for
continuous-time Markov chains. PhD thesis, University of Arizona,
1994.

BIBLIOGRAPHY 167

[31] S. Donatelli. Superposed Stochastic Automata: A Class of Stochastic
Petri Nets with Parallel Solution and Distributed State Space. Perform.
Eval., 18(1):21–36, 1993.

[32] S. Donatelli. Superposed Generalized Stochastic Petri Nets: Definition
and Efficient Solution. In Robert Valette, editor, Application and Theory
of Petri Nets, volume 815. Springer, 1994.

[33] S. Donatelli, S. Haddad, and J. Sproston. Model Checking Timed
and Stochastic Properties with CSLTA. IEEE Trans. Software Eng.,
35(2):224–240, 2009.

[34] S. Engblom. Computing the moments of high dimensional solutions of
the master equation. Appl. Math. Comput, 180:498–515, 2006.

[35] E. Gelembe. Réseaux neuronaux aléatoires stables. Comptes Rendus de
l’Académie des Sciences 309, Série II, 310:177–180, 1990.

[36] E. Gelenbe. Product-form queueing networks with negative and positive
customers. Journal of Applied Probability, 28:656–663, 1991.

[37] E. Gelenbe. G-networks with signals and batch removal. Probability in
the Engineering and Informational Sciences, 7:335–342, 1993.

[38] E. Gelenbe. G-Networks with Triggered Customer Movement. Journal
of Applied Probability, 30(3):742–748, 1993.

[39] E. Gelenbe and J. Fourneau. G-networks with resets. Perform. Eval.,
49(1/4):179–191, 2002.

[40] D. T. Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem., 81(25):2340–2361, 1977.

[41] W.J. Gordon and G.F. Newell. Cyclic queueing networks with exponen-
tial servers. Operations Research, 15(2):254–265, 1967.

[42] M. Gribaudo, A. Bobbio, and D. Cerotti. Disaster Propagation in Het-
erogeneous Media via Markovian Agents. In CRITIS, pages 328–335,
2008.

BIBLIOGRAPHY 168

[43] M. Gribaudo, D. Cerotti, and A. Bobbio. Analysis of On-off policies
in Sensor Networks Using Interacting Markovian Agents. In PerCom,
pages 300–305, 2008.

[44] S. Haddad, P. Moreaux, M. Sereno, and M. Silva. Product-form and
stochastic Petri nets: a structural approach. Performance Evaluation,
59(4):313–336, 2005.

[45] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of
Differential-Algebraic Systems by Runge-Kutta Methods. Number 1409
in Lecture Notes in Mathematics. Springer-Verlag, 1989.

[46] J. M. Harrison and A. J. Lemoine. A note on networks of infinite-server
queues. J. Appl. Probab., 18(2):561–567, 1981.

[47] P. G. Harrison. Transient Behaviour of Queueing Networks. Journal of
Applied Probability, 18(2):482–490, 1981.

[48] R. A. Hayden and J. T. Bradley. A fluid analysis framework for a
Markovian process algebra. Theor. Comput. Sci., 411(22-24):2260–2297,
2010.

[49] A. Heindl and A. van de Liefvoort. Moment conversions for discrete
distributions. In Proc. 6th Int. Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS), 2003.

[50] T. A. Henzinger, M. Mateescu, and V. Wolf. Sliding Window Abstrac-
tion for Infinite Markov Chains. In CAV, pages 337–352, 2009.

[51] T. A. Henzinger, L. Mikeev, M. Mateescu, and V. Wolf. Hybrid numer-
ical solution of the chemical master equation. In CMSB, pages 55–65,
2010.

[52] H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for
model-checking Markov chains. STTT, (2):153–172, 2003.

[53] J. Hespanha. Moment closure for biochemical networks. pages 142–147,
2008.

[54] J. Hillston. Fluid Flow Approximation of PEPA models. In Quantitative
Evaluation of Systems, pages 33–43.

BIBLIOGRAPHY 169

[55] G. Horváth, S. Rácz, Á. Tari, and M. Telek. Evaluation of Reward
Analysis Methods with MRMSolve 2.0. In QEST, pages 165–174, 2004.

[56] J.R. Jackson. Jobshop-Like Queueing Systems. Management Science,
10(1):131–142, 1963.

[57] A. Jensen. Markoff chains as an aid in the study of Markoff processes.
Skandinavisk Aktuarietidskrift, 36:87–91, 1953.

[58] P. Kemper. Numerical Analysis of Superposed GSPNs. IEEE Transac-
tions on Software Engineering, 22:52–61, 1995.

[59] D. G. Kendall. Stochastic Processes Occurring in the Theory of Queues
and their Analysis by the Method of the Imbedded Markov Chain. The
Annals of Mathematical Statistics, 24(3):338–354, 1953.

[60] V. G. Kulkarni. Modeling and analysis of stochastic systems. Chapman
& Hall, Ltd., London, UK, UK, 1995.

[61] T. G. Kurtz. Solutions of Ordinary Differential Equations as Limits of
Pure Jump Markov Processes. Journal of Applied Probability, 1(7):49–
58, 1970.

[62] T. G. Kurtz. The Relationship between Stochastic and Deterministic
Models for Chemical Reactions. J Chem Phys, 57(7):2976–2978, 1972.

[63] A. Loinger, A. Lipshtat, N. Q. Balaban, and O. Biham. Stochastic
simulations of genetic switch systems. Phys. Rev. E, 75:021904, Feb
2007.

[64] A. J. Lotka. Elements of Mathematical Biology. Williams and Wilkins
Company, 1924.

[65] S. I. Martins, A. T. Martinus, and M. A. Van Boekel. Kinetic mod-
elling of Amadori N-(1-deoxy–fructos-1-yl)-glycine degradation path-
ways. Part II–Kinetic analysis. Carbohydrate Research, 338(16):1665–
1678, 2003.

[66] W. A. Massey and W. Whitt. A probabilistic generalization of Taylor’s
theorem. Statistics & Probability Letters, 16(1):51–54, January 1993.

BIBLIOGRAPHY 170

[67] W. A. Massey and W. Whitt. Networks of infinite-server queues with
nonstationary Poisson input. Queueing Systems, 13:183–250, 1993.

[68] T. I. Matis and R. M. Feldman. Transient Analysis of State-Dependent
Queueing Networks via Cumulant Functions. Journal of Applied Prob-
ability, 38(4):841–859, 2001.

[69] C. Moler and C. Van Loan. Nineteen Dubious Ways to Compute the Ex-
ponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1):3–
49, 2003.

[70] M.K. Molloy. On the integration of delay and throughput measures in
distributed processing models. PhD thesis.

[71] S. Natkin. Les Reseaux de Petri Stochastiques et leur Application a
l’Evaluation des Systemes Informatiques. PhD thesis, 1980.

[72] V. F. Nicola, V. G. Kulkarni, and K. S. Trivedi. Queueing Analysis of
Fault-Tolerant Computer Systems. In SIGMETRICS, 1986.

[73] V. F. Nicola, V. G. Kulkarni, and K. S. Trivedi. Queueing Analy-
sis of Fault-Tolerant Computer Systems. IEEE Trans. Software Eng.,
13(3):363–375, 1987.

[74] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur
instrumentelle Mathematik, Bonn, 1962.

[75] B. Plateau. De l’evalutation du paralleslisme et de la syncronization.
1984.

[76] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. In Proceedings of the 1985 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, SIGMETRICS ’85, pages 147–154, New York, NY, USA, 1985.
ACM.

[77] W. H. Sanders and P. Buchholz. Approximate Computation of Transient
Results for Large Markov Chains. In Proceedings of the The Quantitative
Evaluation of Systems, First International Conference, QEST ’04, pages
126–135, Washington, DC, USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 171

[78] I. H. Segel. Enzyme kinetics: behavior and analysis of rapid equilibrium
and steady state enzyme systems. New York: Wiley, 1993.

[79] M. Sereno. Towards a Product Form Solution for Stochastic Process
Algebras. The Computer Journal, 38(7):622–632, 1995.

[80] A. Singh and J.P. Hespanha. Moment closure techniques for stochas-
tic models in population biology. American Control Conference, pages
4730–4735, 2006.

[81] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1995.

[82] Á. Tari, M. Telek, and P. Buchholz. A Unified Approach to the Moments
Based Distribution Estimation - Unbounded Support. In EPEW/WS-
FM, pages 79–93, 2005.

[83] M. Telek, A. Bobbio, and M. Gribaudo. Analysis of Large Scale In-
teracting Systems by Mean Field Method. In QEST, pages 215–224,
2008.

[84] M. Telek and S. Rácz. Numerical analysis of Large Markovian reward
models. Performance Evaluation, 36&37:95–114, Aug 1999.

[85] M. Tribastone. Scalable Analysis of Stochastic Process Algebra Models.
PhD thesis, School of Informatics, The University of Edinburgh, 2010.

[86] M. Tribastone and S. Gilmore. Rigorous Software Engineering for
Service-Oriented Systems—Results of the SENSORIA project on Soft-
ware Engineering for Service-Oriented Computing, chapter Scaling Per-
formance Analysis using Fluid-Flow Approximation. Springer-Verlag,
2010.

[87] N. M. Van Dijk. Uniformization for nonhomogeneous Markov chains.
Oper. Res. Lett., 12(5):283–291, November 1992.

[88] A. P. A. van Moorsel and Katinka W. Numerical Solution of Non-
Homogeneous Markov Processes through Uniformization. In Richard N.
Zobel and Dietmar P. F. Möller, editors, ESM, pages 710–717. SCS
Europe, 1998.

BIBLIOGRAPHY 172

[89] V. Volterra. Fluctuations in the abundance of a species considered math-
ematically. Nature, 1924.

[90] M. Wan, G. Ciardo, and A. S. Miner. Approximate steady-state analysis
of large Markov models based on the structure of their decision diagram
encoding. Perform. Eval., 68(5):463–486, May 2011.

[91] W. Whitt. Decomposition Approximations for Time-Dependent Marko-
vian Queueing Networks. Operations Research Letters, 24:97–103, 1999.

[92] J. X. Zhou, L. Brusch, and S. Huang. Predicting Pancreas Cell Fate De-
cisions and Reprogramming with a Hierarchical Multi-Attractor Model.
PLoS ONE, 6(3):16, 2011.

