
Type Disciplines for
Systems Biology

Livio Bioglio

March 8, 2013

Tesi di Dottorato
Scuola di Dottorato in Scienze e Alta Tecnologia, XXV ciclo

Università di Torino
Dipartimento di Informatica

Ph.D. Thesis
Doctoral School on Science and High Technology, XXV cycle

University of Torino
Department of Computer Science

Supervisore:
Advisor :
Prof. Mariangiola Dezani

Abstract

During the last years Computer Science and Biology are getting closer,
helping and inspiring each other: for example, the Human Genome Project
(HGP), the scientific research project with the goal of determining the se-
quence of chemical base pairs which make up DNA, would have been impos-
sible without computer clusters and pattern recognition algorithms. On the
other hand, Computer Scientists are studying vertebrate immune systems for
applying their processes and solutions to antivirus softwares. A new interdis-
ciplinary research field was born, the Natural Computing, encompassing both
the application of Computer Science tools to Biology, and the use of biological
solutions to computational issues. In the first sub-field we can find Systems
Biology, a discipline that aims to study complex biological systems by means
of computational models. Because of the complexity of biological behaviors,
formalisms are usually designed ad-hoc for the biological topics of interest, or
they need to be tuned by means of a long set of rules. In this Thesis we present
a different approach: we define biological properties through type disciplines,
leaving the formalisms as general as possible. From this starting point, we
explore several applications of types in Systems Biology: the first one checks
that biological compartments contain rules having certain features defined by
the modeler, the second one allows to specify a set of elements required or
avoided by other elements, the third one is an improvement of the previous
one, the fourth one computes the rate of a stochastic transition by means of
the types of the involved elements, and finally we end with a minimal Object
Oriented Calculus for rewrite systems.

i

ii

Contents

1 Introduction 1

1.1 Formalisms . 2

1.2 Stochastic Models . 4

1.3 Spatial Formalisms . 5

1.4 Types in Systems Biology . 7

1.5 Motivations and Thesis Overview 8

2 The Calculus of Looping Sequences 11

2.1 Introduction . 11

2.2 Syntax and Semantics . 11

2.2.1 Modeling Guidelines 16

2.3 Stochastic CLS . 19

2.4 Calculus of Wrapped Compartments 21

2.4.1 Term Syntax . 21

2.4.2 Rewriting Rules . 22

2.4.3 Stochastic CWC . 23

2.4.4 The CWC Simulator 24

2.4.5 Spatial CWC . 24

3 A Calculus of Looping Sequences with Local Rules 29

3.1 Introduction . 29

3.2 The calculus . 31

3.2.1 Syntax of CLSLR . 31

3.2.2 (Parallel) Operational Semantics 33

3.3 Types . 38

3.4 Conclusions . 47

iii

CONTENTS

4 A Type Discipline for Required and Excluded Elements 51
4.1 Introduction . 51
4.2 Type Discipline . 52
4.3 Type Inference . 60
4.4 Case Study: Blood Type Compatibility 71
4.5 Conclusions . 73

5 Enumerated Type Semantics for Calculus of Looping Se-
quences 75
5.1 Introduction . 75
5.2 Type Discipline . 76
5.3 Inference . 87
5.4 Examples . 96

5.4.1 Hemoglobin Variants 96
5.4.2 Cell Death and Division 97

5.5 Conclusions . 99

6 Stochastic Semantics for the Calculus of Looping Sequences101
6.1 Introduction . 101
6.2 Typed Stochastic CLS . 103

6.2.1 Modeling Guidelines 107
6.3 An Application: The Lactose Operon 114

6.3.1 Typed Stochastic CLS Model 116
6.4 Conclusions . 121

7 A Minimal OO Calculus for Modelling Biological Systems 123
7.1 Introduction . 123
7.2 Core Calculus . 124

7.2.1 Syntax . 125
7.2.2 Auxiliary Definitions 127
7.2.3 Evaluation . 128
7.2.4 Typing . 129

7.3 Modeling Enzyme Kinetics . 132
7.4 Implementation in Term-Rewriting Formalisms 134

7.4.1 An Application: Porins 135
7.5 Conclusions . 138

8 Conclusions 141

iv

Chapter 1

Introduction

Biological systems are usually composed by several simple components. The
behavior of a biological system is not obvious from the properties of the indi-
vidual parts, because it is the result of the interplay among these integrated
parts. These kinds of systems are present in several scientific disciplines, such
as Economics, Metereology, Sociology, and so on: they are called complex
systems. Due to their complex nature, they can be modeled only through
elaborate tools.

The most common approach of biologists to describe biological systems
is based on the use of deterministic mathematical means (like, e.g., Ordi-
nary Differential Equations), and makes it possible to abstractly reason on
the behavior of biological systems and to perform a quantitative in silico
investigation. This kind of modeling, however, becomes more and more diffi-
cult, both in the specification phase and in the analysis processes, when the
complexity of the biological systems taken into consideration increases. This
has probably been one of the main motivations for the application of Com-
puter Science formalisms to the description of biological systems [60]. Other
motivations can be found in the fact that the use of formal means of Com-
puter Science permits the application of analysis methods that are practically
unknown to biologists, such as static analysis and model checking.

According to this idea, in the last few years many formalisms originally
developed by computer scientists to model systems of interacting components
have been applied to Biology, such as Petri Nets [49] and Hybrid Systems [4].
As time passed by, computer scientists and biologists began to develop new
formalisms, more suited to biological systems.

At the same time, some computational models inspired by biological prop-

1

1.1 Formalisms

erties were proposed: the most notable examples are P Systems [53] and their
variants. They are based upon the structure of biological cells, abstracting
from the way in which molecules interact and cross cell membranes. P sys-
tems and their variants offer the possibility of solving NP-complete problems
in less-than exponential time, or even in linear time, by trading space for
time [31]: for example, it was proven that P systems with minimal paral-
lelism can solve the SAT (boolean satisfiability) problem in linear time [30].
This computational power is still theoretical, because there is no biological
implementation of a P system.

In the remaining of the Chapter we put the thesis contribution in the
context of the current literature. We start by presenting some interesting
formalisms, and there we introduce stochastic frameworks built over them.
Section 1.3 presents several formalisms specialized for describing the spatial
properties of biological systems, in particular the ones based on membranes.
Section 1.4 is dedicated to the main topic of this essay, the application of
Type Theory in System Biology: the Section proposes some motivations and
a series of formalisms and extensions proposed in this field. Finally, Section
1.5 presents the structure of the thesis.

1.1 Formalisms

Computer Science’s formalisms designed for Systems Biology can be divided
into three categories: automata-based models [4, 49], rewrite systems [37, 53],
and process calculi [60, 61, 59]. Models based on automata have the great
advantage of allowing the direct use of many verification tools such as model
checkers. Models based on rewrite systems describe biological systems with a
notation that can be easily understood by biologists. However, automata-like
models and rewrite systems are not compositional. Studying the behavior
of a system componentwise is in general ensured by process calculi, included
those commonly used to describe biological systems. Let we present a brief
overview on these formalisms.

Bioambients [59] is a calculus in which biological systems are modeled
using a variant of the ambient calculus. In Bioambients both membranes and
elements are modeled by ambients, and activities by capabilities (enter, exit,
expel, etc.). An evolution of this calculus are Brane Calculi [27], the main
differences consisting in the fact that they deal with membranes representing
the sites of activity, and a computation can happen on the membrane surface.

2

1. INTRODUCTION

The π-calculus and new calculi based on it [57, 59] have been particularly
successful in modeling biological systems, as they permit a compositional
description. Interactions of biological components are modeled as commu-
nications on channels whose names can be passed; sharing names of private
channels makes possible to model biological compartments.

P Systems [53] are a biologically inspired computational model. A P
System is formed by a membrane structure: each membrane may contain
molecules, represented by symbols of an alphabet, other membranes and
rules. The rules contained into a membrane can be applied only to the
symbols contained in the same membrane: these symbols can be modified
or moved across membranes. The key feature of P Systems is the maximal
parallelism, i.e., in a single evolution step all symbols in all membranes evolve
in parallel, and every applicable rule is applied as many times as possible.
Later on, through the introduction of ad-hoc features, they have been applied
to describe and analyze biological systems [16, 56].

κ-calculus is a formalism proposed by Danos and Laneve [38] that idealizes
protein-protein interactions using graphs and graph-rewriting operations. A
protein is a node with a fixed number of sites, that may be bound or free.
Proteins may be assembled into complexes by connecting two-by-two bound
sites of proteins, thus building connected graphs. Collections of proteins and
complexes evolve by means of reactions, which may create or remove proteins
and bounds between proteins: κ-calculus essentially deals with complexations
and decomplexations, where complexation is a combination of substances
into a new substance called complex, and the decomplexation is the reaction
inverse to complexation, when a complex is dissociated into smaller parts.
These rules contain variables and are pattern-based, therefore may be applied
in different contexts.

The Calculus of Looping Sequences (CLS) [12] has no explicit way to
model protein domains (however they can be encoded, and a variant with
explicit binding has been defined in [9]), but accounts for an explicit mech-
anism (the looping sequences) to deal with compartments and membranes.
Thus, while the κ-calculus seems more suitable to model protein interactions,
CLS permits a more natural description of membrane interactions. Another
feature lacking in other formalisms is the capability to express ordered se-
quences of elements. To the best of our knowledge, CLS is the first formalism
offering such a feature in an explicit way, thus allowing the modeler to nat-
urally operate over proteins or DNA fragments which should be frequently
defined as ordered sequences of elements. A variant of CLS without this

3

1.2 Stochastic Models

capability, called Calculus of Wrapped Compartments, is presented in [33].

1.2 Stochastic Models

The usual mathematical model of a biological system consists of a collection
of coupled ordinary differential equations, where each equation describes a
number of system’s chemical reactions. The variables are concentrations
of participating molecules, and the parameters are reaction rate constants.
Their results are accurate when reactions occur homogeneously throughout
the compartmental volume, and the number of molecules is high, but with-
out these constraints the models result less precise. Moreover, these models
are deterministic: the future evolution of the system derives precisely from
its starting conditions. When the system is operating near a critical point,
noises can induce some new phenomena that cannot be detected determinis-
tically. In such cases, biologists prefer to study the evolution of the system
by means of stochastic models. In the mean case, the results of stochastic
and deterministic models often coincide, but the former is more accurate
near to critical points, or when the number of molecules is low. This accu-
racy is counterbalanced by the difficulty of solving the stochastic description
either analytically or numerically. The solution is to resort to Monte Carlo
type simulations, that produce a random walk through the possible states
of the system. Various methods have been developed, but the one which
is, de facto, the standard way to model quantitative aspects of biological
systems is the Gillespie stochastic simulation algorithm [44]. The basic idea
of Gillespie’s algorithm is that a rate function is associated with each con-
sidered chemical reaction which is used as the parameter of an exponential
distribution modeling the probability that the reaction takes place. In the
standard approach this reaction rate is obtained by multiplying the kinetic
constant of the reaction by the number of possible combinations of reactants
that may occur in the region in which the reaction takes place, thus modeling
the law of mass action. Gillespie’s approach simulates the time evolution of a
chemically reacting system by determining when the next reaction will occur
and what kind of reaction it will be. Kind and time of the next reaction are
computed on the basis of a stochastic reaction constant. Gillespie’s stochas-
tic simulation algorithm is defined for populations of a well-stirred mixture
of N molecular species {s1, ..., sN} interacting through M chemical reactions
{R1, ..., RM} under the conditions that the molecules are confined to a fixed

4

1. INTRODUCTION

volume and kept at constant temperature.
The Gillespie’s approach is implemented in the stochastic versions of

all the formalisms presented in the previous Section: Bioambients [59, 24],
π-calculus [58], P Systems [29], κ-calculus [36], Calculus of Looping Se-
quences [11].

Gillespie’s algorithm is not the unique stochastic approach to biological
systems, and furthermore some assumptions can make the equations under
the stochastic engine computationally easier (see [66]). For this reason, some
formalism permits to specify the equations used to model the system: in
[34], the reaction rate is defined in a more general way by associating to
each reduction rule a function which can also define rates based on different
principles as, for instance, the Michaelis-Menten nonlinear kinetics.

1.3 Spatial Formalisms

For the well-mixed chemical systems (even divided into nested compart-
ments) often found in cellular biology, interaction and distribution analysis
are sufficient to study the system’s behavior. However, several complex bi-
ological phenomena include aspects in which space plays an essential role:
key examples are the growth of tissues and organisms, embryogenesis and
morphogenesis processes, or cell proliferation. This has encouraged, in re-
cent years, the development of formal models for the description of biological
systems in which spatial properties can be taken into account, as required by
the emerging field of spatial systems biology [63] which aims at integrating
the analysis of biological systems with spatial properties. This has brought
to the extension of many formalisms developed for the analysis of biological
systems with (even continuous) spatial features.

In [28], Cardelli and Gardner develop a calculus of processes located in
a three-dimensional geometric space. The calculus introduces a single new
geometric construct, called frame shift, which applies a three-dimensional
space transformation to an evolving process. In such a work, standard notions
of process equivalence give rise to geometric invariants.

BioShape [26] is a spatial, particle-based and multi-scale 3D simulator. It
treats biological entities of different size as geometric 3D shapes. A shape is
either basic (polyhedron, sphere, cone or cylinder) or composed (aggregation
of shapes glued on common surfaces of contact). Every element involved in
the simulation is a 3D process and has associated its physical motion law.

5

1.3 Spatial Formalisms

Adding too many features to the model (e.g., coordinates, position, ex-
tension, motion direction and speed, rotation, collision and overlap detection,
communication range, etc.) could heavily rise the complexity of the analy-
sis. To overcome this risk, a detailed study of the possible subsets of these
features, chosen to meet the requirements of particular classes of biological
phenomena, might be considered.

A different solution is to abstract all these features, by grouping all the
molecules that can interact each others. These molecules are inserted into
ambients, bounded by membranes, in which each molecule can interact with
all the other molecules of the ambient, but they cannot have any relation with
the molecules of other ambients. Ambients are organized in a tree structure,
and molecules can move through adjacent ambients according to parent-child
relationship. Sometimes, molecules can also be placed on the membrane
surface. Among the formalisms presented in Section 1.1, Bioambients, Brane
Calculi, P Systems and Calculus of Looping Sequences offer this expressivity.

In particular, the formal investigation of biological membranes has been
initiated by Păun [53] with the definition of P systems, leading to the creation
of a new research field, called Membrane Computing [54]. In this field, mem-
brane systems are not only used for modeling biological systems, but they are
also analyzed as computing devices, by studying their computational power
in comparison with the classical notion of Turing computability and their
efficiency in solving hard problems (e.g., NP-problems) in less-than exponen-
tial time; they are applied even in Linguistics, by understanding membranes
as contexts of natural languages [31].

P systems allow to represent not only the mobility of elements between
neighboring membranes, but also the mobility between the membranes them-
selves, as in Simple, Enhanced and Mutual Mobile Membranes [5]. Simple Mo-
bile Membranes are a variant of P systems that permits to move membranes
inside a neighboring membrane (endocytosis) or outside the membrane where
it is placed (exocytosis). Enhanced Mobile Membranes represent a variant of
Simple Mobile Membranes with more complex operations of endocytosis and
exocytosis. Finally, Mutual Mobile Membranes represent a variant of Sim-
ple Mobile Membranes in which endocytosis and exocytosis are mediated
by receptors. The same authors in [7] propose a variant of Mutual Mobile
Membranes with objects on surface, and relate them to Brane Calculi. A
deeper analysis of Mobile Membranes and their computability power, com-
plexity and relations with Process Calculi with similar mobility features can
be found in [6].

6

1. INTRODUCTION

1.4 Types in Systems Biology

In the last few years there has been a growing interest in the use of type
disciplines to enforce biological properties. The aim is to ensure the well-
formedness of the model according to some biological property expressed
through types, instead of syntax or evolution rules. As a result, the formalism
is more general and flexible, and final models result easier to analyze.

The most obvious application of types in System Biology is their imple-
mentation in formalisms that permit to express modules. Modularity is the
key idea to manage the complexity of biological processes, because it allows
molecules or compartments to be specified and then combined. It is usually
combined with abstraction, that allows generic properties to be specified in-
dependently of specific instances: the result are parametrized modules. An
example is P-Lingua [41], a programming language for membrane computing
which aims to be a standard to define P systems. A P-Lingua program con-
sists of a set of parametrized programming modules composed by a sequence
of sentences in P-lingua: these sentences are the membrane structure of the
model or the rules and objects contained into these membranes. Modules are
executed by using calls, that assign some values to their parameters.

In a formalism with modules, the task of a Type System is usually to
check the correspondence between the types of the arguments and the types
of the parameters in a module call operation.

Biochemical Systems (LBS) [55] combine rule-based approaches to model-
ing with modularity. Modules may be parametrized on compartments, rates,
and species. Species are typed by the names of their component atomic
species and of their modification site types: when a method is called, the
Type System checks the correspondence between the types of the arguments
and the types of the parameters.

A Type System is also implemented in Little b [48], a high-level program-
ming language for modular model building. In Little b a modeler can define
monomers, composed by a name and a sequence of bond sites: these can con-
nect each other by labeling their bond sites, creating complexes; reactions
are pairs of patterns that specify the transformation of complexes matching
the first pattern to the second one, and may create or delete links between
sites. Sites can be labeled with tags, that specify the kind of link of the
site and the kind of links it accepts: this tag-based system serves as Type
System, and in particular as a type checker.

A more complex Type System is implemented in the extension of Kappa

7

1.5 Motivations and Thesis Overview

with agent hierarchies [35]. A Kappa model consists of a collection of rules
and agents; each agent has an associated set of sites. Modelers can define
variants on an agent by adding or replacing its sites: the variance relation cre-
ates an agent hierarchy. A generic rule is then expanded into a set of concrete
rules by replacing each agent in the rule with all appropriate agents below it
in the hierarchy: so the hierarchy is used with the purpose to enable rapid
development of large rule sets via the mechanism of generic rules. Moreover,
the same hierarchical structure is used for a static analysis of the rule set:
an analyzer navigates the space of variants of a model looking if, with the
current rule set, a specific concrete rule can or cannot take place under a
sequence of conditions. Even if this procedure can never prove that a rule
is correct, it can be used to reject rules that lead to behaviors incompatible
with experimental results.

Formalisms without modules are beginning to implement a type discipline
too, even if in this case it is hard to find a general design pattern.

In [43] three type systems are defined for the Biochemical Abstract Ma-
chine, BIOCHAM, a software environment for modeling biochemical systems
that provides tools and languages for describing protein networks (see [1]).
The first one is used to infer the functions of proteins in a reaction model,
the second one to infer activation and inhibition effects of proteins, and the
last one to infer the topology of compartments.

In [8] a type system has been defined to ensure the well-formedness of
links between protein sites within the Linked Calculus of Looping Sequences,
an extension of CLS that permits to link two symbols by labeling them with
the same label (see [9]). In particular, the authors use type inference for asso-
ciating to each reduction rule the minimal set of conditions an instantiation
must satisfy in order to assure that applying the rule to a correct system we
get a correct system as well.

1.5 Motivations and Thesis Overview

Even if promising, the application of types in biological formalisms is not
widespread. In order to present the benefits deriving from this approach,
this thesis proposes several type disciplines, implementing different biologi-
cal properties and other features useful to modeling. First of all, we start
with Chapter 2 by formally recalling the Calculus of Looping Sequences,
the formalism used as a basis for most of the extensions and type systems

8

1. INTRODUCTION

proposed in the thesis. In the same Chapter, we also recall the Calculus of
Wrapped Compartments, and we briefly present its spatial extension pro-
posed in [19], that uses a surface language for expressing spatial positions
and transformations in a two-dimensional grid. In Chapter 3 we present the
Calculus of Looping Sequences with Local Rules, proposed in [20], an exten-
sion of Calculus of Looping Sequences that permits to express biochemical
transformations also by means of rules acting like molecules: they are valid
only in the ambients where they are present, and can be moved, copied or
deleted. This Chapter contains a section about the main topic of the the-
sis: Types in Systems Biology. In fact, Section 3.3 proposes a type system
for checking that compartments must contain rules having certain features.
This idea is resumed in the following two Chapters, both dealing with fea-
tures associated to biological molecules instead of rules. Chapter 4 presents
a type discipline for Required and Excluded Elements: it permits to specify
which elements must be present and which ones are forbidden in presence of
a specific element. It was originally presented in [8], improved in [40] and
[17], and finally refined in [21], where we show that the approach of [40] sub-
sumes the one of [8], and propose a semantics that uses both. The advantage
of this semantics is that during reduction we first try to verify the (easier)
constraints of [40], and in case they are not satisfied pass to verify the ones
of [8]. Chapter 5 presents an improvement, proposed in [18], of this type
discipline: for complex biological behaviors, the simple presence or exclusion
is not sufficient, and we need more granular constraints. The improvement
proposed permits to specify the number of elements required or forbidden
by other elements. Both type disciplines are enriched with typed reductions,
that guarantee the soundness of reduction rules. Also Chapter 6 presents a
type system that counts the number of element, but for a completely different
purpose: this information is used to compute the rate of a stochastic tran-
sition. This Chapter shows a stochastic version of the Calculus of Looping
Sequences, proposed in [22], in which each rule for the evolution states ex-
plicitly the types of elements whose occurrences may speed-up or slow-down
a reaction. Chapter 7 shows a different approach to types in Systems Biol-
ogy, and a more general Calculus. It proposes a minimal Object Oriented
Calculus for biological systems, presented in [18]: each molecule is associated
with a class, having a sequence of parameterized rules, some of them peculiar
and others derived from its superclass. The rules of the model must be cre-
ated according to these classes, to ensure the correctness of their biological
behavior. Finally, in Chapter 8 we draw our conclusions.

9

1.5 Motivations and Thesis Overview

10

Chapter 2

The Calculus of Looping
Sequences

2.1 Introduction

The Calculus of Looping Sequences (CLS for short) [12, 13, 50, 14, 15], is a
formalism for describing biological systems and their evolution. CLS is based
on term rewriting with a set of predefined rules modeling the activities one
would like to describe. CLS terms are constructed by starting from a set of
basic constituent elements which are composed with operators of sequencing,
looping, containment and parallel composition. Sequences may represent
DNA fragments and proteins, looping sequences may represent membranes,
parallel composition may represent juxtaposition of elements and populations
of chemical species. This permits to combine the notational simplicity of
rewrite systems with the advantage of a form of compositionality.

2.2 Syntax and Semantics

The Calculus of Looping Sequences is essentially based on term rewriting,
hence a CLS model consists of a term and a set of rewrite rules. The term is
intended to represent the structure of the modeled system, and the rewrite
rules to represent the events that may cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet A of symbols ranged over by a, b, c,

11

2.2 Syntax and Semantics

Definition 2.2.1 (Terms). Terms T and sequences S of CLS are given by
the following grammar:

T ::= S
∣∣ (S)	 cT

∣∣ T | T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of A, and ε represents the empty sequence. We
denote by T the infinite set of terms, and by S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator ()	, a par-
allel composition operator | and a containment operator c . Sequencing
can be used to concatenate elements of the alphabet A. The empty sequence
ε denotes the concatenation of zero symbols. A term can be either a sequence
or a looping sequence (that is the application of the looping operator to a
sequence) containing another term, or the parallel composition of two terms.
By definition, looping and containment are always applied together, hence
we can consider them as a single binary operator ()	 c which applies to one
sequence and one term.

We call compartment any parallel composition of one or more terms.
Given a term of the shape (S)	 cT , its looping sequence is S and its inner
compartment is the term T 1.

The biological interpretation of the operators is the following: the main
entities which occur in cells are DNA and RNA strands, proteins, membranes,
and other macro-molecules. DNA strands (and similarly RNA strands) are
sequences of nucleic acids, but they can be seen also at a higher level of
abstraction as sequences of genes. Proteins are sequence of amino acids which
usually have a very complex three-dimensional structure. In a protein there
are usually (relatively) few subsequences, called domains, which actually are
able to interact with other entities by means of chemical reactions. CLS
sequences can model DNA/RNA strands and proteins by describing each
gene or each domain with a symbol of the alphabet. Membranes are closed
surfaces, often interspersed with proteins, which may contain something. A
closed surface can be modeled by a looping sequence. The elements (or the
subsequences) of the looping sequence may represent the proteins on the
membrane, and by the containment operator it is possible to specify the
content of the membrane. Other macro-molecules can be modeled as single

1Here we use this notation instead of the usual one, (S)
L cT , because later the letter

L will be used for another component, and the usual notation could lead to confusion.

12

2. THE CALCULUS OF LOOPING SEQUENCES

Figure 2.1: (i) represents (a · b · c)	; (ii) represents (a · b · c)	 c (d · e)	; (iii)
represents (a · b · c)	 c ((d · e)	 | f · g).

alphabet symbols, or as short sequences. Finally, juxtaposition of entities
can be described by the parallel composition of their representations.

Brackets can be used to indicate the order of application of the operators,
and we assume ()	 c to have precedence over | . In Figure 2.1 we show
some examples of CLS terms and their visual representation, using (S)	 as
a short-cut for (S)	 c ε.

In CLS we may have syntactically different terms representing the same
structure. We introduce a structural congruence relation to identify such
terms.

Definition 2.2.2 (Structural Congruence). The structural congruence
relations ≡S and ≡T are the least congruence relations on sequences and on
terms, respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S
S1 ≡S S2 implies S1 ≡T S2

S1 ≡T S2 and T1 ≡T T2 imply (S1)	 cT1 ≡T (S2)	 cT2

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ε ≡T T
(ε)	 c ε ≡T ε (S1 · S2)	 cT ≡T (S2 · S1)	 cT

Rules of structural congruence state the associativity of · and | , the
commutativity of the latter and the neutral role of ε. Moreover, the axiom
(S1 · S2)	 cT ≡T (S2 · S1)	 cT says that looping sequences can rotate. In
the following, for simplicity, we will use ≡ in place of ≡T .

We say that an element a is present in a sequence S if S ≡ S ′ · a · S ′′ for
some S ′, S ′′. An element a is present in a compartment T if T ≡ T ′ | T ′′ for
some T ′, T ′′ and either T ′ = S or T ′ = (S)	 c for some S and in both cases
a is present in S.

13

2.2 Syntax and Semantics

Rewrite rules will be defined essentially as pairs of terms, with the first
term describing the portion of the system in which the event modeled by
the rule may occur, and the second term describing how that portion of the
system changes when the event occurs. In the terms of a rewrite rule we allow
the use of variables. As a consequence, a rule will be applicable to all terms
which can be obtained by properly instantiating its variables. Variables can
be of three kinds: two of these are associated with the two different syntactic
categories of terms and sequences, and one is associated with single alphabet
elements. We assume a set of term variables T V ranged over by X, Y, Z, . . .,
a set of sequence variables SV ranged over by x̃, ỹ, z̃, . . ., and a set of element
variables X ranged over by x, y, z, All these sets are possibly infinite and
pairwise disjoint. We denote by V the set of all variables, V = T V ∪SV ∪X ,
and by ρ a generic variable of V . Hence, a pattern is a term that may include
variables.

Definition 2.2.3 (Patterns). Patterns P and sequence patterns SP of
CLS are given by the following grammar:

P ::= SP
∣∣ (SP)	 cP

∣∣ P | P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of A, and X, x̃ and x are generic elements of
T V ,SV and X , respectively. We denote by P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to
patterns. An instantiation is a partial function σ : V → T . An instantiation
must preserve the kind of variables, thus for X ∈ T V , x̃ ∈ SV and x ∈ X we
have σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ A, respectively. Given P ∈ P , with Pσ
we denote the term obtained by replacing each occurrence of each variable
ρ ∈ V appearing in P by the corresponding term σ(ρ). By Σ we denote the
set of all the possible instantiations and, given P ∈ P , by V ar(P) we denote
the set of variables appearing in P . Now we define rewrite rules.

Definition 2.2.4 (Rewrite Rules). A rewrite rule, <, is a pair of patterns,
denoted by P1 7→ P2, where P1, P2 ∈ P, P1 6≡ ε and such that V ar(P2) ⊆
V ar(P1).

Example 2.2.5. An example of rewrite rule is
(a · x̃)	 c (b | Y) 7→ b | (a · x̃)	 cY .

This rule says that the element b, alone, can exit from a looping sequence
containing the element a.

14

2. THE CALCULUS OF LOOPING SEQUENCES

A rewrite rule P1 7→P2 states that a term P1σ, obtained by instantiating
variables in P1 by some instantiation function σ, can be transformed into the
term P2σ. We define the semantics of CLS as a transition system, in which
states correspond to terms, and transitions correspond to rule applications.

We define the semantics of CLS by resorting to the notion of contexts.

Definition 2.2.6 (Evaluation Contexts). Evaluation Contexts E are de-
fined as:

E ::= �
∣∣ E | T

∣∣ T | E
∣∣ (S)	 cE

where T ∈ T and S ∈ S. The context � is called the empty context. We
denote by E the infinite set of evaluation contexts.

By definition, every context contains a single hole �. Let us assume
E,E ′ ∈ E . By E[T] we denote the term obtained by replacing � with T
in E; By E[E ′] we denote context composition, whose result is the context
obtained by replacing � with E ′ in E. The structural equivalence is extended
to contexts in the natural way (i.e. by considering � as a special and unique
term).

Rewrite rules can be applied to terms only if they occur in a legal context.
Note that the general form of rewrite rules does not allow to have sequences
as contexts. A rewrite rule introducing a parallel composition on the right
hand side (as a 7→ b | c) applied to an element of a sequence (e.g., m·a·m)
would result into a syntactically incorrect term (in this case m·(b | c)·m). To
modify a sequence, a pattern representing the whole sequence must appear
in the rule. For example, rule a · x̃ 7→ a | x̃ can be applied to any sequence
starting with element a, and, hence, the term a·b can be rewritten as a | b,
and the term a·b·c can be rewritten as a | b·c.

The semantics of CLS is defined as follows.

Definition 2.2.7 (Semantics). Given a finite set of rewrite rules R, the
semantics of CLS is the least relation closed with respect to ≡ and satisfying
the following (set of) rules:

< = P1 7→ P2 ∈ R P1σ 6≡ ε σ ∈ Σ E ∈ E

E[P1σ] −→ E[P2σ]

As usual we denote by −→∗ the reflexive and transitive closure of −→.

15

2.2 Syntax and Semantics

x̃ Y E

(1) b · c ε d | (a)	 c ((a · c)	 c�)
(2) c (a · b · c)	 c ε d | (a)	 c�
(3) ε (a · c)	 c ((a · b · c)	 c ε)) d | �

Figure 2.2: Instantiations and Contexts of Example 2.2.8

Given a set of rewrite rulesR, the behavior of a term T is the tree of terms
to which T may reduce. Thus, a model in CLS is given by a term describing
the initial state of the system and by a set of rewrite rules describing all the
events that may occur.

Example 2.2.8. Starting from the term
d | (a)	 c ((a · c)	 c ((a · b · c)	 c (b)))

we can apply the rule in Example 2.2.5 three times, using the instantiations
and evaluation contexts in Fig. 2.2, obtaining the behavior

d | (a)	 c ((a · c)	 c ((a · b · c)	 c (b)))
−→ d | (a)	 c ((a · c)	 c (b | (a · b · c)	 c ε)) (∗)
−→ d | (a)	 c (b | (a · c)	 c ((a · b · c)	 c ε)) (∗∗)
−→ b | d | (a)	 c ((a · c)	 c ((a · b · c)	 c ε)) (∗ ∗ ∗)

2.2.1 Modeling Guidelines

CLS can be used to model biomolecular systems analogously to what is done,
e.g, by Regev and Shapiro in [61] for the π-calculus. An abstraction is a map-
ping from a real-world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, com-
plicated, ones. In [61], Regev and Shapiro show how to abstract biomolecular
systems as concurrent computations by identifying the biomolecular entities
and events of interest and by associating them with concepts of concurrent
computations such as concurrent processes and communications.

The use of rewrite systems, such as CLS, to describe biological systems
is founded on a different abstraction. Usually, entities (and their structures)
are abstracted by terms of the rewrite system, and events by rewrite rules.

In order to describe cells, it is quite natural to consider molecular popu-
lations and membranes. Molecular populations are groups of molecules that
are in the same compartment of the cell. As we have said before, molecules

16

2. THE CALCULUS OF LOOPING SEQUENCES

can be of many types: they could be classified as DNA and RNA strands,
proteins, and other molecules.

DNA and RNA strands and proteins can be seen as non-elementary ob-
jects. DNA strands are composed by genes, RNA strands are composed by
parts corresponding to the transcription of individual genes, and proteins are
composed by parts having the role of interaction sites (or domains). Other
molecules are considered as elementary objects, even if they are complexes.

Membranes are considered as elementary objects, in the sense that we
do not describe them at the level of the lipids they are made of. The only
interesting properties of a membrane are that it may have a content (hence,
create a compartment) and that it may have molecules on its surface.

CLS is a very scalable formalism. On the one hand, depending on the level
of detail one is interested in the analysis, an atomic element could range from
the quark level (in a very low level analysis) to a species individual (in the
study of population dynamics).2 On the other hand, a looping sequence can
be used to model cell compartmentalization, or, from a macroscopic point of
view, ecoregions bounded by geographical frontiers (expressing the possible
environments for a migrant population).

We give now some examples of biomolecular events of interest and their
description in CLS. The simplest kind of event is the change of state of an
elementary object. Then, we consider interactions between molecules: in par-
ticular complexation, decomplexation and catalysis. These interactions may
involve single elements of non-elementary molecules (DNA and RNA strands,
and proteins). Moreover, there can be interactions between membranes and
molecules: in particular a molecule may cross or join a membrane.

Table 2.1 lists some guidelines (taken from [15]) for the abstraction into
CLS rules of biomolecular events. Entities are associated with CLS terms:
elementary objects are modeled as alphabet symbols, non-elementary objects
as CLS sequences and membranes as looping sequences. Biomolecular events
are associated with CLS rewrite rules.

2Atoms, chemicals, molecules, protein domains, proteins, cells, etc. are other possi-
ble elements one could model, at different levels of abstraction, as CLS simple alphabet
symbols.

17

2.2 Syntax and Semantics

Biomolecular Event Examples of CLS Rewrite Rule

State change a 7→ b
x̃ · a · ỹ 7→ x̃ · b · ỹ

Complexation a | b 7→ c
x̃ · a · ỹ | b 7→ x̃ · c · ỹ

Decomplexation c 7→ a | b
x̃ · c · ỹ 7→ x̃ · a · ỹ | b

Catalysis c | P1 7→ c | P2

(where P1 7→ P2 is the catalyzed event)

Membrane crossing a | (x̃)	 cX 7→ (x̃)	 c (a | X)
(x̃)	 c (a | X) 7→ a | (x̃)	 cX
x̃ · a · ỹ | (z̃)	 cX 7→ (z̃)	 c (x̃ · a · ỹ | X)
(z̃)	 c (x̃ · a · ỹ | X) 7→ x̃ · a · ỹ | (z̃)	 cX

Catalyzed a | (b · x̃)	 cX 7→ (b · x̃)	 c (a | X)
membrane crossing (b · x̃)	 c (a | X) 7→ a | (b · x̃)	 cX

x̃ · a · ỹ | (b · z̃)	 cX 7→ (b · z̃)	 c (x̃ · a · ỹ | X)
(b · z̃)	 c (x̃ · a · ỹ | X) 7→ x̃ · a · ỹ | (b · z̃)	 cX

Membrane joining (x̃)	 c (a | X) 7→ (a · x̃)	 cX
(x̃)	 c (ỹ · a · z̃ | X) 7→ (ỹ · a · z̃ · x̃)	 cX

Catalyzed (b · x̃)	 c (a | X) 7→ (a · b · x̃)	 cX

Table 2.1: Guidelines for the abstraction of biomolecular events into CLS.

18

2. THE CALCULUS OF LOOPING SEQUENCES

2.3 Stochastic CLS

A stochastic version of CLS, called Stochastic Calculus of Looping Sequences
(SCLS), has been defined in [11]. As seen in Section 1.2, the standard way
of extending a formalism to model quantitative aspects of biological systems
is by incorporating the collision-based stochastic framework presented by
Gillespie in [44]. In Gillespies algorithm, a kinetic constant is associated
with each considered chemical reaction. Since in CLS chemical reactions are
translated into rewrite rules, the first step is surely to add rates to rewrite
rules:

Definition 2.3.1 (Stochastic Rewrite Rules). A stochastic rewrite rule

is a triple of patterns, denoted by P1
k7→ P2, where P1, P2 ∈ P, P1 6≡ ε and

such that V ar(P2) ⊆ V ar(P1); k ∈ R≥0 is the rate constant.

The kinetic constant is used to calculate the rate constant of the chemical
reaction. Such a constant is obtained by multiplying the kinetic constant of
the reaction by the number of possible combinations of reactants that may
occur in the system. The resulting rate is then used as the parameter of an
exponential distribution modeling the time spent between two occurrences
of the considered chemical reaction.

Remark 2.3.2. As we have variables, we have to take into account how
they can be instantiated in order to count the number of reactants. The rate
of a transition is computed by resorting to a complete counting mechanism
to detect all the possible occurrences of patterns within a term that, once
the rule is applied, produce the same term. For example, consider the rule
(a · x̃)	 cX 7→ (b · x̃)	 cX with rate k:

1. if the rule is applied to the term (a · c · a · c)	 c ε the kinetic constant
of the rule should be 2 × k since the 2 matches of the pattern in the
left-hand-side of the rule with the term are such that the corresponding
reductions produce terms congruent to (b · c · a · c)	 c ε, instead

2. if the rule is applied to the term (a · c · a · d)	 c ε the kinetic constant of
the rule should be k, since in this case the two reductions produce the
two terms (b · c · a · d)	 c ε and (a · c · b · d)	 c ε that are not congruent,
and therefore do not express the same reaction.

19

2.3 Stochastic CLS

In order to overcome this problem, the authors consider abstract and
concrete patterns. The CLS terms and patterns defined as in Definitions
2.2.1 and 2.2.3 are considered abstract, and they are denoted using a tilde,
as in P̃ and T̃ .

Definition 2.3.3 (Concrete patterns and terms). If P̃ is an abstract

pattern, then a concrete pattern P , called a concretion of P̃ , is obtained
by assigning to each alphabet symbol syntactically appearing in P̃ a unique
identifier v ∈ Id, where Id is a finite set of identifiers.

Intuitively, each symbol of the alphabet A appearing in patterns and
terms becomes unique in the concretion by labeling it with a fresh identifier.
Another useful notion is the support.

Definition 2.3.4 (Support). Given a concrete pattern P , we call support
the set of identifiers used to label its alphabet symbols, and we denote it by
Supp(P). Two concrete patterns P and P ′ are support-equivalent, written
P l P ′, if they differ only by a bijection between their supports which pre-
serves structure. Namely, P l P ′ if and only if P̃ ≡ P̃ ′ and there exists a
bijection between Supp(P) and Supp(P ′). We denote the l-equivalence class
of P by [[P]].

The definitions of contexts and stochastic rewrite rules are extended to
deal with concrete terms in the natural way. Without loss of generality, we
assume instantiations to return abstract or concrete terms when applied to
abstract or concrete patterns respectively.

We define a notion of occurrence of abstract patterns within a term, in
order to define rewrite rules in an abstract way.

Definition 2.3.5 (Occurrences). If P̃ is an abstract pattern and T a con-

crete term, an occurrence of P̃ in T is a pair (E,P), where P is a concretion

of P̃ and E is an evaluation context such that T ≡ E[Pσ] for some instan-
tiation σ.

An occurrence of a rule R = (P̃1, P̃2, k) in a concrete term T is a pair
(E,P1), where (P1, P2, k) is a concretion of R and T ≡ E[P1σ] for some
instantiation σ. If also T ′ l E[P2σ] we say that the occurrence of rule R in
T results into a term support-equivalent to T ′. With O(R, T, [[T ′]]) we define
the set of occurrences of rule R in the term T resulting in a concrete term
support-equivalent to T ′.

20

2. THE CALCULUS OF LOOPING SEQUENCES

The use of support-equivalence in the definition of O(R, T, [[T ′]]) allows
to consider as a single occurrence the occurrences which differ only for the
support in P2 (thus producing different, but support-equivalent, T ′). The rate

of a transition driven by the rule R = (P̃1, P̃2, k) is obtained as the product of
the rate k of the stochastic rewrite rule and the number of distinct occurrences
of the rule within the term T resulting in T ′, denoted by |O(R, T, [[T ′]])|. As
a consequence, the stochastic transition system for abstract terms is defined
as follows.

Definition 2.3.6 (Semantics of SCLS). Given a finite set R of stochastic
rewrite rules, the semantics of SCLS is the least labeled transition satisfying
the following rule:

R = P̃1
k7→ P̃2 ∈ R (E,P1) ∈ O(R, T, [[T ′]]) T ≡ E[P1σ] T ′ l E[P2σ]

T̃
R,k·|O(R,T,[[T ′]])|−−−−−−−−−−→ T̃ ′

2.4 Calculus of Wrapped Compartments

The Calculus of Wrapped Compartments (CWC) (see [32, 33]) is a simplified
version of CLS, in which the sequences are not allowed by syntax. Moreover,
it allows to associate specific proprieties to membranes. These simplifications
were proposed in order to write a simulator for CLS. More specifically, it is
a calculus for the description of biochemical systems which is based on the
notion of a compartment which represents, in some sense, the abstraction
of a region with specific properties (characterized by a label, a wrap and a
content). Biochemical transformations are described via a set of reduction
rules which characterize the behavior of the represented system.

2.4.1 Term Syntax

Let AT be a set of atomic elements (atoms for short), ranged over by a, b,
..., and L a set of compartment types represented as labels ranged over by
`, `′, `1, . . . A term of CWC is a multiset t of simple terms where a simple
term is either an atom a or a compartment (a c t′)` consisting of a wrap
(represented by the multiset of atoms a), a content (represented by the term
t′) and a type (represented by the label `).

21

2.4 Calculus of Wrapped Compartments

(a) (b) (c)

Figure 2.3: (a) represents (a b c c •)`; (b) represents (a b c c (d e c •)`′)`;
(c) represents (a b c c (d e c •)`′ f g)`

The notation n∗ t denotes n occurrences of the simple term t. We denote
an empty term by •. An example of CWC term is 2∗a b (c d c e f)` rep-
resenting a multiset (multisets are denoted by listing the elements separated
by a space) consisting of two occurrences of a, one occurrence of b (e.g. three
molecules) and an `-type compartment (c d c e f)` which, in turn, consists
of a wrap (a membrane) with two atoms c and d (e.g. two proteins) on its
surface, and containing the atoms e (e.g. a molecule) and f (e.g. a DNA
strand). See Figure 2.3 for some other examples with a simple graphical
representation.

2.4.2 Rewriting Rules

System transformations are defined by rewriting rules, defined by resorting to
CWC terms that may contain variables. We call pattern the l.h.s. component
p of a rewrite rule and open term the r.h.s. component o of a rewrite rule,
defined as multiset of simple patterns p and simple open terms o given by
the following syntax:

p ::= a
∣∣ (a x c p X)`

o ::= a
∣∣ (q c o)`

∣∣ X
q ::= a

∣∣ x

where a is a multiset of atoms, p is a pattern (a, possibly empty, multiset of
simple patterns), x is a wrap variable (can be instantiated by a multiset of
atoms), X is a content variable (can be instantiated by a CWC term), q is

22

2. THE CALCULUS OF LOOPING SEQUENCES

a multiset of atoms and wrap variables, and o is an open term (a, possibly
empty, multiset of simple open terms). Patterns are intended to match, via
substitution of variables with ground terms (containing no variables), with
compartments (or atoms) occurring as subterms of the term representing
the whole system. Note that we force exactly one variable to occur in each
compartment content and wrap of our patterns and simple patterns. This
prevents ambiguities in the instantiations needed to match a given compart-
ment.

A rewrite rule is a triple (`, p, o), denoted by ` : p 7−→ o, where p and o are
such that the variables occurring in o are a subset of the variables occurring
in p. The application of a rule ` : p 7−→ o to a term t is performed in the
following way: 1) Find in t (if it exists) a compartment of type ` with content
u and a substitution σ of variables by ground terms such that u = σ(p X)3

and 2) Replace in t the subterm u with σ(o X). We write t 7−→ t′ if t′ is
obtained by applying a rewrite rule to t. The rewrite rule ` : p 7−→ o can
be applied to any compartment of type ` with p in its content (that will be
rewritten with o). For instance, the rewrite rule ` : a b 7−→ c means that in
all compartments of type ` an occurrence of a b can be replaced by c.

While the rule does not change the label ` of the compartment where the
rule is applied, it may change all the labels of the compartments occurring
in its content. For instance, the rewrite rule ` : (a x cX)`1 7−→ (a x cX)`2

means that, if contained in a compartment of type `, all compartments of
type `1 and containing an a in their wrap can change their type to `2.

For uniformity reasons we assume that the whole system is always repre-
sented by a term consisting of a single compartment with distinguished label
> and empty wrap, i.e., any system is represented by a term of the shape
(• c t)>, which will be also written as t, for simplicity.

2.4.3 Stochastic CWC

In the stochastic version of CWC [34], each reduction rule is then enriched by

the kinetic constant k of the reaction that it represents (notation ` : p
k7→ o).

For instance in evaluating the application rate of the stochastic rewrite rule

R = ` : a b
k7→ c (written in the simplified form) to the term t = a a b b

in a compartment of type ` we must consider the number of the possible

3The implicit (distinguished) variable X matches with all the remaining part of the
compartment content.

23

2.4 Calculus of Wrapped Compartments

combinations of reactants of the form a b in t. Since each occurrence of a
can react with each occurrence of b, this number is 4. So the application rate
of R is k · 4.

2.4.4 The CWC Simulator

The CWC simulator [2] is a tool under development at the Computer Sci-
ence Department of the Turin University, based on the Stochastic version of
CWC. It treats CWC models with different rating semantics (law of mass
action, Michaelis-Menten kinetics, Hill equation) and it can run independent
stochastic simulations over CWC models, featuring deep parallel optimiza-
tions for multi-core platforms on the top of FastFlow [3]. It also performs
online analysis by a modular statistical framework.

2.4.5 Spatial CWC

In this Section we recall [19], where we introduce a surface language for
CWC that defines a framework in which the notion of space is included as an
essential component of the system. The space is structured as a square grid,
whose dimension must be declared as part of the system specification. The
surface language provides basic constructs for modeling spatial interactions
on the grid. These constructs can be compiled away to obtain a standard
CWC model, thus exploiting the existing CWC simulation tool.

We distinguish between two kinds of compartments: Standard compart-
ments (corresponding to the usual CWC compartments), used to represent
entities (like bacteria or cells) that can move through space, and Spatial com-
partments, used to represent portions of space. Each spatial compartment
defines a location in a two dimensional grid through a special atom, called
coordinate, that occurs on its wrap. A coordinate is denoted by row.column,
where row and column are integers. Spatial compartments have distinguished
labels, called spatial labels, that can be used to provide a specific char-
acterization of a portion of space. For example, the spatial compartment
(1.2 c 2 ∗ b)soil represents the cell of the grid located in the first row and the
second column, and has type soil, the spatial compartment (2.3 c 3∗b c)water
represents a water -type spatial compartment in position 2.3.

24

2. THE CALCULUS OF LOOPING SEQUENCES

Surface Terms

The initial state of the system under analysis is defined as a set of compart-
ments modeling the two-dimensional grid containing the biological entities
of interest.

Let Θ denote a set of coordinates and `s a spatial label. The notation:

Θ, `s � t

defines a set of cells of the grid. Namely Θ, `s� t denotes the top level CWC
term:

(• c (r1.c1 c t)`s . . . (rn.cn c t)`s)>

where ri.cj range over all elements of Θ. To increase the expressivity of the
language, few structures to denote portions (i.e. sets of cells) of the grid have
been defined: rectangles by rect[r.c,r’.c’], where r.c,r’.c’ represent the
edges of the rectangle; rows and columns with the constructions row[i] and
col[j] respectively.

A spatial CWC term is thus defined by the set of grid cells covering the
entire grid.

Surface Rewrite Rules

Rules can model three kinds of events.

Non-Spatial Events: are described by standard CWC rules, i.e. by rules of
the shape:

` : p
k7→ o

Non-spatial rules can be applied to any compartment of type ` occurring in
any portion of the grid and do not depend on a particular location.

Spatial Events: are described by rules that can be applied to specific spatial
compartments. These rules allow to change the spatial label of the considered
compartment. Spatial events are described by rules of the following shape:

Θ . `s : p
k7→ `′s : o

Spatial rules can be applied only within the spatial compartments with coor-
dinates contained in the set Θ and with the spatial label `s. The application

25

2.4 Calculus of Wrapped Compartments

of the rule may also change the label of the spatial compartments `s to `′s.
This rule is translated into the CWC set of rules:

> : (ri.ci x c p X)`s
k7→ (ri.ci x c o X)`

′
s ∀ri.ci ∈ Θ.

Note that spatial rules are analogous to non spatial ones. The only dif-
ference is the explicit indication of the set Θ which allows to write a single
rule instead of a set of rules (one for each element of Θ).

Spatial Movement Events: are described by rules considering the content of
two adjacent spatial compartments and are described by rules of the following
shape:

Θ /∆ . `s1 , `s2 : p1, p2
k7→ `′s1 , `

′
s2

: o1, o2

This rule changes the content of two adjacent (according to the possible
directions contained in the set of directions ∆4) spatial compartments and
thus allows to define the movement of objects. The pattern matching is per-
formed by checking the content of a spatial compartment of type `s1 located
in a portion of the grid defined by Θ and the content of the adjacent spatial
compartment of type `s2 . Such a rule could also change the labels of the
spatial compartments. This rule is translated into the CWC set of rules:

> : (ri.ci x c p1 X)`s1 (dir(ri.ci) y c p2 Y)`s2
k7→

(ri.ci x c o1 X)`
′
s1 (dir(ri.ci) y c o2 Y)`

′
s2

for all ri.ci ∈ Θ and for all dir ∈ ∆.

Implementation

A software module, written in Java by means of the ANTLR parser gener-
ator [52], implements the translation of a surface language model into the
corresponding standard CWC model that can be executed by the CWC sim-
ulator. Notably, this framework could also be applied to other calculi which
are able to express compartmentalization and ambients, like the ones pre-
sented in Section 1.3. A similar solution was proposed for P systems in [10],
where membranes and objects are placed in a two-dimensional discrete space,

4The four direction operators can be N, W, S, E that applied to a range of cells shift
them, respectively, up, left, down and right. For instance E(1.1) = 1.2. In the intuitive
way, the four diagonal movements (namely, NW, SW, NE, SE) are also defined, and the special
symbol � denotes the set containing all eight possible directions.

26

2. THE CALCULUS OF LOOPING SEQUENCES

and rules take into account the positions of objects; in addition, the authors
permit to specify mutually exclusive objects (i.e. objects that cannot oc-
cupy the same position at the same time), that ensure the universality of the
formalism.

27

2.4 Calculus of Wrapped Compartments

28

Chapter 3

A Calculus of Looping
Sequences with Local Rules

3.1 Introduction

In this chapter it is presented the variant of the Calculus of Looping Se-
quences with global and local rewrite rules (CLSLR, for short) proposed in
[20]. Global rules are applied anywhere in a given term wherever their pat-
terns match the portion of the system under investigation, while local rules
can only be applied in the compartment in which they are defined. Terms
written in CLSLR are thus syntactically extended to contain explicit local
rules within the term, on different compartments. Local rules can be created,
moved between different compartments and deleted. We feel that having a
calculus in which we can model the dynamic evolution of the rules describing
the system results in a more natural and direct way to study emerging prop-
erties of complex systems. As it happens in nature, where data and programs
are encoded in the same kind of molecular structures, we insert rewrite rules
within the terms modeling the system under investigation.

In CLSLR we also enrich CLS with a parallel semantics in which we define
a reduction step lead by any number of global and local rules that could be
performed in parallel.

Since in this framework the focus is put on local rules, we define a set of
features that can be associated to each local rule. Features may define general
properties of rewrite rules or properties which are strictly related to the model
under investigation. We define a membrane type for the compartments of our

29

3.1 Introduction

model and develop a type systems enforcing the property that a compartment
must contain only local rules with specific features.

Thus, the main characteristics of CLSLR are:

• different compartments can evolve according to different local rules;

• the set of global rules is fixed;

• local rules are dynamic: they can be added, moved and erased according
to both global and local rules;

• a parallel reduction step allows the application of several global and
local rules;

• compartments are enforced to contain only rules with specific features.

As a running case study, emphasizing the peculiarities of the calculus,
we consider some mitochondrial activity underlining the form of symbiosis
between a cell and its mitochondria (see [42]). Mitochondria are membrane-
enclosed organelle found in eukaryotic cells that generate most of the cell’s
energy supply in the form of adenosine triphosphate (ATP). A mitochondrion
is formed by two membranes, the outer and the inner membrane, having
different properties and proteins on their surfaces. Both membranes have
receptors to mediate the entrance of molecules. In Figure 3.1 we show the
expression of a gene (encoded in the DNA within the nucleus of the cell)
destined to be translated into a protein that will be catch by mitochondria
and will then catalyze the production of ATP. In particular, we will model
the following steps: (1) genes within the nucleus’ DNA are transcribed into
mRNA, (2) mRNA moves from the nucleus to the cell’s cytoplasm, (3) where
it is translated into the protein.

The vast majority of proteins destined for the mitochondria are encoded
in the nucleus of the cell and synthesized in the cytoplasm. These are tagged
by a signal sequence, which is recognized by a receptor protein in the Trans-
porter Outer Membrane complex (TOM). The signal sequence and adjacent
portions of the polypeptide chain are inserted in the intermembranous space
through the TOM complex, then in the mitochondrion internal space through
a Transporter Inner Membrane complex (TIM). According to this descrip-
tion, we model the following final steps: (4) protein is detected by TOM and
brought within the intermembranous space, (5) then, through TIM, in the
mitochondrion’s inside, (6) where it catalyzes the production of ATP, (7)

30

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

Figure 3.1: From the cell nucleus to mitochondria.

that exits the inner, (8) and the outer mitochondrial membranes towards the
cell’s cytoplasm.

3.2 The calculus

In this Section we present the Calculus of Looping Sequences with Local
Rules (CLSLR).

3.2.1 Syntax of CLSLR

We assume a possibly infinite alphabetA of symbols ranged over by a, b, c, . . .,
a set of element variables X ranged over by x, y, z, . . ., a set of sequence
variables SV ranged over by x̃, ỹ, z̃, . . ., and a set of term variables T V ranged
over by X, Y, Z, All these sets are possibly infinite and pairwise disjoint.
We denote by V the set of all variables, V = X ∪SV∪T V , and by χ a generic
variable of V . Hence, a pattern is a term that may include variables.

Definition 3.2.1 (Patterns). Patterns P , sequence patterns SP and local

31

3.2 The calculus

rules R of CLSLR are given by the following grammar:

P ::= (SP)	 cP
∣∣ P | P

∣∣ L
SP ::= ε

∣∣ a
∣∣ x

∣∣ SP · SP
∣∣ x̃

L ::= X
∣∣ SP

∣∣ L | L
∣∣ R

R ::= L 7→L
∣∣ L↑SP 7→L↑SP

∣∣ L↓SP 7→L↓SP

where a is a generic element of A, and X, x̃ and x are generic elements of
T V ,SV and X , respectively. Sequence patterns SP defines patterns for se-
quences of elements, (SP)	 denotes a closed (looping) sequence which may
contain other patterns through the c operator, | is used to denote the paral-
lel composition (juxtaposition) of patterns, and R denotes the syntax of local
rules that may either exit (L↑SP) or enter (L↓SP) a closed sequence SP . We
denote by P the infinite set of patterns.
A local rule L1 7→L2 is well formed if L1 6≡ ε and V ar(L2) ⊆ V ar(L1), where
V ar(P) denotes set of variables appearing in P .
A local rule L↑SP1

1 7→ L↑SP2

2 or L↓SP1

1 7→ L↓SP2

2 is well formed if L1 6≡ ε,
V ar(L2) ⊆ V ar(L1) and V ar(SP2) ⊆ V ar(SP1).

Terms are patterns containing variables only inside local rules. Sequences
are closed sequence patterns. We denote by T the infinite set of terms, ranged
over by T , and by S the infinite set of sequences, ranged over by S.

An instantiation is a partial function σ : (T V → T)∪ (SV → S)∪ (X →
A). Given P ∈ P , with Pσ we denote the term obtained by replacing each
occurrence of each variable χ ∈ V appearing in P by the corresponding
term σ(χ), but for local rules, which are left unchanged by instantiations,
i.e., Rσ = R for all R and σ. By Σ we denote the set of all the possible
instantiations.

Definition 3.2.2 (Structural Congruence). The structural congruence
relations ≡S and ≡R and ≡P are the least congruence relations on sequence
patterns, local rules and on patterns, respectively, satisfying the rules shown
in Figure 3.2.

Structural congruence rules state the associativity of · and | , the com-
mutativity of the latter and the neutral role of ε. Moreover, the axiom
(SP1 · SP2)	 cP ≡P (SP2 · SP1)	 cP says that looping sequences can rotate.
In the following, for simplicity, we will use ≡ in place of ≡P .

32

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

SP1 · (SP2 · SP3) ≡S (SP1 · SP2) · SP3 SP · ε ≡S ε · SP ≡S SP
SP1 ≡S SP2 implies SP1 ≡P SP2

SP1 ≡P SP2 and P1 ≡P P2 imply (SP1)	 cP1 ≡P (SP2)	 cP2

L1 ≡P L′1 and L2 ≡P L′2 imply L1 7→L2 ≡R L′1 7→L′2
L1 ≡P L′1 and L2 ≡P L′2 and SP1 ≡P SP ′1 and SP2 ≡P SP ′2 imply

L↑SP1

1 7→L↑SP2

2 ≡R L′↑SP
′
1

1 7→L′↑SP
′
2

2 and L↓SP1

1 7→L↓SP2

2 ≡R L′↓SP
′
1

1 7→L′↓SP
′
2

2

R1 ≡R R2 implies R1 ≡P R2

P1 | P2 ≡P P2 | P1 P1 | (P2 | P3) ≡P (P1 | P2) | P3 P | ε ≡P P
(ε)	 c ε ≡P ε (SP1 · SP2)	 cP ≡P (SP2 · SP1)	 cP

Figure 3.2: Structural Congruence

3.2.2 (Parallel) Operational Semantics

In order to define a reduction step in which (possibly) more than one rule is
applied, following [25], we first define the application of a single rule, either
global or local, using the notion of evaluation context given in Definition
2.2.6.

To enforce the fact that local and global rule applications can be done in
parallel, we underline those subterms that are produced by the application
of the rule involved. Terms matching the left-hand-side of a (local or global)
rule must not have any underlined subterm. Underlined terms are only used
for bookkeeping in the definition of rule application.

Let T denote the set of terms in which some subterms can be underlined.
The erasing mapping η : T 7→ T erases all underlining obtaining a term
generated by the grammar of Definition 3.2.1.

We first define the application of global or local rules to terms in T which
produces terms in T .

Global rules are of the shape P1 7→ P2. They can be applied to terms only
if they occur in a legal evaluation context.

Local rules are inside compartments, and can be applied only if a term
matching the left-hand-side of the rule occurs in the same compartment.

Notice that global rules have patterns P on both the left and the right-
hand side of the rules, whereas local rules have the less general L patterns.
In particular, L patterns do not contain compartments, and therefore cannot
change the nesting structure of the compartments of a term.

33

3.2 The calculus

Definition 3.2.3 (Rule Application). Given a finite set of global rules R,
the rule application −→ is the least relation closed with respect to ≡ defined
by:

P1 7→ P2 ∈ R σ ∈ Σ P1σ 6≡ ε
(GRT)

E[P1σ] −→ E[P2σ]

σ ∈ Σ L1σ 6≡ ε
(LR)

E[L1 7→ L2 | L1σ | T] −→ E[L1 7→ L2 | L2σ | T]

σ ∈ Σ L1σ 6≡ ε
(LR-Out)

E[(S1σ)	 c (L↑S1

1 7→ L↑S2

2 | L1σ | T)] −→ E[L2σ |
(
S2σ

)	 c (L↑S1

1 7→ L↑S2

2 | T)]

σ ∈ Σ L1σ 6≡ ε
(LR-In)

E[L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)	 cT] −→ E[L↓S1

1 7→ L↓S2

2 |
(
S2σ

)	 c (T | L2σ)]

With rule (LR-Out) a term or a rule L1σ exits from the membrane in
which it is contained only if the membrane has as loop the sequence S1σ:
when outside, L1σ is transformed into L2σ, and the sequence S1σ into S2σ.
(LR-In) is similar, but it moves terms or rules into local membranes. Local
rules do not allow to move, create or delete membranes: only global rules
can do that.

Observe that local rules can be dynamically added and deleted both by
global and local rules. A global rule which adds the local rule R is of the
shape P 7→ R and a global rule which erases the same local rule is of the shape
R 7→ P . A local rule which adds the local rule R is of the shape L 7→ R
and a local rule which erases the same local rule is of the shape R 7→ L.
Moreover local rules can add local rules in compartments separated by just
one membrane, since they can be of the shapes L↑S 7→ R↑S

′
or L↓S 7→ R↓S

′
.

Finally, note that we can derive a sequential version of these rules just by
removing the underline from their right-hand side.

A reduction step of the parallel semantics =⇒, starting from a term in
T applies any number of global or local rules that could be performed in
parallel, producing a final term in T (with no underlined subterms).

Definition 3.2.4 (Parallel Reduction). The reduction =⇒ between terms
in T is defined by:

T = T0 −→ T1 −→ · · · −→ Tn+1 n ≥ 0 T ′ = η(Tn+1)

T =⇒ T ′

34

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

Note that there is no stopping condition for rule application: we can
apply only one rule, and then stop; either we can apply only two rules, and
then stop. We can apply any number of local or global rules, until no rule is
applicable (i.e it does not exist Tn+2 such that Tn+1 −→ Tn+2).

To justify the definition of the reduction =⇒ we have to show that the
order in which the local or global rules are applied is not important. The
notion of multi-hole context, i.e., of term where some disjoint subterms are
replaced by holes, is handy.

Definition 3.2.5 (Multi-Hole Contexts). Multi-Hole Contexts C are de-
fined as:

C ::= �
∣∣ T

∣∣ C | C
∣∣ (�)	 cC

∣∣ (S)	 cC

where T ∈ T and S ∈ S. We denote by C the infinite set of multi-hole
contexts.

Given a multi-hole context C ∈ C containing n holes, with C[T1] . . . [Tn]
we denote the term obtained by replacing each i-th hole with the term Ti
in C. We can show that in a parallel reduction only disjoint subterms can
change. Rules (GRT) and (LR) modify just one subterm. Rules (LR-Out) and
(LR-In) modify three subterms, i.e., a membrane and a term exiting or entering
the membrane, using ε for the missing term.

Theorem 3.2.6. If T =⇒ T ′, then there is a multi-hole context C and terms
T1, . . . , Tn, T ′1, . . . , T

′
n such that T ≡ C[T1] . . . [Tn], T ′ ≡ C[T ′1] . . . [T ′n] and for

all 1 ≤ i ≤ n:

• either C[T ∗1] . . . [Ti] . . . [T
∗
n] −→ C[T ∗1] . . . [T ′i] . . . [T

∗
n]

• or there are i1, i2, i3 such that i ∈ {i1, i2, i3} and
C[T ∗1] . . . [Ti1] | ([Ti2])

	 c [Ti3] . . . [T
∗
n] −→ C[T ∗1] . . . [T ′i1] |(

[T ′i2]
)	 c [T ′i3] . . . [T

∗
n]

where T ∗j can be either Tj (subterm of T) or T ′j (subterm of T ′).

Proof. If T =⇒ T ′, then for some U0, . . . , Um+1 we get T = U0 −→ · · · −→ Um+1

where m ≥ 0 and T ′ = η(Um+1). We show by induction on h ≤ m and by
cases on the last applied reduction rule that

• either Uh = C[T ∗1] . . . [Ti] . . . [T
∗
n] and Uh+1 = C[T ∗1] . . . [T ′i] . . . [T

∗
n]

35

3.2 The calculus

• or there are i1, i2, i3 such that i ∈ {i1, i2, i3} and
Uh = C[T ∗1] . . . [Ti1] | ([Ti2])

	 c [Ti3] . . . [T
∗
n],

Uh+1 = C[T ∗1] . . . [T ′i1] |
(
[T ′i2]

)	 c [T ′i3] . . . [T
∗
n]

where “ ∗” can be either “ ” or “ ′” and all terms with ′ are either underlined
or ε.

If the last applied rule is

σ ∈ Σ L1σ 6≡ ε

E[L1 7→ L2 | L1σ | V] −→ E[L1 7→ L2 | L2σ | V]

then Uh = E[L1 7→ L2 | L1σ | V] and Uh+1 = E[L1 7→ L2 | L2σ | V]. By
induction Uh = C[T ∗1] . . . [T ∗n]. Since L1σ is a subterm of T and L2σ is a
subterm of Um+1 there must be an index i such that Ti = L1σ and T ′i = L2σ.

If the last applied rule is

σ ∈ Σ Lσ 6≡ ε L1σ ∈ T S1σ ∈ T

E[L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)	 cV] −→ E[L↓S1

1 7→ L↓S2

2 |
(
S2σ

)	 c (V | L2σ)]

then Uh = E[L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)	 cV] and Uh+1 = E[L↓S1

1 7→
L↓S2

2 |
(
S2σ

)	 c (V | L2σ)]. By induction Uh = C[T ∗1] . . . [T ∗n]. Notice that
L1σ, S1σ are subterms of T and L2σ, S2σ are subterm of Um+1. Moreover L1σ,
S1σ and ε in T are replaced by ε, S2σ and L2σ in Um+1, respectively. There-
fore there must be indexes i1, i2, i3 such that Ti1 = L1σ, T ′i1 = ε, Ti2 = S1σ,
T ′i2 = S2σ, Ti3 = ε, T ′i3 = L2σ.

Example 3.2.7 (Mitochondria Running Example: Syntax and Re-
ductions). A CLSLR term representing the mitochondria evolution inside
the cell’s activity discussed in the introduction could be:

CELL = (cell)	 c (NUCLEUS | MITOCH | . . . | MITOCH |
mRNA 7→protein |
protein↓Tom 7→protein↓Tom)

A cell is composed by its membrane (here just represented by the element
cell) and its content (in this case, the nucleus, a certain number of mito-
chondria and a few rules modeling the activity of interest). In particular,

36

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

the two rules above model the steps (3) and (4), respectively, of the example
schematised in Section 3.1.

Assuming that DNA is the sequence of genes representing the cell’s DNA,
and g is the particular gene (contained in DNA) codifying the protein, we
define the nucleus of the cell with the CLSLR term:

NUCLEUS = (nucleus)	 c (DNA |
x̃ · g · ỹ 7→(x̃ · g · ỹ | mRNA) |
mRNA↑nucleus 7→mRNA↑nucleus)

Note that the first of the two rules above models step (1) of our example (DNA
transcription into mRNA), while the second one (mRNA exits the nucleus)
models step (2).

The mitochondria of our model are composed of a membrane, on which
we point out the Tom complex, containing an inner membrane (INN MITOCH)
and a couple of rules:

MITOCH = (Tom)	 c (INN MITOCH |
protein↓T im 7→(MitA 7→(MitA | ATP))↓T im |
ATP↑x̃ 7→ATP↑x̃)

where we denote by the element MitA a mitochondrial factor inside the inner
membrane (activated by our protein), necessary to produce ATP. In particu-
lar, the protein, when in the intermembranous space, is moved through Tim
inside the inner mitochondrial space (step (5) of our example) and then trans-
formed into the newly generated rule MitA 7→ (MitA | ATP) which will lead
the production of ATP (step (6) of our example).

Finally, in INN MITOCH we point out the Tim complex:

INN MITOCH = (Tim)	 c (MitA |
ATP↑x̃ 7→ATP↑x̃)

Both in MITOCH and INN MITOCH we have the rules needed to transport the
ATP towards the cell’s cytoplasm (steps (7) and (8) of the example).

A possible (parallel) reduction of this term, when g initially produces a
certain number of mRNA is shown (by focusing only on the more interesting
changes) in Figure 3.3. The ATP produced in the last but two reductions in
INN MITOCH moves to MITOCH in the last but one reduction and new ATP
is produced in INN MITOCH. In the last reduction, the firstly generated ATP
moves to the cell, the secondly generated ATP moves to MITOCH and new
ATP is produced in INN MITOCH.

37

3.3 Types

=⇒+ (cell)	 c ((nucleus)	 c (mRNA | . . . | mRNA | . . .) | . . .)
=⇒+ (cell)	 c (mRNA | . . . | mRNA | . . .)
=⇒ (cell)	 c (protein | . . . | protein | . . .)
=⇒ (cell)	 c ((Tom)	 c (protein | . . .) | . . . |

(Tom)	 c (protein | . . .) | . . .)
=⇒ (cell)	 c ((Tom)	 c ((Tim)	 c (MitA 7→(MitA | ATP) | . . .) | . . .) |

(Tom)	 c ((Tim)	 c (MitA 7→(MitA | ATP) | . . .) | . . .) |
. . .)

=⇒ (cell)	 c ((Tom)	 c ((Tim)	 c (ATP | . . .) | . . .) |
(Tom)	 c ((Tim)	 c (ATP | . . .) | . . .) | . . .)

=⇒ (cell)	 c ((Tom)	 c (ATP | (Tim)	 c (ATP | . . .) | . . .) |
(Tom)	 c (ATP | (Tim)	 c (ATP | . . .) | . . .) | . . .)

=⇒ (cell)	 c (ATP | . . . | ATP |
(Tom)	 c (ATP | (Tim)	 c (ATP | . . .) | . . .) |
(Tom)	 c (ATP | (Tim)	 c (ATP | . . .) | . . .) | . . .)

Figure 3.3: Mitochondria evolution

3.3 Types

In this section we introduce a type system that enforces the fact that com-
partments must contain rules having specific features. E.g., in [51] the fol-
lowing rule features for L1 7→ L2 are suggested:

• the rule is deleting if V ars(L1) ⊃ V ars(L2) (denoted by d);

• the rule is replicating if some variable in L2 occurs twice (denoted by
r);

• the rule is splitting if L1 has a subterm containing two different vari-
ables (denoted by s);

• the rule is equating if some variable in L1 occurs twice (denoted by
e).

This kind of features reflects a structure of rewrite features which could be
common for rewrite systems in general. Other, model-dependent, features
could be defined to reflect peculiarities and properties of the particular model

38

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

∆ `s ε : ∅ (TSeps) ∆, χ : ϕ `s χ : ϕ (TSvar)

a : ϕ ∈ Ψ
(TSelm)

∆ `s a : ϕ

∆ `s SP : ϕ ∆ `s SP ′ : ϕ′
(TSseq)

∆ `s SP · SP ′ : ϕ ∪ ϕ′

Figure 3.4: Typing Rules for Membranes

under investigation. The features of the rules allowed in a compartment
are controlled by the wrapping sequence of the compartment. Our typing
system and the consequent typed parallel reduction ensure that, in spite of
the facts that reducing a term may move rules in and out of compartments,
compartments always contain rules allowed by their wrapping sequence. In
addition to the previous features of rules we say that:

• the feature of rule L↑S1

1 7→ L↑S2

2 is that it is an out rule (denoted by
o);

• the feature of rule L↓S1

1 7→ L↓S2

2 is that it is an in rule (denoted by i).

To express the control of the wrapping sequence over the content of the
compartment, we associate a subset ϕ of {d, r, s, e, o, i} to every element in
A. This is called a membrane type. We use Ψ to denote a classification of
elements. The type assignment in Figure 3.4, where a basis ∆, defined by

∆ ::= ∅
∣∣ ∆, χ : ϕ

assigns membrane types to element and sequence variables, and defines the
type of a sequence as the union of the membrane types of its elements.

To define the type of patterns, that may contain parallel (composition)
of rules, we consider:

1. the features of the rules, contained in the pattern, and

2. in case there are output rules the type of the rules that are emitted by
these output rules.

Therefore a pattern type, denoted by τ , is a sequence of membrane types, i.e.,
τ ∈ {ϕ}∗. By ∅ we denote the empty sequence. If the parallel composition
of local rules R1 | · · · | Rn, n ≥ 0, has type ϕ · τ , then ϕ is the union of

39

3.3 Types

the features of the rules Ri (1 ≤ i ≤ n), and τ is the type of the parallel
composition of rules in L′ for those L′ such that Ri = L↑SP 7→ L′↑SP

′
for

some i, 1 ≤ i ≤ n (the type of the parallel composition of the rules that are
emitted). If no rule is emitted, then τ = ∅, and ϕ · ∅ = ϕ.

Union of pattern types, t, is defined inductively by:

• ∅ t τ = τ t ∅ = τ , and

• ϕ1 · τ1 t ϕ2 · τ2 = (ϕ1 ∪ ϕ2) · (τ1 t τ2).

and containment, v, is defined by:

• ∅ v τ

• ϕ · τ v ϕ′ · τ ′ if ϕ ⊆ ϕ′ and τ v τ ′.

The judgment ∆ `p P : τ , defined in Figure 3.5, asserts that the pattern P
is well formed and has pattern type τ , assuming the basis ∆, which assigns
membrane types to element and sequence variables and pattern types to
term variables. The judgment ∆ `gr P1 7→ P2 : ok in last rule defines
well-formedness of global rules.

It is easy to verify that the typing rules in Figures 3.4 and 3.5 enjoy
weakening, i.e., if ∆ ⊆ ∆′ then ∆ `s SP : ϕ implies ∆′ `s SP : ϕ, ∆ `p P : τ
implies ∆′ `p P : τ , and ∆ `gr P1 7→ P2 : ok implies ∆′ `gr P1 7→ P2 : ok.

Rule (Tvar) asserts that a term variable is well typed when its pattern
type is found in the basis. Rule (Tseq) asserts that, since a sequence does not
contain rules, its pattern type is empty. Rule (TRloc) asserts that the type of
a local rule R = L1 7→ L2 is the union of the set of features of the rule R,
denoted by features(R), and the pattern type of its right-hand-side L2. This is
because once the rule is applied, an instance of the pattern L2 will substitute
the instance of its left-hand-side L1. Rule (TRlocOut) checks that the features
of rules allowed by the membrane S2 include the one allowed by S1, so that if
the compartment was well formed before applying L↑S1

1 7→ L↑S2

2 , it will be well
formed afterwards (when S2 replaces S1). Moreover, the pattern type of the
rule is {o}, concatenated with the pattern type of L2, since L2 is the pattern
sent outside the compartment. Rule (TRlocIn) checks rule L↓S1

1 7→ L↓S2

2 . Since
the pattern L2 will get into a compartment with membrane S1, the membrane
S2, that replaces S1, must allow all the features of rules that were allowed
before, and moreover, it allows the features of the rules in L2. The type is {i}
union the type of the patterns that are emitted by the out rules contained

40

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

∆, X : τ `p X : τ (Tvar) ∆ `p SP : ∅ (Tseq)

∆ `p L2 : τ
(TRloc)

∆ `p L1 7→ L2 : features(L1 7→ L2) t τ

∆ `p L2 : τ ∆ `s S1 : ϕ1 ∆ `s S2 : ϕ2 ϕ1 ⊆ ϕ2
(TRlocOut)

∆ `p L↑S1

1 7→ L↑S2

2 : {o} · τ

∆ `p L2 : ϕ · τ ∆ `s S1 : ϕ1 ∆ `s S2 : ϕ2 ϕ ∪ ϕ1 ⊆ ϕ2
(TRlocIn)

∆ `p L↓S1

1 7→ L↓S2

2 : {i} t τ

∆ `p P : τ ∆ `p P ′ : τ ′
(Tpar)

∆ `p P | P ′ : τ t τ ′

∆ `s SP : ϕ ∆ `p P : ϕ′ · τ ′ ϕ′ ⊆ ϕ
(Tcomp)

∆ `p (SP)	 cP : τ ′

∆ `p P1 : τ1 ∆ `p P2 : τ2 τ2 v τ1
(TRglob)

∆ `gr P1 7→ P2 : ok

Figure 3.5: Typing Rules for Patterns and Global Rules

in L2. Rule (Tpar) enforces the fact that the patterns in parallel are both
well formed and the final pattern type is the union of the two pattern types.
Rule (Tcomp) checks that a compartment contain only rules whose features
are allowed by its wrapping sequence. The pattern type of the compartment
is the type of the rules that are emitted. Finally, rule (TRGlob) says that the
global rule P1 7→ P2 is well formed in case the pattern P2 that will replace
P1 has less features, so that it is allowed by all the compartments in which
P1 is allowed.

As we can see from rule (TRLoc) the type system is independent from the
specific set of features considered. Any syntactic characterization of rules
could be considered for a feature.

Definition 3.3.1. An instantiation σ agrees with a basis ∆ (notation σ ∈
Σ∆) if x : ϕ ∈ ∆ implies `s σ(x) : ϕ, and x̃ : ϕ ∈ ∆ implies `s σ(x̃) : ϕ, and

41

3.3 Types

X : τ ∈ ∆ implies `p σ(X) : τ .

This is sound since the judgments `s use assumptions on element and
sequence variables, while the judgments `p use assumptions on term vari-
ables. Based on the previous typing system we define a typed semantics, that
preserves well-formedness of terms.

Definition 3.3.2 (Typed Rule Application). Given a finite set of global
rules R, the typed rule application→ᵀ is the least relation closed with respect
to ≡ and satisfying the following rules:

R∆ = {P1 7→ P2 ∈ R | ∆ `gr P1 7→ P2 : ok} P1 7→ P2 ∈ R∆ σ ∈ Σ∆ P1σ 6≡ ε
(T-GRT)

E[P1σ]→ᵀ E[P2σ]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR)

E[L1 7→ L2 | L1σ]→ᵀ E[L1 7→ L2 | L2σ]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR-Out)

E[(S1σ)
	 c (L↑S1

1 7→ L↑S2

2 | L1σ | T)]→ᵀ E[L2σ |
(
S2σ

)	 c (L↑S1

1 7→ L↑S2

2 | T)]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR-In)

E[L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)
	 cT]→ᵀ E[L↓S1

1 7→ L↓S2

2 |
(
S2σ

)	 c (T | L2σ)]

Definition 3.3.3 (Typed Parallel Reduction). The reduction =⇒ᵀ be-
tween term in T is defined by:

T = T0 →ᵀ T1 →ᵀ · · · →ᵀ Tn+1 n ≥ 0 T ′ = η(Tn+1)

T =⇒ᵀ T ′

The property enforced by the type system is that well-typed terms reduce
to well-typed terms: the proof follows a series of preparatory lemmas.

Lemma 3.3.4 (Inversion Lemma). Inversion of the typing relations:

1. If ∆ `s ε : ϕ, then ϕ = ∅.

2. If ∆ `s χ : ϕ, then χ : ϕ ∈ ∆.

3. If ∆ `s a : ϕ, then a : ϕ ∈ Ψ.

4. If ∆ `s SP ·SP ′ : ϕ, then ∆ `s SP : ϕ1, ∆ `s SP ′ : ϕ2 and ϕ = ϕ1tϕ2.

42

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

5. If ∆ `p X : τ , then X : τ ∈ ∆.

6. If ∆ `p SP : τ , then τ = ∅.

7. If ∆ `p L1 7→ L2 : τ , then τ = features(L1 7→ L2) t τ ′ and ∆ `p L2 : τ ′.

8. If ∆ `p L↑S1

1 7→ L↑S2

2 : τ , then τ = {o} · τ ′, ∆ `p L2 : τ ′, ∆ `s S1 : ϕ1,
∆ `s S2 : ϕ2 and ϕ1 ⊆ ϕ2.

9. If ∆ `p L↓S1

1 7→ L↓S2

2 : τ , then τ = {i} t τ ′, ∆ `p L2 : ϕ · τ ′, ∆ `s S1 :
ϕ1, ∆ `s S2 : ϕ2 and ϕ ∪ ϕ1 ⊆ ϕ2.

10. If ∆ `p P | P ′ : τ , then τ = τ1 t τ2, ∆ `p P : τ1 and ∆ `p P ′ : τ2.

11. If ∆ `p (SP)	 cP : τ , then ∆ `s SP : ϕ, ∆ `p P : ϕ′ · τ and ϕ′ ⊆ ϕ.

12. If ∆ `gr P1 7→ P2 : ok, then ∆ `p P1 : τ1, ∆ `p P2 : τ2 and τ2 v τ1.

Proof. Immediate from the typing rules in Figures 3.4 and 3.5.

Lemma 3.3.5. If ∆ `p E[P] : τ then

1. ∆ `p P : τ0 for some τ0, and

2. if P ′ is such that ∆ `p P ′ : τ ′ with τ ′ v τ0, then ∆ `p E[P ′] : τ ′′ with
τ ′′ v τ .

Proof. By induction on the definition of contexts.

• If E = �, then E[P] = P , and so ∆ `p P : τ . Since in this case
E[P ′] = P ′, and ∆ `p P ′ : τ ′ with τ ′ v τ by hypothesis, then ∆ `p
E[P ′] : τ ′.

• If E = E ′ | T , then E[P] = E ′[P] | T . From Lemma 3.3.4(10) we
derive ∆ `p E ′[P] : τ1 and ∆ `p T : τ2, with τ1 t τ2 = τ . By induction
hypothesis on E ′[P] we get ∆ `p P : τ0 and ∆ `p E ′[P ′] : τ ′1 with τ ′1 v
τ1. Applying rule (Tpar) we conclude ∆ `p E[P ′] : τ ′′ with τ ′′ = τ ′1 t τ2,
and then τ ′′ v τ .

• If E = (S)	 cE ′, then E[P] = (S)	 cE ′[P]. From Lemma 3.3.4(11) we
derive ∆ `p S : ϕ0, and ∆ `p E ′[P] : ϕ · τ , with ϕ ⊆ ϕ0. By induction
hypothesis on E ′[P] we get ∆ `p P : τ0, and ∆ `p E ′[P ′] : ϕ′ · τ ′ with
ϕ′ · τ ′ v ϕ · τ . Applying rule (Tcomp) we conclude ∆ `p E[P ′] : τ ′, with
τ ′ v τ .

43

3.3 Types

Lemma 3.3.6. If σ ∈ Σ∆, then `s SPσ : ϕ if and only if ∆ `s SP : ϕ.

Proof. (⇐) By induction on ∆ `s SP : ϕ. Consider the last applied rule.

• If the rule is (TSvar), the proof follows from σ ∈ Σ∆. For rules (TSeps)

and (TSelm), the fact that SP is a term implies that SPσ = SP , and,
moreover, it is typable from the empty environment.

• Rule (TSseq). In this case SP = SP1 ·SP2, and from Lemma 3.3.4(4) we
derive ∆ `s SP1 : ϕ1, ∆ `s SP2 : ϕ2, and ϕ = ϕ1 ∪ ϕ2. By induction
hypotheses on SP1 and SP2 we get `s SP1σ : ϕ1 and `s SP2σ : ϕ2.
Therefore, since SP1σ · SP2σ = (SP1 · SP2)σ, applying the rule (TSseq)

we conclude `s (SP1 · SP2)σ : ϕ.

(⇒) By induction on SP .

• If SP = χ, the proof follows from σ ∈ Σ∆. If SP = ε or SP = a we
use weakening.

• Let SP be SP1 · SP2. Since (SP1 · SP2)σ = SP1σ · SP2σ, from Lemma
3.3.4(4) we derive ϕ = ϕ1 ∪ ϕ2, `s SP1σ : ϕ1, and `s SP2σ : ϕ2.
By induction hypotheses we get ∆ `s SP1 : ϕ1, and ∆ `s SP2 : ϕ2.
Applying rule (TSseq) we conclude ∆ `s SP1 · SP2 : ϕ.

Lemma 3.3.7. If σ ∈ Σ∆, then `p Pσ : τ if and only if ∆ `p P : τ .

Proof. (⇐) By induction on ∆ `p P : τ . Consider the last applied rule.

• If the rule is (Tvar), the proof follows from σ ∈ Σ∆. For rules (TRloc),
(TRlocOut), (TRlocIn) the fact that P is a rule implies that Pσ = P and,
moreover, it is typable from the empty environment. For rule (Tseq) if
P is a sequence pattern then also Pσ is a sequence pattern, and then
we can apply rule (Tseq) with the empty environment.

• If the rule is (Tpar), then P = P1 | P2, and from Lemma 3.3.4(10)
we derive ∆ `p P1 : τ1, ∆ `p P2 : τ2, and τ = τ1 t τ2. By induction
hypotheses on P1 and P2 we get `p P1σ : τ1, and `p P2σ : τ2. Therefore,
since P1σ | P2σ = (P1 | P2)σ, applying the rule (Tpar) we conclude
`p (P1 | P2)σ : τ .

44

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

• If the rule is (Tcomp), then the proof is similar using Lemmas 3.3.4(11)
and 3.3.6 for the first premise.

(⇒) By induction on P .

• If P = X, the proof follows from σ ∈ Σ∆. If P is a sequence pattern,
then also Pσ is a sequence pattern, and we can apply the rule (Tseq).
If P is a rule, then P = Pσ.

• Let P be P = P1 | P2. Since (P1 | P2)σ = P1σ | P2σ, and the fact
that `p (P1 | P2)σ : τ , from Lemma 3.3.4(10) we derive `p P1σ : τ1,
`p P2σ : τ2, and τ = τ1 t τ2. By induction hypotheses on P1 and P2

we get ∆ `p P1 : τ1 and ∆ `p P2 : τ2. Applying rule (Tpar) we conclude
∆ `p (P1 | P2) : τ .

• If P = (SP)	 cP ′ the proof is similar using Lemmas 3.3.4(11) and 3.3.6
for the first premise.

Theorem 3.3.8 (Subject Reduction). If `p T : τ and T =⇒ᵀ T ′, then
`p T ′ : τ ′ for some τ ′ v τ .

Proof. By cases on the reduction rules.

Rule (TGR)

From Definition 3.3.2, T = E[P1σ], T ′ = E[P2σ], and σ ∈ Σ∆. By
hypothesis `p T : τ and ∆ `gr P1 7→ P2 : ok. Therefore, Lemma 3.3.5(1)
implies `p P1σ : τ1 for some τ1, and from Lemma 3.3.7 we derive ∆ `p P1 : τ1.
From ∆ `gr P1 7→ P2 : ok, Lemma 3.3.4(12) implies ∆ `p P2 : τ2 with τ2 v τ1.
We can apply Lemma 3.3.7 obtaining `p P2σ : τ2. From Lemma 3.3.5(2) we
conclude ∆ `p E[P2σ] : τ ′ for some τ ′ v τ .

Rule (TLR)

From Definition 3.3.2, T = E[L1 7→ L2 | L1σ], T ′ = E[L1 7→ L2 | L2σ],
and σ ∈ Σ∆. By hypothesis `p T : τ . Therefore, Lemma 3.3.5(1) implies
`p L1 7→ L2 | L1σ : τ0 for some τ0. Since σ ∈ Σ∆, Lemma 3.3.7 implies
∆ `p L1 7→ L2 | L1 : τ0. From Lemma 3.3.4(10) we derive ∆ `p L1 7→ L2 : τ ′0,
and ∆ `p L1 : τ1 with τ ′0tτ1 = τ0. By Lemma 3.3.4(7) we derive ∆ `p L2 : τ2

with τ2 v τ1. Lemma 3.3.7 implies `p L2σ : τ2, then from (Tpar) we derive
`p L1 7→ L2 | L2σ : τ3 with τ3 = τ ′0 t τ2. Since τ3 v τ0 we can apply Lemma
3.3.5(2) obtaining `p E[L1 7→ L2 | L2σ] : τ ′ with τ ′ v τ .

45

3.3 Types

Rule (LR-Out)

From Definition 3.3.2, T = E[(S1σ)	 c (L↑S1

1 7→ L↑S2

2 | L1σ | T0)], T ′ =
E[L2σ | (S2σ)	 c (L↑S1

1 7→ L↑S2

2 | T0)], and σ ∈ Σ∆. By hypothesis `p T : τ .

Lemma 3.3.5(1) implies `p (S1σ)	 c (L↑S1

1 7→ L↑S2

2 | L1σ | T0) : τ0, and, since

σ ∈ Σ∆, Lemma 3.3.7 implies ∆ `p (S1)	 c (L↑S1

1 7→ L↑S2

2 | L1 | T0) : τ0. By

Lemma 3.3.4(11) we get ∆ `s S1 : ϕ1, and ∆ `p L↑S1

1 7→ L↑S2

2 | L1 | T0 : ϕ0 ·τ0

where ϕ0 ⊆ ϕ1. By Lemma 3.3.4(10) we have ∆ `p T0 : ϕ · τ1, and ∆ `p
L↑S1

1 7→ L↑S2

2 : ϕ′ · τ2 for some ϕ · τ1 tϕ′ · τ2 v ϕ0 · τ0. Lemma 3.3.4(8) implies
ϕ′ = {o}, ∆ `p L2 : τ2 and ∆ `s S2 : ϕ2 where ϕ1 ⊆ ϕ2. Since σ ∈ Σ∆,

Lemma 3.3.7 implies `p L2σ : τ2, `s S2σ : ϕ2, ∆ `p L↑S1

1 7→ L↑S2

2 : {o}·τ2, and

`p T0 : ϕ · τ1. Using these premises, we apply rule (Tpar) deriving `p L↑S1

1 7→
L↑S2

2 | T0 : {o} · τ2 t ϕ · τ1, and then `p (S2σ)	 c (L↑S1

1 7→ L↑S2

2 | T0) : τ1 t τ2

by rule (Tcomp). Finally `p L2σ | (S2σ)	 c (L↑S1

1 7→ L↑S2

2 | T0) : τ1 t τ2 by
rule (Tpar): since τ1 t τ2 v τ0, we can apply the Lemma 3.3.5(2), obtaining
`p E[L2σ | (S2σ)	 c (L↑S1

1 7→ L↑S2

2 | T0)] : τ ′ with τ ′ v τ .

Rule (LR-In)

From Definition 3.3.2, T = E[L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)	 cT0], T ′ =
E[L↓S1

1 7→ L↓S2

2 | (S2σ)	 c (T0 | L2σ)], and σ ∈ Σ∆. By hypothesis `p T : τ .

Lemma 3.3.5(1) implies `p L↓S1

1 7→ L↓S2

2 | L1σ | (S1σ)	 cT0 : τ0, and, since

σ ∈ Σ∆, Lemma 3.3.7 implies ∆ `p L↓S1

1 7→ L↓S2

2 | L1 | (S1)	 cT0 : τ0. By

Lemma 3.3.4(10) we have ∆ `p L↓S1

1 7→ L↓S2

2 : τ1 and ∆ `p (S1)	 cT0 : τ2

for some τ1 t τ2 v τ0. Lemma 3.3.4(9) implies τ1 = {i} t τ3, ∆ `s S1 : ϕ1,
∆ `s S2 : ϕ2, and ∆ `p L2 : ϕ · τ3, where ϕ ∪ ϕ1 ⊆ ϕ2. By Lemma 3.3.4(11)
∆ `p T0 : ϕ′ · τ2 for some ϕ′ ⊆ ϕ1. Since σ ∈ Σ∆, Lemma 3.3.7 implies

`s S1σ : ϕ1, `s S2σ : ϕ2, `p L2σ : ϕ · τ3, `p L↓S1

1 7→ L↓S2

2 : {i} t τ3,
and `p T0 : ϕ′ · τ2. Using these premises, we apply rule (Tpar) deriving
`p L2σ | T0 : ϕ · τ3 t ϕ′ · τ2, and then `p (S2σ)	 cL2σ | T0 : τ3 t τ2 by

rule (Tcomp). Finally `p L↓S1

1 7→ L↓S2

2 | (S2σ)	 cL2σ | T0 : τ1 t τ2, because
τ1 = {i} t τ3, by rule (Tpar): since τ1 t τ2 v τ0, we can apply the Lemma
3.3.5(2) obtaining `p E[L↓S1

1 7→ L↓S2

2 | (S2σ)	 cL2σ | T0] : τ ′ for some
τ ′ v τ .

Example 3.3.9 (Mitochondria Running Example: Typing). Let the
rules used in Example 3.2.7 be labeled by:

• Rg = x̃ · g · ỹ 7→(x̃ · g · ỹ | mRNA),

46

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

• Rm = mRNA 7→protein,

• Ro↓ = protein↓Tom 7→protein↓Tom,

• Rm↑ = mRNA↑nucleus 7→mRNA↑nucleus,

• Ri↓ = protein↓T im 7→Ra
↓T im,

• Ra = MitA 7→(MitA | ATP)

• Ra↑ = ATP↑x̃ 7→ATP↑x̃.

Let ϕg = features(Rg), ϕm = features(Rm), ϕa = features(Ra). The term
representing our model can be typed if Ψ contains appropriate membrane
types for the elements which occur in the membranes, i.e.:

{cell : ϕcell, nucleus : ϕnucleus, T om : ϕTom, T im : ϕT im} ⊆ Ψ

where {i} ∪ ϕm ⊆ ϕcell, {o} ∪ ϕg ⊆ ϕnucleus, {o, i} ⊆ ϕTom, and {o} ∪ ϕa ∈
ϕT im. In this case the given parallel reduction is also a typed parallel reduction
for this term.

We can type the MITOCH and INN MITOCH with the derivations in Figure3.6.

3.4 Conclusions

In rewrite system models, the term (describing the systems under consid-
eration) and the list of rules (describing the system’s evolution) could be
considered as separate. Here, a calculus with global (separate from the sys-
tem) and local (dynamic and system intrinsic) rewrite rules is presented.
While global rules can, as usual, be applied anywhere in a given term, local
rules can only be applied in the compartment on which they are defined.
Local rules are equipped with dynamic features: they can be created, moved
and erased.

Some of the ideas used in CLSLR are not completely new, but can be
found in other formalisms. For example, the use of variables and contexts
for rule application is a key feature of κ-calculus, even if it does not deal
with membranes. Moreover, both approaches emphasize the key rule of the
surface components, in proteins (κ-calculus) or membranes (CLSLR), for bi-
ological modeling.

47

3.4 Conclusions

∆
` p

M
it
A
|A

T
P

:
∅

(T
R
l
o
c
)

∆
` p

R
a

:
ϕ
a

∆
` s

T
im

:
ϕ
T
im

ϕ
a
⊆
ϕ
T
im

(T
R
l
o
c
In

)

∆
` p

R
i↓

:
{i
}

∆
` p

R
a
↑

:
{o
}

(T
pa

r
)

∆
` p

R
i↓
|R

a
↑

:
{i
,o
}

∆
` s

T
o
m

:
ϕ
T
o
m

∆
` p

I
N
N
M
I
T
O
C
H

:
∅

∆
` p

R
i↓
|R

a
↑

:
{i
,o
}

(T
pa

r
)

∆
` p

I
N
N
M
I
T
O
C
H
|R

i↓
|R

a
↑

:
{i
,o
}

{i
,o
}
⊆
ϕ
T
o
m

(T
c
o
m
p
)

∆
` p

(T
o
m

)	
c(

I
N
N
M
I
T
O
C
H
|R

i↓
|R

a
↑
)

:
∅

∆
` s

T
im

:
ϕ
T
im

∆
` p

M
it
A

:
∅

∆
` p

A
T
P

:
∅

∆
` s

x̃
:
ϕ
T
o
m

ϕ
T
o
m
⊆
ϕ
T
o
m

(T
R
l
o
c
O
u
t
)

∆
` p

R
a
↑

:
{o
}

(T
pa

r
)

∆
` p

M
it
A
|R

a
↑

:
{o
}

{o
}
⊆
ϕ
T
im

(T
c
o
m
p
)

∆
` p

(T
im

)	
c(
M
it
A
|R

a
↑
)

:
∅

Figure 3.6: Type derivations for MITOCH and INN MITOCH.

48

3. A CALCULUS OF LOOPING SEQUENCES WITH LOCAL RULES

More similarities can be found with P Systems. Locality and intrinsic par-
allelism of rules are also present in our approach, but in CLSLR the level
of parallelism is not necessarily maximal, and moreover not only molecules
but also rules can be created, deleted or moved across membranes. In both
approaches the local rules cannot describe some possible biological behav-
iors such as fusion, deletion or creation of membranes. As it happens for P
Systems, local rules are intrinsically parallel. Indeed, expressing rules that
are local to well delimited compartments, and with the possibility to define
systems with multiple, parallel, compartments, naturally leads to the defini-
tion of a parallel semantics. In addition, CLSLR allows to describe activities
involving membranes, such as joining, division or fusion, and non-standard
activities trough global rules.

As a future work, in the lines of [22, 39, 18], we plan to investigate how
to adapt this model with a quantitative semantics, also studying the limits
and constraints imposed by parallel semantics.

49

3.4 Conclusions

50

Chapter 4

A Type Discipline for Required
and Excluded Elements

4.1 Introduction

In chemistry, hydrophobicity is the physical property of a molecule (known as
a hydrophobe) that is repelled from a mass of water. Hydrophobic molecules
tend to be non-polar and thus prefer other neutral molecules and non-polar
solvents. Hydrophobic molecules in water often cluster together forming mi-
celles. From the other perspective, water on hydrophobic surfaces will exhibit
a high contact angle (thus causing, for example, the familiar dew drops on
a hydrophobic leaf surface). Examples of hydrophobic molecules include the
alkanes, oils, fats, and greasy substances in general. Hydrophobic materi-
als are used for oil removal from water, the management of oil spills, and
chemical separation processes to remove non-polar from polar compounds.
Hydrophobicity is just an example of repellency in Biochemistry. Other well-
known examples may be found in the behavior of anions and cations, or at a
different level of abstraction, in the behavior of the rh antigen for the differ-
ent blood types. As a counterpart, there may be elements, in nature, which
always require the presence of other elements: for example, it is difficult to
find a lonely atom of oxygen, they always appear in the pair O2.

In this chapter, based on [21], we bring these aspects at their maxi-
mum limit, and, by abstracting away all the phenomena which give rise/arise
to/from repellency (and its counterpart), we assume that for each kind of el-
ement of our reality we are able to fix a set of elements which are required

51

4.2 Type Discipline

by the element for its existence, and a set of elements whose presence is
forbidden by the element. We enrich the basic CLS presented in Chapter
2 with a type discipline which guarantees the soundness of reduction rules
with respect to some relevant properties of biological systems deriving from
the required and excluded kinds of elements. The key technical tool we use
is to associate to each reduction rule the minimal set of conditions an instan-
tiation must satisfy in order to assure that applying this rule to a “correct”
system we get a “correct” system as well. We also propose a type inference
algorithm and show its soundness and completeness.

The required/excluded elements properties modeled here assure, through
type inference, that only compatible elements are combined together in the
different environments of the biological system took in consideration. Thus
the type system intrinsically yields a notion of correct (well-behaving) system
according to the expressed requirements.

4.2 Type Discipline

We classify elements in A with basic types. Intuitively, given a molecule
represented by an element in A, we associate to it a type t which specifies
the kind of the molecule. We assume a fixed typing Ψ for the elements in A.

For each basic type t we assume to have a pair of sets of basic types
(Rt, Et), where t 6∈ Rt ∪ Et and Rt ∩ Et = ∅, saying that the presence of
elements of basic type t requires the presence of elements whose basic type
is in Rt, and forbids the presence of elements whose basic type is in Et. We
consider only local properties: elements influence each other if they are either
present in the same compartment or one is present in the looping sequence
and the other one is present in the inner compartment of a containment
operator.

The type system derives the set of types of a pattern (and therefore
also a term), checking that the constraints imposed by the required and
excluded sets are satisfied. Types are pairs (P, R): P is the set of basic
types of elements that are present in the top-level compartment of the term,
and R is the set of basic types of elements that are required to fulfill the
requirements of the elements present in the top-level compartment of the
term. The set of excluded elements for a given set P of present elements is
given by EP =

⋃
t∈P Et. Given a basic type t, the type ({t}, Rt) is the type

of a compartment containing only elements of type t, and it is well formed.

52

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

A type (P, R) is well formed if the required types R are required by the
present elements P, and the constraints on required and excluded elements
are not contradictory 1.

Definition 4.2.1 (Well-Formed Types). A type (P, R) is well formed if
R ⊆

⋃
t∈P Rt, and P ∩ EP = P ∩ R = R ∩ EP = ∅.

Pairs of well-formed types can be combined, to obtain a new type.

Definition 4.2.2 (Join of Types). Given two well-formed types (P, R) and
(P′, R′) we define their join (P, R) t (P′, R′) by

(P, R) t (P′, R′) = (P ∪ P′, (R ∪ R′) \ (P ∪ P′)).
The type obtained through join could be not well formed. In order to

ensure the well-formedness of the result, we ask the compatibility of the
joined types. A pair of types is compatible if required and excluded types are
compatible with the union of their present types.

Definition 4.2.3 (Type Compatibility). Well-formed types (P, R) and
(P′, R′) are compatible (written (P, R) ./ (P′, R′)) if EP ∩ P′ = EP ∩ R′ = ∅,
and EP′ ∩ P = EP′ ∩ R = ∅.

Bases are defined by:

∆ ::= ∅
∣∣ ∆, x : ({t}, Rt)

∣∣ ∆, ρ : (P, R)

where ρ denotes a sequence or term variable, i.e. ρ ∈ T V ∪SV . A basis ∆ is
well formed if all types in the basis are well formed. We check the safety of
terms, sequences and more generally patterns using the typing rules of Figure
4.1. It is easy to verify that, if we start from well-formed bases, then in a
derivation we produce only well-formed bases and well-formed types. Note
that terms and sequences are typable from the empty basis.

All the rules are trivial except for the last one, (Tcomp). According to
this rule, we can put a pattern P inside a containment operator with looping
sequence SP only if all the types required from P are provided by SP . This
is because the elements present in the inner compartment can not interact
with the elements present outside the looping sequence.

It is easy to verify that the type system of Figure 4.1 enjoys weakening,
i.e. that ∆ ` P : (P, R) and ∆ ⊆ ∆′ imply ∆′ ` P : (P, R).

The following substitution properties will be handy.

1A requirement we could have asked is the symmetry of repellency, that is: for all t, t′,
if t ∈ Et′ , then t′ ∈ Et. However, such a requirement would not change the type system,
since compatibility of types encompasses this property.

53

4.2 Type Discipline

∆ ` ε : (∅, ∅) (Teps)
a : t ∈ Ψ

(Tel)
∆ ` a : ({t}, Rt)

∆, χ : (P, R) ` χ : (P, R) (Tvar)

∆ ` SP : (P, R) ∆ ` SP ′ : (P′, R′) (P, R) ./ (P′, R′)
(Tseq)

∆ ` SP ·SP ′ : (P, R) t (P′, R′)

∆ ` P : (P, R) ∆ ` P ′ : (P′, R′) (P, R) ./ (P′, R′)
(Tpar)

∆ ` P | P ′ : (P, R) t (P′, R′)

∆ ` SP : (P, R) ∆ ` P : (P′, R′) (P, R) ./ (P′, R′) and R′ ⊆ P
(Tcomp)

∆ ` (SP)	 cP : (P, R \ P′)

Figure 4.1: Typing Rules

Lemma 4.2.4. If ∆ ` E[P] : (P, R) then

1. ∆ ` P : (P′, R′) for some (P′, R′), and

2. ∆, X : (P′, R′) ` E[X] : (P, R), and

3. if P ′ is such that ∆ ` P ′ : (P′, R′), then ∆ ` E[P ′] : (P, R).

Proof. Easy by induction on the definition of evaluation contexts.

We are interested in applying reduction rules only to correct terms, whose
type is well formed and whose requirements are completely satisfied. More
formally:

Definition 4.2.5 (Correct Terms). A term T is correct if ` T : (P, ∅) for
some P.

Example 4.2.6. Assuming A = {a, b, c, d} Ψ = {a : ta, b : tb, c : tc, d : td}
Rb = {tc} Rc = {ta} Ed = {tb, tc} Ra = Rd = Ea = Eb = Ec = ∅ and using
the rules in Figure 4.1, the terms in lines (∗) and (∗∗) of Example 2.2.8 have
type ({ta, td}, ∅), so they are correct terms. However, the term in line (∗∗∗),
does not have a type, since the element b is in the same compartment of the
element d, but the basic type of b is in the set of the elements excluded by the
presence of the basic type of d.

54

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

Rules such that the left-hand-side and the right-hand-side patterns have
the same type do not change the type of terms to which they are applied.

Definition 4.2.7 (∆-safe rules). A rewrite rule P1 7→ P2 is ∆-safe if ∆ `
P1 : (P, R) and ∆ ` P2 : (P, R) for some (P, R).

When we apply a ∆-safe rule to a term we need to choose an instantiation
which agrees with ∆, i.e. σ must replace the variables in the domain of ∆ as
prescribed by ∆, as seen in Definition 3.3.1. More formally:

Definition 4.2.8. An instantiation σ agrees with a basis ∆ (notation σ ∈
Σ∆) if χ : (P, R) ∈ ∆ implies ` σ(χ) : (P, R).

Agreement between substitutions and basis assures type preservation, as
proved in the following lemma.

Lemma 4.2.9. If σ ∈ Σ∆, then ` Pσ : (P, R) if and only if ∆ ` P : (P, R).

Proof. (⇐) By induction on ∆ ` P : (P, R). Consider the last applied rule.

• If the rule is (Tvar), the proof follows from σ ∈ Σ∆. For rules
(Teps), (Tel) the fact that P is a term implies that Pσ = P and,
moreover, it is typable from the empty environment.

• Rule (Tseq). In this case P = SP ·SP ′, (P, R) = (P′′, R′′) t (P′, R′),
∆ ` SP : (P′′, R′′), ∆ ` SP ′ : (P′, R′) and (P′′, R′′) ./ (P′, R′). By
induction hypotheses, ` SP σ : (P′′, R′′) and ` SP ′ σ : (P′, R′).
Therefore, since SP σ ·SP ′ σ = (SP ·SP ′)σ, applying rule (Tseq)
we conclude ` (SP ·SP ′)σ : (P, R).

• For rules (Tpar), (Tcomp) the proof is similar.

(⇒) By induction on P .

• If P = χ, the proof follows from σ ∈ Σ∆. If P = ε, or P = a, by
weakening.

• Let P be SP ·SP ′. Since (SP ·SP ′)σ = SP σ ·SP ′ σ, the fact
that ` (SP ·SP ′)σ : (P, R) implies that the last applied rule must
be (Tseq). Therefore, (P, R) = (P′′, R′′) t (P′, R′), (P′′, R′′) ./ (P′, R′),
` SP σ : (P′′, R′′), and ` SP ′ σ : (P′, R′). By induction hypothesis
on SP and SP ′ we get ∆ ` SP : (P′′, R′′), and ∆ ` SP ′ : (P′, R′).
Applying rule (Tseq) we conclude ∆ ` SP ·SP ′ : (P, R) t (P′, R′).

55

4.2 Type Discipline

• If P = P ′ | P ′′ or P = (SP)	 cP ′ the proof is similar.

Since ∆-safe rules do not modify the type of a term, they cannot create or
delete elements in the term. Moreover, also movements of elements between
membranes are very limited.

Example 4.2.10. Assuming the sets in Example 4.2.6 and the basis
∆ = {x̃ : ({tb, tc}, ∅), Y : (∅, ∅)}

the rule in Example 2.2.5 is a ∆-safe rule, because the left and the right side
of the rule have the same type:
∆ ` (a · x̃)	 c (b | Y) : ({ta, tb, tc}, ∅) ∆ ` b | (a · x̃)	 cY : ({ta, tb, tc}, ∅)

On the other side, using the basis
∆′ = {x̃ : (∅, ∅), Y : ({ta}, ∅)}

the same rule is not a ∆′-safe rule, because left-hand-side and right-hand-side
of the rule do not have the same type:

∆′ ` (a · x̃)	 c (b | Y) : ({ta}, ∅) ∆′ ` b | (a · x̃)	 cY : ({ta, tb}, {tc})

In order to allow the application of rules that may introduce/remove/-
move elements preserving safety, we introduce a restriction on rules based on
the context of application rather than, as for ∆-safety, the type of patterns
involved in the rule. To do this, we first characterize evaluation contexts by
the types of terms that may fill their hole, and then rules by the types of
terms that their application produces.

Definition 4.2.11 (Typed Holes). Given an evaluation context E, and a
well-formed type (P, R), the type (P, R) is OK for the context E if X : (P, R) `
E[X] : (P′, ∅) for some P′.

The above notion guarantees that filling an evaluation context with a
term whose type is OK for the context we obtain a correct term: note that
there may be more than one type (P, R) such that (P, R) is OK for the context
E.

We can classify reduction rules according to the types we can derive for
the right hand sides of the rules.

Definition 4.2.12 (∆-(P, R)-safe rules). A rewrite rule P1 7→ P2 is ∆-
(P, R)-safe if ∆ ` P2 : (P, R).

56

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

To ensure correctness, a rule can be applied to a typed term only if the
instance of the pattern on its right-hand-side has a type that is OK for the
context. Note that, contrarily to ∆-safe rules, this kind of rules can create
or delete elements. On the other hand, at every application of this kind of
rules we must check if the type of its right-hand-side is OK for the context.

Example 4.2.13. Assuming the sets in Example 4.2.6 and the basis
∆ = {x̃ : (∅, ∅), Y : (∅, ∅)}

the rule in Example 2.2.5 is ∆-({ta, tb}, {tc})-safe, because its right side has
type ({ta, tb}, {tc}).
Let E1 be the evaluation context (a · c) | �, the type ({ta, tb}, {tc}) is OK
for E1, since

X : ({ta, tb}, {tc}) ` E1[X] : ({ta, tb, tc}, ∅)
and so we can apply the rule in Example 2.2.5.

Instead, the type ({ta, tb}, ∅) is not OK for the context E2 = a | �, since
X : ({ta, tb}, ∅) ` E2[X] : ({ta, tb}, {tc})

and so we cannot apply the rule in Example 2.2.5.

Since both ∆-safe and ∆-(P, R)-safe rules preserve correctness, our seman-
tics uses both.

Definition 4.2.14 (Typed Semantics). Given a finite set of rewrite rules
R, the typed semantics of CLS is the least relation closed with respect to ≡
satisfying the following (sets of) rules:

< = P1 7→ P2 ∈ R is a ∆-safe rule P1σ 6≡ ε σ ∈ Σ∆ E ∈ E
(<-∆)

E[P1σ] =⇒ E[P2σ]

< = P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ε
σ ∈ Σ∆ E ∈ E (P, R) is OK for E

(<-∆-(P, R))
E[P1σ] =⇒ E[P2σ]

Reduction preserves correctness, as proved in the following theorem.

Theorem 4.2.15 (Subject Reduction). If ` T : (P, ∅) and T =⇒ T ′, then
` T ′ : (P′, ∅) for some P′.

Proof. We analyze the two sets of rules of the semantics separately. Let
< = P1 7→ P2.

57

4.2 Type Discipline

∆(i) type of P1σ type of P2σ type of E[P2σ]
x̃ : ({tb, tc}, {ta}) Y : (∅, ∅) ({ta, tb, tc}, ∅) ({ta, tb, tc}, ∅) ({ta, td}, ∅)

x̃ : ({tc}, {ta}) Y : ({ta, tb, tc}, ∅) ({ta, tc}, ∅) ({ta, tb, tc}, ∅) ({ta, td}, ∅)
x̃ : (∅, ∅) Y : ({ta, tc}, ∅) ({ta}, ∅) ({ta, tb}, ∅) —

Figure 4.2: Basis and Typings of Example 4.2.16

Rules (<-∆) From Definition 4.2.14, T = E[P1σ] and T ′ = E[P2σ] and
σ ∈ Σ∆. By hypothesis ` E[P1σ] : (P, ∅). Therefore, Lemma 4.2.4.(1)
implies ` P1σ : (P′, R′) for some (P′, R′), and from Lemma 4.2.9 we derive
∆ ` P1 : (P′, R′). By Definition 4.2.7, we get that ∆ ` P2 : (P′, R′).
Applying Lemma 4.2.9, we derive that ` P2σ : (P′, R′). Finally, from
Lemma 4.2.4.(3) we obtain ` E[P2σ] : (P, ∅).

Rules (<-∆-(P, R)) From Definition 4.2.12, we have that ∆ ` P2 : (P, R).
Lemma 4.2.9 and σ ∈ Σ∆ imply that ` P2σ : (P, R). Since, from
Definition 4.2.14, (P, R) is OK for E, we get that X : (P, R) ` E[X] :
(P′, ∅) for some P′. Therefore, by Lemma 4.2.4.(3) we conclude that
` E[P2σ] : (P′, ∅).

Example 4.2.16. Using the sets in Example 4.2.6 we can study the behavior
of the term in Example 2.2.8. That is the evolution of the initial term due
to the application of the (<-∆) and (<-∆-(P, R)) rules where < = P1 7→ P2,
with

• P1 = (a · x̃)	 c (b | Y), and

• P2 = b | (a · x̃)	 cY
and ∆(1) is ∆ of the first line in Fig. 4.2, etc. Rule P1 7→ P2 is a ∆(1)-
safe rule, since ∆(1) ` P1 : ({ta, tb, tc}, ∅), and ∆(1) ` P2 : ({ta, tb, tc}, ∅).
Therefore, applying rule (<-∆) we get

d | (a)	 c ((a · c)	 c ((a · b · c)	 c (b))) =⇒
d | (a)	 c ((a · c)	 c (b | (a · b · c)	 c ε))

the reduction in line (∗) of Example 4.2.6.
The rule P1 7→ P2 is not a ∆(2)-safe rule, since ∆(2) ` P1 : ({ta, tc}, ∅),

and ∆(2) ` P2 : ({ta, tb, tc}, ∅). However, P1 7→ P2 is a ∆(2)-({ta, tb, tc}, ∅)-
safe rule and the evaluation context of the reduction E(2), in the second line
of Fig. 2.2, is OK for ({ta, tb, tc}, ∅). So, applying rule (<-∆-(P, R)) we get

58

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

d | (a)	 c ((a · c)	 c (b | (a · b · c)	 c ε)) =⇒
d | (a)	 c (b | (a · c)	 c ((a · b · c)	 c ε))

the reduction in line (∗∗) of Example 4.2.6.
Finally, for the third reduction neither of the conditions holds.

• Firstly, P1 7→ P2 is not ∆(3)-safe, since ∆(3) ` P1 : ({ta, tc}, ∅) and
∆(3) ` P2 : ({ta, tb}, {tc}).

• Secondly, even though P1 7→ P2 is ∆(3)-({ta, tb}, {tc})-safe, the context
E(3) = d | � is not OK for ({ta, tb}, {tc}).

Indeed the term in line (∗ ∗ ∗) of Example 4.2.6 cannot be typed.

It is possible to prove that given < = P1 7→ P2 if the requirements for
applying rule (<-∆) are satisfied, then also the requirements for applying
rule (<-∆-(P, R)) are satisfied.

Theorem 4.2.17. If P1 7→ P2 is a ∆-safe rule and P1σ 6≡ ε and σ ∈ Σ∆ and
E ∈ E and ` E[P1σ] : (P′, ∅), then there is a type (P, R) OK for E such that
P1 7→ P2 is a ∆-(P, R)-safe rule.

Proof. From the hypothesis that P1 7→ P2 is a ∆-safe rule, and Definition
4.2.7 we have that ∆ ` P1 : (P, R), and ∆ ` P2 : (P, R). Therefore, from
Definition 4.2.12, P1 7→ P2 is a ∆-(P, R)-safe rule. From σ ∈ Σ∆, ∆ `
P1 : (P, R) and Lemma 4.2.9 we derive that ` P1σ : (P, R). The hypothesis
` E[P1σ] : (P′, ∅) and Lemma 4.2.4.(2) imply that X : (P, R) ` E[X] : (P′, ∅),
and so (P, R) is OK for E.

Given a set of rewrite rules R, the previous theorem proves that if a
term is reducible with the typed semantics whose reductions use only (<-∆)
rules (< ∈ R), then the term is also reducible with the typed semantics
whose reductions use only (<-∆-(P, R)) rules (< ∈ R). Example 4.2.16 shows
that the vice versa is not true. Moreover, a term reducible with the typed
semantics whose reductions use both sets of rules (<-∆) and (<-∆-(P, R))
is also reducible with the typed semantics whose reductions use only rules
(<-∆-(P, R)). The advantage to have both sets of rules is that checking the
applicability of a rule < = P1 7→ P2 to a well-typed term using rules (<-∆)
is more efficient than using (<-∆-(P, R)) rules. In fact, for both kinds of
rules, after having derived the substitution σ ∈ Σ∆ from the matching of
the pattern P1 with the term, we need to derive ∆ ` P1σ : (P1, R1), and

59

4.3 Type Inference

∆ ` P2σ : (P2, R2). Afterwards, for rules (<-∆) we have simply to check if
P2 σ has the same type as P1 σ, whereas for rules (<-∆-(P, R)), in addition
to find the type of P2 σ, we have to check whether this type is OK for the
evolution context, and so we have to derive the type of the context. Taking
advantage from these considerations, in the following section we will show
how to use type inference to provide an algorithm for the typed semantics of
Definition 4.2.14.

4.3 Type Inference

The definition of typed semantics (Definition 4.2.14) is not effective, since
we do not know how to choose ∆ for (<-∆) rules and ∆, P, R for (<-∆-(P, R))
rules. In the present section we define inference rules for principal typing [67]
in order to derive which rules are ∆-safe and which ones are ∆-(P, R)-safe,
where the choices of ∆, P, R are guided by the term we want to reduce. This
will allow us to get an algorithm for checking the applicability of reduction
rules to typed terms preserving typing.

We convene that for each variable x ∈ X there is an e-type variable ηx
ranging over basic types, and for each variable ρ ∈ T V ∪ SV there are two
variables πρ, φρ (called p-type variable and r-type variable) ranging over sets
of basic types. Moreover we convene that Π ranges over formal unions and
differences of sets of basic types, e-type variables and p-type variables, and
Φ ranges over formal unions and differences of sets of basic types and r-type
variables. We denote by µ a generic p-type, r-type or e-type variable.

A basis scheme Θ is a mapping from atomic variables to their e-type
variables, and from sequence and term variables to pairs of their p-type
variables and r-type variables:

Θ ::= ∅
∣∣ Θ, x : ηx

∣∣ Θ, ρ : (πρ, φρ).

The rules for inferring principal typings use judgments of the shape:

` P : Θ; (Π,Φ); Ξ

where Θ is the principal basis in which P is well formed, (Π,Φ) is the principal
type of P , and Ξ is the set of constraints that should be satisfied. Figure 4.3
gives these inference rules.

60

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

` ε : ∅; (∅, ∅); ∅ (Reps)
a : t ∈ Ψ

(Rel)
` a : ∅; ({t}, Rt); ∅

` x : {x : ({ηx}, Rηx)}; ({ηx}, Rηx); ∅ (Rvar1)

` ρ : {ρ : (πρ, φρ)}; (πρ, φρ); ∅ (Rvar2)

` SP : Θ; (Π,Φ); Ξ ` SP ′ : Θ′; (Π′,Φ′); Ξ′

(Rseq)
` SP ·SP ′ : Θ ∪Θ′; (Π,Φ) t (Π′,Φ′); Ξ ∪ Ξ′ ∪ {(Π,Φ) ./ (Π′,Φ′)}

` P : Θ; (Π,Φ); Ξ ` P ′ : Θ′; (Π′,Φ′); Ξ′

(Rpar)
` P | P ′ : Θ ∪Θ′; (Π,Φ) t (Π′,Φ′); Ξ ∪ Ξ′ ∪ {(Π,Φ) ./ (Π′,Φ′)}

` SP : Θ; (Π,Φ); Ξ ` P : Θ′; (Π′,Φ′); Ξ′

(Rcomp)
` (SP)	 cP : Θ ∪Θ′; (Π,Φ \ Π′); Ξ ∪ Ξ′ ∪ {(Π,Φ) ./ (Π′,Φ′),Φ′ ⊆ Π}

Figure 4.3: Inference Rules

Example 4.3.1. We can use the inference rules in Figure 4.3 to infer the
types of the patterns of the rule in Example 2.2.5, where, again, we assume
the basic types of Example 4.2.6, obtaining

` P1 : Θ; ({ta} ∪ πx̃, φx̃ \ ({tb} ∪ πY)); Ξ1

` P2 : Θ; ({ta, tb} ∪ πx̃, {tc} ∪ (φx̃ \ πY)); Ξ2

where

Θ = { x̃ : (πx̃, φx̃), X : (πY , φY) }
Ξ1 = { ({ta}, ∅) ./ (πx̃, φx̃), ({ta} ∪ πx̃, φx̃) ./ ({tb} ∪ πY , {tc} ∪ φY),

({tb}, {tc}) ./ (πY , φY), {tc} ∪ φY ⊆ {ta} ∪ πx̃ }
Ξ2 = { ({ta}, ∅) ./ (πx̃, φx̃), ({ta} ∪ πx̃, φx̃) ./ (πY , φY),

φY ⊆ {ta} ∪ πx̃, ({tb}, {tc}) ./ ({ta} ∪ πx̃, φx̃ \ πY) }

Soundness and completeness of our inference rules can be stated as usual.
A type mapping maps e-type variables to basic types, p-type variables and
r-type variables to sets of basic types. A type mapping m satisfies a set of
constraints Ξ if all constraints in m(Ξ) are satisfied.

Theorem 4.3.2 (Soundness of Type Inference). If ` P : Θ; (Π,Φ); Ξ
and m is a type mapping which satisfies Ξ, then m(Θ) ` P : (m(Π),m(Φ)).

61

4.3 Type Inference

Proof. By induction on derivations, and by cases on the last applied rule.

• For rules (Reps), (Rel), (Rvar1), and (Rvar2) the result is trivial.

• Rule (Rseq). In this case the conclusion of the rule is ` SP ·SP ′ : Θ ∪
Θ′; (Π,Φ)t(Π′,Φ′); Ξ∪Ξ′∪{(Π,Φ) ./ (Π′,Φ′)}, and the assumptions are
` SP : Θ; (Π,Φ); Ξ and ` SP ′ : Θ′; (Π′,Φ′); Ξ′. Since m satisfies Ξ and
Ξ′, by induction hypothesis, and weakening, we derive that m(Θ∪Θ′) `
SP : (m(Π),m(Φ)) and m(Θ ∪ Θ′) ` SP ′ : (m(Π′),m(Φ′)). Moreover,
since m satisfies {(Π,Φ) ./ (Π′,Φ′)}, we have that (m(Π),m(Φ)) ./
(m(Π′),m(Φ′)). So rule (Tseq) can be applied, and m(Θ ∪ Θ′) ` SP ·
SP ′ : (m(P),m(R)) t (m(P′),m(R′)).

• For rules (Rpar), and (Rcomp) the result can be proved like for rule
(Rseq).

Theorem 4.3.3 (Completeness of Type Inference). If ∆ ` P : (P, R),
then ` P : Θ; (Π,Φ); Ξ for some Θ, (Π,Φ), Ξ and there is a type mapping m
that satisfies Ξ and such that ∆ ⊇ m(Θ), P = m(Π), R = m(Φ).

Proof. By induction on the derivation of ∆ ` P : (P, R).

• If the last rule of the derivation is (Teps), (Tel), or (Tvar) the result is
obvious. Note that, for (Tvar) in the inference we distinguish the case
of element variables (from sequence or term variables).

• Rule (Tseq). The conclusion of the rule is ∆ ` SP ·SP ′ : (P, R)t (P′, R′),
and the assumptions are ∆ ` SP : (P, R), ∆ ` SP ′ : (P′, R′) and
the condition (P, R) ./ (P′, R′). By induction hypothesis, there are Θ,
Π, Φ, Ξ, Θ′, Π′, Φ′, Ξ′ such that ` SP : Θ; (Π,Φ); Ξ and ` SP ′ :
Θ′; (Π′,Φ′); Ξ′. These are the assumptions of rule (Rseq), whose con-
clusion is ` SP ·SP ′ : Θ ∪ Θ′; (Π,Φ) t (Π′,Φ′); Ξ ∪ Ξ′ ∪ {(Π,Φ) ./
(Π′,Φ′)}. Moreover, by induction there is a type mapping m′ satisfy-
ing Ξ such that ∆ ⊇ m′(Θ), P = m′(Π) and R = m′(Φ), and there is
a type mapping m′′ satisfying Ξ′ such that ∆ ⊇ m′′(Θ′), P′ = m′′(Π′)
and R′ = m′′(Φ′). Therefore, we derive ∆ ⊇ m′(Θ) ∪ m′′(Θ′) and
(P, R) t (P′, R′) = (m′(Π),m′(Φ)) t (m′′(Π′),m′′(Φ′)). Since the basis
m′(Θ) and m′′(Θ′) are both subsets of the same basis ∆, then for all the
(e-type, p-type or r-type) variables µ such that µ ∈ dom(m′)∩dom(m′′)

62

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

we get m′(µ) = m′′(µ). Therefore the mapping m

m(µ) =

{
m′(µ) if µ ∈ dom(m′)
m′′(µ) if µ ∈ dom(m′′)

is well defined.
Moreover, since m satisfies Ξ, Ξ′ and (Π,Φ) ./ (Π′,Φ′), then m satisfies
also all the constraints of the conclusion of the rule (Rseq).

• If the last rule is (Tpar) or (Tcomp) the proof is similar.

Now, we put our inference rules at work in order to decide the applicability
of typed reduction rules, for both ∆-safe and ∆-(P, R)-safe rules.

In order to decide applicability of ∆-safe rules, we characterize them.

Lemma 4.3.4 (Characterization of ∆-safe rules). A rule P1 7→ P2 is a
∆-safe rule if and only if the type mapping m defined by

1. m(ηx) = t if ∆(x) = ({t}, Rt)

2. m(πρ) = P′ if ∆(ρ) = (P′, R′)

3. m(φρ) = R′ if ∆(ρ) = (P′, R′)

satisfies the set of constraints Ξ1 ∪ Ξ2 ∪ {Π1 = Π2} ∪ {Φ1 = Φ2}, where
` P1 : Θ1; (Π1,Φ1); Ξ1 and ` P2 : Θ2; (Π2,Φ2); Ξ2.

Proof. (⇐) Since ` P1 : Θ1; (Π1,Φ1); Ξ1, ` P2 : Θ2; (Π2,Φ2); Ξ2 and m
satisfies Ξ1 and Ξ2, applying Theorem 4.3.2 we derive m(Θ1) ` P1 :
(m(Π1),m(Φ1)), and m(Θ2) ` P2 : (m(Π2),m(Φ2)). From the defini-
tion of m, we have that m(Θ2) ⊆ ∆ and m(Θ2) ⊆ ∆, and by weakening
we derive that ∆ ` P1 : (m(Π1),m(Φ1)) and ∆ ` P2 : (m(Π2),m(Φ2)).
Moreover, from the fact that m satisfies {Π1 = Π2} ∪ {Φ1 = Φ2}, we
have that m(Π1) = m(Π2) = P and m(Φ1) = m(Φ2) = R. Therefore,
∆ ` P1 : (P, R) and ∆ ` P2 : (P, R), and P1 7→ P2 is a ∆-safe rule.

(⇒) Since P1 7→ P2 is a ∆-safe rule, we have that ∆ ` P1 : (P, R) and
∆ ` P2 : (P, R). From Theorem 4.3.3, applied to ∆ ` P1 : (P, R), we
derive that ` P1 : Θ1; (Π1,Φ1); Ξ1 and there is a type mapping m′ sat-
isfying Ξ1 such that ∆ ⊇ m′(Θ1), P = m′(Π1), R = m′(Φ1). Applying
Theorem 4.3.3 to ∆ ` P2 : (P, R) we derive that ` P2 : Θ2; (Π2,Φ2); Ξ2

63

4.3 Type Inference

and there is a type mapping m′′ satisfying Ξ2 such that ∆ ⊇ m′′(Θ2),
P = m′′(Π2), R = m′′(Φ2). Since the basis m′(Θ1) and m′′(Θ2) are both
subsets of ∆, then, the mapping m defined by

m(µ) =

{
m′(µ) if µ ∈ dom(m′)
m′′(µ) if µ ∈ dom(m′′)

is well defined. Moreover, m satisfies Ξ1 ∪ Ξ2, and since m′(Π1) = P =
m′′(Π2), m′(Φ1) = R = m′′(Φ2), then m also satisfies {Π1 = Π2}∪{Φ1 =
Φ2}.

Example 4.3.5. Using Lemma 4.3.4, we can see that the constraints making
∆-safe the rule in Example 2.2.5 are

{ta} ∪ πx̃ = {ta, tb} ∪ πx̃ φx̃ \ ({tb} ∪ πx̃) = {tc} ∪ (φx̃ \ πY)
plus the constraints in the sets Ξ1 and Ξ2 of Example 4.3.1.

In order to decide applicability of ∆-(P, R)-safe rules, we characterize the
∆-(P, R)-safe rules and the OK relation.

Lemma 4.3.6 (Characterization of ∆-(P, R)-safe rules). A rule P1 7→ P2

is ∆-(P, R)-safe if and only if the type mapping m defined by

1. m(ηx) = t if ∆(x) = ({t}, Rt),

2. m(πρ) = P′ if ∆(ρ) = (P′, R′),

3. m(φρ) = R′ if ∆(ρ) = (P′, R′),

satisfies the set of constraints Ξ2∪{Π2 = P,Φ2 = R}, where ` P2 : Θ2; (Π2,Φ2); Ξ2.

Proof. (⇐) Let ` P2 : Θ2; (Π2,Φ2); Ξ2 and m satisfies Ξ2∪{Π2 = P,Φ2 = R}.
From Theorem 4.3.2 we derive that m(Θ2) ` P2 : (P, R). By definition
of m we get m(Θ2) = ∆. Therefore ∆ ` P2 : (P, R), and P1 7→ P2 is a
∆-(P, R)-safe rule.

(⇒) Let P1 7→ P2 be a ∆-(P, R)-safe rule, then ∆ ` P2 : (P, R). From Theorem
4.3.3, we have that ` P2 : Θ2; (Π2,Φ2); Ξ2, for some Θ2,Π2,Φ2,Ξ2, and
there is a type mapping m′ satisfying Ξ such that ∆ ⊇ m′(Θ2), P =
m′(Π2), and R = m′(Φ2). Therefore m′ satisfies Ξ2 ∪ {Π2 = P,Φ2 = R}.
From definition of m, we get m(Θ2) = ∆, and since ∆ ⊇ m′(Θ2), also
m satisfies Ξ2 ∪ {Π2 = P,Φ2 = R}.

64

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

About the OK relation, it is not necessary to consider the whole context,
but only the part of the context which influences the typing of the hole.
The key observation is that the typing of a term inside two nested looping
sequences does not depend on the typing of the terms outside the outermost
looping sequence. We call core of the evaluation context the subterm of the
context including the hole and the part of the context affecting the type of
the hole. The following definition formalizes this notion.

Definition 4.3.7. The core of the evaluation context E (notation core(E))
is defined by:

• core(E) = E if E ≡ � | T1 or E ≡ (S1)	 c (� | T1) | T2;

• core(E) = E2 if E = E1[E2] where E2 ≡ (S2)	 c ((S1)	 c (� | T1) | T2).

Remark that core is unambiguously defined, since every evaluation con-
text can be split in an unique way into one of the three shapes of the previous
definition.

Lemma 4.3.8 (Characterization of OK Relation). Let the evaluation
context E be such that ` E[T] : (P0, ∅) for some T, P0. A type (P, R) is OK
for E if and only if the type mapping m defined by

1. m(πX) = P,

2. m(φX) = R,

satisfies the set of constraints

Ξ ∪ {Φ = ∅ if πX or φX occurs in Φ},

where ` core(E)[X] : {X : (πX , φX)}; (Π,Φ); Ξ.

Proof. (⇐) Lemma 4.2.4.(1) and ` E[T] : (P0, ∅) imply that all subterms
of core(E)[X] are typable, i.e. that there are P1, R1, P

′
1, R
′
1, P2, R2, P

′
2, R
′
2

such that ` T1 : (P1, R1), ` S1 : (P′1, R
′
1), ` T2 : (P2, R2), ` S2 : (P′2, R

′
2)

in the last case of the definition of core(E)[X], and suitable subsets of
these typing judgments in the other two cases.

By Definition 4.3.7 we have the following cases.

• E = core(E) and

– either core(E) = � | T1 and Π = πX ∪ P1 and Φ = φX ∪ R1,

65

4.3 Type Inference

– or core(E) = (S1)	 c (� | T1) | T2 and Π = P′1 ∪ P2 and
Φ = (R′1 ∪ R2) \ (πX ∪ P1).

Since m satisfies {Φ = ∅ if πX or φX occurs in Φ}, then m(Φ) =
∅. From Theorem 4.3.2, since ` core(E)[X] : {X : (πX , φX)}; (Π,Φ); Ξ
and m satisfies Ξ, we derive that X : (P, R) ` core(E)[X] :
(m(Π), ∅). Moreover, since E[X] = core(E)[X], we have that
X : (P, R) ` E[X] : (m(Π), ∅). Therefore, the type (P, R) is OK for
the context E.

• core(E) = (S2)	 c ((S1)	 c (� | T1) | T2) and Π = P′2 and Φ =
R′2 \ (P′1 ∪ P2).

From ` E[T] : (P0, ∅) by Lemma 4.2.4.(1) and .(2) we get X :
(P′, R′) ` core(E)[X] : (P′′, R′′) for some P′, R′, P′′, R′′. This implies
by the Completeness Theorem (Theorem 4.3.3) that there is a
mapping m′ such that m′(P′2) = P′′ and m′(R′2 \ (P′1 ∪ P2)) = R′′.
Since P′2 and R′2 \ (P′1∪P2) do not contain variables, we get P′2 = P′′

and R′2 \ (P′1 ∪ P2) = R′′, independently from the types assumed
for the variable X. This implies by Lemma 4.2.4.(3) and .(2)
X : (P, R) ` E[X] : (P0, ∅), so we conclude that (P, R) is OK for
the context E.

(⇒) By Definition 4.2.11, since (P, R) is OK for E, then X : (P, R) `
E[X] : (P′, ∅) for some P′. Theorem 4.3.3 implies that ` E[X] :
Θ′; (Π′,Φ′); Ξ′ and there is a type mapping m that satisfies Ξ′ and
such that {X : (P, R)} ⊇ m(Θ′), m(Π′) = P, m(Φ′) = ∅. By
definition Θ′ = {X : (πX , φX)}, we get m(πX) = P and m(φX) =
R. Being core(E)[X] a subterm of E[X], by Lemma 4.2.4.(1) we
get X : (P, R) ` core(E)[X] : (P′′, R′) for some P′′, R′. Theorem
4.3.3 implies that ` core(E)[X] : {X : (πX , φX)}; (Π,Φ); Ξ and by
construction Ξ ⊆ Ξ′, so m satisfies also Ξ. If core(E) = E, then
Φ = Φ′, which implies m(Φ) = ∅. Otherwise neither πX nor φX
occurs in Φ.

It is easy to check that if core(E) ≡ (S2)	 c ((S1)	 c (� | T1) | T2), and
` T1 : (P1, R1), ` S1 : (P′1, R

′
1), ` T2 : (P2, R2), ` S2 : (P′2, R

′
2), then to prove

that E is OK we have to verify the following six constraints:

• (πX , φX) ./ (P1, R1)

66

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

• (P′1, R
′
1) ./ ((πX , φX) t (P1, R1))

• ((φX ∪ R1) \ (πX ∪ P1)) ⊆ P′1

• (P′1, R
′
1 \ (πX ∪ P1)) ./ (P2, R2)

• (P′2, R
′
2) ./ ((P′1, R

′
1 \ (πX ∪ P1)) t (P2, R2))

• (((R′1 \ (πX ∪ P1)) ∪ R2) \ (P′1 ∪ P2)) ⊆ P′2.

The set of constraints is smaller when the core context has one of the simpler
shapes.

Example 4.3.9. Using Lemma 4.3.8, the constraints making the type asso-
ciated with the p-type and r-type variable X OK for the contexts in Example
2.2.8 are:

(A) ({ta, tc}, ∅) ./ (πX , φX) φX ⊆ {ta, tc}
(B) ({ta}, ∅) ./ (πX , φX) φX ⊆ {ta}
(C) ({td}, ∅) ./ (πX , φX) φX = ∅.

The previous lemmas imply the following theorem asserting the condition
of applicability of the rewrite rules.

Theorem 4.3.10 (Applicability of rewrite rules). Let

` P1 : Θ1; (Π1,Φ1); Ξ1 and ` P2 : Θ2; (Π2,Φ2); Ξ2 and
` core(E)[X] : {X : (πX , φX)}; (ΠE,ΦE); ΞE and P1σ 6≡ ε.

Then the rule P1 7→ P2 can be applied to the term E[P1σ] such that ` E[P1σ] :
(P0, ∅) (for some P0) if and only if the type mapping m defined by

1. m(ηx) = t if σ(x) : t ∈ Ψ,

2. m(πρ) = P′ if ` σ(ρ) : (P′, R′),

3. m(φρ) = R′ if ` σ(ρ) : (P′, R′),

satisfies

(a) either the set of constraints Ξ1 ∪ Ξ2 ∪ {Π1 = Π2} ∪ {Φ1 = Φ2},

(b) or the set of constraints Ξ2 ∪ ΞE ∪ {Π2 = πX ,Φ2 = φX} ∪ {ΦE = ∅ |
if πX or φX occurs in ΦE}.

67

4.3 Type Inference

Proof. We define the basis ∆ as follows:

x : ({t}, Rt) ∈ ∆ if σ(x) : t ∈ Ψ, and

ρ : (P′, R′) ∈ ∆ if ` σ(ρ) : (P′, R′).

In this way we get that σ ∈ Σ∆ and the type mapping m is such that:

1. m(ηx) = t if and only if x : ({t}, Rt) ∈ ∆

2. m(πρ) = P′ if and only if ρ : (P′, R′) ∈ ∆

3. m(φρ) = R′ if and only if ρ : (P′, R′) ∈ ∆.

Let < = P1 7→P2.

(⇐) If the mapping m satisfies the set of constraints Ξ1 ∪Ξ2 ∪ {Π1 = Π2} ∪
{Φ1 = Φ2}, then by Lemma 4.3.4 the rule P1 7→ P2 is ∆-safe and we
get E[P1σ] =⇒ E[P2σ] by applying rule (<-∆).

If the mapping m satisfies the set of constraints Ξ2 ∪ ΞE ∪ {Π2 =
πX ,Φ2 = φX}∪{ΦE = ∅ | if πX or φX occurs in ΦE}, then by Lemma
4.3.8 the context E is OK for (P, R) and by Lemma 4.3.6 the rule
P1 7→ P2 is ∆-(P, R)-safe; we get E[P1σ] =⇒ E[P2σ] by applying rule
(<-∆-(P, R)).

(⇒) If E[P1σ] =⇒ E[P2σ] by applying rule (<-∆), then the rule P1 7→
P2 is ∆-safe and then the mapping m satisfies the set of constraints
Ξ1 ∪ Ξ2 ∪ {Π1 = Π2} ∪ {Φ1 = Φ2} by Lemma 4.3.4.

If E[P1σ] =⇒ E[P2σ] by applying rule (<-∆-(P, R)), then the rule P1 7→
P2 is ∆-(P, R)-safe and the context E is Ok for (P, R), then the mapping
m satisfies the set of constraints Ξ2∪ΞE∪{Π2 = πX ,Φ2 = φX}∪{ΦE =
∅ | if πX or φX occurs in ΦE} by Lemmas 4.3.8 and 4.3.6.

The mapping m may be easily defined from the derivation of a type for
P1σ, and the checking that m satisfies a set of constraints requires only some
substitutions.

Note that the sets of constraints for typing the left-hand-side and the
right-hand-side of ∆-safe rules, and the right-hand-side of ∆-(P, R)-safe rules,
can be inferred once for all. On the contrary, the set of constraints for typing

68

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

the core context has to be inferred during the application of a ∆-(P, R)-safe
rule. However, as previously remarked, this set of constraints includes at
most six constraints.

Theorem 4.2.17 implies that, during inference, we can firstly check if
the rule is ∆-safe, using the constraints associated with the rule. If these
constraints are not satisfied, we can check whether the rule is a ∆-(P, R)-
safe rule (for some (P, R)), and if the type is OK for the context. We can
summarize the idea in the following algorithm, where ∆ is defined in the
proof of Theorem 4.3.10:

• In the initial phase, for every rule < = P1 7→ P2 ∈ R, we infer ` P1 :
Θ; (Π1,Φ1); Ξ1 and ` P2 : Θ; (Π2,Φ2); Ξ2.

• During the reduction of the well-typed term E[P1 σ] with < = P1 7→ P2,
we firstly check whether the conditions of (<-∆) hold, that is:

1. we check whether the type mapping m, defined by

m(ηx) = t if σ(x) : t ∈ Ψ,

m(πρ) = P′ if ` σ(ρ) : (P′, R′),

m(φρ) = R′ if ` σ(ρ) : (P′, R′),

satisfies Ξ2. If the set of constraints is not satisfied, P2 σ is not well
typed, and neither (<-∆) nor (<-∆-(P, R)) would be applicable, i.e.
E[P1 σ] is not reducible via P1 7→ P2;

2. we check if m satisfies {Π1 = Π2}∪ {Φ1 = Φ2}. If this is the case,
the rule is a ∆-safe rule, and then we can apply (<-∆),

3. otherwise we check whether the conditions of (<-∆-(P, R)) hold,
where
P = m(Π2) and R = m(Φ2); in order to do this

(a) we infer ` core(E)[X] : {X : (πX , φX)}; (ΠE,ΦE); ΞE, and

(b) we check whether m satisfies

ΞE ∪ {Π2 = πX ,Φ2 = φX} ∪ {ΦE =
∅ if πX or φX occurs in ΦE}.

If these constraints are satisfied, the context E is OK for
(P, R), so we can use rule (<-∆-(P, R)), otherwise neither rule
(<-∆) nor (<-∆-(P, R)) is applicable, i.e. E[P1 σ] is not re-
ducible via P1 7→ P2.

69

4.3 Type Inference

πx̃ φx̃ πY φY πX φX
(1) tb, tc ta ∅ ∅ ta, tb, tc ∅
(2) tc ta ta, tb, tc ∅ ta, tb, tc ∅
(3) ∅ ∅ ta ∅ ta, tb tc

Figure 4.4: Type mappings of Example 4.3.11

Note that, since the point 1 is in common with the algorithm for checking the
∆-safeness, the above algorithm only adds the simple constraints in point 2
to the normal algorithm for performing the ∆-(P, R)-safeness of a rule, but if
they are satisfied we do not have to infer the type for the context, the most
complicate point of the algorithm.

Example 4.3.11. We use the algorithm described above on the terms of
Example 4.2.16: the constraints for ∆-safe rules and OK relations for the
contexts are reported in Examples 4.3.5 and 4.3.9, respectively. The type
mappings derived from the instantiation are reported in Fig. 4.4.

(1) The type mapping in line (1) of Fig. 4.4 satisfies

– the constraints in Ξ2 associated with P2 (see Example 4.3.1) and

– the constraints that make the rule a ∆-safe rule (see Example
4.3.5).

(2) The type mapping in line (2) of Fig. 4.4

– satisfies the constraints in Ξ2 associated with P2,

– does not satisfy the constraint {ta}∪πx̃ = {ta, tb}∪πx̃ that make
the rule a ∆-safe rule (see Example 4.3.5) because

{ta, tc} 6= {ta, tb, tc}

– satisfies the set of constraints (B) for the context (see Example
4.3.9), since

(ta, ∅) ./ ({ta, tb, tc}, ∅) ∅ ⊆ {ta}

(3) The type mapping in line (3) of Fig. 4.4

– satisfies the constraints in Ξ2 associated with P2,

70

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

– does not satisfy the constraint {ta}∪πx̃ = {ta, tb}∪πx̃ that make
the rule a ∆-safe rule (see Example 4.3.5) because

{ta} 6= {tb, tc}

– does not satisfy the set of constraints (C) for the context (see
Example 4.3.9), since

({td}, ∅) ./ ({ta, tb}, ∅) does not hold.

4.4 Case Study: Blood Type Compatibility

A blood type is a classification of blood based on the presence or absence
of inherited antigenic substances on the surface of red blood cells: these
antigens are the A antigen and the B antigen. Blood type A contains only
A antigens, blood type B contains only B antigens, blood type AB contains
both, blood type O contains none of them: this classification is called ABO
blood type system.

The immune system will produce antibodies that can specifically bind to a
blood group antigen that is not recognized as self: individuals of blood type A
have Anti-B antibodies, individuals of blood type B have Anti-A antibodies,
individuals of blood type O have both Anti-A and Anti-B antibodies, and
individuals of blood type AB have none of them. These antibodies can bind
to the antigens on the surface of the transfused red blood cells, often leading
to the destruction of the cell: for this reason, it is vital that compatible blood
is selected for transfusions.

Another antigen that refines the classification of blood types is the RhD
antigen: if this antigen is present, the blood type is called positive, else it
is called negative. Unlike the ABO blood classification, the RhD antigen is
immunogenic, meaning that a person who is RhD negative is very likely to
produce Anti-RhD antibodies when exposed to the RhD antigen, but it is
also common for RhD-negative individuals not to have Anti-RhD antibodies.
All these aspects led to the red blood cell compatibility table in Table 4.1.

We study the blood transfusion in a system consisting of a set of closed
tissues. These tissues, containing blood cells and antibodies according to
the rules described above, can join each other and exemplify a transfusion
of different blood types. We model a red blood cell as a looping sequence
containing the element c on the surface and, depending on the blood type,

71

4.4 Case Study: Blood Type Compatibility

Donor
Recipient O- O+ A- A+ B- B+ AB- AB+

O-
√

O+
√ √

A-
√ √

A+
√ √ √ √

B-
√ √

B+
√ √ √ √

AB-
√ √ √ √

AB+
√ √ √ √ √ √ √ √

Table 4.1: Red blood cell compatibilities.

the elements a, b and r as the A antigen, the B antigen and the RhD anti-
gen, respectively. We represent the antibodies as the single elements ā, b̄
and r̄, modeling, respectively, the Anti-A, Anti-B and Anti-RhD antibodies.
Finally, we model a tissue (which can contains the red cells) as a looping
sequence having only the element t on the surface. In order to avoid undesir-
able behaviors using basic CLS, we should must write as many rules as the
different combinations of the different blood types shown in Table 4.1. Using
the typed extension of CLS, according to the antigen and antibodies require-
ments and exclusions, we only create the basic types shown in Table 4.2, and
we use the single rule

(t)	 cX | (t)	 cY 7→ (t)	 c (X | Y)

for modeling transfusion.
Let the system be a set of eight tissues, containing each possible recipient

combination of blood with antibodies:

(t)	 c ((c)	 c ε | ā | b̄ | r̄) | (t)	 c ((c · a)	 c ε | b̄ | r̄) |
(t)	 c ((c · b)	 c ε | ā | r̄) | (t)	 c ((c · r)	 c ε | ā | b̄) |
(t)	 c ((c · a · b)	 c ε | r̄) | (t)	 c ((c · a · r)	 c ε | b̄) |
(t)	 c ((c · b · r)	 c ε | ā) | (t)	 c ((c · a · b · r)	 c ε)

They cannot react with each other, because the antibodies of the ones
exclude the antigens of the others. If in the system arrives a donor, as a
tissue without antibodies, having blood type O-:

(t)	 c ((c)	 c ε),

72

4. A TYPE DISCIPLINE FOR REQUIRED AND EXCLUDED
ELEMENTS

element basic type R set E set
c tc ∅ ∅
a ta tc ∅
b tb tc ∅
r tr tc ∅
ā tā tc ta
b̄ tb̄ tc tb
r̄ tr̄ tc tr
t tt ∅ ∅

Table 4.2: Elements, basic types, R and E sets for red blood cell compatibility.

it can singularly react with each tissue, because it does not have antigens,
whereas if in the system arrives a donor having blood type O+:

(t)	 c ((c · r)	 c ε),
it can singularly react with the tissues that do not contain the Anti-RhD
antibody r̄. As further example, if in the system arrives a donor having
blood type A+:

(t)	 c ((c · a · r)	 c ε),
it can singularly react with each tissue that does not contain Anti-RhD and
Anti-A antibodies r̄ and ā, so tissues containing A+ and AB+ blood types.

4.5 Conclusions

In this chapter we introduce a type system for CLS, used to define a typed
semantics in which the applicability of rules is determined by type conditions
on the applied rules and on the context of application. A type inference
system and an algorithm for performing reductions are also presented.

As seen in Section 4.4, the use of a typed semantic for CLS allows to
transfer the complexity of biological properties from rules to types, and so
to study the behavior of the systems using only simple and general rules:
we focused on disciplines deriving by the requirement/exclusion of certain
elements, even if in nature it is not easy to find elements which completely
exclude or require other elements. Our abstraction, however, allows us to
deal with a simple qualitative model, and to observe some basic properties
of biological systems. A more detailed analysis could also deal with quanti-

73

4.5 Conclusions

ties. In this case, typing is useful in modeling quantitative aspects of CLS
semantics on the line of [11]. In particular, in [39], the authors show a simple
example on how types could be used to model repellency also by quantitative
means, that is slowing down undesired interactions.

As a future work, we plan to investigate type disciplines assuring different
properties for CLS and to apply this approach to other calculi for describing
evolution of biological systems, in particular to P systems.

74

Chapter 5

Enumerated Type Semantics
for Calculus of Looping
Sequences

5.1 Introduction

Homeostasis is the property of a system that regulates its internal environ-
ment and tends to maintain stable conditions that are optimal for survival:
when this equilibrium is disturbed, built-in regulatory devices respond in
order to restore the balance. Different living organisms employ homeostatic
mechanisms to maintain some conditions in specific ranges: the human body,
like in all the warm-blooded animals, maintain a near-constant body temper-
ature using mechanisms such as vasodilation and vasoconstriction; microor-
ganisms maintain the iron presence above a minimum level to maintain life
but up to a maximum level to avoid iron toxicity. Biological molecules are
usually made up of a certain number of different subcomponents: proteins
are composed by different domains, some proteins are multimers, ribosomes
are a mixture of RNA and proteins, etc. Monomers are molecules that may
become chemically bounded to other monomers to form a polymer: for exam-
ple, antibodies can be monomers, dimers or pentamers, the Triose phosphate
isomerase, an enzyme essential for efficient energy production, is a dimer
of identical subunits, and the Glutamate dehydrogenase 1, a mitochondrial
matrix enzyme with a key role in the nitrogen and glutamate metabolism,
is a hexamer. The type discipline in Chapter 4, that checks the simple pres-

75

5.2 Type Discipline

ence or absence of molecules, cannot manage the case in which the number
of certain molecules must be kept in a given interval, like for homeostasis
or polymers. For this reason, in this Chapter we present the extension of
the Type Disciplines for Required and Excluded Elements proposed in [18],
where we assume that for each element of our system we can fix the mini-
mum and the maximum number of other elements it requires. We enrich CLS
with a type discipline and typed reductions that guarantee the soundness of
reduction rules with respect to the properties of biological systems deriving
from the minimum and the maximum requested numbers of elements.

5.2 Type Discipline

Let Γ be the set of basic types: As in Section 4.2, we classify elements in
A with basic types, and we use Ψ to denote this classification. Different
elements can have the same basic type, but when there is no ambiguity we
denote the type associated with an element a by ta. We assume the existence
of two functions, mn : Γ × Γ → N and mx : Γ × Γ → N + {∞} for every
ordered pair of basic types (t1, t2). These functions indicate the minimum
and maximum number of elements of basic type t2 that can be present with
an element of basic type t1: the absence of a maximum limit is denoted
by the infinity symbol ∞. For example, mn(ta, tb) = 3 and mx(ta, tb) = 5

means that in the presence of some element of basic type ta the number
of elements of basic type tb must be between 3 and 5. Note that in the
cases mn(t, t) and mx(t, t) we are taking into account the number of other
elements of the same basic type: for example, mn(t, t) = mx(t, t) = 0 means
that an element of type t cannot tolerate any other element of the same
basic type, while mn(t, t) = mx(t, t) = 1 means that an element of type t

requires exactly another one element of the same basic type. For the sake of
clarity, we will write ‘an element a requires n elements b’ if n = mn(ta, tb),
and ‘an element a tolerates m elements b’ if m = mx(ta, tb). As done in
Chapter 4, we consider only local properties, i.e elements influence each other
if they are either present in the same compartment, or one is present in the
looping sequence and the other one is present in the inner compartment of a
containment operator.

The functions mn and mx must satisfy some consistency requirement.

Definition 5.2.1 (Consistent Basic Types). A system composed by a set
of basic types Γ and the functions mn and mx is consistent if:

76

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

1. ∀ t1, t2 ∈ Γ mn(t1, t2) ≤ mx(t1, t2);

2. ∀ t1, t2 ∈ Γ mx(t1, t2) = 0 =⇒ mn(t2, t1) = 0;

3. ∀ t1, t2 ∈ Γ mn(t1, t2) > 0 =⇒ mx(t2, t1) > 0.

The meaning of the conditions stated in Definition 5.2.1 is the following:

1. the minimum number of elements of basic type t2 required by the
elements of basic type t1 must be lower than the maximum number of
elements of the same basic type t2 tolerated by the elements of basic
type t1;

2. if elements of basic type t1 do not tolerate elements of basic type t2,
then the elements of basic type t2 cannot require elements of basic type
t1.

3. if elements of basic type t1 require the presence of a certain number of
elements having basic type t2, then the elements of basic type t2 must
tolerate elements of basic type t1.

Note that intolerance is not symmetric: if elements of basic type t1 cannot
tolerate (i.e. can tolerate 0) elements of basic type t2, it is possible that
elements of a basic type t2 can tolerate elements of basic type t1.

Example 5.2.2. The system
Γ = {ta, tb, tc}

where mn, mx are:

mn ta tb tc
ta 0 0 0
tb 0 0 1
tc 1 0 0

mx ta tb tc
ta ∞ 0 1
tb ∞ ∞ ∞
tc ∞ 1 ∞

is consistent.

In the P/R type discipline, proposed in Chapter 4, each basic type t is
associated with a pair of sets of basic types (Rt, Et), where t 6∈ Rt ∪ Et and
Rt∩Et = ∅, i.e. the presence of elements of basic type t requires the presence
of elements whose basic type belongs to Rt and forbids the presence of ele-
ments whose basic type belongs to Et. We can express the sets R and E of the

77

5.2 Type Discipline

• Multiset: a multiset over a set D is a pair 〈D, f〉, where f : D →
N ∪ {∞} is a function, called multiplicity function.
• Empty multiset: a multiset A = 〈D, fA〉 is the empty multiset, de-

noted by ∅, if ∀ e ∈ D fA(e) = 0.
• Infinite multiset: a multiset A = 〈D, fA〉 is the infinite multiset,

denoted by D∞, if ∀ e ∈ D fA(e) =∞.
• Sub-multiset: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then
A is a sub-multiset of B, denoted A ⊆ B, if ∀ e ∈ D fA(e) ≤ fB(e).
• Sum: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then their

sum, denoted A] B, is the multiset C = 〈D, fC〉 such that ∀ e ∈ D:
fC(e) = fA(e) + fB(e).
• Removal: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then

the removal of multiset B from A, denoted A 	 B, is the multiset
C = 〈D, fC〉 such that ∀ e ∈ D fC(e) = max(fA(e)− fB(e), 0).
• Union: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then their

union, denoted A ∪ B, is the multiset C = 〈D, fC〉 such that ∀ e ∈
D fC(e) = max(fA(e), fB(e)).
• Intersection: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then

their intersection, denoted A∩B, is the multiset C = 〈D, fC〉 such that
∀ e ∈ D fC(e) = min(fA(e), fB(e)).
• We convene that ∀ m ∈ N ∪ {∞}, ∀ n ∈ N
• m ≤ ∞ • m+∞ =∞
• ∞− n =∞ • n−∞ = 0.

Figure 5.1: Multiset Basic Definitions

P/R type discipline by means of the functions mn and mx: given a basic type t,
we have mn(t, t) = 0 and mx(t, t) =∞; for every t′ ∈ Rt we have mn(t, t′) = 1

and mx(t, t′) = ∞; for every t′′ ∈ Et we have mn(t, t′′) = mx(t, t′′) = 0. For
this reason, the present type discipline can be seen a refinement of the P/R
type discipline.

Types are triples (P, L, M) of multisets over the set Γ of basic types, where P
(present-ms) is the multiset of basic types of present elements (the elements
present at the top level compartment of a pattern, i.e. in the outermost
compartment), L (at-least-ms) is the multiset of the basic types still required
by the present elements, and M (at-most-ms) is the multiset of the basic
types still tolerated by the present elements. Some basic definitions about

78

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

multisets, taken from [64] and extended with infinity, are reported in Figure
5.1.
Given a basic type t, we define its down-ms Dt as the multiset 〈Γ, fDt〉, where
fDt(t

′) = mn(t, t′) (for t′ ∈ Γ), and its up-ms Ut as the multiset 〈Γ, fUt〉,
where fUt(t

′) = mx(t, t′) (for t′ ∈ Γ).
A type (P, L, M) is well formed if:

1. the multiset L is a subset of the multiset M, i.e. the multiplicity of each
basic type in L is less or equal to the multiplicity of the same basic type
in M,

2. the multiset L is contained in the union of the down-ms of the types in
P,

3. the sum of the multisets P and M is contained in the intersection of the
up-ms of each basic type in P, taking into account the basic type itself.

More formally:

Definition 5.2.3 (Well-Formed Types). A type (P, L, M) is well formed if
L ⊆ M, L ⊆

⋃
t∈P Dt and P] M ⊆

⋂
t∈P(Ut] {t}).

The first limitation is obvious. The second one is more complex. The
multiplicity of basic type t1 in L must be lower than the multiplicity of
the same basic type in each minimum limit required by the elements in P.
Note that if a basic type in P requires n elements of basic type t1, and a
different basic type in P requires m > n elements of the same basic type
t1, the multiplicity of t1 in L cannot be greater than m, because any lower
number may respect the first constraint, but surely violates the second one:
for this reason, the multiplicity of t1 in L must be lower than the maximum
of the minimum limits. Since all the requirement of a basic type t are
contained into its down-ms Dt, and in multiset theory the maximum between
the multiplicities of multisets is given by the union operator (see Figure 5.1),
then the at-least-ms must be a subset of the union of the down-ms of all the
basic types in P. Finally, let’s explain the third constraint. Since the up-ms
contains the maximum number of basic types still tolerated by the elements
in the present-ms, the sum between P and M must be a subset of Ut, for each t

in P, i.e. the number of elements present and still tolerated cannot overcome
the maximum limit of the element tolerated by each element of the term.

79

5.2 Type Discipline

Since by definition the up-ms of a basic type t does not take into account
the presence of t itself, but P does it, we have to sum to the up-ms of a basic
type t the basic type itself.

In the following we will consider only well-formed types.
Summarizing, the (well-formed) type of a pattern is (P, L, M), where:

• P: the number of elements of a certain basic type which are presents
out of the outermost compartment,

• L: the minimum number of elements of some basic types still required
by the present elements,

• M: the maximum number of elements of basic types still tolerated by
the present elements,

checking that the maximum limit is never exceed and the minimum limit is
reached in every compartment.

Types are assigned to patterns and terms with the typing rules in Figure
5.2, where bases, assigning types to element, term and sequence variables are
defined by:

∆ ::= ∅
∣∣ ∆, x : ({t}, Dt, Ut)

∣∣ ∆, ρ : (P, L, M)

where ρ denotes a sequence or term variable, i.e. ρ ∈ T V ∪ SV . A basis is
well formed if all types in the basis are well formed. Note that the definition
of basis and the typing rules, and also other notions used in the remainder
of the Chapter, are similar to the ones designed for the P/R type discipline
(see Figure 4.1).

The type of the empty sequence, (Teps) rule, has the empty multiset
as present-ms, because an empty sequence does not contain elements, the
empty multiset as at-least-ms and Γ∞ as at-most-ms, because the absence of
elements allows the absence of limits. The type of an element, (Tel) rule, is
composed by its basic type t as present-ms, and the down-ms and up-ms of
t. The type of a variable, (Tvar) rule, is its type in the basis. The type of
a sequence, a parallel composition or a looping sequence is derived from the
types of their two sub-patterns. These sub-patterns must respect an obvious
condition: the present-ms of the former must be a subset of the at-most-ms of
the latter, i.e. the number of present elements in the former must not exceed
the maximum number of the same elements tolerated by the latter, and vice
versa. Note that, on the contrary, it is not necessary to check whether all

80

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

∆ ` ε : (∅, ∅,Γ∞) (Teps)
a : t ∈ Ψ

(Tel)
∆ ` a : ({t}, Dt, Ut)

∆, χ : (P, L, M) ` χ : (P, L, M) (Tvar)

∆ ` SP : (P, L, M) ∆ ` SP ′ : (P′, L′, M′) (P, L, M) ./ (P′, L′, M′)
(Tseq)

∆ ` SP ·SP ′ : (P, L, M) t (P′, L′, M′)

∆ ` P : (P, L, M) ∆ ` P ′ : (P′, L′, M′) (P, L, M) ./ (P′, L′, M′)
(Tpar)

∆ ` P | P ′ : (P, L, M) t (P′, L′, M′)

∆ ` SP : (P, L, M) ∆ ` P : (P′, L′, M′) (P′, L′, M′) v (P, L, M)
(Tcomp)

∆ ` (SP)	 cP : (P, L	 P′, M	 P′)

Figure 5.2: Typing Rules

the minimum requests are reached, because this constraint depends on the
elements in the whole compartment and the looping sequence containing it,
if it exists: therefore this condition is checked only in the typing rule for a
looping sequence.

Now we focus on (Tseq) and (Tpar) rules. The type of the obtained
pattern is, like for the P/R type discipline, the join of the types (P, L, M)
and (P′, L′, M′) of the connected patterns defined as follows. But here the
join operation is different from the one proposed in Definition 4.2.2. The
present-ms of the join type is the sum of the present-ms, P] P′, i.e. the
number of one element in the new type is the sum of the numbers of the
same element in the old types. For getting the at-least-ms of the join type
we remove the present-ms of a type from the at-least-ms of the other one,
obtaining for each type the number of elements required taking into account
the presence of the basic types in the present-ms of the other type, and we
consider the union of these multisets, for the same reason seen before for
the well-formedness of types in Definition 5.2.3. For the at-most-ms of the
join type we do the dual, taking the intersection of the removals, i.e. their
minimum. To sum up:

Definition 5.2.4 (Join of Types). Given two well-formed types (P, L, M)

81

5.2 Type Discipline

and (P′, L′, M′), we define their join (P, L, M) t (P′, L′, M′) by
(P, L, M) t (P′, L′, M′) = (P] P′, (L	 P′) ∪ (L′ 	 P), (M	 P′) ∩ (M′ 	 P)).

The type obtained by join may be not well formed, because

1. its at-least-ms could not be a subset of its at-most-ms,

2. the multiplicity of a certain basic type in a present multiset could exceed
the number of tolerated elements of the other type.

Since we want to restrict to well-formed types, as done in Definition 4.2.3,
we define compatibility between types, that impose both conditions.

Definition 5.2.5 (Type Compatibility). Two well-formed types (P, L, M)
and (P′, L′, M′) are compatible (written (P, L, M) ./ (P′, L′, M′)) if (L	P′)∪ (L′	
P) ⊆ (M	 P′) ∩ (M′ 	 P), P ⊆ M′ and P′ ⊆ M.

Compatibility of two types is a necessary and sufficient condition to get
well-formedness of the join.

Proposition 5.2.6. Let (P, L, M), (P′, L′, M′) be well-formed types: (P, L, M) t
(P′, L′, M′) is well formed if and only if (P, L, M) ./ (P′, L′, M′).

Proof. We have to show that (L	P′)∪ (L′	P) ⊆
⋃

t∈P]P′ Dt and P]P′] [(M	
P′) ∩ (M′ 	 P)] ⊆

⋂
t∈P]P′(Ut] {t}).

Since (P, L, M) and (P′, L′, M′) are well formed by hypothesis, we get L ⊆⋃
t∈P Dt, L

′ ⊆
⋃

t∈P′ Dt, P]M ⊆
⋂

t∈P(Ut]{t}), P′]M′ ⊆
⋂

t∈P′(Ut]{t}). Then
(L	 P′) ∪ (L′ 	 P) ⊆

⋃
t∈P]P′ Dt follows from L ⊆

⋃
t∈P Dt and L′ ⊆

⋃
t∈P′ Dt.

We have P]M = P]M]P′	P′ ⊇ P]P′] [(M	P′)∩(M′	P)] since P′ ⊆ M, which
implies P]P′] [(M	P′)∩(M′	P)] ⊆

⋂
t∈P(Ut]{t}) by P]M ⊆

⋂
t∈P(Ut]{t}).

Similarly we can show P] P′] [(M	 P′) ∩ (M′ 	 P)] ⊆
⋂

t∈P′(Ut] {t}), so we
conclude P] P′] [(M	 P′) ∩ (M′ 	 P)] ⊆

⋂
t∈P]P′(Ut] {t}).

Note that if (L 	 P′) ∪ (L′ 	 P) * (M 	 P′) ∩ (M′ 	 P) the join type is clearly
not well formed. If P * M′ it means that there are basic types t ∈ P, t′ ∈ P′

such that the number of present elements of basic type t is bigger than the
number of elements of basic type t allowed by the elements of basic type t′,
taking into account also the elements of basic type t which belongs to P′ or
possibly to an inner compartment. Therefore the joined type will be not well
formed.

82

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

Finally, we consider the (Tcomp) rule. In the resulting type, the present
elements are only the ones in the looping sequence, because a looping se-
quence makes the elements inside the compartment invisible from outside.
Since the elements in the looping sequence are influenced by the ones inside
the compartment, to obtain the at-least-ms and at-most-ms of its type we
must subtract the elements present in the inner pattern from the at-least-ms
and at-most-ms of the looping sequence.

Definition 5.2.7 (Subtraction of Types). Given two well-formed types
(P, L, M) and (P′, L′, M′), we define their subtraction as (P, L	 P′, M	 P′).

A type obtained by subtraction is always well formed, because we are
taking away the same multiset from the at-least-ms and at-most-ms of a
well-formed type. Since a looping sequence encloses a compartment, we must
assure that all the at-least limits in the inner compartment are reached. To
do so, we require that the present-ms of the looping sequence satisfies all the
requests of the at-least-ms of the inner pattern. As seen for compatibility,
we must also check that the present-ms of a type is a sub-multiset of the
at-most-ms of the other type.

Definition 5.2.8 (Types Satisfaction). Given two well-formed types (P, L, M)
and (P′, L′, M′), (P, L, M) satisfies (P′, L′, M′) (written (P′, L′, M′) v (P, L, M)) if
L′ ⊆ P, P ⊆ M′ and P′ ⊆ M.

It is easy to verify that, using the typing rules in Figure 5.2, from the
empty basis we derive a well-formed type for a term, and from a well-formed
basis we derive a well-formed type for a pattern.

Reduction rules are applied only to terms such that their types are well
formed and the at-least limits are reached also in the outermost compartment,
i.e. their types have the empty multiset as at-least-ms. These terms are
interesting from a biological point of view because, since all the minimum
requests are fulfilled, they represent complete systems. As done for P/R type
discipline in Definition 4.2.5, we call them correct terms:

Definition 5.2.9 (Correct Terms). A term ` T : (P, L, M) is correct if
L = ∅.

For the sake of clarity, in the following examples a multiset A will be
denoted with the set notation by listing the types followed by their multi-
plicity, {t : fA(t) | t ∈ D}, where t1, t2, . . . , tk : m means that the basic

83

5.2 Type Discipline

types t1, t2, . . . , tk have multiplicity m. In the at-most-ms we write only the
basic types having multiplicity 0 or finite, and we do not write the basic types
having multiplicity∞. On the contrary, in present-ms and at-least-ms we do
not write the basic types having multiplicity 0. In this way, we highlight only
the most significant cases: in fact, an infinite multiplicity in a at-most-ms
means no constraint, and the same for a multiplicity of zero in a at-least-ms.

Example 5.2.10. Assuming the set of basic types
Γ = {ta, tb, tc, td}

and a classification which contains
{a : ta, b : tb, c : tc, d : td}

where mn, mx are:

mn ta tb tc td
ta 0 0 1 0
tb 0 0 0 0
tc 2 0 0 0
td 0 0 0 0

mx ta tb tc td
ta ∞ ∞ 1 ∞
tb ∞ ∞ ∞ ∞
tc ∞ 1 ∞ ∞
td ∞ ∞ ∞ ∞

the term
(A) ` (d)	 c (c | a | a | a | a) : ({td : 1}, ∅,Γ∞)

is correct, while the term
` a | (d)	 c (c | a | a | a | a) : ({ta, td : 1}, {tc : 1}, {tc : 1})

is not correct, because the term of a basic type ta requires exactly one element
of basic type tc. Note that the term

a | (d)	 c (c | a)
cannot have a type, because in the inner compartment containing an element
of basic type tc there are less than two elements of basic type ta.
Another untypable term is

a | (d)	 c (c | a | a | b | b)
because in the same compartment or looping sequence containing an element
of basic type tc, there are more than one element of basic type tb.
Finally, the term

a | (d)	 c (a | a | a)
does not have a type, because there are elements of basic type ta without any
element of basic type tc.

In the remaining of the present section we will define our typed semantics,
and show that typed reductions preserve the correctness of terms. First of
all, we need to adapt the Definition 4.2.8 to our type discipline.

84

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

Definition 5.2.11. An instantiation σ agrees with a basis ∆ (notation σ ∈
Σ∆) if χ : (P, L, M) ∈ ∆ implies ` σ(χ) : (P, L, M).

The following Lemma, similar to Lemma 4.2.9 and that can be easily
proved like it by induction on type derivations, will be useful for the Subject
Reduction Theorem:

Lemma 5.2.12. If σ ∈ Σ∆, then ` Pσ : (P, L, M) if and only if ∆ ` P :
(P, L, M).

We are looking for a typed semantics which applied to correct terms
produces only correct terms. Note that, like in Definition 4.2.11, if X :
(P, L, M) ` C[X] : (P′, ∅, M′), then every term obtained filling the hole of this
evaluation context with a term having type (P, L, M) will be correct. This fact
leads us to the following definition:

Definition 5.2.13 (Typed Hole). Given an evaluation context E and a
well-formed type (P, L, M), the type (P, L, M) is OK for the context E if X :
(P, L, M) ` E[X] : (P′, ∅, M′) for some P′, M′.

For rewriting rules, we are only interested in the types of the right-hand-
sides, since they influence the type of the obtained term. For this reason,
we define the ∆-(P, L, M)-safeness for rules, similar to the ∆-(P, R)-safeness of
Definition 4.2.12.

Definition 5.2.14 (∆-(P, L, M)-safe Rules). A rewrite rule P1 7→ P2 is ∆-
(P, L, M)-safe if ∆ ` P2 : (P, L, M).

Example 5.2.15. Assuming the set of basic types and the classification in
Example 5.2.10 and the basis

∆ = {X : ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})}
the rule

(d)	 c (b | X) 7→ b | (d)	 cX
is a ∆-({tb, td : 1}, ∅,Γ∞)-safe rule. In fact we derive

∆ ` b | (d)	 cX : ({tb, td : 1}, ∅,Γ∞).

Using Definitions 5.2.13 and 5.2.14 we derive that if we apply a rule whose
right-hand-side has type (P, L, M), and this type is OK for the context, we
obtain a correct term. For this reason, these definitions are used for the
typed semantics.

85

5.2 Type Discipline

P1 P2 X E

(A) a b — (d)
	 c (c | a | a | a | �)

(B) (d)
	 c (b | X) b | (d)

	 cX c | a | a | a �
(C) a b — b | (d)

	 c (c | a | a | �)

(D) (d)
	 c (b | X) b | (d)

	 cX c | a | a b | �

Figure 5.3: Rules, Instantiations and Contexts of Example 5.2.18

∆ type of P2σ type of E[P2σ]
(A) — ({tb : 1}, ∅,Γ∞) ({td : 1}, ∅,Γ∞)
(B) X : ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0}) ({tb, td : 1}, ∅,Γ∞) ({tb, td : 1}, ∅,Γ∞)
(C) — ({tb : 1}, ∅,Γ∞) ({tb, td : 1}, ∅,Γ∞)
(D) X : ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0}) ({tb, td : 1}, ∅,Γ∞) ({tb : 2, td : 1}, ∅,Γ∞)

Figure 5.4: Basis and Typings of Example 5.2.18

Definition 5.2.16 (Typed Semantics). Given a finite set of rewriting
rules R, the typed semantics of CLS is the least relation closed with respect
to ≡ and satisfying the following sets of rules:

< = P1 7→ P2 ∈ R is a ∆-(P, L, M)-safe rule P1σ 6≡ ε
σ ∈ Σ∆ E ∈ E (P, L, M) is OK for E

E[P1σ] =⇒ E[P2σ]

Note that our typed semantics is similar to the second one proposed in
Definition 4.2.14, and like this one (see 4.2.15) it preserves correctness.

Theorem 5.2.17 (Subject Reduction). If T =⇒ T ′, then ∆ ` T ′ :
(P′, ∅, M′) for some P′, M′.

Proof. From Definition 5.2.16, we have that T ′ is E[P2σ], and, from Definition
5.2.14, we have that ∆ ` P2 : (P, L, M) for some ∆, P, L, M. Lemma 5.2.12
and σ ∈ Σ∆ imply that ` P2σ : (P, L, M). Since, from Definition 5.2.16, the
type (P, L, M) is OK for E, we conclude that ` E[P2σ] : (P′, ∅, M′) for some P′,
M′.

Example 5.2.18. We study the behavior of the term (A) in Example 5.2.10
using the rules

(1) a 7→ b and (2) (d)	 c (b | X) 7→ b | (d)	 cX.
Rules, instantiations and contexts for the reductions are reported in Figure

86

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

5.3, and their basis and typings are reported in Figure 5.4.
On term (A) of Example 5.2.10, we can only apply rule (1), obtaining the
correct term

(B) ` (d)	 c (c | a | a | a | b) : ({td : 1}, ∅,Γ∞).
On term (B), we cannot apply rule (1), because the basic type of c allows no
more than one element having basic type tb, and the term derived from the
application of this rule would not respect this constraint. We can only apply
rule (2), obtaining the correct term

(C) ` b | (d)	 c (c | a | a | a) : ({tb, td : 1}, ∅,Γ∞).
On term (C) , we can only apply rule (1), obtaining the correct term

(D) ` b | (d)	 c (c | a | a | b) : ({tb, td : 1}, ∅,Γ∞).
For the same reason as for the term (B), on the term (D) we can apply only
rule (2), obtaining the correct term

(E) ` b | b | (d)	 c (c | a | a) : ({tb : 2, td : 1}, ∅,Γ∞).
Rule (1) cannot be applied, because the basic type of c needs at least two
elements having basic type ta, and the term derived from the application of
this rule does not respect this constraint. Since also rule (2) cannot be applied,
the term (E) cannot reduce using rules (1) and (2).

We end this section by stating two lemmas on properties of typing rules
which will be used to show the theorems of the next section.

Lemma 5.2.19 (Weakening). If ∆ ` P : (P, L, M) and ∆ ⊆ ∆′, then
∆′ ` P : (P, L, M).

Proof. By induction on derivations.

Lemma 5.2.20. If ∆ ` E[P] : (P, L, M) then

1. ∆ ` P : (P′, L′, M′) for some (P′, L′, M′), and

2. if P ′ is such that ∆ ` P ′ : (P′, L′, M′), then ∆ ` E[P ′] : (P, L, M).

Proof. By induction on contexts.

5.3 Inference

We use the machinery of principal typing [67] to infer the OK relation be-
tween types and contexts and which rules are ∆-(P, L, M)-safe. From the term
we want to reduce we obtain a set of constraints: if they are fulfilled by a

87

5.3 Inference

rule, then the rule can be applied to the term preserving correctness. In this
way, we can decide the applicability of the rules.

Similarly to Section 4.3, we convene that for each element variable x
there is an e-type variable ηx ranging over basic types, and for each term or
sequence variable ρ ∈ T V ∪ SV there are three variables πρ, λρ, µρ (called
p-type variable, l-type variable and m-type variable) ranging over multisets
of basic types. Moreover we convene that Π ranges over formal unions of
multisets of basic types, e-type variables and p-type variables, Λ ranges over
unions of multisets of basic types and l-type variables, and Ω ranges over
unions of multisets of basic types and m-type variables. We denote by δ a
generic p-type, l-type, m-type or e-type variable.

A basis scheme Θ is a mapping from atomic variables to their e-type
variables, and from sequence and term variables to triples of their p-type
variables, l-type variables and m-type variables:

Θ ::= ∅
∣∣ Θ, x : ηx

∣∣ Θ, ρ : (πρ, λρ, µρ).

The rules for inferring principal typings use judgments of the shape:

` P : Θ; (Π,Λ,Ω); Ξ

where Θ is the principal basis in which P is well formed, (Π,Λ,Ω) is the
principal type of P , and Ξ is the set of constraints that should be satisfied.
Figure 5.5 gives these inference rules, derived from the typing rules in Figure
5.2 and similar the inference rules in Figure 4.3.

Rules (Reps) and (Rel) directly derive from rules (Teps) and (Tel). The
rules for typing variables (rules (Rvar1) and (Rvar2)) put the variable with
its type in the basis. In rules (Rseq), (Rpar) and (Rcomp), the principal
type is derived as in (Tseq), (Tpar) and (Tcomp) rules respectively. The
set of constraints is the union between the constraints in the premise of the
rule itself and the constraints in the premise of (Tseq), (Tpar) and (Tcomp)
rules, respectively. The principal basis is the union of the principal bases
of the composing patterns, without renaming, because each variable ρ or x
is associated to an unique triple of p-type, l-type, m-type variables or to an
unique e-type variable, respectively.

The key difference between inference rules, in Figure 5.5, and typing
rules, in Figure 5.2, is that the conditions of type compatibility and type
satisfaction are not premises, but conclusions. In this way, at the end of
inference all these conditions create a set of constraints, that must be checked
to decide the applicability of rules.

88

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

` ε : ∅; (∅, ∅,∞); ∅ (Reps) ` x : {x : ({ηx}, Dηx , Uηx)}; ({ηx}, Dηx , Uηx); ∅ (Rvar1)

` ρ : {ρ : (πρ, λρ, µρ)}; (πρ, λρ, µρ); ∅ (Rvar2)
a : t ∈ Ψ

(Rel)
` a : ∅; ({t}, Dt, Ut); ∅

` SP : Θ; (Π,Λ,Ω); Ξ ` SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′

(Rseq)
` SP ·SP ′ : Θ ∪Θ′; (Π,Λ,Ω) t (Π′,Λ′,Ω′); Ξ ∪ Ξ′ ∪ {(Π,Λ,Ω) ./ (Π′,Λ′,Ω′)}

` P : Θ; (Π,Λ,Ω); Ξ ` P ′ : Θ′; (Π′,Λ′,Ω′); Ξ′

(Rpar)
` P | P ′ : Θ ∪Θ′; (Π,Λ,Ω) t (Π′,Λ′,Ω′); Ξ ∪ Ξ′ ∪ {(Π,Λ,Ω) ./ (Π′,Λ′,Ω′)}

` SP : Θ; (Π,Λ,Ω); Ξ ` P ′ : Θ′; (Π′,Λ′,Ω′); Ξ′

(Rcomp)
` (SP)

	 cP : Θ ∪Θ′; (Π,Λ	Π′,Ω	Π′); Ξ ∪ Ξ′ ∪ {(Π′,Λ′,Ω′) v (Π,Λ,Ω)}

Figure 5.5: Inference Rules

Example 5.3.1. We can use the inference rules in Figure 5.5 to infer the
types of the right-side patterns of the rules in Example 5.2.18, where, again,
we assume the set of basic types and the classification of Example 5.2.10,
obtaining

` b : ∅; ({tb : 1}, ∅,Γ∞); ∅
` b | (d)	 cX : Θ; ({tb : 1}, ∅,Γ∞) t ({td : 1}, ∅,Γ∞); Ξ

where
Θ = { X : (πX , λX , µX) }
Ξ = { (πX , λX , µX) v ({td : 1}, ∅,Γ∞),

({tb : 1}, ∅,Γ∞) ./ ({td : 1}, ∅,Γ∞) }

Like in Theorems 4.3.2 and 4.3.3 for P/R type discipline, we can prove
soundness and completeness of our inference rules. A type mapping maps
e-type variables to basic types, p-type variables, l-type variables and m-type
variables to multisets of basic types. A type mapping m satisfies a set of
constraints Ξ if all constraints in m(Ξ) are satisfied.

Theorem 5.3.2 (Soundness of Type Inference). If ` P : Θ; (Π,Λ,Ω); Ξ
and m is a type mapping which satisfies Ξ, then m(Θ) ` P : (m(Π),m(Λ),m(Ω)).

Proof. By induction on derivations, and by cases on the last applied rule.

89

5.3 Inference

• For rules (Reps), (Rel), (Rvar1), and (Rvar2) the result is trivial.

• Rule (Rseq). In this case the conclusion of the rule is
` SP ·SP ′ : Θ ∪Θ′; (Π,Λ,Ω) t (Π′,Λ′,Ω′); Ξ ∪ Ξ′ ∪ {(Π,Λ,Ω) ./ (Π′,Λ′,Ω′)}

and the assumptions are
` SP : Θ; (Π,Λ,Ω); Ξ and ` SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′.

Since m satisfies Ξ and Ξ′, by induction hypothesis, and weakening
(Lemma 5.2.19), we derive

m(Θ ∪Θ′) ` SP : (m(Π),m(Λ),m(Ω))
m(Θ ∪Θ′) ` SP ′ : (m(Π′),m(Λ′),m(Ω′)).

Moreover, since m satisfies (Π,Λ,Ω) ./ (Π′,Λ′,Ω′), we have
(m(Π),m(Λ),m(Ω)) ./ (m(Π′),m(Λ′),m(Ω′)).

Therefore the rule (Tseq) can be applied, and
m(Θ ∪Θ′) ` SP ·SP ′ : (m(Π),m(Λ),m(Ω)) t (m(Π′),m(Λ′),m(Ω′)).

• For rules (Rpar), and (Rcomp) the result can be proved like for rule
(Rseq).

Theorem 5.3.3 (Completeness of Type Inference). If ∆ ` P : (P, L, M),
then ` P : Θ; (Π,Λ,Ω); Ξ for some Θ, Π, Λ, Ω, Ξ and there is a type mapping
m that satisfies Ξ and such that ∆ ⊇ m(Θ), P = m(Π), L = m(Λ), M = m(Ω).

Proof. By induction on the derivation of ∆ ` P : (P, L, M).

• If the last rule of the derivation is (Teps), (Tel), or (Tvar) the result is
obvious. Note that, for (Tvar) in the inference we distinguish the case
of element variables from sequence or term variables.

• Rule (Tseq). The conclusion of the rule is
∆ ` SP ·SP ′ : (P, L, M) t (P′, L′, M′),

and the assumptions are
∆ ` SP : (P, L, M) ∆ ` SP ′ : (P′, L′, M′)

and the condition (P′, L′, M′) ./ (P′, L′, M′). By induction hypothesis,
there are Θ, Π, Λ, Ω, Ξ, Θ′, Π′, Λ′, Ω′, Ξ′ such that

` SP : Θ; (Π,Λ,Ω); Ξ and ` SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′.
These are the assumptions of rule (Rseq), whose conclusion is

` SP ·SP ′ : Θ∪Θ′; (Π,Λ,Ω)t (Π′,Λ′,Ω′); Ξ∪Ξ′∪{(Π,Λ,Ω) ./ (Π′,Λ′,Ω′)}.
Moreover, by induction there is a type mapping m′ satisfying Ξ such

90

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

that ∆ ⊇ m′(Θ), P = m′(Π), L = m′(Λ) and M = m′(Ω), and there
is a type mapping m′′ satisfying Ξ′ such that ∆ ⊇ m′′(Θ′), P′ =
m′′(Π′), L′ = m′′(Λ′) and M′ = m′′(Ω′). Therefore, we derive ∆ ⊇
m′(Θ) ∪ m′′(Θ′) and (P, L, M) t (P′, L′, M′) = (m′(Π),m′(Λ),m′(Ω)) t
(m′′(Π′),m′′(Λ′),m′′(Ω′)). Since the bases m′(Θ) and m′′(Θ′) are both
subsets of the same basis ∆, then for all the (e-type, p-type, l-type or
m-type) variables δ such that δ ∈ dom(m′) ∩ dom(m′′) we get m′(δ) =
m′′(δ). Therefore the mapping m

m(δ) =

{
m′(δ) if δ ∈ dom(m′)
m′′(δ) if δ ∈ dom(m′′)

is well defined.
Moreover, since m satisfies Ξ, Ξ′ and (Π,Λ,Ω) ./ (Π′,Λ′,Ω′), then m
satisfies also all the constraints of the conclusion of the rule (Rseq).

• If the last rule is (Tpar) or (Tcomp) the proof is similar.

We use the inference rules to decide applicability of typed reduction rules
for ∆-(P, L, M)-safe rules. The first step is to understand when a type mapping
makes a rule ∆-(P, L, M)-safe, i.e. when it satisfies the constraints in Definition
5.2.14.

Lemma 5.3.4 (Characterization of ∆-(P, L, M)-safe rules). A rule P1 7→
P2 is ∆-(P, L, M)-safe if and only if the type mapping m defined by the basis
∆, i.e. such that

• m(ηx) = t if ∆(x) = {t}

• m(πρ) = P′ if ∆(ρ) = (P′, L′, M′)

• m(λρ) = L′ if ∆(ρ) = (P′, L′, M′)

• m(µρ) = M′ if ∆(ρ) = (P′, L′, M′)

satisfies the set of constraints Ξ2 ∪ {Π2 = P} ∪ {Λ2 = L} ∪ {Ω2 = M}, where
` P2 : Θ2; (Π2,Λ2,Ω2); Ξ2.

Proof. (⇐) Let ` P2 : Θ2; (Π2,Λ2,Ω2); Ξ2 and m satisfies Ξ2 ∪ {Π2 = P} ∪
{Λ2 = L} ∪ {Ω2 = M}. From Theorem 5.3.2 we derive that m(Θ2) `
P2 : (P, L, M). By definition of m we get m(Θ2) = ∆. Therefore ∆ `
P2 : (P, L, M), and P1 7→ P2 is a ∆-(P, L, M)-safe rule.

91

5.3 Inference

(⇒) Let P1 7→ P2 be a ∆-(P, L, M)-safe rule, then ∆ ` P2 : (P, L, M). From
Theorem 5.3.3, we have that ` P2 : Θ2; (Π2,Λ2,Ω2); Ξ2, for some
Θ2,Π2,Λ2,Ω2,Ξ2, and there is a type mapping m′ satisfying Ξ2 such
that ∆ ⊇ m′(Θ2), P = m′(Π2), L = m′(Λ2), and M = m′(Ω2). Therefore
m′ satisfies Ξ2 ∪ {Π2 = P} ∪ {Λ2 = L} ∪ {Ω2 = M}. From definition
of m, we get m(Θ2) = ∆, and since ∆ ⊇ m′(Θ2), also m satisfies
Ξ2 ∪ {Π2 = P} ∪ {Λ2 = L} ∪ {Ω2 = M}.

We can apply ∆-(P, L, M)-safe rules only in contexts in which the type
(P, L, M) is OK, so we must characterize also the OK relation. To check this
relation it is not necessary to consider the whole context, but only the part
of the context influenced by the typing of the hole, given in Definition 4.3.7
as core of the evaluation context. Thanks to this notion, we can characterize
the OK relation using a shorter number of constraints.

Lemma 5.3.5 (Characterization of OK Relation). Let the evaluation
context E be such that ` E[T] : (P0, ∅, M0) for some T , P0, M0. A type (P, L, M)
is OK for E if and only if the type mapping m defined by

• m(πX) = P,

• m(λX) = L,

• m(µX) = M,

satisfies the set of constraints

Ξ ∪ {Λ = ∅ if core(E) = E},

where ` core(E)[X] : {X : (πX , λX , µX)}; (Π,Λ,Ω); Ξ.

Proof. (⇐) Lemma 5.2.20.(1) and ` E[T] : (P0, ∅, M0) imply that all subterms
of core(E)[X] are typable, i.e. that there are P1, L1, M1, P′1, L′1, M′1,
P2, L2, M2, P′2, L′2, M′2 such that ` T1 : (P1, L1, M1), ` S1 : (P′1, L

′
1, M
′
1),

` T2 : (P2, L2, M2), ` S2 : (P′2, L
′
2, M
′
2) in the last case of the definition of

core(E)[X], and suitable subsets of these typing judgments in the other
two cases.

By Definition 4.3.7 we have the following cases.

92

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

• E = core(E)
Since m satisfies {Λ = ∅ if core(E) = E}, then m(Λ) = ∅. From
Theorem 5.3.2, since ` core(E)[X] : {X : (πX , λX , µX)}; (Π,Λ,Ω); Ξ
and m satisfies Ξ, we derive that X : (P, L, M) ` core(E)[X] :
(m(Π), ∅,m(Ω)). Moreover, since E[X] = core(E)[X], we have
that X : (P, L, M) ` E[X] : (m(Π), ∅,m(Ω)). Therefore, the type
(P, L, M) is OK for the context E.

• core(E) = (S2)	 c ((S1)	 c (� | T1) | T2) and Π = P′2, Λ = (L′2 	
(P′1] P2)), and Ω = (M′2 	 (P′1] P2)).

Since the inferred type of core(E) does not depend by the type
of the hole, and ` E[T] : (P0, ∅, M0) for some T , then every type
satisfying the constraints of core(E) is OK for E. Since m satisfies
Ξ, we conclude that (P, L, M) is OK for the context E.

(⇒) By Definition 5.2.13, since (P, L, M) is OK for E, then X : (P, L, M) `
E[X] : (P′, ∅, M′) for some P′, M′. Theorem 5.3.3 implies that
` E[X] : Θ′; (Π′,Λ′,Ω′); Ξ′ and there is a type mapping m that
satisfies Ξ′ and such that {X : (P, L, M)} ⊇ m(Θ′), m(Π′) = P′,
m(Λ′) = ∅, M′ = m(Ω′). By definition Θ′ = {X : (πX , λX , µX)},
we get m(πX) = P, m(λX) = ∅ and m(µX) = M. Being core(E)[X]
a subterm of E[X], by Lemma 5.2.20.(1) we get X : (P, L, M) `
core(E)[X] : (P′′, L′, M′′) for some P′′, L′, M′′. Theorem 5.3.3 im-
plies that ` core(E)[X] : {X : (πX , λX , µX)}; (Π,Λ,Ω); Ξ, and by
construction Ξ ⊆ Ξ′, so m satisfies Ξ too. If core(E) = E, then
Λ = Λ′, which implies m(Λ) = ∅. Otherwise, neither πX nor λX
nor µX occurs in Ψ.

Example 5.3.6. Using Lemma 5.3.5, the constraints making OK the type
associated with a generic variable Y for the contexts in Example 5.2.18 are:

(A) (πY , λY , µY) ./ ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0}) ∅ = ∅
((πY , λY , µY) t ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})) v ({td : 1}, ∅,Γ∞)

(B) λY = ∅
(C) (πY , λY , µY) ./ ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0}) ∅ = ∅

((πY , λY , µY) t ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0})) v ({td : 1}, ∅,Γ∞)
(D) (πY , λY , µY) ./ ({tb : 1}, ∅,Γ∞) λY 	 {tb : 1} = ∅

93

5.3 Inference

Note that Λ is ∅ in (A) and (C).

Once we have characterized the ∆-(P, L, M)-safe rules, and also the OK
relation, we can infer the applicability of a rewrite rule by checking if the
type mapping respects the constraints derived for these rules, as done for
P/R type discipline in Theorem 4.3.10.

Theorem 5.3.7 (Applicability of rewrite rules). Let
` P2 : Θ2; (Π2,Λ2,Ω2); Ξ2

` core(E)[X] : {X : (πX , λX , µX)}; (ΠE,ΛE,ΩE); ΞE

and P1σ 6≡ ε. Then the rule P1 7→ P2 can be applied to the term E[P1σ] such
that ` E[P1σ] : (P0, ∅, M0) (for some P0, M0) if and only if the type mapping
m defined by

• m(ηx) = t if σ(x) : t ∈ Ψ,

• m(πρ) = P′ if ` σ(ρ) : (P′, L′, M′),

• m(λρ) = L′ if ` σ(ρ) : (P′, L′, M′),

• m(µρ) = M′ if ` σ(ρ) : (P′, L′, M′),

satisfies the following sets of constraints:

Ξ2 ∪ ΞE ∪ {(πX = Π2), (λX = Λ2), (µX = Ω2)} ∪ {ΛE = ∅ if core(E) = E}

Proof. We define the basis ∆ as follows:

• x : ({t}, Dt, Ut) ∈ ∆ if σ(x) : t ∈ Ψ, and

• ρ : (P′, L′, M′) ∈ ∆ if ` σ(ρ) : (P′, L′, M′).

In this way we get that σ ∈ Σ∆ and the type mapping m is such that:

• m(ηx) = t if and only if x : ({t}, Dt, Ut) ∈ ∆

• m(πρ) = P′ if and only if ρ : (P′, L′, M′) ∈ ∆

• m(λρ) = L′ if and only if ρ : (P′, L′, M′) ∈ ∆

• m(µρ) = M′ if and only if ρ : (P′, L′, M′) ∈ ∆.

94

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

(⇐) If the mapping m satisfies the set of constraints Ξ2 ∪ ΞE ∪ {(πX =
Π2), (λX = Λ2), (µX = Ω2)}∪ {ΛE = ∅ if core(E) = E}, then m(πX) =
m(Π2) = P,m(λX) = m(Λ2) = L,m(µX) = m(Ω2) = M for some P, L, M,
and by Lemma 5.3.5 the context E is OK for (P, L, M) and by Lemma
5.3.4 the rule P1 7→ P2 is ∆-(P, L, M)-safe; we get E[P1σ] =⇒ E[P2σ].

(⇒) If E[P1σ] =⇒ E[P2σ] , then the rule P1 7→ P2 is ∆-(P, L, M)-safe for some
P, L, M, and the context E is OK for (P, L, M). By Lemmas 5.3.5 and
5.3.4, m(πX) = m(Π2) = P,m(λX) = m(Λ2) = L,m(µX) = m(Ω2) = M,
and the mapping m satisfies the set of constraints Ξ2 ∪ ΞE ∪ {(πX =
Π2), (λX = Λ2), (µX = Ω2)} ∪ {ΛE = ∅ if core(E) = E}.

Example 5.3.8. We use the Theorem 5.3.7 on the terms of Example 5.2.18.
Each type mapping derived from the instantiation and from the constraints
{(πY = Π2), (λY = Λ2), (µY = Ω2)}, reported in Fig. 5.6, satisfies its own
set of constraints for the right-hand of the rules and OK relations for the
evaluation contexts, reported in Examples 5.3.1 and 5.3.6, respectively.

(A) rule constraints: ∅
context constraints: ({tb : 1}, ∅,Γ∞) ./ ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})
({ta : 3, tb, tc : 1}, ∅, {tb, tc : 0}) v ({td : 1}, ∅,Γ∞) ∅ = ∅

(B) rule constraints: ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0}) v ({td : 1}, ∅,Γ∞)
({tb : 1}, ∅,Γ∞) ./ ({td : 1}, ∅,Γ∞)
context constraints: ∅ = ∅

(C) rule constraints: ∅
context constraints: ({tb : 1}, ∅,Γ∞) ./ ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0})
({ta : 2, tb, tc : 1}, ∅, {tb, tc : 0}) v ({td : 1}, ∅,Γ∞) ∅ = ∅

(D) rule constraints: ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0}) v ({td : 1}, ∅,Γ∞)
({tb : 1}, ∅,Γ∞) ./ ({td : 1}, ∅,Γ∞)
context constraints: ({tb, td : 1}, ∅,Γ∞) ./ ({tb : 1}, ∅,Γ∞) ∅ = ∅

πX λX µX πY λY µY
(A) — — — tb : 1 ∅ Γ∞
(B) ta : 3, tc : 1 ∅ tb : 1, tc : 0 tb, td : 1 ∅ Γ∞
(C) — — — tb : 1 ∅ Γ∞
(D) ta : 2, tc : 1 ∅ tb : 1, tc : 0 tb, td : 1 ∅ Γ∞

Figure 5.6: Type mappings of Example 5.3.8

95

5.4 Examples

Name Structure Informations
A α2β2 The most common
A2 α2δ2 It has a normal range of 1.5-3.5%
F α2γ2 The one presents in the fetus
H β4 It may be present in variants of α thalassemia

Barts δ4 It may be present in variants of α thalassemia

Table 5.1: Some hemoglobin variants in humans.

5.4 Examples

The type discipline presented in Section 5.2 can be used both to describe
the structure of an element and to limit the presence of some element. We
present an example for each use: for the structure description we present
the hemoglobin variants, and for the limitation we present the regulation
between cell death and division, an example of homeostatic balance in living
organisms. The aim of these examples is not to describe a complete biological
case study, but to give an idea of the possible uses of the type discipline.

5.4.1 Hemoglobin Variants

Hemoglobin (abbreviated Hb) is the oxygen-transport metalloprotein in the
red blood cells of vertebrates, and in the tissues of some invertebrates. It
consists mostly of proteins (the globin chains), which usually differ between
species, and even within a species, although one sequence is usually a most
common one in each species. In humans, the hemoglobin molecule is an
assembly of four globular protein subunits: the most common, with a nor-
mal amount over 95%, is the hemoglobin A, consisting of two α and two β
subunits, but there are some hemoglobin variants, as reported in Table 5.1.
Many of these cause no disease, but some of these cause a group of heredi-
tary diseases, known as hemoglobinopathies: the most known are sickle-cell
disease, in which red blood cells assume an abnormal and rigid shape, and
thalassemias, that usually result in underproduction of normal globin pro-
teins.

We want to model the different kinds of hemoglobin: we model an hemoglobin
protein as a looping sequence having the element h on the surface and con-
taining, depending on the kind of hemoglobin, four subunits, chosen between
α, β, γ and δ, and one of the elements A, A2, F , H or B, representing the

96

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

element basic type minimum & maximum
α tα —–
β tβ —–
γ tγ —–
δ tδ —–
A tA tγ, tδ, tA, tA2 , tF , tH , tB : 0, tα, tβ : 2
A2 tA2 tβ, tγ, tA, tA2 , tF , tH , tB : 0, tα, tδ : 2
F tF tβ, tδ, tA, tA2 , tF , tH , tB : 0, tα, tγ : 2
H tH tα, tγ, tδ, tA, tA2 , tF , tH , tB : 0, tβ : 4

Barts tB tα, tβ, tγ, tA, tA2 , tF , tH , tB : 0, tδ : 4

Table 5.2: Basic types for hemoglobin variants and subunits.

different kinds of hemoglobin in Table 5.1. For example, the term modeling
the hemoglobin A is (h)	 c (A | α·α·β ·β), and the one for hemoglobin H is
(h)	 c (H | β ·β ·β ·β). According to the structure of each hemoglobin variant,
we create the basic types shown in Table 5.2.

Using the typed extension of CLS and these basic type, no rule can change
the structure of the different kinds of hemoglobin without removing or mod-
ifying its structural element A, A2, F , H or B.

5.4.2 Cell Death and Division

In multicellular organisms, the life of cells is ruled by two oppose processes:
a cell division process, resulting in cell multiplication (mitosis for eukaryotic
cells and binary fission for prokaryotic cells), and a process of programmed
cell death, called apoptosis. In an adult organism, the rate of these processes
must be balanced: an excess of cell death leads to cell loss, and an excess
of cell division leads to tumors. For this reason, the number of cells is kept
relatively constant through cell death and division. Using our type discipline,
we can model this behavior in a simple way. We model a cell as a looping
sequence having the element c on the surface and containing the other ele-
ments of interest for the study, in this case only the element a: (c)	 c a. We
assume the organism can support from 2 to 8 cells, and the element a does
not have any request. Assuming the set of basic types Γ = {ta, tc}, a basic
type ta for the element a and a basic type tc for the element c, the functions
mn and mx that model this behavior are:

97

5.4 Examples

mn ta tc
ta 0 0
tc 0 1

mx ta tc
ta Γ∞ Γ∞
tc Γ∞ 7

In this model, the rules for cell death and cell division are

(de) (x̃·c)	 cX 7→ ε
(di) (x̃·c)	 cX 7→ (x̃·c)	 cX | (x̃·c)	 cX

respectively. For the right-side patterns of these rules we can infer the fol-
lowing types:

(rp1) ` ε : ∅; (∅, ∅,Γ∞); ∅
(rp2) ` (x̃·c)	 cX | (x̃·c)	 cX : Θx̃,X ; (Π,Λ,Ω) t (Π,Λ,Ω);

Ξ ∪ {(Π,Λ,Ω) ./ (Π,Λ,Ω)}
where
Θx̃,X = {x̃ : (πx̃, λx̃, µx̃), X : (πX , λX , µX)}

Π = {tc : 1}] πx̃
Λ = (({tc : 1} 	 πx̃) ∪ (λx̃ 	 {tc : 1}))	 πX
Ω = (({tc : 7} 	 πx̃) ∩ (µx̃ 	 {tc : 1}))	 πX
Ξ = {({tc : 1}, {tc : 1}, {tc : 7}) ./ (πx̃, λx̃, µx̃) ∪

(πX , λX , µX)} v (({tc : 1}, {tc : 1}, {tc : 7}) t (πx̃, λx̃, µx̃)).
We want to study a system composed by two cells

(c)	 c a | (c)	 c a
and we try to apply rules (de) and (di) on it. Because both rules have
the same left side pattern, they use the same instantiation, σ(x̃) = ε and
σ(X) = a, and also the same evaluation context (c)	 c a | �, for which we
derive, using the rules in Figure 5.5, the inferred type:

` (c)	 c a | Y : ΘY ; (ΠE,ΛE,ΩE); ΞE

where
ΘY = {Y : (πY , λY , µY)}
ΠE = {tc : 1}] πY
ΛE = ({tc : 1} 	 πY) ∪ (λY 	 {tc : 1})
ΩE = ({tc : 7} 	 πY) ∩ (µY 	 {tc : 1})
ΞE = {({tc : 1}, {tc : 1}, {tc : 7}) ./ (πY , λY , µY).

We use Theorem 5.3.7 for checking the applicability of the rules. First of
all, from the instantiation σ we get the type mapping

πx̃ λx̃ µx̃ πX λX µX
∅ ∅ Γ∞ ta : 1 ∅ Γ∞

98

5. ENUMERATED TYPE SEMANTICS FOR CALCULUS OF
LOOPING SEQUENCES

and we use it to instantiate the type and the constraints of the patterns
(rp1) and (rp2), obtaining that the constraints of both patterns are satisfied,
and

Π = {tc : 1} Λ = {tc : 1} Ω = {tc : 7}.
Now we check the other constraints in Theorem 5.3.7. For the rule (di) we
have

πY = {tc : 2} λY = ∅ µY = {tc : 6}.
The constraints of the context, ΞE, and the constraint ΛE = ∅ are satisfied,
then we can apply the rule.
Finally, for the rule (de) we have

πY = ∅ λY = ∅ µY = Γ∞.
The constraints of the context, ΞE, are satisfied, but the constraint {tc :
1} = ΛE = ∅ is not satisfied, then we cannot apply the rule: in fact, this rule
kills a cell, an invalid behavior in an organism composed by only 2 cells, the
minimum required number. In a dual way, cell division is not possible in an
organism composed by 8 cells.

5.5 Conclusions

In this Chapter we introduce a type discipline for the Calculus of the Looping
Sequences which allows to describe and to limit the structure of systems and
sub-systems: this behavior cannot be easily reproduced only by means of
reduction rules.

In Chapter 4 some rules are classified as ∆-safe (see Definition 4.2.7),
i.e. rules having the same type for the left-side and the right-side patterns:
these rules do not change the type of terms to which they are applied. In
the present type discipline, for typing we count the number of elements of a
term. Since rules usually change something in the term, adding or removing
elements, in a rule the number of elements in the right-hand-side is different
from the number of elements in the left-hand-side, and therefore their types
are also different. According to this idea, we do not include ∆-safe rules
in the present semantics, because using the present type discipline very few
reduction rules are ∆-safe.

Finally, in biological models we usually do not know the precise numbers
of elements in the system, but their concentration, as percentage of the single
elements in the whole system: for example, the corpuscles in blood are usually
given as a percentage or as an absolute number per litre. Our type discipline

99

5.5 Conclusions

cannot manage these cases, because it checks the exact numbers of elements
in every compartment. As a possible future development, we plan to modify
our type discipline to work on these cases, checking, in every compartment,
not the exact numbers, but the ratio of elements with respect to the other
elements.

100

Chapter 6

Stochastic Semantics for the
Calculus of Looping Sequences

6.1 Introduction

In the stochastic version of CLS (SCLS for short), proposed in [11] and
summarized in Section 2.3, rates are associated with rewrite rules in order
to model the speed of the described activities. Therefore, transitions derived
in SCLS are driven by a rate that models the parameter of an exponential
distribution and characterizes the stochastic behavior of the transition. The
choice of the next rule to be applied and of the time of its application is
based on the classical Gillespie’s algorithm [44].

Defining a stochastic semantics for CLS requires a correct enumeration of
all the possible and distinct ways to apply each rewrite rule within a term.
A single pattern may have several, though isomorphic, matches within a
CLS term. Here we present the solution proposed in [22], where we simplify
the counting mechanism used in [11] by imposing some restrictions on the
patterns modeling the rewrite rules. Each rewrite rule states explicitly the
types of the elements whose occurrences may speed-up or slow-down a reac-
tion. The occurrences of the elements of these types are then processed by
a rate function which is used to compute the actual rate of a transition. We
show how we can define patterns in our stochastic framework to model some
common biological activities, and, in particular, we underline the possibility
to combine the modeling of positive and negative catalyzers within a single
rule by reproducing a general case of osmosis.

101

6.1 Introduction

a aa a a

a

b

b b
3k 2k
- -

Figure 6.1: Application of a→ b with kinetic constant k.

While standard quantitative bio-inspired formalisms give stochastic se-
mantics based on constant rates, we equip the rewrite rules of our calculus
with a rate function. This makes possible the definition of a stochastic se-
mantics that is more general than the classical one based on collision analysis
(which is practical for very low level analyzes, such as chemical interactions).
In particular, we can define rules, whose evolutions follow different proba-
bility distributions. This is useful for higher level simulations, for example
cellular or tissue interactions, or in other cases such as in the presence of
enzymes (molecules that speed up the reaction) or inhibitors (molecules that
slow down the reaction) where the reaction rate equation becomes compli-
cated, and must be calculated using non-linear equations. We show how a
particular interpretation of the rate function could be used to recover Gille-
spie’s method.

More specifically, we add to the reduction rules of CLS the information
on the relevant objects and a function which computes the rate of the reduc-
tion starting from the numbers of relevant objects which can occur in the
instantiations of the variables.

As a simple example, consider a molecule a becoming a molecule b with
a kinetic constant k. The rate of this transformation is proportional to the
concentration of a’s. Figure 6.1 shows how a molecules contained inside a
membrane evolve with a rate calculated by means of k and the concentration
of a’s. This transformation is modeled in our calculus by the rewrite rule:

a | X 〈〈t〉〉−−→
φ

b | X

where t is the type of molecule a, the overline means that a occurs in a
parallel composition, and the function φ is λn.(n + 1) × k. When reducing
a term by means of this rule, we compute the rate by applying the function

102

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

φ to the number of parallel occurrences of molecules of type t, in the term
matching the variable X (representing the environment in which the rule will
be applied).

As a complete modeling application, we illustrate the expressiveness of
our formalism by adapting to our framework the model for lactose operon in
Escherichia Coli proposed in [11].

6.2 Typed Stochastic CLS

In this section we show how an abstraction on the elements, that induces
an abstraction on the terms, may be used to enhance the expressiveness of
CLS. In particular, we use this abstraction to focus on quantitative aspects
of CLS, by showing how to model the speeds of the biological activities.

As in Sections 4.2 and 5.2, we classify elements in A with basic types,
assuming a fixed typing Ψ.

A term T is abstracted by saying that the type of T is the multiset of the
types of the elements in its outermost parallel composition. We distinguish
between occurrences of elements in parallel with other terms, and occurrences
of elements within a sequence by having two names for each type. In partic-
ular the type of T will contain a t for each occurrence of a : t ∈ Ψ in parallel
with some other term, and t̃ for each occurrence of a : t ∈ Ψ which is either
in a sequence or in the looping sequence of a compartment (in both cases we

only consider the outermost parallel composition). We use
∗
t to range over

both t and t̃, and τ to range over types of terms. By
∗
t ∈n τ we denote that

∗
t

occurs n times in τ , and] is the sum on multisets1. In the following, when

we say type we refer to either t’s, or
∗
t’s, or τ ’s.

The following definition formalizes the mappings ptype on terms and stype
on sequences.

Definition 6.2.1 (Mappings ptype and stype). The mappings ptype and
stype are defined by induction on terms and sequences as follows:

stype(S) =

{
stype(S1)] stype(S2) if S ≡ S1 · S2

{t̃} if S ≡ a and a : t ∈ Ψ

1For a formal definition of the sum operation on multisets, refer to Figure 5.1.

103

6.2 Typed Stochastic CLS

ptype(T) =

stype(S) if T ≡ (S)	 cT ′
ptype(T1)] ptype(T2) if T ≡ T1 | T2

stype(S1 · S2) if T ≡ S1 · S2

{t} if T ≡ a and a : t ∈ Ψ

For example, if a : ta, b : tb, c : tc ∈ Ψ, we have

ptype(a | a | c) = {ta, ta, tc}
ptype(b · c · c) = {t̃b, t̃c, t̃c}
ptype(a | a | c | (b · c · c)	 c a) = {ta, ta, tc, t̃b, t̃c, t̃c}
ptype((b · c · c)	 c (a | a | a | c)) = {t̃b, t̃c, t̃c}

while if a : t, b : t, c : t′ ∈ Ψ, we get

ptype(a | a | c) = {t, t, t′}
ptype(b · c · c) = {t̃, t̃′, t̃′}
ptype(a | a | c | (b · c · c)	 c a) = {t, t, t′, t̃, t̃′, t̃′}
ptype((b · c · c)	 c (a | a | a | c)) = {t̃, t̃′, t̃′}.

Term transitions are labeled with a rate r, a real number, T
r−→ T ′, mod-

eling the speed of the transition. The number r depends on the types and
multiplicity of the elements interacting.

To compute the rate of transitions we associate to each rule, P 7→P ′ the
information which is relevant to the application of the rule. This is expressed
by giving:

• for each variable χ in the pattern P , the types of the elements that
influence the speed of the application of the rule,

• a weighting function that combines the multiplicity of types on single
variables, producing the final rate.

We provide this information as follows. Given a pattern P , let V (P) =
〈χ1, . . . , χm〉 be the list of (sequence, term, and element) variables of P in
left-to-right order of occurrence.

• To each χi we associate a list Πi = 〈
∗
t
(i)

1 , . . . ,
∗
t
(i)

qi
〉 of types,

• Moreover, let φ : Nq → R be a function from a list of q =
∑

1≤i≤m qi
integers to a real.

104

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

The rewrite rules of our typed Stochastic CLS (TSCLS for short) are of the
shape:

P
−→
Π−→
φ
P ′

where
−→
Π = 〈Π1, . . . ,Πm〉.

For example, as discussed in the following subsection, the transformation
of the element a into the element b inhibited by the presence of the element
c can be described by the rule

a | X 〈〈ta,tc〉〉−−−−→
φ

b | X (6.1)

where φ = λn1n2.
(n1+1)×k

if n2=0 then 1 else n2×k′ , and k, k′ are the kinetic constants of
the state change of a into b and the deceleration due to the presence of one
inhibitor c, respectively.

Remark 6.2.2. We consider local interactions, that is interactions between
elements in the same compartment. As for the CLS semantics, given a term
we match the left-hand-side pattern of a rule against the subterm contained
in the hole of a context. However, in our case, when applying a rule we have
to take into account a whole compartment, since our function depends only
on the content of the subterm matching the pattern. For instance, for the
previous example, matching the term (S)	 c (a | a | c | c), we do not want a
context E = (S)	 c (� | c) that would cause a miscounting of the c’s present
in the compartment.

Given the above remark, we restrict Definition 2.2.6, to allow only a hole
filling a compartment or the whole term.

Definition 6.2.3 (Stochastic Contexts). Stochastic Contexts C are de-
fined as:

C ::= �
∣∣ T | (S)	 c C

where T ∈ T and S ∈ S. We denote by SC the infinite set of stochastic
contexts.

We can now define the typed semantics.

105

6.2 Typed Stochastic CLS

Definition 6.2.4 (Typed Stochastic Semantics). Given a finite set R of
rewrite rules, the semantics of TSCLS is the least relation closed with respect
to ≡ and satisfying the following rule:

P1
〈Π1,...,Πm〉−−−−−−→

φ
P2 ∈ R Πi = 〈

∗
t
(i)

1 , . . . ,
∗
t
(i)

qi
〉

σ ∈ Σ P1σ 6≡ ε C ∈ SC V(P1) = 〈χ1, . . . , χm〉

ptype(σ(χi)) = τi
∗
t
(i)

j ∈n(i)
j
τi (1 ≤ j ≤ qi) (1 ≤ i ≤ m)

r = φ n
(1)
1 . . . n

(1)
q1 · · ·n

(m)
1 . . . n

(m)
qm

C[P1σ]
r−→ C[P2σ]

Example 6.2.5. Applying rule (6.1) with the empty context to the term
a | a | c we have:

a | a | c
2×k
1×k′−−→ a | b | c

1×k
1×k′−−→ b | b | c

and to the term a | a | c | (b · c · c)	 c a we have:

a | a | c | (b · c · c)	 c a
2×k
1×k′−−→ a | b | c | (b · c · c)	 c a

1×k
1×k′−−→ b | b | c | (b · c · c)	 c a

Similarly, applying (6.1) to the term (b · c · c)	 c (a | a | a | c) with the context
ε | (b · c · c)	 c� we get:

(b · c · c)	 c (a | a | a | c)
3×k
1×k′−−→ (b · c · c)	 c (a | a | b | c)
2×k
1×k′−−→ (b · c · c)	 c (a | b | b | c)
1×k
1×k′−−→ (b · c · c)	 c (b | b | b | c)

Note that we cannot simply use Definition 2.2.6 for the contexts in the
stochastic framework, since we would not count correctly the numbers of ele-
ments which influence the speed of transformations (see Remark 6.2.2). For
example, rule (6.1) applied to the term a | a | c with the context � | a | c
would produce the wrong transition:

a | a | c k−→ a | b | c.

106

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

Given the Continuous Time Markov Chain (CTMC) obtained from the
transition system resulting from our typed stochastic semantics, we can follow
a standard simulation procedure. Roughly speaking, the algorithm starts
from the initial term (representing a state of the CTMC) and performs a
sequence of steps by moving from state to state. At each step a global clock
variable (initially set to zero) is incremented by a random quantity which is
exponentially distributed with the exit rate of the current state as parameter,
and the next state is randomly chosen with a probability proportional to the
rates of the exit transitions.

The race condition described above implements the fact that when dif-
ferent reactions are competing with different rates, the ones which are not
chosen should restart the competition at the following step.

From the transition rates of Definition 6.2.4, we can define an exponential
probability distribution of the moment in which the next reaction will take
place as follows. Given a term T , a global time T and all the transitions
R1, . . . , RM that can be applied to T , with rates, respectively, r1, . . . , rM
such that r =

∑M
i=1 ri, the standard simulation procedure consists of the

following two steps:

• The time T + δ at which the next stochastic reduction will occur is
randomly chosen with δ exponentially distributed with parameter r;

• The reduction Ri that will occur at time T+δ is randomly chosen with
probability ri/r.

Thus, the overall complexity of a single simulation step, for a term with
n stochastic contexts on which we can apply a rule and with a set of m rules,
is given by the n × m matchings needed to compute the set of all possible
transitions R1, . . . , RM .

6.2.1 Modeling Guidelines

In the remaining of this section we will put at work the TSCLS calculus in
order to model biomolecular events of interest.

(i) As discussed in Section 6.1, the application rate in the case of the
change of state of an elementary object is proportional to the number
of objects which are present. For this reason, if ta is the type of the

107

6.2 Typed Stochastic CLS

object a and k is the kinetic constant of the state change of a into b we
can describe this chemical reaction by the following rewrite rule:

a | X 〈〈ta〉〉−−−→
φ

b | X

where φ = λn.(n+ 1)× k. Notice that only occurrences of a in parallel
can become b, so using this rule we get for example:

(m)	 c (a | a | a · a)
2k−→ (m)	 c (b | a | a · a)

where m is any membrane.

(ii) In the process of complexation, two elementary objects in the same
compartment are combined to produce a new object. The application
rate is then proportional to the product of the numbers of occurrences
of the two objects. Assuming that ta and tb are the types of a and b
we get:

a | b | X 〈〈ta,tb〉〉−−−−→
φ

c | X

where φ = λn1n2.(n1 + 1)× (n2 + 1)× k and k is the kinetic constant
of the modeled chemical reaction.

Using the same conventions a similar and simpler rule describes decom-
plexation:

c | X 〈〈tc〉〉−−−→
φ

a | b | X

where φ = λn.(n+ 1)× k.

(iii) Another phenomenon which can be easily rendered in our formalism is
the osmosis regulating the quantity of water inside and outside a cell
for a dilute solution of non-dissociating substances. In fact, in this case,
according to [65], the total flow is Lp

S
V

∆ψw, where Lp is the hydraulic
conductivity constant, which depends on the semi-permeability proper-
ties of the membrane, S is the surface of the cell, V is the volume of the
cell, and ∆ψw = ψw(ext) − ψw(int) is the difference between the water
potentials outside and inside the cell. The water potential for non-
dissociating substances is the sum of the solute potential ψs = −RTcs
(where R is the gas constant, T is the absolute temperature and cs is
the solute concentration) and the pressure potential ψp (which depends

108

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

on the elastic properties of the membrane and on the cell wall). We can
therefore consider the rate of flow of water proportional (via a constant
k) to S

V
(cs(ext) − cs(int)), where the sign of this real gives the direction

of the flow. The membrane crossing of the element a according to the
concentration of the elements b inside and outside the cell is given by
the pairs of rules:

(x̃)	 c (X | a) | Y 〈〈〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−→
φ

(x̃)	 cX | a | Y

(x̃)	 cX | a | Y 〈〈〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−→
φ′

(x̃)	 c (X | a) | Y

where
φ = λn1n2n3n4.

S
V
× (n2

(n1+1)Va+n2Vb
− n4

(n3+1)Va+n4Vb
)× k

φ′ = λn1n2n3n4.
S
V
× (n4

(n3+1)Va+n4Vb
− n2

(n1+1)Va+n2Vb
)× k

and Va, Vb are the volumes of the elements a and b, respectively.

The positive catalysis of osmosis by the presence of elements c on the
membrane is rendered by:

(x̃)	 c (X | a) | Y 〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−−→
φ

(x̃)	 cX | a | Y

(x̃)	 cX | a | Y 〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−−→
φ′

(x̃)	 c (X | a) | Y

where

φ = λn1n2n3n4n5.(n1 × kc + 1)× S
V
×

(n3

(n2+1)Va+n3Vb
− n5

(n4+1)Va+n5Vb
)× k

φ′ = λn1n2n3n4n5.(n1 × kc + 1)× S
V
×

(n5

(n4+1)Va+n5Vb
− n3

(n2+1)Va+n3Vb
)× k

and kc is the acceleration due to the presence of one element c.

Similarly the inhibition of osmosis by the presence of elements c on the
membrane is rendered by:

(x̃)	 c (X | a) | Y 〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−−→
φ

(x̃)	 cX | a | Y

(x̃)	 cX | a | Y 〈〈t̃c〉,〈ta,tb〉,〈ta,tb〉〉−−−−−−−−−−→
φ′

(x̃)	 c (X | a) | Y

where

φ = λn1n2n3n4n5.
1

if n1=0 then 1 else n1×kc×
S
V
× (n3

(n2+1)Va+n3Vb
− n5

(n4+1)Va+n5Vb
)× k

φ′ = λn1n2n3n4n5.
1

if n1=0 then 1 else n1×kc ×
S
V
×

(n5

(n4+1)Va+n5Vb
− n3

(n2+1)Va+n3Vb
)× k

109

6.2 Typed Stochastic CLS

and kc is the deceleration due to the presence of one element c.

(iv) If the rule

P1

−→
Π−→
φ
P2

describes an event, in order to express that this event is positively cat-
alyzed by an element c we can modify the rewrite rule as follows.

If P1 ≡ P ′1 | X, the type list of X is ΠX and the weighting function
φ is λ−→n−→nX .e, where −→n takes into account the types of the elements
occurring in P ′1 and −→nX takes into account the types of the elements
occurring in X, we define:

• Π′X as the list whose head is tc and whose tail is ΠX ,

• φ′ = λ−→n nc−→nX .e× (nc × k + 1),

where k is the acceleration due to the presence of one positive catalyzer
c. The new rule is obtained from the old one by replacing Π′X and φ′

to ΠX and φ, respectively.

Otherwise if P1 6≡ P ′1 | X, the new rule is:

P1 | X
−→
Π_〈〈tc〉〉−−−−−→

φ′
P2 | X

where _ represents list concatenation and if φ = λ−→n .e, then φ′ =
λ−→n nc.e× (nc × k + 1).

Similarly we can represent the effect of an inhibitor using φ′ = λ−→n nc.e×
1

if nc=0 then 1 else (nc×k)
.

We can also represent in one rule both positive and negative catalyzers.
For example to add the effect of a positive catalyzer c and an inhibitor

d to the rule P1

−→
Π−→
φ
P2 if P1 ≡ P ′1 | X and ΠX , φ are as above we define:

• Π′X = 〈tc, td〉_ΠX ,

• φ′ = λ−→n ncnd−→nX .e× nc×k+1
if nd=0 then 1 else nd×k′

,

110

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

where k is the acceleration due to the presence of one positive catalyzer
c and k′ is the deceleration due to the presence of one inhibitor d.

Otherwise if P1 6≡ P ′1 | X, the new rule is:

P1 | X
−→
Π_〈〈tc,td〉〉−−−−−−→

φ′
P2 | X

where if φ = λ−→n .e, then φ′ = λ−→n ncnd.e× nc×k+1
if nd=0 then 1 else nd×k′

.

Looking at the previous examples, we claim that our formalism enlightens
better than other formalisms the duality between the roles of positive and
negative catalyzers.

Recovering Gillespie’s Framework

We might restrict TSCLS in order to match Gillespie’s framework. Since we
just need to deal with simple molecular populations, we restrict our calculus
eliminating the sequencing and the looping operators. We denote by TG the
infinite set of terms representing Gillespie’s molecular populations.

Definition 6.2.6. TG is the infinite set of TSCLS terms built as the parallel
composition of atomic elements.

The usual notation for chemical reactions can be expressed by:

`1s1 + . . .+ `msm
k
⇀`′1p1 + . . .+ `′npn (6.2)

where si and pi are the reagents and product molecules, respectively, `i, `
′
i

are the stoichiometric coefficients and k is the kinetic constant.
We denote by PG the infinite set of patterns built as the parallel composi-

tion of atomic elements and exactly one variable. In particular, we restrict to
rewrite rules modeling chemical reactions of the shape of rule (6.2). Namely,
assuming that each species of the molecular population has a different type,
and, in particular, t1, . . . , tm are the types of s1, . . . , sm, a chemical reaction
of the form described by rule (6.2) can be expressed by the following TSCLS
rewrite rule:

`1 × s1 | . . . | `m × sm | X
〈〈t1,...,tm〉〉−−−−−−→

φ
`′1 × p1 | . . . | `′n × pn | X (6.3)

111

6.2 Typed Stochastic CLS

where ` × s stands for a parallel composition s | . . . | s of length ` and
similarly for `× p.

We now need to define the weighting function φ of rule (6.3) used to model
Gillespie’s collision based stochastic simulation algorithm. Intuitively, items
(i) and (ii) of Section 6.2.1 already go in this direction (they actually define
particular subcases of general chemical reactions expressed by rule (6.3)).

In particular, the collision based framework defined by Gillespie, when
the stoichiometry ` of a reagent is greater than 1, picks one of all the pos-
sible combinations of ` reagents. This leads to binomial distributions of the
reagents involved. Namely, we define the weighting function φ as:

φ = λn1 . . . nm.

(
n1 + `1

`1

)
× . . .×

(
nm + `m
`m

)
× k (6.4)

where k is the kinetic constant of the modeled chemical reaction.

By construction, the following holds.

Proposition 6.2.7. Molecular populations defined as TG terms with a fixed
set of rules of the shape of rule (6.3) interpret Gillespie’s framework for the
evolution of chemically reacting systems into TSCLS.

Even if Gillespie’s method is defined for simple populations of species, it
has been greatly reused in more complex frameworks, e.g. in calculi where
compartmentalization and linked structures where taken into account (see,
for example, [36, 47, 11, 33, 32, 51]). It is debatable whether such an extension
of the usage of Gillespie’s method is still correct: the assumptions behind this
method are quite strict and considering as same collisions happening between
free molecules and molecules bound on a membrane or a protein structure
could not always result in a faithful model. We can manage this kind of
situations with ad-hoc instantiations of the weight function, allowing us to
define more general evolutions than the ones ruled by the law of mass action,
(see, e.g., items (iii) and (iv) of Section 6.2.1 and the example about cell
division in Section 6.2.1). There are also some cases in which Gillespie’s
method appears to be reasonably applicable also when its strict assumptions
are not fully satisfied. As an example, see the lactose operon case study in
Section 6.3, in which, on the lines of [11], we apply a Gillespie based analysis
also to rules involving compartments (rules R13 and R14).

112

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

Cell Division: an Example of Multi-Match Patterns

We have just seen how the weighting function introduced in our stochastic
semantics can be used to interpret the classical Gillespie’s model. We have
also seen how more complex interactions can be modeled (see items (iii) and
(iv) of Section 6.2.1). In this subsection we consider a more complicated but
intriguing case.

In [51], interesting considerations about the structure of rewrite rules are
raised. Actually, different conditions can be placed on the structure of the
patterns, some of them might be natural when modeling biological systems,
some might be not.

Consider the following rule modeling the splitting of a cell and the dis-
tribution of its content to the newly produced cells (abstract away, for the
moment, from the type list and the weighting function):

(x̃ · ỹ)	 c (X | Y) −→ (x̃)	 cX | (ỹ)	 cY

The left pattern contains multiple variables within the same sub-term giving
rise to several different variables instantiations for a same term. For example
some possible matchings for the term (a · b · c)	 c (d | e | f) are:

• x̃ = a, ỹ = b · c, X = d, Y = e | f ;

• x̃ = a · b, ỹ = c, X = d | e, Y = f ;

• x̃ = b, ỹ = c · a, X = e, Y = d | f .

In such cases it is not clear how the stochastic rate should be parceled out
among the possible matches of the four variables. Gillespie’s method, which
does not deal with compartments, non linear and multi-match rules, could
not be used in this kind of situations. In [51, 33] this kind of patterns are
prevented and such a rule could not be used to directly model a natural
biological phenomenon such as cell division. In our framework, we might
resort to the weighting function to deal with this kind of situations.

To add some detail, we refer to the splitting example proposed in [51].
In [62], Rosenfeld et al. propose a methodology to analyze the gene reg-
ulation function of a particular protein. They start by considering a high
concentration of a repressor protein within a single cell. During cell divi-
sion, each daughter cell receives approximately one half the population of

113

6.3 An Application: The Lactose Operon

the repressor.2 As a consequence, after few divisions, the concentration of
the repressor becomes low enough to trigger the production of the target
protein.

Abstracting away the set of reactions occurring inside the cell and lead-
ing the gene expression, we focus on the rule modeling cell division. Con-
sider a simple cell containing a certain number, say n, of repressor proteins:
(cell)	 c (n× rep). Let tr be the type of the repressor protein, a TSCLS rule
modeling a split distributing about n/2 repressor proteins to the two freshly
produced cells could be defined as follows:

(cell)	 c (X | Y)
〈〈tr〉〈tr〉〉−−−−−→

φ
(cell)	 cX | (cell)	 cY

with the weighting function:

φ = λn1n2.
k

1 + |n1 − n2| × k′

where k and k′ are used to weight the distribution of the repressor proteins
to the new cells (the more far is the partition from the ideal half, the lower
the value returned by φ).

The example could be extended in the natural way to take into account
any other species within the dividing cell. For the sake of simplicity, we
presented here a very naive example of partitioning, more complex functions
could be defined to randomly distribute the population of each species of a
cell between its two children.

6.3 An Application: The Lactose Operon

As application, we study the well-known regulation process of the lactose
operon in Escherichia coli. We borrow the model and its details from [11],
the stochastic version of CLS summarized in Section 2.3.

E. coli is a bacterium often present in the intestine of many animals. It
is one of the most deeply studied of all living things and it is a favorite or-
ganism for genetic engineering. Cultures of E. coli can be made to produce
unlimited quantities of the product of an introduced gene. As most bacteria,

2For simplicity we do not consider a detailed volumetrical analysis. We just suppose the
volume of the cell increases during the mitosis phase and that the two resulting daughter
cells have the same volume of the mother cell.

114

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

Figure 6.2: The regulation process in the Lac Operon.

E.coli is often exposed to a constantly changing physical and chemical en-
vironment, and reacts to changes in its environment through changes in the
kinds of enzymes it produces. In order to save energy, bacteria do not synthe-
size degradative enzymes unless the substrates for these enzymes are present
in the environment. For example, E. coli does not synthesize the enzymes
that degrade lactose unless lactose is in the environment. This result is ob-
tained by controlling the transcription of some genes into the corresponding
enzymes.

Two enzymes are involved in lactose degradation: the lactose permease,
which is incorporated in the membrane of the bacterium and actively trans-
ports the sugar into the cell, and the beta galactosidase, which splits lactose
into glucose and galactose. The bacterium produces also the transacetylase
enzyme, whose role in the lactose degradation is marginal.

The sequence of genes in the DNA of E. coli which produces the described
enzymes, is known as the lactose operon.

The first three genes of the operon (i, p and o) regulate the production
of the enzymes, and the last three (z, y and a), called structural genes, are
transcribed (when allowed) into the mRNA for beta galactosidase, lactose
permease and transacetylase, respectively.

The regulation process is as follows (see Figure 6.2): gene i encodes the
lac Repressor, which, in the absence of lactose, binds to gene o (the opera-
tor). Transcription of structural genes into mRNA is performed by the RNA
polymerase enzyme, which usually binds to gene p (the promoter) and scans

115

6.3 An Application: The Lactose Operon

the operon from left to right by transcribing the three structural genes z, y
and a into a single mRNA fragment. When the lac Repressor is bound to
gene o, it becomes an obstacle for the RNA polymerase, and the transcription
of the structural genes is not performed. On the other hand, when lactose is
present inside the bacterium, it binds to the Repressor and this cannot stop
anymore the activity of the RNA polymerase. In this case the transcription
is performed and the three enzymes for lactose degradation are synthesized.

6.3.1 Typed Stochastic CLS Model

A detailed mathematical model of the regulation process can be found in
[69]. It includes information on the influence of lactose degradation on the
growth of the bacterium.

We give a TSCLS model of the gene regulation process, with stochastic
rates taken from [68]. We model the membrane of the bacterium as the
looping sequence (m)	, where the alphabet symbol m generically denotes
the whole membrane surface in normal conditions. Moreover, we model the
lactose operon as the sequence lacI · lacP · lacO · lacZ · lacY · lacA (lacI−A
for short), in which each symbol corresponds to a gene. We replace lacO
with RO in the sequence when the lac Repressor is bound to gene o, and
lacP with PP when the RNA polymerase is bound to gene p. When the
lac Repressor and the RNA polymerase are unbound, they are modeled by
the symbols repr and polym, respectively. We model the mRNA of the lac
Repressor as the symbol Irna, a molecule of lactose as the symbol LACT , and
beta galactosidase, lactose permease and transacetylase enzymes as symbols
betagal, perm and transac, respectively. Finally, since the three structural
genes are transcribed into a single mRNA fragment, we model such mRNA
as a single symbol Rna.

The transcription of the DNA, the binding of the lac Repressor to gene
o, and the interaction between lactose and the lac Repressor are modeled by
the following set of stochastic typed rewrite rules:

lacI−A | X 〈〈〉〉−−→
φ

lacI−A | Irna | X (R1)

where φ = 0.02.

Irna | X 〈〈tI〉〉−−−→
φ

Irna | repr | X (R2)

116

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

where tI is the type of Irna and φ = λn.(n+ 1)× 0.1.

lacI−A | polym | X 〈〈tpo〉〉−−−→
φ

lacI · PP · lacO · lacZ · lacY · lacA | X (R3)

where tpo is the type of polym and φ = λn.(n+ 1)× 0.1.

lacI · PP · lacO · lacZ · lacY · lacA | X 〈〈〉〉−−→
φ

lacI−A | polym | X (R4)

where φ = 0.01.

lacI · PP · lacO · lacZ · lacY · lacA | X 〈〈〉〉−−→
φ

lacI−A | polym | Rna | X (R5)

where φ = 20.

Rna | X 〈〈tR〉〉−−−→
φ

Rna | betagal | perm | transac | X (R6)

where tR is the type of Rna and φ = λn.(n+ 1)× 0.1.

lacI−A | repr | X 〈〈tr〉〉−−−→
φ

lacI · lacP ·RO · lacZ · lacY · lacA | X (R7)

where tr is the type of repr and φ = λn.(n+ 1)× 1.

lacI ·PP ·lacO ·lacZ ·lacY ·lacA | repr |X 〈〈tr〉〉−−−→
φ

lacI ·PP ·RO ·lacZ ·lacY ·lacA |X

(R8)

where tr is the type of repr and φ = λn.(n+ 1)× 1.

lacI · lacP ·RO · lacZ · lacY · lacA | X 〈〈〉〉−−→
φ

lacI−A | repr | X (R9)

where φ = 0.01.

lacI ·PP ·RO · lacZ · lacY · lacA | X 〈〈〉〉−−→
φ

lacI ·PP · lacO · lacZ · lacY · lacA | repr |X

(R10)

117

6.3 An Application: The Lactose Operon

where φ = 0.01.

repr | LACT | X 〈〈tr,tL〉〉−−−−→
φ

RLACT | X (R11)

where tr and tL are the types of repr and LACT and φ = λn1n2.(n1 + 1)×
(n2 + 1)× 0.005.

RLACT | X 〈〈tRL〉〉−−−−→
φ

repr | LACT | X (R12)

where tRL is the type of RLACT and φ = λn.(n+ 1)× 0.1.
Rules (R1) and (R2) describe the transcription and translation of gene i

into the lac Repressor (assumed for simplicity to be performed without the
intervention of the RNA polymerase). Rules (R3) and (R4) describe bind-
ing and unbinding of the RNA polymerase to gene p. Rules (R5) and (R6)
describe the transcription and translation of the three structural genes. Tran-
scription of such genes can be performed only when the sequence contains
lacO instead of RO, that is when the lac Repressor is not bound to gene
o. Rules (R7)-(R10) describe binding and unbinding of the lac Repressor to
gene o. Finally, rules (R11) and (R12) describe the binding and unbinding,
respectively, of the lactose to the lac Repressor.

The following rules describe the behavior of the three enzymes for lactose
degradation:

(x̃)	 c (perm | X) | Y 〈〈〉,〈tpe〉,〈〉〉−−−−−−→
φ

(perm·x̃)	 cX | Y (R13)

where tpe is the type of perm and φ = λn.(n+ 1)× 0.1.

(x̃)	 cX | LACT | Y 〈〈t̃pe〉,〈〉,〈tL〉〉−−−−−−−→
φ

(x̃)	 c (LACT | X) | Y (R14)

where tpe and tL are the types of perm and LACT , respectively, and φ =
λn1n2.n1 × (n2 + 1)× 0.001.

LACT | X 〈〈tL,tb〉〉−−−−→
φ

GLU | GAL | X (R15)

where tL and tb are the types of LACT and betagal, and φ = λn1n2.(n1 +
1)× n2 × 0.001.

118

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

EcoliLact
R3, 30×0.1−−−−−−→ 10000× LACT | (m)	 c (lacI · PP · lacO · lacZ · lacY · lacA |

29× polym | 100× repr)
R5, 20−−−→ 10000× LACT | (m)	 c (lacI−A | 30× polym | 100× repr |

Rna)
R6, 0.1−−−−→ 10000× LACT | (m)	 c (lacI−A | 30× polym | 100× repr |

Rna | betagal | perm | transac)
R13, 0.1−−−−→ 10000× LACT | (perm·m)	 c (lacI−A | 30× polym |

100× repr | Rna | betagal | transac)
R14, 10000×0.001−−−−−−−−−−→ 9999× LACT | (perm·m)	 c (lacI−A | 30× polym |

100× repr | Rna | betagal | transac | LACT)
R15, 0.001−−−−−−→ 9999× LACT | (perm·m)	 c (lacI−A | 30× polym |

100× repr | Rna | betagal | transac | GLU | GAL).

Figure 6.3: An example of stochastic reduction.

Rule (R13) describes the incorporation of the lactose permease in the
membrane of the bacterium, rule (R14) the transportation of lactose from
the environment to the interior performed by the lactose permease, and rule
(R15) the decomposition of the lactose into glucose (denoted GLU) and
galactose (denoted GAL) performed by the beta galactosidase.

The initial state of the bacterium when no lactose is present in the en-
vironment and when 10000 molecules of lactose are present are modeled,
respectively, by the following terms (where n× T stands for a parallel com-
position T | . . . | T of length n):

Ecoli ::= (m)	 c (lacI−A | 30× polym | 100× repr) (6.5)

EcoliLact ::= Ecoli | 10000× LACT (6.6)

Now, starting from the term EcoliLact, a possible stochastic trace gen-
erated by our semantics, given the rules above, is shown in Figure 6.33.

3For simplicity we just show the rate of the transition reaching the target state con-
sidered in the trace. We avoid to report explicitly the whole exit rate from a given term,
which should be computed, following the standard simulation algorithm, by summing up
the rates for all the possible target states. For the sake of readability, we also show, on
the transitions, the labels of the rules leading the state change.

119

6.3 An Application: The Lactose Operon

Figure 6.4: Simulation results: absorption and degradation of lactose into
glucose.

Figure 6.5: Simulation results: production of enzymes.

120

6. STOCHASTIC SEMANTICS FOR THE CALCULUS OF LOOPING
SEQUENCES

In Figure 6.4 and Figure 6.5 we show the results of a TSCLS simulation of
the term EcoliLact obtained with a prototype simulator for TSCLS written
in JAVA. For a more realistic simulation we added to the model also the
rules describing the spontaneous degradation of the elements involved in
the model4. In particular, in Figure 6.4, we show the absorption of lactose
showing the concentrations of lactose outside and inside the bacterium and,
inside the bacterium, the degradation of lactose into glucose (passage of
time, per seconds, is modeled on the X, number of elements is given by the Y
axis). In Figure 6.5, we show the number of the enzymes Irna, betagal and
perm (notice how the production of the perm enzyme inside the bacterium
is activated after the absorption of the lactose).

6.4 Conclusions

This chapter presents a first proposal for using a type abstraction in describ-
ing quantitative aspects of biological systems.

Let us compare the SCLS with our calculus. The most obvious difference
is that our rules, similar to what happens in [23] for a variant of the ambient
calculus, are equipped with rate functions, rather than rate constants. This
is a big advantage, because such functions allow us to define kinetics that
are more complex than the standard mass-action ones, as shown in Section
6.2.1.

Another obvious difference is the counting mechanism: ours, based on
types, is simpler than the one of SCLS in practice: while a single pattern
may have several, though isomorphic, matches within a CLS term, in Typed
Stochastic CLS we state explicitly the types of the elements whose occur-
rences affect the speed of a reduction. We do not need the abstractions
introduced in SCLS (i.e. Concrete Terms, Supports and Occurrences, see
Section 2.3) but just the simpler notions of ptype and stype, in Definition
6.2.1. On the other side, by abstracting sequences with the multiset of the
types of their elements we lose the information on the ordering of the el-
ements. Therefore, we cannot define a function computing correctly the
kinetic constant for the example in Remark 2.3.2, since the function should
depend on the number of a’s that in both cases is the same. However, as
shown in Section 6.2.1, for a restricted set of terms we can correctly real-

4omitted here for simplicity, a complete description of the simulated model is available
at: http://www.di.unito.it/∼giannini/TSCLSim/

121

6.4 Conclusions

ize the “mass-action law”. The counting mechanism affects also the rule
schemata. In fact, as discussed in Remark 6.2.2, the hole of our contexts
encompass a whole compartment, while in SCLS the hole of a context may
be a subterm of a compartment. In order to regain the lost expressiveness,
as we can see from the examples, we must add a | X to the patterns in the
left-hand-side and right-hand-side of a rule.

All these differences have simplified the development of our automatic
simulation tool. Note that the simulator developed for the SCLS calculus5,
for efficiency reasons, does not implement the complex counting of matches
defined in [11], but computes the kinetic constant of a reduction by count-
ing the number of matches based on the occurrences of the elements of the
pattern present in the term, as we described in Section 6.2.1. A comparison
between the efficiencies of the SCLS and the TSCLS simulators is meaning-
less considering the differences between the functionalities of the semantics
presented in [11] and those implemented in the SCLS simulator.

5available at http://www.di.unipi.it/msvbio/wiki/sclsm

122

Chapter 7

A Minimal OO Calculus for
Modelling Biological Systems

7.1 Introduction

Homogeneous biological entities are usually named according to their behav-
ior. Enzymes are proteins that catalyze (i.e. increase the rates of) chemical
reactions, receptors are proteins embedded in a membrane to which one or
more specific kinds of signaling molecules may attach producing a biological
response, hydrolases are enzymes that catalyze the hydrolysis of a chemical
bond, and so on. Subsequently, chemical elements are classified following
these groups: for example, the lactase is a hydrolase, then its peculiarity
with respect to the other biological entities is that it catalyzes the hydroly-
sis of a particular molecule. Such classification suggests Computer Science
types: each biological entity is classified with a type, containing the sound
operations for it. Moreover, this classification is useful for checking the cor-
rectness of chemical reactions. Lactase is not just a hydrolase, but a glycoside
hydrolase, i.e. it catalyzes the hydrolysis of the glycosidic linkage of a sugar
to release smaller sugars: if the substrate or the products are not sugars,
somewhere there is an error. Type checking tools do the same, checking the
correspondence between the types of the arguments and the types of the
parameters in a module call operation. Finally, the biological classification
follows a subtype relation. Lactase hydrolyze the lactose, that is a disac-
charide: since disaccharides are a subtype of sugar, the hydrolysis operation
associated to the glycoside hydrolase is correct.

123

7.2 Core Calculus

Here we present the Minimal Object-Oriented Core Calculus for term-
rewriting formalisms, i.e. formalisms based on term rewriting, proposed in
[18]: it aims to model the notion of types used in biology as above described.
We implement only the Object-Oriented paradigm skills that, in our view,
are basic in modeling biological systems, that is encapsulation, method in-
vocation, subtyping and a simple inheritance. The purpose of this calculus
is to facilitate the organizations of rules, and to improve their re-use, in the
model or even in other models.

7.2 Core Calculus

A rewrite system is composed by a term, representing the structure of the
modeled system, and a series of reduction rules, representing the possible
evolutions of the system: depending on the formalism, these rules can be
embedded in terms, like in P Systems, or defined in a separate part, like
in the Calculus of Looping Sequences; note that an hybrid solution is the
Calculus of Looping Sequences with Local Rules proposed in Chapter 3.

In our core calculus, a class contains methods (encapsulation) and extends
another class (subtyping), inheriting all its methods (inheritance). Methods
are formed by a sequence of variables, the arguments, and a sequence of
reduction rules containing these variables. They are called on symbols of the
model, representing biological entities, with a sequence of values as arguments
(method invocation). A method invocation is replaced by the reduction rules
of the method, in which the variables are replaced by the values used as
arguments. These reduction rules are then used for the evolution of the
model.

For example, the hypothetical class of glycoside hydrolase contains a
method to hydrolyze a sugar into two sugars, all of them passed as argu-
ments. This method contains the sequence of reduction rules that models
hydrolysis. We assign to lactase the glycoside hydrolase type, and then call
on it the hydrolysis method, passing as arguments the lactose and the sugar
products. By invocation, we obtain the reduction rules specific for lactase,
that will be used for the evolution of the model.

In the remainder of this Section we present the formal definition of the
calculus. Its syntax, definitions and rules are inspired by the ones proposed
by Igarashi, Pierce and Wadler for Featherweight Java [46], a minimal core

124

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

calculus for modeling the Java Type System.

7.2.1 Syntax

Syntax
CT ::= class table declaration

CL
CL ::= class declaration

class C extends D{M} (C 6= Object)
M ::= method declaration

m(C x) R
R ::= reduction rule declaration

according to the formalism syntax
contains variables, values and this

I ::= method invocation
v.m(v)

x variable
v value
this this

Figure 7.1: Syntax

The syntax is given in Figure 7.1. The metavariables C and D range over
class names; m ranges over method names; CL ranges over class declara-
tions; M ranges over method declarations; R ranges over reduction rules; I
ranges over method invocations; x ranges over parameter names; v ranges
over values, i.e. the symbols of the model. We assume that the set of vari-
ables includes the special variable this, that identifies the object calling a
module. Notice that this is never used as argument of a method. Note that
the syntax of reduction rules R is not defined, but it depends on the rewriting
formalism used.

Remark 7.2.1. For the sake of generality, in running examples we use the
biological rule notation to represent reduction rules, following the simple syn-

125

7.2 Core Calculus

tax
E ::= element composition

v | x | E + E
R ::= rule declaration

E → E

The plus sign represents a juxtaposition between elements, and the arrow rep-
resents a chemical reaction. We use the notation E1
 E2 instead of the

pair of reduction rules E1 → E2 and E2 → E1.

We write M as shorthand for M1 . . .Mn, and C for C1, . . . , Cn (similarly
x, v, etc.). We abbreviate operations on pairs of sequences in the same way,
writing C x for C1 x1, . . . , Cn xn, where n is the length of C and x. Sequences
of parameter names and method declarations are assumed to contain no
duplicate names.

The declaration class C extends D{M} introduces a class named C hav-
ing the class D as superclass. The new class has the suite of methods M .
The methods declared in C are added to the ones declared by D and its su-
perclasses, and may override methods with the same name that are already
present in D, or add new functionalities. The class Object has no methods
and does not have superclasses.

The method declaration m(C x) R introduces a method named m with
parameters x of types C. The body of the method is a sequence of reduction
rules R, expressed in the syntax of the formalism. The variables x and the
special variable this are bound in R.

A class table CT is a mapping from class names C to class declarations
CL. We assume a fixed class table CT satisfying some sanity conditions: (1)
CT (C) = class C . . . for every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for
every class name C (except Object) appearing in CT , we have C ∈ dom(CT);
(4) there are no cycles in the subtype relation induced by CT , i.e. a class
cannot extends one of its subclasses.

The fixed type environment Λ contains the association between values v
and their types C, written v : C. We assume that Λ satisfies some sanity
conditions: (1) if v : C ∈ Λ for some v, then C ∈ dom(CT); (2) every value
in the set of values is associated to exactly one type in Λ.

Example 7.2.2. We define the class of molecules as follows:

class Molecule extends Object{}

126

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

The Molecule class has the Object class as superclass, and it does not have
methods, i.e. molecules do not have any particular behavior.

An enzyme is a protein that catalyze chemical reactions. In an enzymatic
reaction, the molecules involved in the reaction (called substrates) are con-
verted into different molecules (called the products), while the enzyme itself
is not consumed by the reaction. We define the class of enzymes as follows:

class Enzyme extends Object

{
action(Molecule S, Molecule P)
S + this→ this + P

}
For the sake of simplicity, in our example an enzyme extends an object

rather than a protein, jumping a hierarchy level. According to the enzyme
definition, the Enzyme class contains only one method, action, which converts
the variable molecule S (the substrate) into the variable molecule P (the
product) in presence of the enzyme (the this keyword).

Class tables and environment types are used to create a triple (CT,Λ, P),
where P is the model, designed according to the formalism specifications, in
which all the reduction rules are replaced by method invocations.The class
table CT and the type set Λ are fixed, i.e. they are determined during the
model creation and cannot vary during model evolution.

7.2.2 Auxiliary Definitions

For the typing and evaluation of rules, we need a few auxiliary definitions:
these are given in Figure 7.2.

The type of a method m in a class C, written mtype(m, C), is the sequence
of types C of the arguments of the method m defined in the class C (or in one
of its superclasses, if not defined in C). For example,

mtype(action, Enzyme) = (Molecule, Molecule)

The body of a method m in a class C, written mbody(m, C), is a pair (x,R) of
a sequence of variables x and a sequence of reduction rules R. The elements
of the pair are the arguments and the reduction rules of the method m defined
in the class C (or in one of its superclasses, if not defined in C). For example,

mbody(action, Enzyme) = ((S, P), S + this→ this + P)

127

7.2 Core Calculus

Method type lookup

CT (C) = class C extends D{M} m(C x) R ∈M

mtype(m, C) = C

CT (C) = class C extends D{M} m is not defined in M

mtype(m, C) = mtype(m, D)

Method body lookup

CT (C) = class C extends D{M} m(C x) R ∈M

mbody(m, C) = (x,R)

CT (C) = class C extends D{M} m is not defined in M

mbody(m, C) = mbody(m, D)

Figure 7.2: Auxiliary Definitions

7.2.3 Evaluation

The unique evaluation rule concerns the method invocation v.m(t). If the
value v has type C in Λ, and the method m has arguments x and body R
in C, then its evaluation is the sequence of reduction rules R, in which all
the occurrences of the variables x are replaced with the values t, and all
the occurrences of this are replaced with the value v. Note that a method
invocation is placed in the model instead of reduction rules: once evaluated,
the reduction rules of the method becomes the (instantiated) reduction rules
of the model.

Example 7.2.3. Phosphoglucose isomerase is an enzyme that catalyzes the
conversion of glucose-6-phosphate into fructose 6-phosphate (and vice versa)
in the second step of glycolysis. In order to model this behavior, in Λ we
associate to the value ph-iso (the phosphoglucose isomerase) the type Enzyme,
and to the values glu-6-ph and fru-6-ph (the glucose-6-phosphate and fructose
6-phosphate, respectively) the type Molecule

Λ = {ph-iso : Enzyme, glu-6-ph : Molecule, fru-6-ph : Molecule}

128

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

Method Invocation

v : C ∈ Λ mbody(m, C) = (x,R)
(e-meth)

v.m(t)→ [x 7→ t, this 7→ v]R

Figure 7.3: Evaluation

Instead of the reduction rules, in the model we place the calling of the action
method on the ph-iso enzyme, using the molecules as arguments

ph-iso.action(glu-6-ph, fru-6-ph)

Following the evaluation rule in Figure 7.3, this method invocation is replaced
by the reduction rule

glu-6-ph + ph-iso→ ph-iso + fru-6-ph

As a consequence, we obtain the reduction rule modeling the conversion of
glucose-6-phosphate into fructose 6-phosphate. In order to obtain the con-
version in the other side, we call the action method on the ph-iso enzyme by
swapping the arguments

ph-iso.action(fru-6-ph, glu-6-ph)

This method invocation is then replaced by the reduction rule

fru-6-ph + ph-iso→ ph-iso + glu-6-ph

After method evaluation, we obtain the reduction rules of the model, repre-
senting the possible evolution of the system.

7.2.4 Typing

The rules for subtyping are formally defined in Figure 7.4. The subtype
relation between classes is given by the class declarations in the class table
CT . The subtype relation is reflexive and transitive.

Example 7.2.4. For Enzyme and Molecule classes we derive the following
subtype relations:

Enzyme <: Enzyme Molecule <: Molecule (by rule (t-sub1))
Enzyme <: Object Molecule <: Object (by rule (t-sub3))

129

7.2 Core Calculus

Subtyping

C <: C (t-sub1)
C <: D D <: E

(t-sub2)
C <: E

CT (C) = class C extends D{M}
(t-sub3)

C <: D

Figure 7.4: Subtyping

Note that since Enzyme is not a subtype of Molecule, then an enzyme cannot
be a substrate nor a product of the Enzyme’s action method.

The typing rules for method invocations and for method and class dec-
larations are given in Figure 7.5. Typing statements for method invocations
have the form v.m(t) OK, asserting that the method invocation v.m(t) is well
formed. The typing rule checks that the types of the values used as argu-
ments in a method invocation are subtypes of the types of the arguments
required by the method.

Typing statements for method declarations have the form M OK in C,
and assert that the method declaration M is well formed in the class C.
The typing rule checks that the reduction rules in the method of a class are
well formed, assuming the types of the arguments and the class. Typing
statements for class declarations have the form CL OK, stating that the class
declaration CL is well formed. The typing rule checks that each method
declaration in the class is well formed. Since each formalism may have its
own constraints for checking the well-formedness of a rule, the modeler must
add the proper typing rules, in addition to the ones in Figure 7.5.

Example 7.2.5. As expected, both Enzyme and Molecule classes are OK.

Note that the inheritance is very simple: a class inherits all the methods
of its superclass, and it can modify the body and the arguments of a method
declared in its superclass. In this way, lower classes can reuse the names
of higher classes methods, i.e. more specialized biological entities can focus
and specialize the behavior of more generic biological entities by reusing the
name associated to a reduction rule.

130

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

Invocation typing

v : C ∈ Λ mtype(m, C) = C t : D ∈ Λ D <: C
(t-invmeth)

v.m(t) OK in C

Method typing

x : C, this : C ` R OK
(t-clmeth)

m(C x) R OK in C

Class typing

CT (C) = class C extends D{M} M OK in C
(t-class)

class C extends D{M} OK

Figure 7.5: Typing

Example 7.2.6. An hydrolase is an enzyme, but it cannot catalyze any reac-
tion except hydrolysis. For this reason, we design hydrolase class as follows:

class Hydrolase extends Enzyme

{
action(Molecule S, Molecule P1, Molecule P2)
S +H2O + this→ this + P1 + P2

}

The Hydrolase class is an extension of the Enzyme class that overrides the
action method. In this way, the generic catalysis described in the Enzyme’s
action method is no more available in the Hydrolase class, but the override
action method makes available only the specific hydrolysis.

In a similar way, the glycoside hydrolase is an hydrolase, but its substrate
and products are sugars. Then the glycoside hydrolase class is designed as an
extension of Hydrolase class, that overrides the action method by modifying

131

7.3 Modeling Enzyme Kinetics

the types of the arguments, from generic molecules to sugars:

class Sugar extends Molecule{}

class GlycosideHydrolase extends Hydrolase

{
action(Sugar S, Sugar P1, Sugar P2)
S +H2O + this→ this + P1 + P2

}

7.3 Modeling Enzyme Kinetics

In this section we show how our calculus can be used to model biological
behaviors. As an example, we design classes and method invocations to
describe Michaelis-Menten enzyme kinetic, the two-substrates enzyme kinetic
and the competitive inhibition kinetic.

Michaelis-Menten Model

In the Michaelis-Menten Model, the enzyme reaction is divided in two stages.
In the first stage, the substrate S binds reversibly to the enzyme E, form-
ing the enzyme-substrate complex ES, then in the second one the enzyme
catalyzes the chemical step in the reaction and releases the product P:

E + S
 ES→ E + P

This basic construct is also used in most complex enzyme reactions. In
order to model this behavior, we create two classes, the Enzyme class and the
EnzymeCom class. The first one models an enzyme: it associates itself with
a substrate, and produces an enzyme-substrate complex. The second one
models an enzyme-substrate complex: it dissociates itself in an enzyme and
a product.

class Enzyme extends Object class EnzymeCom extends Enzyme

{ {
ass(Molecule S, EnzymeCom ES) dis(Enzyme E, Molecule P)
S + this→ ES this→ E + P

} }

132

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

Since an enzyme-substrate complex can act as an enzyme, the EnzymeCom

class extends the Enzyme class. In this way, the EnzymeCom class inherits
from Enzyme the ass method by auxiliary definitions.
The type environment is

Λ = {E : Enzyme,ES : EnzymeCom, S : Molecule,P : Molecule}

The method invocations for reproducing the described behavior are

E.ass(S,ES) ES.dis(E, S) ES.dis(E,P)

Two-substrates Enzymes

Several enzymes catalyze a reaction, usually divided into three stages, be-
tween two substrates. In the first stage, the substrate S1 binds reversibly
to the enzyme E, forming the enzyme-substrate complex ES1. In the second
stage, the substrate S2 binds reversibly to the enzyme-substrate complex
ES1, forming the enzyme-substrate complex ES1S2. Finally, in the last stage
the enzyme complex ES1S2 catalyzes the chemical step in the reaction and
releases the product P:

E + S1
 ES1 + S2
 ES1S2→ E + P

Note that this is only one of all the possible interactions between an enzyme
and two substrates. To model this behavior, we use the classes Enzyme and
EnzymeCom, and we assign the following types:

Λ = {E : Enzyme,ES1 : EnzymeCom,ES1S2 : EnzymeCom,
S1 : Molecule, S2 : Molecule,P : Molecule}

The method invocations are the following:

E.ass(S1,ES1) ES1.dis(E, S1) ES1.ass(S2,ES1S2)
ES1S2.dis(ES1, S2) ES1S2.dis(E,P)

Competitive Inhibition

Enzyme reaction rates can be decreased by molecules called enzyme in-
hibitors. There exist a lot of inhibitors kinetics: among the others, we study
the Competitive Inhibition, in which an inhibitor and a substrate compete

133

7.4 Implementation in Term-Rewriting Formalisms

for the enzyme (i.e. they cannot bind at the same time). In fact, the inhibitor
I binds to enzyme E producing the complex EI, and stops a substrate S from
entering the enzyme’s active site and producing the complex ES:

E + S
 ES→ E + P

E + I
 EI

This case is an extension of the Michaelis-Menten Model, and is modeled by
adding to the previous model the following type environment and method
invocations:

Λ′ = {EI : EnzymeCom, I : Molecule}

E.ass(I,EI) EI.dis(E, I)

7.4 Implementation in Term-Rewriting For-

malisms

The calculus in this Chapter is designed to be applied to the most popu-
lar term-rewriting formalisms for modeling biological systems, following four
steps:

1. set the syntax of reduction rules of the term-rewriting formalism as the
syntax of reduction rules of the core calculus;

2. if the reduction rules must respect certain conditions handled by typing,
then add the proper typing rules for checking their well-formedness;

3. define the class table CT , and assign types to values in the type envi-
ronment Λ according to their biological behavior;

4. create a triple (CT,Λ, P), where P is a model designed according to
the formalism specifications, except for the reduction rules, that are
replaced by method invocations.

After the evaluation of the method invocations in P , we obtain the model P ′

in the formalism form, in which all the reduction rules are consistent with
the biological classification and behavior defined in CT and Λ.

134

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

7.4.1 An Application: Porins

As an example of implementation, we model the Porins behavior in two differ-
ent term-rewriting formalisms: the Calculus of Looping Sequences (CLS) and
the P systems. Porins are proteins that cross a cellular membrane and act
as a pore through which molecules can diffuse. The molecules which diffuse
across the porin depends on the porin itself. Among the porins, aquaporins
selectively conduct water molecules in and out of the cell, while preventing
the passage of ions and other solutes. Some of them, known as aquaglycero-
porins, transport also other small uncharged solutes, such as glycerol, CO2,
ammonia and urea across the membrane (see [45]). We design the Porin

class to model the porin behavior, and we present an example of triple and
its evaluation, in CLS and P systems formalisms. In particular, we model
two kinds of aquaporins: the former transports only water, while the latter
transports both urea and water.

Calculus of Looping Sequences

A CLS model (see Chapter 2) is a pair (T,R), where T is the term depicting
the initial state of the system, and R is the set of rewrite rules. Since in
CLS the reduction rules have the form P → P , the rule syntax of a class
becomes

R ::= P → P.

Using classes and methods, the set R becomes a set of method invocations,
R = {I}, which must be evaluated in an initial phase of system initialization,
before the evaluation of terms, in order to obtain the rewrite rules of the
model.

A class modeling the porin behavior with rewrite rules in CLS syntax is
the following:

class Porin extends Object

{
in(Molecule S)
S | (this · x̃)	 cX → (this · x̃)	 c (S | X)

out(Molecule S)
(this · x̃)	 c (S | X)→ S | (this · x̃)	 cX

}

135

7.4 Implementation in Term-Rewriting Formalisms

We use the symbols w for water, u for urea, AW for the aquaporin that
transports only water and AWU for the aquaporins that transports both
water and urea. In our term, both kinds of aquaporins are included into a
membrane:

T = w | . . . | w | u | . . . | u | (AW)	 c (ε) | (AWU)	 c (ε)

The type environment is the following:

Λ = {AW : Porin,AWU : Porin,w : Molecule, u : Molecule}

and the class table CT contains the Porin and Molecule classes. The triple
is (CT,Λ, P), where P is composed by the term T and the rule set containing
the following method invocations:

AW.in(w) AW.out(w) AWU.in(w)
AWU.out(w) AWU.in(u) AWU.out(u)

After the evaluation of the triple, the CLS model is composed by the term
T and the rewrite rules

w | (AW · x̃)
	 cX → (AW · x̃)

	 c (w | X) (AW · x̃)
	 c (w | X)→ w | (AW · x̃)

	 cX
w | (AWU · x̃)

	 cX → (AWU · x̃)
	 c (w | X) (AWU · x̃)

	 c (w | X)→ w | (AWU · x̃)
	 cX

u | (AWU · x̃)
	 cX → (AWU · x̃)

	 c (u | X) (AWU · x̃)
	 c (u | X)→ u | (AWU · x̃)

	 cX

P systems

A P system [53] is a n-tuple Π = (V, µ,M1, . . . ,Mn, (R1, ρ1), . . . , (Rn, ρn), i0),
where

• V : alphabet;

• µ: membrane structure of degree n, with the membrane and the regions
labeled in a one-to-one manner with elements in a given set L;

• Mi: multisets of symbols (or strings) in V , denoting the symbols con-
tained in the membrane i;

• Ri: finite sets of reduction rules (called evolution rules) x → y con-
tained in the membrane i and such that x ∈ V ∗ and y = y′ or y = y′δ,
where y′ ∈ (V × {here, out})∗ ∪ (V × {inj | j ∈ L})∗;

136

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

• ρi: partial order relations over Ri;

• i0: a label in L which specifies the output membrane. If empty, then the
output region is the environment (the space containing the outermost
membrane).

Consider an evolution rule x → y in the set Ri: if the symbols in x
appear in Mi, then these symbols are replaced by the symbols in y according
to the rule. If a symbol a appears in y in a pair (a, here), then it will remain
in Mi. If a symbol a appears in y in a pair (a, out), then it becomes a
symbol of the membrane immediately outside the membrane i, according to
the membrane structure µ. If a symbol a appears in y in a pair (a, inj), and
the membrane j is contained in the membrane i according to the membrane
structure µ, then it becomes a symbol of the membrane j. If y = y′δ, then
the membrane i and the evolution rules in Ri disappear, and all the symbols
in Mi are added to the symbols of the membrane immediately outside the
membrane i. Evolution rules are applied following the priority in ρi, and in a
non-deterministic way in case of same priority. In a single evolution step, all
symbols in all membranes evolve in parallel, and every applicable evolution
rule is applied as many times as possible (maximal parallelism).

According to the definitions of evolution rules, the rule syntax becomes

R ::= x→ y

Using classes and methods, each set Ri becomes a set of method invocations,
Ri = Ii.

Note that in P systems there are two kinds of symbols which may be
involved in an evolution rule: the biological entities (contained in V), and
the labels of membranes (contained in L). Since they are different entities, we
must design a distinct class for each of them. As a solution, we construct the
class BioObject for biological entities, and Label for labels, both extending
Object.

class BioObject extends Object{}
class Label extends Object{}

Every biological entities must extend BioObject or one of its subclasses: for
this reason, the new definition of the class Molecule is

class Molecule extends BioObject{}

137

7.5 Conclusions

A class modeling the porin behavior with P-system evolution rules is the
following:

class Porin extends BioObject

{
in(Molecule S, Label J)
S → S(inJ)

out(Molecule S)
S → S(out)

}

In our model, the aquaporin that transports only water (w) is contained
into the membrane labeled by 1, and the other one, that transports both
urea (u) and water, is contained into the membrane labeled by 2. The type
environment is the following:

Λ = {A : Porin,w : Molecule, u : Molecule, 0 : Label, 1 : Label, 2 : Label}

and the class table CT contains the Porin, Molecule and BioObject classes.
The triple is (CT,Λ,Π), where Π is the following1:

Π = ({u,w,A}, [[]2[]3]1, {u, . . . u,w, . . . ,w}, ∅, ∅, (A.in(w, 1),A.in(w, 2),
A.in(u, 2)), (A.out(w)), (A.out(w),A.out(u)), 1)

After the evaluation of the method invocations, we obtain the P system

Π′ = ({u,w,A}, [[]2[]3]1, {u, . . . u,w, . . . ,w}, ∅, ∅, (w→ w(in1),w→ w(in2),
u→ u(in2)), (w→ w(out)), (w→ w(out), u→ u(out)), 1)

7.5 Conclusions

As seen in Section 1.4, several formalisms implements modules for managing
the complexity of biological processes. Using classes, our calculus can orga-
nize biological functionalities in boxes, like for modules, but moreover it can
exploit the features of Object-Oriented programming, such as inheritance
and subtyping. On the other side, the rules in a class are not visible from
outside, then the resolution of the errors becomes more difficult. Respect

1For the sake of clarity, we assume that the evolution rules have the same priority,
omitting the partial order relation ρ over them

138

7. A MINIMAL OO CALCULUS FOR MODELLING BIOLOGICAL
SYSTEMS

to other solutions seen in Section 1.4, our calculus does not specify a meta-
language: this choice allows to use the calculus with different term-rewriting
formalisms, but it pays off in terms of expressiveness, because we cannot
exploit the expressive power of a particular syntax.

The modularity of our classes allows to design libraries for generic biolog-
ical processes, which can be instantiated and re-used repeatedly in different
contexts with different arguments, and even in different models, ensuring
that their reduction rules are consistent with the biological ontology de-
fined in them. These libraries could be designed and refined by experts, and
then made available to all modelers, thereby creating a scientific common for
model building. The same library could also be adapted from a formalism
to another, rewriting the reduction rules and with small alteration to the
hierarchy, if needed. That modularity allows System Biology to evolve in a
decentralized manner: any user can develop novel abstractions of any biologi-
cal functionality in a formalism, and contribute these back to the community,
that can adapt these classes to another formalism.

Note that the calculus proposed in this Chapter implements only very ba-
sic features of the Object-Oriented paradigm. In our opinion, these features
are the most common and useful in biological modeling, but increasing the
complexity of the modeled systems the need of new features could emerge.
For example, sometimes molecules have different roles depending on the con-
text: our calculus cannot deal with this behavior, because each value is asso-
ciated to exactly one type. For this reason, a possible development is surely
the study and implementation of other basic and high-level constructs of Im-
perative and Object-Oriented paradigms, such as data structures, multiple
inheritance or parametric polymorphism (also known as generics).

Finally, in our calculus the modeler decide which reduction rules to in-
clude in a model, but in this way a raw modeler could forget some impor-
tant rule. A possible evolution is to infer the reduction rules directly from
the composition of the model, according to the association between classes
and values defined in the type environment. For example, if the term of the
model contains a porin, then the system may infer the proper reduction rules
to include, in this case the ones modeling the passage of elements through
membranes. Moreover, in this way the reduction rules in a model could be-
come dynamic: they could evolve following the evolution of the model, in a
correct (from a biological point of view) way, without any external interven-
tion. For example, if, during the evolution of the model, a lactase is created
in the term, then the proper reduction rules, in this case the ones modeling

139

7.5 Conclusions

hydrolysis, could be added.

140

Chapter 8

Conclusions

Biological molecules cannot survive if left alone, they usually live and grow in
symbiosis with other molecules: the interaction between different biological
actors is the key for surviving. And the key for interaction is proximity:
only close molecules may interact. When we study small systems, we can
suppose all the involved actors are so close each other that everyone can
interact with all the other ones, but this assumption is no more true in
more realistic systems. Biological models for complex systems must take
into account the relative positions of their molecules, so we need formalisms
able to express somehow the concept of space. As seen in Section 1.3, several
spatial formalisms have been proposed, with different solutions. Here, we
adopt a formalism based on membranes, the Calculus of Looping Sequences:
among the other approaches, a formalism dealing with membranes is more
flexible and less computationally heavy. In fact, into a membrane we do not
need to know the exact position of each molecule, because we can assume
they are close enough to interact each other, and according to the model we
can decide the size of this environment. As proposed in Section 2.4.5, this
schema is also highly scalable, even if it needs a supplementary framework
to be readable by an human user. As proposed in Chapter 3, it is better
parallelizable, because different membranes can evolve in parallel, if they do
not interact with each other. Moreover, it allows to define rules having scope
only into a membrane, and other rules having global validity.

While the implementation of spatial framework in biological models has
intuitive motivations, the reason why types may improve biological formalisms
looks less obvious, on a first sight: as a proof, few of the ones presented in
Chapter 1 implement a type discipline. After having read this essay the mo-

141

tivation is clearer: a type discipline allows to transfer the complexity of bio-
logical properties from rules to types. Types are ideal for expressing general
constraints derived from biological behaviors, leaving to rules the evolution
of the specific system. The role of types in biological formalisms is the same
used in (typed) programming languages: their syntax is quite simple, in or-
der to be easy to understand and to use. In addition, the coder knows the
limitations imposed by types, even if their physical implementation is com-
pletely hidden. To express the same conditions via syntax would make this
one very complex. Moreover, modifications to the logic of types usually does
not affect syntax. In order to study the utility of a type system, we need
a formalism with few syntactic constraints, and huge expressivity. Among
membrane systems, the Calculus of Looping Sequences is the ideal candidate:
as showed in Section 2.2.1, it allows to describe several biomolecular events,
and to write generic rules, by means of variables.

Once settled the main formalism, we need to choose how to implement a
type system. It can have place in two circumstances, either at compile time or
at runtime, i.e. limiting either the rules that can be written by modelers, or
the ones used by the system in the current evolution step. Both approaches
are implemented here: the first one in Chapter 7, while the second one in
Chapters 3, 4, 5, 6. The first approach is quite obvious: syntactic constraints
are not sufficient to ensure the biological correctness of rules, so types add
additional constraints, more related to biological behaviors. For example,
in the Calculus in Chapter 7 the modeler can define a hierarchy of types
containing a prototype of rules, then associate each molecule with a type,
and finally add the rules to the model. Rules cannot be arbitrarily defined,
because they depend on the types of their involved molecules. The Calculus
is inspired by the general implementation of a type system: as this one
is implemented in different programming languages, in the same way the
Calculus can be applied to several formalisms. While this approach aims
to ensure the biological correctness of existing rules, the second one aims to
add another goal: to decrease the quantity of rules of the models. While a
model grows in complexity, the number of its rules grows, too. This growth
becomes a problem for human users, that have to write (and check) them one
by one. The solution is given by the second approach, that allows to define
a limited number of generic rules, that will be applied to the specific case in
the current step by the type system. The improvement derived by this idea
is visible in the example in Section 4.4: without types, for managing blood
transfusion we would write a rule for each compatible transfusion. The same

142

8. CONCLUSIONS

goes for the hemoglobin variants and cell homeostasis in Section 5.4. As a
drawback, since the typing constraints are hidden, their presence must be
known a priori by modelers.

However, sometimes biological constraints can be broken. Some of them
could be seen as practical suggestions, that if not followed could drive to unde-
sirable behaviors, such as a disease or even the death of the system. Thinking
on the examples in Sections 4.4 and 5.4, one could accidentally transfuse in-
compatible blood types, and the balance between cell death and division can
be broken, leading to death or tumors. On the contrary, the typed semantics
in Chapters 4 and 5 completely exclude this kind of situations. According to
this idea, we could modify their typed semantics, allowing transitions which
lead to untypable terms, but signaling that some undesired state has been
reached. In the first case, we could modify the transitions driven by ∆-safe
rules behavior and ∆-(P, R)-safe rules behavior, with the following two rules
that raise an error when some undesired reduction is performed:

P1 7→ P2 ∈ R is not a ∆-(P, R)-safe rule P1σ 6≡ ε
σ ∈ Σ∆ E ∈ E

E[P1σ]
typabilityError−−−−−−−−−→ E[P2σ]

P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ε
σ ∈ Σ∆ E ∈ E (P, R) is not OK for E

E[P1σ]
contextError−−−−−−−→ E[P2σ]

and modifying the algorithm in Section 4.3, raising an error in point 3b. In
the second case, the rule to add could be the following one:

< = P1 7→ P2 ∈ R is a ∆-(P, L, M)-safe rule P1σ 6≡ ε
σ ∈ Σ∆ E ∈ E (P, L, M) is not OK for E

E[P1σ]
Error−−−→ E[P2σ]

In both cases, the modeler is advised that some unwanted behavior is hap-
pening in the system. In this way, the modeler can check if, starting from the
initial term and using the given rules, we can reach a non-typable term, i.e.
a term that breaks some biological property, or either that some unwanted
behavior is happening in the system and readjust it to avoid the undesired
situations.

143

The application of Type Theory skills to biological formalisms is a new
field of research, in the young research field of System Biology. Nowadays we
are performing the first steps, and their results are really promising: increase
of biological accuracy, and decrease of complexity of models, at the price of a
more complex type engine. We can find several possible future development
in this field. Here we have implemented some biological properties by means
of types, but other ones can be studied. Types can be applied to rules instead
of molecules, as in Chapter 3, or to calculate other information useful for the
model, such as the rate of a reduction, as done in Chapter 6. New formalisms
exploiting the expressivity freedom gained thanks to types, and so less related
to a set of predetermined biological properties, can be designed. A lot of
work still need to be done, but in the future the presence of type system in
biological models will increase, and types will become essential in formalisms
for System Biology, as they are in programming languages.

144

Bibliography

[1] Biocham. http://contraintes.inria.fr/BIOCHAM/.

[2] Marco Aldinucci, Mario Coppo, Ferruccio Damiani, Maurizio Drocco,
Elio Giovannetti, Elena Grassi, Eva Sciacca, Salvatore Spinella, and An-
gelo Troina. CWC Simulator. Dipartimento di Informatica, Università
di Torino, 2010. http://cwcsimulator.sourceforge.net/.

[3] Marco Aldinucci and Massimo Torquati. FastFlow website. FastFlow,
October 2009. http://mc-fastflow.sourceforge.net/.

[4] Rajeev Alur, Calin Belta, Vijay Kumar, and Max Mintz. Hybrid Mod-
eling and Simulation of Biomolecular Networks. In Hybrid Systems:
Computation and Control, volume 2034 of LNCS, pages 19–32. Springer,
2001.

[5] Bogdan Aman and Gabriel Ciobanu. Simple, Enhanced and Mutual Mo-
bile Membranes. Transictions on Computational System Biology, 11:26–
44, 2009.

[6] Bogdan Aman and Gabriel Ciobanu. Mobility in Process Calculi and
Natural Computing. Natural Computing Series. Springer, 2011.

[7] Bogdan Aman and Gabriel Ciobanu. Mutual Mobile Membranes with
Objects on Surface. Natural Computing, 10(2):777–793, 2011.

[8] Bogdan Aman, Mariangiola Dezani-Ciancaglini, and Angelo Troina.
Type Disciplines for Analysing Biologically Relevant Properties.
In Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’08), volume 227 of ENTCS, pages 97–111. Elsevier, 2009.

145

BIBLIOGRAPHY

[9] Roberto Barbuti, Andrea Maggiolo-Schettini, and Paolo Milazzo. Ex-
tending the Calculus of Looping Sequences to Model Protein Interaction
at the Domain Level. In International Symposium on Bioinformatics
Research and Applications (ISBRA’07), volume 4463 of LNBI, pages
638–649. Springer, 2006.

[10] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, Giovanni
Pardini, and Luca Tesei. Spatial P Systems. Natural Computing,
10(1):3–16, 2011.

[11] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, Paolo
Tiberi, and Angelo Troina. Stochastic Calculus of Looping Sequences
for the Modelling and Simulation of Cellular Pathways. Transactions on
Computational Systems Biology, IX:86–113, 2008.

[12] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and An-
gelo Troina. A Calculus of Looping Sequences for Modelling Microbio-
logical Systems. Fundamenta Informaticæ, 72(1–3):21–35, 2006.

[13] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and An-
gelo Troina. Bisimulation Congruences in the Calculus of Looping Se-
quences. In International Colloquium on Theoretical Aspects of Comput-
ing (ICTAC’06), volume 4281 of LNCS, pages 93–107. Springer, 2006.

[14] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and An-
gelo Troina. The Calculus of Looping Sequences for Modeling Biological
Membranes. In Workshop on Membrane Computing, volume 4860 of
LNCS, pages 54–76. Springer, 2007.

[15] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and An-
gelo Troina. Bisimulations in Calculi Modelling Membranes. Formal
Aspects of Computing, 20(4-5):351–377, 2008.

[16] Daniela Besozzi and Gabriel Ciobanu. A P System Description of
the Sodium-Potassium Pump. In Workshop on Membrane Computing
(WMC’04), volume 3365 of LNCS, pages 210–223. Springer, 2005.

[17] Livio Bioglio. Typeed Reductions of CLS. In Italian Conference on
Theoretical Computer Science (ITCTS’09), 2009.

146

BIBLIOGRAPHY

[18] Livio Bioglio. Enumerated Type Semantics for the Calculus of Loop-
ing Sequences. RAIRO - Theoretical Informatics and Applications,
45(01):35 –58, 2011.

[19] Livio Bioglio, Cristina Calcagno, Mario Coppo, Ferruccio Damiani, Eva
Sciacca, Salvatore Spinella, and Angelo Troina. A Spatial Calculus of
Wrapped Compartments. In 5th International Meeting on Membrane
Computing and Biologically Inspired Process Calculi (MeCBIC’11),
pages 25–39, 2011.

[20] Livio Bioglio, Mariangiola Dezani-Ciancaglini, Paola Giannini, and An-
gelo Troina. A Calculus of Looping Sequences with Local Rules. In
7th Workshop on Developments in Computational Models (DCM’11),
volume 88 of EPTCS, pages 43–58, 2011.

[21] Livio Bioglio, Mariangiola Dezani-Ciancaglini, Paola Giannini, and An-
gelo Troina. Type Directed Semantics for the Calculus of Looping Se-
quences. International Journal of Software and Informatics, 2012. to
appear.

[22] Livio Bioglio, Mariangiola Dezani-Ciancaglini, Paola Giannini, and An-
gelo Troina. Typed Stochastic Semantics for the Calculus of Looping
Sequences. Theoretical Computer Science, 431:165 –180, 2012.

[23] Luca Bortolussi and Maria G. Vigliotti. CoBiC: Context-dependent
Bioambient Calculus. In Quantitative Aspects of Programming Lan-
guages (QAPL’09), volume 253 of ENTCS, pages 187–201. Elsevier,
2009.

[24] Linda Brodo, Pierpaolo Degano, and Corrado Priami. A Stochas-
tic Semantics for BioAmbients. In Parallel Computing Technologies
(PACT’07), volume 4671 of LNCS, pages 22–34, 2007.

[25] Nadia Busi. Using Well-structured Transition Systems to Decide Diver-
gence for Catalytic P Systems. Theoretical Computer Science, 372:125–
135, 2007.

[26] Federico Buti, Diletta Cacciagrano, Flavio Corradini, Emanuela Merelli,
and Luca Tesei. BioShape: a Spatial Shape-Based Scale-Independent
Simulation Environment for Biological Systems. Procedia CS, 1(1):827–
835, 2010.

147

BIBLIOGRAPHY

[27] Luca Cardelli. Brane Calculi. Interactions of Biological Membranes. In
Computational Methods in Systems Biology (CMSB’04), volume 3082 of
LNCS, pages 257–280. Springer, 2005.

[28] Luca Cardelli and Philippa Gardner. Processes in Space. In Proc. of the
6th international conference on Computability in Europe, CiE’10, pages
78–87. Springer-Verlag, 2010.

[29] Paolo Cazzaniga, Dario Pescini, Francisco J. Romero-campero, Daniela
Besozzi, and Giancarlo Mauri. Stochastic Approaches in P Systems for
Simulating Biological Systems. In Proceedings of the Fourth Brainstorm-
ing Week on Membrane Computing, pages 145–164, 2006.

[30] Gabriel Ciobanu, Linqiang Pan, Gheorghe Paun, and Mario J. Pérez-
Jiménez. P Systems with Minimal Parallelism. Theoretical Computer
Science, 378(1):117–130, 2007.

[31] Gabriel Ciobanu, Mario J. Pérez-Jiménez, and Gheorghe Paun, edi-
tors. Applications of Membrane Computing. Natural Computing Series.
Springer, 2006.

[32] Mario Coppo, Ferruccio Damiani, Maurizio Drocco, Elena Grassi, Mike
Guether, and Angelo Troina. Modelling Ammonium Transporters in
Arbuscular Mycorrhiza Symbiosis. Transactions on Computational Sys-
tems Biology, XIII:85–109, 2011.

[33] Mario Coppo, Ferruccio Damiani, Maurizio Drocco, Elena Grassi, Eva
Sciacca, Salvatore Spinella, and Angelo Troina. Hybrid Calculus of
Wrapped Compartments. In Membrane Computing and Biologically
Inspired Process Calculi (MeCBIC’10), volume 40, pages 102–120.
EPTCS, 2010.

[34] Mario Coppo, Ferruccio Damiani, Maurizio Drocco, Elena Grassi,
and Angelo Troina. Stochastic Calculus of Wrapped Compartments.
In 8th Workshop on Quantitative Aspects of Programming Languages
(QAPL’10), volume 28, pages 82–98. EPTCS, 2010.

[35] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean
Krivine. Rule-Based Modelling and Model Perturbation. Transactions
on Computational Systems Biology XI, 11:116–137, 2009.

148

BIBLIOGRAPHY

[36] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scal-
able Modelling of Biological Pathways. In ASIAN Symposium on Pro-
gramming Languages and Systems (APLAS’07), volume 4807, pages
139–157, 2007.

[37] Vincent Danos and Cosimo Laneve. Core Formal Molecular Biology.
In European Symposium on Programming (ESOP’03), volume 2618 of
LNCS, pages 302–318, 2003.

[38] Vincent Danos and Cosimo Laneve. Formal Molecular Biology. Theo-
retical Computer Science, 325:69–110, 2004.

[39] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Angelo Troina. A
Type System for a Stochastic CLS. In Workshop on Membrane Comput-
ing and Biologically Inspired Process Calculi (MeCBIC’09), volume 11,
pages 91–105. EPTCS, 2009.

[40] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Angelo Troina. A
Type System for Required/Excluded Elements in CLS. In Developments
in Computational Models (DCM’09), volume 9 of EPTCS, pages 38–48,
2009.

[41] Daniell Dı́az-Pernil, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez,
and Agustin Riscos-Núñez. A P-Lingua Programming Environment for
Membrane Computing. In Workshop on Membrane Computing, volume
5391 of LNCS, pages 187–203, 2008.

[42] Pavel Dolezal, Vladimir Likic, Jan Tachezy, and Trevor Lithgow. Evo-
lution of the Molecular Machines for Protein Import into Mitochondria.
Science, 313(5785):314–318, 2006.

[43] François Fages and Sylvain Soliman. Abstract Interpretation and Types
for Systems Biology. Theoretical Computer Science, 403(1):52–70, 2008.

[44] Daniel T. Gillespie. Exact Stochastic Simulation of Coupled Chemical
Reactions,.

[45] Jochen S. Hub and Bert L. de Groot. Mechanism of Selectivity in Aqua-
porins and Aquaglyceroporins. In Proceedings of National Academy of
Sciences of the USA, volume 105, pages 1198–1203, 2008.

149

BIBLIOGRAPHY

[46] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a Minimal Core Calculus for Java and GJ. ACM Transactions on
Programming Languages and System, 23:396–450, 2001.

[47] Jean Krivine, Robin Milner, and Angelo Troina. Stochastic Bigraphs. In
Mathematical Foundations of Programming Semantic (MFPS’08), vol-
ume 218 of ENTCS, pages 73–96. Elsevier, 2008.

[48] Aneil Mallavarapu, Matthew Thomson, Benjamin Ullian, and Jeremy
Gunawardena. little b. http://www.littleb.org.

[49] Hiroshi Matsuno, Atsushi Doi, Masao Nagasaki, and Satoru Miyano. Hy-
brid Petri Net Representation of Gene Regulatory Networks. In Pacific
Symposium on Biocomputing (PSB’00), pages 341–352. World Scientific
Press, 2000.

[50] Paolo Milazzo. Qualitative and Quantitative Formal Modeling of Bio-
logical Systems. PhD thesis, University of Pisa, 2007.

[51] Nicolas Oury and Gordon Plotkin. Multi-Level Modelling via Stochastic
Multi-Level Multiset Rewriting. Mathematical Structures in Computer
Science., 2012. To appear.

[52] Terence Parr et al. ANTLR website. http://www.antlr.org/.

[53] Gheorghe Păun. Membrane Computing. An Introduction. Springer,
2002.

[54] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford
Handbook of Membrane Computing. Oxford University Press, 2010.

[55] Michael Pedersen and Gordon D. Plotkin. A Language for Biochemical
Systems: Design and Formal Specification. Transactions on Computa-
tional Systems Biology, 12:77–145, 2010.

[56] Dario Pescini, Daniela Besozzi, Giancarlo Mauri, and Claudio Zandron.
Dynamical Probabilistic P Systems. International Journal of Founda-
tions of Computer Science, 17(1):183–204, 2006.

[57] Corrado Priami and Paola Quaglia. Beta-binders for Biological Interac-
tions. In Computational Methods in Systems Biology (CMSB’04), vol-
ume 3082 of LNCS, pages 20–33, 2005.

150

BIBLIOGRAPHY

[58] Corrado Priami, Aviv Regev, William Silverman, and Ehud Shapiro.
Application of Stochastic Name-passing Calculus to Representation
and Simulation of Molecular Processes. Infomation Processing Letters,
80(1):25–31, 2001.

[59] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli,
and Ehud Shapiro. BioAmbients: An Abstraction for Biological Com-
partments. Theoretical Computer Science, 325:141–167, 2004.

[60] Aviv Regev and Ehud Shapiro. Cells as Computation. Nature,
419(6905):343, September 2002.

[61] Aviv Regev and Ehud Shapiro. The π-calculus as an Abstraction for
Biomolecular Systems. Modelling in Molecular Biology, pages 219–266,
2004.

[62] Nitzan Rosenfeld, Jonathan W. Young, Uri Alon, Peter S. Swain, and
Michael B. Elowitz. Gene Regulation at the Single-cell Level. Science,
307(5717):1962–1965, 2007.

[63] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. Interaction-
Based Simulations for Integrative Spatial Systems Biology. In Under-
standing the Dynamics of Biological Systems, pages 195–231. 2011.

[64] Apostolos Syropoulos. Mathematics of Multisets. In Multiset Processing,
volume 2235 of LNCS, pages 347–358, 2001.

[65] Lincoln Taiz and Eduardo Zeiger. Plant Physiology, Fourth Edition.
Sinauer Associated Inc., 2006.

[66] Ruiqi Wang, Chunguang Li, Luonan Chen, and Kazuyuki Aihara. Mod-
eling and Analyzing Biological Oscillations in Molecular Networks. Pro-
ceedings of The IEEE – PIEEE, 96(8):1361–1385, 2008.

[67] J. B. Wells. The Essence of Principal Typings. In Intenational Collo-
quium on Automata, Languages and Programming (ICALP’02), volume
2380 of LNCS, pages 913–925, 2002.

[68] Darren Wilkinson. Stochastic Modelling for Systems Biology. Chapman
& Hall/CRC, 2006.

151

BIBLIOGRAPHY

[69] Patrick Wong, Stephanie Gladney, and Jay D. Keasling. Mathematical
Model of the Lac Operon: Inducer Exclusion, Catabolite Repression,
and Diauxic Growth on Glucose and Lactose. Biotechnology Progress,
13:132–143, 1997.

152

