
UNIVERSITY OF TORINO

DOCTORAL SCHOOL IN SCIENCE AND HIGH TECHNOLOGY

SPECIALIZATION IN COMPUTER SCIENCE

XXIII PHD CYCLE

Power and Performance Management in Cloud
Computing Systems

by

MARCO GUAZZONE

Advisor: Prof. COSIMO ANGLANO

To Lorenza, my forever love . . .

Abstract

Cloud computing is an emerging computing paradigm which is gaining popularity
in IT industry for its appealing property of considering “Everything as a Service”.
The goal of a cloud infrastructure provider is to maximize its profit by minimizing
the amount of violations of Quality-of-Service (QoS) levels agreed with service
providers, and, at the same time, by lowering infrastructure costs. Among these
costs, the energy consumption induced by the cloud infrastructure, for running
cloud services, plays a primary role. Unfortunately, the minimization of QoS viola-
tions and, at the same time, the reduction of energy consumption is a conflicting
and challenging problem. In this thesis, we propose a framework to automatically
manage computing resources of cloud infrastructures in order to simultaneously
achieve suitable QoS levels and to reduce as much as possible the amount of energy
used for providing services. We show, through simulation, that our approach is able
to dynamically adapt to time-varying workloads (without any prior knowledge)
and to significantly reduce QoS violations and energy consumption with respect to
traditional static approaches.

Acknowledgements

First and foremost, I want to thank my advisor Prof. Cosimo Anglano. I am
very grateful to him for providing me the opportunity to conduct my research
and constantly supported my work with invaluable advice and comments. He
was always there with his help and encouragement whenever I needed it. I was
truly fortunate to have had the opportunity to learn from and work with him. His
enthusiasm and passion were a source of constant inspiration to me.

I am indebted to Dr. Massimo Canonico for his guidance throughout my
graduate education. I learned a lot from interactions with Massimo; he kept me
focused by always asking sharp and challenging questions and showed me the need
to be persistent to accomplish any goal.

I would like to thank my colleagues and especially Dr. Marco Beccuti, Dr.

Alessio Bottrighi, Andrea Bussi, Dr. Davide Cerotti, Dr. Giorgio Leonardi, Al-

berto Livio-Beccaria, Roberto Pinna, Dr. Daniele Codetta-Raiteri, Dr. Roberta

Terruggia, and Matteo Zola for a very pleasant work environment.
Last but not least, I am extremely grateful to my amazing partner Lorenza, for

her support along all over the time. She stood by me during the good times and the
hard times. With her support, encouraging, and love, she made my journey to the
finish line much more enjoyable and unique.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline of the Thesis . 4

I Background 7

2 Cloud Computing 9
2.1 Overview of Cloud Computing 9

2.1.1 Definition of Cloud Computing 10

2.1.2 Architecture of a Cloud System 12

2.1.3 Enabling Technologies 15

2.2 Resource Management in Cloud Systems 19

2.2.1 Server Consolidation . 19

2.2.2 Service Quality and Availability 20

2.2.3 Cost Management . 20

3 Linear Systems Theory 23
3.1 Characterization of Dynamical Systems 24

3.2 Linearization . 26

3.3 System Representation . 28

3.3.1 Input-Output Representation 28

3.3.2 State-Space Representation 35

3.3.3 Block Diagrams Algebra 39

i

ii CONTENTS

3.4 Realization of a Transfer Function 41

3.5 Stability . 44

4 Linear System Identification 47

4.1 The System Identification Process 47

4.1.1 Experiment Design . 49

4.1.2 Data Collection and Preprocessing 51

4.1.3 Model Structure Selection 53

4.1.4 Model Estimation . 59

4.1.5 Model Validation . 69

5 Linear Control Theory 73

5.1 Basic Definitions . 73

5.2 Control Structures . 77

5.2.1 Open-loop and Closed-loop Control Structure 77

5.2.2 Other Control Structures 81

5.3 Response of Closed-loop Control Systems 85

5.4 Closed-loop Control Design . 87

5.4.1 Proportional-Integral-Derivative Control 87

5.4.2 Linear Quadratic Control 89

II Methodology 93

6 The Resource Management Framework 95

6.1 System Architecture . 96

6.2 Application Manager . 99

6.3 Physical Machine Manager . 105

6.4 Migration Manager . 106

6.4.1 Optimization Problem 106

6.4.2 Approximated Algorithms 119

CONTENTS iii

III Experimental Evaluation 125

7 Experimental Settings 127
7.1 The DESEC Simulator . 127
7.2 Experimental Setup . 130

7.2.1 Physical Infrastructure Configuration 130
7.2.2 Application Configuration 131
7.2.3 Application Manager Configuration 132
7.2.4 Performance Metrics . 135

7.3 Resource Management Approaches 135

8 Performance Evaluation without VM Migration 139
8.1 Experimental Setup . 139

8.1.1 Physical Infrastructure Configuration 140
8.1.2 Performance Metrics . 140

8.2 Results and Discussion . 140

9 Performance Evaluation with VM Migration 149
9.1 Experimental Setup . 149

9.1.1 Physical Infrastructure Configuration 150
9.1.2 Application Configuration 152
9.1.3 Migration Manager Configuration 153
9.1.4 Performance Metrics . 155
9.1.5 Experimental Scenarios and Resource Management Ap-

proaches . 155
9.2 Results and Discussion . 156

9.2.1 Results for the MM-GREEDY Experiments Group 156
9.2.2 Results for the MM-LOCOPT Experiments Group 163
9.2.3 Concluding Remarks . 169

IV Conclusion 173

10 Related Works 175
10.1 Resource Management for Cloud Systems 175

10.1.1 Performance-aware Resource Management 176
10.1.2 Power-aware Resource Management 179
10.1.3 Integrated Power-aware and Performance-aware Resource

Management . 182
10.2 Cloud Computing System Simulators 187

11 Conclusions and Future Work 191

V Appendices 195

A z-transform 197
A.1 Basic Definitions . 197
A.2 Basic Properties . 199

B Mixed-Integer Nonlinear Programming 201

Mathematical Notation

0 The zero (null) vector

1 The vector or matrix with all elements set to 1

A A matrix

AT The transpose of matrix A
A−1 The inverse of matrix A
A > 0 A positive-definite matrix

A≥ 0 A positive-semidefinite matrix

A�B The element-by-element product of two matrices

|B| The cardinality of set B

C The set of complex numbers

E[X] The expected value of the random variable X

f (·) A function where the independent variable is left unspecified

f ?g The convolution of f and g

I The identity matrix

max
{

x,y
}

The maximum between x and y

min
{

x,y
}

The minimum between x and y

N The set of natural numbers

N+ The set of positive natural numbers

pmin
{

v,u
}

The element-by-element minimum between two vectors

R The set of real numbers

v A column vector

vT The transpose of vector v
v�u The element-by-element product of two vectors

x A scalar

{x(k)} A discrete-time series

x , y x is defined as y

Z The set of integer numbers

Z∗ The set of nonnegative integer numbers

Z The zero (null) matrix

δi j Kronecker’s delta

Acronyms

AIC Akaike’s Information Criterion

ARMAX AutoRegressive Moving Average with eXogenous variables

ARX AutoRegressive with eXogenous variables

BIBO Bounded-Input Bounded-Output

CaaS Communication as a Service

CVA Canonical Variate Analysis

DaaS Data as a Service

DARE Discrete-time Algebraic Riccati Equation

DES Discrete-Event Simulation

DSP Digital Signal Processing

DVFS Dynamic Voltage and Frequency Scaling

EW-RLS Exponential Weighting RLS

IaaS Infrastructure as a Service

HaaS Hardware as a Service

LQ Linear Quadratic

LQI Linear Quadratic Integral

LQR Linear Quadratic Regulator

LQRY Linear Quadratic Regulator with Output Weighting

LS Least-Squares

LTI Linear Time-Invariant system

LTV Linear Time-Varying system

MAPE-K Monitor, Analysis, Plan, Execute, and Knowledge

MDL Minimum Description Length

MIMO Multiple-Input Multiple-Output

MINLP Mixed-Integer NonLinear Programming

MISO Multiple-Input Single-Output

MOESP Multivariable Output-Error State-sPace

MPC Model Predictive Control

MSE Mean-Squared Error

N4SID Numerical algorithm for Subspace State-Space IDentification

OE Output-Error

PaaS Platform as a Service

PEM Prediction-Error Minimization

PID Proportional-Integral-Derivative

QoS Quality of Service

RLS Recursive Least-Squares

RLS-DF RLS with Directional Forgetting

RLS-DF∗ RLS-DF with Bittanti’s correction

RLS-EF RLS with Exponential Forgetting

SaaS Software as a Service

SASO Stability, Accuracy, Settling time, and Overshoot

SISO Single-Input Single-Output

SLA Service Level Agreement

SLO Service Level Objective

SOA Service Oriented Architecture

STR Self-Tuning Regulation

SVD Singular-Value Decomposition

TCO Total Cost of Ownership

VM Virtual Machine

VMM Virtual Machine Monitor

Chapter 1

Introduction

Cloud computing [82, 168] is an emerging computing paradigm which is rapidly
gaining consideration in the IT industry [133]. Since cloud computing still is in its
infancy, there are many open research challenges. In this thesis, we address the
problem of power-aware resource management in cloud systems (i.e., in systems
that use the cloud computing paradigm) where hosted applications are subjected to
performance constraints.

In this chapter, we provide an overview of the problem we tackle in this thesis
and the approach we take to solve it. First, we introduce the key motivation that
guided us to research on this topic. Second, we present the original contribution
provided in this thesis. Finally, we illustrate the outline of this thesis.

1.1 Motivation

Cloud computing is growing in popularity among computing paradigms for its
appealing property of considering “Everything as a Service”. The building block
of cloud computing is the cloud infrastructure, that enables service providers to
provision the infrastructure they need (in terms of processing, storage, networks,
and other fundamental computing resources) for the delivery of their services with-
out having to buy the resources necessary for running them. Usually, the service
and infrastructure providers agree on a prescribed set of service levels, commonly
referred to as Service Level Agreement (SLA), that is a formal description of tempo-

1

2 CHAPTER 1. INTRODUCTION

ral, performance and economical constraints under which hosted services need to
operate. Under this agreement, the service provider accepts to pay a certain amount
of money for using the infrastructure, and, in turn, the infrastructure provider
accepts either to provide enough resources to meet SLAs or to pay a money penalty
for each SLA miss.

From the point-of-view of the infrastructure provider, the decision of the
amount of computing resources to allocate to a specific service provider may have
a critical impact on its revenue. On the one hand, resource under-provisioning
may lead to the increment of SLA violations and thus to the reduction of the profit,
while, on the other hand, resource over-provisioning may contribute to increase
the Total Cost of Ownership (TCO), which comprises capital and administrative
costs [119]. Thus, the ultimate goal for an infrastructure provider is to maximize
its profit by minimizing the number of SLA violations and, at the same time, by
reducing the TCO. This is a challenging goal because of the conflicting nature
of the two aspects. Indeed, on the one hand the achievement of SLAs would
lead the provider to over-provision hosted services (in order to cope with possible
peak workload demand), thus increasing the TCO by investment, operating and
energy consumption costs. On the other hand, the decrease of TCO (e.g., in terms
of energy consumption costs) would lead the provider to under-provision hosted
services, thus increasing the possibility to violate some SLA.

Recent studies have reported that energy costs are among the most important
factors impacting on TCO, and that this influence will grow in the near future due
to the increase of electricity costs [60]. Therefore, the reduction of operating costs
is usually pursued through the reduction of the amount of energy absorbed by the
physical resources of the infrastructure. Various techniques already exist that aim
at reducing the amount of electrical energy consumed by the physical infrastructure
of a cloud system, ranging from energy-efficient hardware and energy-aware design
strategies, to server consolidation, whereby multiple virtual machines run on the
same physical resource [166]. Unfortunately, these techniques alone are not enough
to guarantee service performance requirements because of the complexity of cloud
computing systems, where (1) system resources have to be dynamically shared
among several independent services, (2) the requirements of each service must
be met in order to avoid economical penalties, (3) the workload of each service

1.2. CONTRIBUTIONS 3

generally changes over time, (4) services may span multiple computing nodes,
and (5) system resources may be possibly distributed world-wide. Moreover, the
inherently conflicting nature of energy and performance management, along with
the complexity of cloud computing systems, makes a manual or semi-automatic ap-
proach unsuitable, so that much of current research work is looking for coordinated
and fully automated solutions.

1.2 Contributions

In this thesis, we tackle the problem of providing a fully automated solution to
the problem of dynamically managing physical resources of a cloud infrastructure,
able to achieve the SLA of hosted services and, at the same time, to reduce the
energy consumption (and hence to reduce the TCO) induced by the infrastructure
for running these services.

Original contributions we provide in this thesis comprise:

1. A framework able to automatically manage physical and virtual resources of a
cloud infrastructure in such a way to maximize the profit of the infrastructure
provider by minimizing SLA violations while, at the same time, reducing
the energy consumed by the physical infrastructure. Specifically, we rely on
mechanisms provided by machine virtualization technologies (to achieve a
more efficient and flexible use of physical resources) and control-theoretic
techniques (as a way for enabling the cloud infrastructure to automatically
manage performance and power consumption) to create a decentralized and
time-hierarchical framework that combines short-to-medium term allocation
decisions (by which the capacity of a given physical resource is assigned to
the various virtual machines running on it) with long-term ones (by which
a given virtual machine may be migrated from one physical resource to
another), and that is able to deal with multi-tier services under very variable
and unpredictable workloads.

Basically, we accomplish this goal by providing each service with the min-
imum amount of physical resource capacity needed to meet its SLAs, and
by dynamically adjusting it according to various parameters, that include

4 CHAPTER 1. INTRODUCTION

the intensity of its workload, the number of competing virtual machines
allocated on the same physical resource, and their time-varying behavior
induced by variations in the respective workloads. The rationale underlying
this approach is that, in order to balance energy consumption and SLAs
satisfaction, each service needs exactly the fraction of physical resource
capacity as the one dictated by current operating conditions of the cloud
infrastructure. Indeed, on one hand, a greater amount of physical resource
capacity would imply an increase of energy consumption without any benefit
to the profit. On the other hand, a smaller fraction of physical resource
capacity would increase the probability of incurring in a SLA violation.

2. A Discrete-Event System (DES) simulator written in C++ (developed as part
of this thesis) used to evaluate the performance of our solution. Results,
obtained from simulation experiments, show that our solution is able to
dynamically adapt to time-varying workloads (without any prior knowledge)
and to significantly reduce SLA violations and energy consumption with
respect to traditional static approaches, where resource capacity is statically
allocated to cloud services in order to either satisfy SLAs or reduce energy
consumption induced by the cloud infrastructure.

1.3 Outline of the Thesis

This thesis is divided into five parts, which are structured as follows.

Background Part. In the first part, called “Background”, we provide a theoret-
ical background of the most important concepts used in this thesis. Specifically,
in Chapter 2 we present main concepts and definitions of the cloud computing
paradigm. In Chapter 3, we provide an overview of the theory of linear systems,
which are the type of systems that we use in this thesis. In Chapter 4, we present
an introduction to the theory of (linear) system identification, which is the theory
we use to estimate models of services hosted by the cloud infrastructure. Finally,
in Chapter 5, we present an overview of (linear) control theory, with an emphasis
on (linear) feedback control, which is the type of control systems we mainly use in

1.3. OUTLINE OF THE THESIS 5

this thesis.

It is important to note that we tried to keep this part as self-contained as
possible, in order to let readers that are unfamiliar with these concepts to be
acquainted. Thus, readers that already have experience with this background,
can simply skip this part.

Methodology Part. In the second part of the thesis, called “Methodology”, we
provide insights about the resource management framework proposed in this thesis.
This part only contains one chapter, that is Chapter 6, which accurately describes
the internal design of our framework.

Experimental Evaluation Part. In the third part of the thesis, called “Experi-
mental Evaluation”, we present the experimental evaluation that we perform to
assess the performance of the resource management framework proposed in this
thesis. Specifically, in Chapter 7, we describe the experimental setup that is com-
mon to all of the experiments and we provide an overview of the C++ simulator
which we use to perform the experiments. In Chapter 8, we present the performance
evaluation of the resource management framework when only the Application and
Physical Machine Managers are used. In Chapter 9, we provide the performance
evaluation of our framework when all of its components are used; this experimental
evaluation is used to assess the impact of the Migration Manager (and, hence, of the
virtual machines migration) on application performance and power consumption.

Conclusion Part. In the fourth part of the thesis, called “Conclusion”, there is
only one chapter, Chapter 11, where we summarize the work described in this
thesis, discuss features and limitations of our framework, and present possible
future works.

Appendices Part. Finally, at the end of the thesis, there is the “Appendices” part,
where we provide a series of appendices in order to collect topics that have been
only marginally considered in this thesis.

6 CHAPTER 1. INTRODUCTION

Part I

Background

7

Chapter 2

Cloud Computing

Cloud computing has recently emerged as a new form of the utility-based com-
puting paradigm for hosting and delivering hardware and software “as services”.
It provides its users with the illusion of infinite computing and storage resources
which are potentially available on-demand from anywhere and anytime. Cloud
computing is attractive since it eliminates the requirement for its users to plan
ahead for provisioning, by allowing IT enterprises to start from the small and to
increase resources only when there is a rise in service demand. However, despite of
this, the development of techniques to make cloud computing effective is currently
at its infancy, with many issues still to be addressed.

In this chapter, we provide an overview of main concepts and definitions
underlying the cloud computing paradigm. First, in Section 2.1, we define what
is cloud computing, we describe its architecture and present the most important
technologies that are behind this computing paradigm. Then, in Section 2.2, we
concentrate on resource management of cloud computing systems, which is the
main research topic of this thesis.

2.1 Overview of Cloud Computing

For years now, there is a trend to make the computing paradigm to behave like
traditional public utilities (such as water, electricity, telephony, and gas), whereby
the user takes advantage of services provided by these utilities on the basis of its

9

10 CHAPTER 2. CLOUD COMPUTING

needs, without taking care of where those services are located or how they are
delivered. Grid computing [68] (whose name is a metaphor for making computer
power as easy to access as an electric power grid), utility computing [136], and
the more recent cloud computing [82, 168] are all examples of such tendency. In
particular, cloud computing is recently growing in popularity in the IT industry for
its appealing and unique properties whereby, following a “utility” pricing model,
users are charged based on their use of computational resources, storage, and
transfer of data [133]. A number of organizations are already benefiting of it by
hosting and/or offering cloud computing services. Examples include Google Apps
[7], Amazon Web Services [3], Microsoft Windows Azure [12], IBM Smart Cloud
[8], and Salesforce.com [13].

In this section, we provide an overview of fundamental principles of cloud
computing and we present some open research challenges.

2.1.1 Definition of Cloud Computing

The main idea behind cloud computing is not new. It has been around since the
1960’s, when John McCarthy, while speaking at the MIT Centennial in 1961,
already envisioned that computing facilities will be provided like a public utility
[16]:

“If computers of the kind I have advocated become the computers
of the future, then computing may someday be organized as a public
utility just as the telephone system is a public utility. . . The computer
utility could become the basis of a new and important industry.”

However, it was in 2006, after Eric Schmidt (CEO of Google) used the word “cloud”
to describe the provision of services across the Internet as a new business model,
that the term began to gain popularity. Ever since then, it has been used mainly
as an IT marketing buzzword in a variety of contexts to represent many different
ideas. Thus, what is really new in cloud computing is the new operations model
that brings together a set of existing technologies to run business in a different way.

Currently, in the scientific literature, there is still no universally agreed-upon
definition of what cloud computing is and what unique characteristics it should
offer. For instance, Buyya et al. [40] provide the following definition:

2.1. OVERVIEW OF CLOUD COMPUTING 11

“A Cloud is a type of parallel and distributed system consisting of a
collection of inter-connected and virtualized computers that are dy-
namically provisioned and presented as one or more unified computing
resource(s) based on service-level agreements established through
negotiation between the service provider and consumers.”

Armbrust et al. [26] summarized the main characteristics of cloud computing as:

“(1) The illusion of infinite computing resources available on de-
mand. . . (2) The elimination of an up-front commitment by cloud
users. . . (3) The ability to pay for use of computing resources on a
short-term basis as needed. . . ”

Mell et al. [117], from NIST, defined cloud computing as:

“a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or
service provider interaction.”

While there are a large number of other definitions [161], the majority of them
seems to agree on two key characteristics:

• on-demand self-service: a consumer can autonomously provision computing
capabilities (e.g., computing power, storage space, network bandwidth), that
is without requiring human interaction with the respective provider(s);

• rapid elasticity: the above capabilities may be dynamically resized in order
to quickly scale up (to potentially unlimited size) or down in according to
the specific needs of the consumer.

Together, these two properties, which are probably the most prominent reasons
behind the success of cloud computing, are transforming the traditional way in
which computing resources are used, shifting the focus from the classical vision
under which (software and hardware) resources must be purchased before they can
be used to run the applications of interest, to a novel one under which “Everything

12 CHAPTER 2. CLOUD COMPUTING

Figure 2.1: The architecture of a cloud system (from [173]).

is a Service”, and can be used in a “pay-as-you-go” modality. This service-centric
vision permeates all the various components of a computing system, ranging from
software to computing platforms, and, finally, to computing infrastructure.

2.1.2 Architecture of a Cloud System

A cloud system, that is a system which adopts the cloud computing paradigm, can
be characterized by its architecture and the services it offers. The architecture
of a cloud computing system is usually structured as a set of layers. A typical
architecture of a cloud system is shown in Fig. 2.1 (from [173]). At the lowest level
of the hierarchy there is the hardware layer, which is responsible for managing
the physical resources of the cloud system, such as servers, storage, network
devices, power and cooling systems. On the top of the hardware layer, resides the
infrastructure layer, which provides a pool of computing and storage resources by
partitioning the physical resources of the hardware layer by means of virtualization
technologies. Built on top of the infrastructure layer, the platform layer consists
of operating systems and application frameworks. The purpose of this layer is
to minimize the burden of deploying applications directly onto infrastructure
resources by providing support for implementing storage, database and business
logic of cloud applications. Finally, at the highest level of the hierarchy there is the

2.1. OVERVIEW OF CLOUD COMPUTING 13

application layer, which consists of cloud applications.
For what regards services implemented on top of a cloud computing system,

they can be provided in three modality, according to the abstraction level of the
capability provided and the service model of providers [117]:

• Infrastructure as a Service (IaaS), which comprises services to allow its
consumers to request computational, storage and communication resources
on-demand, thus enabling the so called “pay-per-use” paradigm whereby
consumers can pay for exactly the amount of resource they use (like for
electricity or water). The consumers can use the provided resources to
deploy and run arbitrary software; however, the management and control
of the underlying cloud infrastructure is possible only by the provider. An
example is Amazon EC2 [1].

• Platform as a Service (PaaS), which comprises high-level services pro-
viding an independent platform to manage software infrastructures, where
consumers (i.e., developers) can build and deploy particular classes of ap-
plications using programming languages, libraries, and tools supported by
the provider. Usually, consumers don’t manage or control the underlying in-
frastructure (such as servers, network, storage, or operating systems), which
can only be accessed by means of the high-level services provided by the
provider. An example is Google App Engine [6].

• Software as a Service (SaaS), which comprises specific end-user applications
running on a cloud infrastructure. Such applications are delivered to con-
sumer as a network service (accessible from various client devices, ranging
from desktop computers to smartphones), thus eliminating the need to install
and run the application on the consumer’s own computers and simplifying
maintenance and support. Consumers don’t manage or control the underlying
infrastructure and application platform; only limited user-specific application
configurations are possible. An example is Salesforce.com [13].

Additional service models have been proposed in literature, but generally they can
be regarded as a specialization of the above three service models. For instance, in
[171] two extensions are proposed: (1) an additional model called Hardware as a

14 CHAPTER 2. CLOUD COMPUTING

Service (HaaS), which comprises services for operating, managing and upgrading
the hardware, and (2) a specialization of the IaaS model into three categories:

• Infrastructure as a Service (IaaS), which, unlike the above definition, is only
concerned to services related to computational resources. An example is
Amazon EC2 [1].

• Data as a Service (DaaS), which includes services to allow consumers to
store their data at remote disks and access them anytime and anywhere. An
example is Amazon S3 [2].

• Communication as a Service (CaaS), which provides services related to
network communication such as Quality-of-Service (QoS) management and
network security. An example is Microsoft Connected Service Framework
[11].

The traditional approach to deploy a cloud system is a public computing system.
However, other deployment models are possible which differentiate each others by
variations in physical location and distribution. For instance, the following models
are taken from NIST [117]:

• public cloud: the cloud infrastructure is provisioned for open use by the
general public and is made available in a “pay-per-use” manner;

• private cloud: the cloud infrastructure is provisioned for exclusive use by a
single organization comprising multiple users;

• community cloud: the cloud infrastructure is provisioned for exclusive use by
a specific community of users from organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance considerations);

• hybrid cloud: the cloud infrastructure is a composition of two or more
distinct cloud infrastructures (private, community, or public) that remain
unique entities, but are bound together by technology that enables data
and application portability. A typical example is when a private cloud is
temporarily supplemented with computing capacity from public clouds, in
order to manage peaks in load (also known as “cloud-bursting”).

2.1. OVERVIEW OF CLOUD COMPUTING 15

Figure 2.2: Most influential technologies converging in cloud computing (from
[38]).

2.1.3 Enabling Technologies

As depicted in Fig. 2.2 (from [38]), cloud computing brings together a set of
existing technologies to run business in a different way. In the rest of this section we
provide an overview of the most influential technologies enabling cloud computing.

Virtualization

Virtualization is dating back to the early 1960’s, when pioneering experimental
projects developed it as a way of time-sharing very expensive mainframe computers
[17, 87, 149]. Later, in 1972, IBM announced the first release of the Virtual

Machine Facility/370 system, better known as VM/370, an operating system which
provided its users with seemingly separate and independent IBM System/360 or
System/370 computing systems; this system opened the way to other successful

16 CHAPTER 2. CLOUD COMPUTING

virtualized systems [55, 74, 132].

Starting from the 1980’s, virtualization saw a decrease in popularity primar-
ily due to a change in computing needs; indeed, the decrease in hardware costs
favoured the transition from large centralized mainframes towards a collection a
several mini- and micro-computers, making the primary motivation to use virtual-
ization (i.e., to increase the level of sharing and utilization of expensive computing
resources) disappear. Subsequently, with the introduction of new computing
paradigms, like client-server, grid and peer-to-peer computing, new challenging
problems, like the need for reliability, security and reduction of management costs,
caused the rebirth of the use of virtualization techniques as a way to address theses
problems [63, 144]. Virtualization returned to be attractive only recently, when
innovations in hardware, like the Intel-VT [155] and the AMD-V [20] architec-
tures, and their wide availability in both server and client platforms, enabled near
bare-metal performance for virtualized operating systems.

Nowadays, virtualization has been proven to be an effective way for driving
server consolidation [166] since it allows the same physical resource to be shared
among multiple applications by deploying each of them into one or more Virtual

Machines (VMs), each of which representing an isolated runtime environment.
The resulting benefit are thus an increase of server utilization and a decrease of
management cost.

In the context of cloud computing, resource virtualization is the key ingredient
to enable the “on-demand” physical resource provisioning model in the IaaS
substrate.

Web Services and Service Oriented Architecture

A cloud computing service is usually exposed as a Web Service (WS), which can
be defined as [34]:

“a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in
a machine-processable format (specifically Web Services Description

Language (WSDL) [48, 47]). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages

2.1. OVERVIEW OF CLOUD COMPUTING 17

[77, 78], typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.”

Thus, WSs provide a standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks.

To organize and orchestrate such services, one usually implements a Service-

Oriented Architecture (SOA) [61]. The purpose of a SOA is to address requirements
of loosely coupled, standards-based, and protocol-independent distributed comput-
ing. The building blocks of a SOA are “services", which are well-defined, loosely
coupled, self-contained modules that provide standard business functionality and
are independent of the state or context of other services. Services, rather than
embedding calls to each other, use defined protocols that describe how services
pass and parse messages using description metadata.

The potential of WSs and SOA is in the possibility they offer for system
integration. As a matter of fact, cloud applications can be built as compositions
of other services (also referred to as service mashups) from the same or different
providers.

Utility Computing

The utility computing paradigm [136, 145] brings to the IT world the concept
of “pay-as-you-go” business model, typical of traditional public utility (like gas,
electricity, water and telephony). Under this paradigm, computing resources
themselves are considered an utility service as much like water and public telephony.
According to [145], utility computing is

“a collection of technologies and business practices that enables com-
puting to be delivered seamlessly and reliably across multiple comput-
ers. Moreover, computing capacity is available as needed and billed
according to usage, much like water and electricity are today.”

Thus, in the context of utility computing, on one hand, service consumers assign
to their jobs a “utility” value, representing the amount they are willing to pay a
service provider to get their service level constraints satisfied; while, on the other

18 CHAPTER 2. CLOUD COMPUTING

hand, service providers attempt to maximize their own utility (which may include
their profit).

Cloud and utility computing shares several concepts. Specifically, utility com-
puting can be considered the precursor of cloud computing, which in turn can be
viewed as a broader concept which encompasses the utility computing one.

Autonomic Computing

The autonomic computing paradigm [98], a term derived from human biology, has
been introduced in order to make complex systems able to regulate and maintain
themselves without human intervention. Specifically, as the autonomic human
nervous system monitors our main vital activities with any our conscious effort,
in much the same way a self-managing autonomic system should monitor and
manage itself without human involvement. This can be achieved by following the
Monitor, Analysis, Plan, Execute, and Knowledge (MAPE-K) control loop model
[90], whereby the system relies on monitoring probes and gauges (e.g., sensors), on
an adaptation engine (e.g., autonomic manager) for computing optimizations based
on observed data, and on effectors to act on the system itself. A system, in order to
reach the self-managing behavior, should exhibit the so called Self-* properties:
Self-Configuration (for automatically configuring its components), Self-Healing

(for automatically discover and correct system faults), Self-Optimization (for auto-
matically controlling and monitoring performance goals) and Self-Protection (for
automatically protecting and discovering from malicious attacks).

In the context of cloud computing, concepts inspiring autonomic computing
could be borrowed to automate the management of the IaaS substrate. As a matter
of fact, IaaS is usually incarnated in the form of large and possibly world-wide
distributed data centers, that need to managed efficiently. Thus, in this sense,
the concepts of autonomic computing may inspire software technologies for data
center automation, which may perform tasks such as management of service levels
of running applications, management of data center capacity, proactive disaster
recovery, and automation of VM provisioning.

2.2. RESOURCE MANAGEMENT IN CLOUD SYSTEMS 19

2.2 Resource Management in Cloud Systems

Cloud computing is a rather new paradigm and as such there are still a significant
number of challenges that need to be addressed. One important challenge faced by
cloud infrastructure providers is the effective management of physical resources
hosted by the infrastructure. In order to be effective, resource management should
take into consideration several factors, such as:

• the sharing of physical resources of the infrastructure among different and
independent services;

• the service level agreement between the infrastructure and service provider;

• the cost induced by running hosted services on virtualized resources.

In the following, we provide an overview of each issue. Specifically, first we
discuss the first issue in terms of server consolidation, then we present the second
issue in terms of quality and availability of services, and finally we discuss the last
issue in terms of cost management.

2.2.1 Server Consolidation

The term server consolidation is generally used to indicate an approach to maximize
physical resource utilization. Currently, the most effective way to drive server
consolidation is resource virtualization, by running each service inside the isolated
environment offered by a VM. This brings to the problem to find a good placement
of VMs onto available physical machines. In its most general form, this is a multi-
dimensional mapping problem including as many dimensions as the number of
components that need to be virtualized for each resource (e.g., the number of CPU
cores, the amount of main memory, the amount of disk space, and the network
bandwidth).

Traditional approaches usually determine a unique VMs placement before
deploying a service in the production environment. However, such approaches are
not suitable to cloud system due to the heterogeneity and the time-variability of
the workload under which hosted services are subjected, which cause changes in
the operative conditions of the services and, if not taken into consideration, may

20 CHAPTER 2. CLOUD COMPUTING

increase the probability of a SLA violation. To this end, VM live migration [50]
can be used to dynamically consolidate VMs onto more suitable physical machines.

The problem of optimally consolidating servers in a data center is often for-
mulated as a variant of the multiple multidimensional variable-size bin-packing

problem [45], which is an NP-hard optimization problem and thus, since cannot be
solved in a reasonable amount of time, it is not suited for very large-sized problems
like the ones arising in cloud computing.

2.2.2 Service Quality and Availability

One of the benefit brought by cloud computing is the possibility offered to its users
to adopt the “pay-per-use” business model for renting resources where running own
services. As a consequence, users will expect to have certain assurances about the
service level to be provided once their applications run in the cloud system. These
expectations include the availability of the service, its end-to-end performance,
and the measures that are to be taken in case of a system failure. To this end, the
service consumer and provider typically agree on a prescribed set of service levels,
commonly referred to as Service Level Agreement (SLA), under which service
provider agrees on paying a fee to the service provider for using the service, and
the service provider agrees on providing enough resources to meet the service
levels defined by the SLA.

Thus, SLA constraints have to be taken into consideration in the VMs placement
problem, which is usually restated as a utility-maximization problem. Since the
VMs placement is NP-hard, the restated problem remains in this class of problems,
and hence the globally optimal solution cannot be computed in a reasonable amount
of time for systems of realistic size.

2.2.3 Cost Management

The ultimate goal of a cloud service provider is the maximization of its profit. In
addition to reduce the number of SLA violations (and hence to reduce the amount
of monetary penalty to possibly pay to service consumer), one way to increase the
profit is to reduce the Total Cost of Ownership (TCO), which comprises capital and
administrative costs [119].

2.2. RESOURCE MANAGEMENT IN CLOUD SYSTEMS 21

It has been argued [60] that energy costs are among the most important factors
impacting on TCO, and that this influence will grow in the near future due to
the increase of electricity costs. Therefore, the reduction of operating costs is
usually pursued through the reduction of the amount of energy absorbed by the
physical resources of the data center. Various techniques already exist that aim at
reducing the amount of electrical energy consumed by the physical infrastructure
underlying the IaaS substrate, ranging from energy-efficient hardware and energy-
aware design strategies, to server consolidation, whereby multiple virtual machines
run on the same physical resource [166]. Moreover, VM live migration can be used
to dynamically consolidate VMs residing on multiple under-utilized servers onto
a single server, so that the remaining servers can be set to an energy-saving state.
Unfortunately, these techniques alone are not enough to guarantee application
performance requirements because of the complexity of cloud computing systems,
where (1) system resources have to be dynamically and unpredictably shared among
several independent applications, (2) the requirements of each application must be
met in order to avoid economical penalties, (3) the workload of each application
generally changes over time, (4) applications may span multiple computing nodes,
and (5) system resources may be possibly distributed world-wide.

22 CHAPTER 2. CLOUD COMPUTING

Chapter 3

Linear Systems Theory

Linear System Theory [146] investigates the behavior and the response of a linear
system to arbitrary input signals. In this thesis, we use linear system theory as a
mean to characterize the behavior of computing systems. Specifically, the class
of dynamical systems we are interested in are discrete-time linear time-invariant

causal systems, which are the ones that are usually employed to describe current
computing systems from the control-theoretic point-of-view [84].

In this thesis, we focus on discrete-time linear time-invariant casual sys-
tems.

In the rest of this chapter, we present an overview of some of the key concepts
and results related to discrete-time linear systems, especially from the perspective
of identification and control (topics that will be covered in the subsequent chapters).
First, in Section 3.1 we provide a characterization of dynamical systems, with
a particular emphasis on linear systems. Then, in Section 3.2, we discuss some
technique to approximate nonlinear systems with linear ones. In Section 3.3, we
present main representations of linear systems. In Section 3.4, we introduce the
realization theory, which provides a bridge between the state-space and the input-
output representations. Finally, in Section 3.5, we discuss about the stability of
linear systems.

23

24 CHAPTER 3. LINEAR SYSTEMS THEORY

3.1 Characterization of Dynamical Systems

A system is a collection of interacting components. An electric motor, an airplane,
and a biological unit such as the human arm are examples of systems. A dynamical

system is a system consisting of a set of possible states, together with a rule that
determines the present state in terms of past and future states [18]. A more formal
definition is provided by [94]:

Definition 3.1.1 (Dynamical System). A dynamical system is composed of three
parts:

• the state of a system, which is a representation of all the information about
the system at some particular value of an independent variable (e.g., the
time);

• the state-space of a system, which is a set that contains all of the possible
states to which a system can be assigned;

• the state-transition function that is used to update and change the state from
one moment to another.

Usually the independent variable denotes the time; however, it can represent
other type of information, as is the case of image processing, where the independent
variable denotes the space.

Dynamical systems can be characterized by the interaction of different type of
signals, which are quantities that change their value as a function of an independent
variable (which, in this thesis, is the time).

Definition 3.1.2 (Signal). A signal g is a uniquely defined mathematical function
(single-valued function) of an independent variable k. The set for which the
independent variable k is defined, is called the domain of the signal.

To denote the “whole signal”, that is the sequence of values g(k), for every k,
we use the notation g(·) or g; while, to denote the value of the signal at a specific
k, we use the notation g(k). A vector-valued signal g(·) is a signal whose values
are vectors. If the domain of the signal represents discrete time, then g(·) defines a
discrete-time signal. 1 In Fig. 3.1 is shown an example of discrete-time signal.

1Often, especially in the digital signal processing (DSP) community, discrete signals are denoted

3.1. CHARACTERIZATION OF DYNAMICAL SYSTEMS 25

Figure 3.1: A discrete signal.

In this thesis, we assume that the independent variable represents the time
and that it takes values on the set N; thus, we are only concerned to discrete-
time signals.

Signals interacting in a dynamical system can be classified into:

• Inputs (or exogenous variables) u(·), which consist of variables from the
environment that influence the system. They are the only variables that can
be manipulated by the user in order to have effect on the system.

• Outputs (or endogenous variables) y(·), that quantify effects of inputs on the
system.

• States x(·), which represent the internal state of the system and provide a
way to characterize the effects of the input on the produced output and on
the future state of the system.

When the input signal u(·) takes scalar values, the system is called single-input (SI);
otherwise, it is called multiple-input (MI). When the output signal y(·) takes scalar
values the system is called single-output (SO); otherwise, it is called multiple-output

(MO). Thus, a SISO system is a single-input single-output system, a MISO system
is a multiple-input single-output system, and a MIMO system is a multiple-input
multiple-output system.

with g[·], in order to distinguish them from continuous signals, which are instead denoted with g(·).

26 CHAPTER 3. LINEAR SYSTEMS THEORY

Dynamical systems can evolve either in continuous-time or in discrete-time; in
the former, the independent variable is defined over some continuous time interval
(e.g., the set R), while in the latter, is defined over a discrete interval (e.g., the
set N). A dynamical system is causal (or nonanticipatory) if its current output
depends on past and current inputs but not on future input; conversely, a noncausal

(or anticipatory) system can predict or anticipate what will be applied in the future.
Physical systems are usually considered causal systems; noncausal systems can
be found in off-line post-processing systems, like image or audio processing. We
say that a dynamical system is memoryless (or without memory) if its output, for
each value of the independent variable, is dependent only on the input evaluated at
the same value of the independent variable. A system that is not memoryless is
said to have memory. All memoryless systems are also causal, since they depend
only on its current input; the converse, in general, is not true. A system is said to
be time-invariant if a time shift in the input causes a corresponding time shift in
the output. If a system is not time-invariant, it is said to be time-varying.

A system is linear if it obeys to the principle of superposition, whereby the
response to a weighted sum of any two inputs is the (same) weighted sum of the
responses to each individual input. More formally, the system y = T (u) is linear, if
T is a linear operator that is, for any valid inputs u1 and u2, and for any α,β ∈ R:

y3 = T (αu1 +βu2)

= αT (u1)+βT (u2)

= αy1 +βy2

(3.1)

A system that does not obey to the superposition principle is called nonlinear.

In this thesis, we are only concerned to casual discrete-time linear systems.

3.2 Linearization

Linear systems are especially appealing for their mathematical properties that make
the solution of modelling equations simpler than the ones available for nonlinear

3.2. LINEARIZATION 27

systems. However, it is important to note that many physical systems (included
computing systems) are usually best described by nonlinear models, mainly due
to their complexity and to saturation phenomena [84]. Unfortunately, nonlinear
models generally make complex the system design. A standard way to cope
with this situation is the use of linearization in order to approximate a nonlinear
relationship with a linear one. The most common approaches to linearization
include [24, 86, 146]:

• Local linearization around an equilibrium point, whereby the original non-
linear system is restated in terms of small perturbations with respect to such
nominal point. In this case, the idea is that the solution of the slightly per-
turbed point should differ only slightly from the solution of the equilibrium
point. Thus, the obtained linear system is an approximation of the behavior
of the nonlinear system for inputs that are “close” to such equilibrium point.

• Local linearization around a trajectory, which is similar to the linearization
around an equilibrium point, but perturbations are computed with respect
to a known solution (i.e., a know input, output and initial conditions) of the
nonlinear system equations. In this case, the resulting linear system is an
approximation of the behavior of the nonlinear system for inputs (and initial
conditions) that are “close” to such solution;

• Feedback linearization, which is a way of transforming the original non-
linear system model into an equivalent one of a simpler form; unlike local
linearization, it achieves an exact transformation of the dynamics of the
original nonlinear system, rather than a linear approximation of them. The
central idea is to algebraically transform nonlinear systems dynamics into
(fully or partly) linear ones, so that linear control techniques can be applied.
This is achieved by simplifying the form of the nonlinear system by choosing
a representation that leads to a linear system. The main disadvantage of this
approach is that it has a limited applicability.

In this thesis, we use the technique of local linearization around an equilib-
rium point.

28 CHAPTER 3. LINEAR SYSTEMS THEORY

3.3 System Representation

A dynamical system can be analyzed both with graphical and with analytical
models. In the following, we present some commonly used analytical and graphical
modeling tools. First, we present two commonly used analytical modeling tool:
the input-output and the state-space representations. Then, we introduce the block

diagram algebra as an example of graphical modeling.

3.3.1 Input-Output Representation

If the internal structure (i.e., the state) of the system is unknown, it may still be
possible to use an external description of the system, called input-output repre-

sentation, that relates the next system output y(k) (at time k) to present and past
system inputs u(k), for k = k− nb, . . . ,k, and to past system outputs y(k), for
k = k−na, . . . ,k−1. Specifically:

y(k) = f (k;y(k−na), . . . ,y(k−1);u(k−nb), . . . ,u(k)) (3.2)

For linear systems, (i.e., when the function f is linear), such representation is an
algebraic recursive equation called linear recurrence equation, which is usually
stated as a difference equation:

na

∑
i=0

Ai(k)y(k− i) =
nb

∑
i=0

Bi(k)u(k− i) (3.3)

where the independent variable k ∈ N is the model sampling time (or discrete

time step). Vectors u(·) ∈ Rnu and y(·) ∈ Rny are the input vector and the output

vector of the system, respectively. Matrices Ai(·) ∈ Rny×ny , for i = 1, . . . ,na, and
Bi(·) ∈ Rny×nu , for i = 1, . . . ,nb, are the parameters of the system. The integer
value na, which is the order of the difference equation, is called the system order

and it reflects the extent to which previous inputs and outputs affect the current
output. The use of difference equations is motivated by the fact that they are useful
for relating the evolution of variables (or parameters) from one discrete instant of
time (or other independent variable) to another.

An alternative notation for Eq. (3.3) is sometimes used in order to separate the

3.3. SYSTEM REPRESENTATION 29

sampling time and the discrete time step:

na

∑
i=0

Ai(kτ)y((k− i)τ) =
nb

∑
i=0

Bi(kτ)u((k− i)τ) (3.4)

where the independent variable k ∈ N is the model sampling time multiplied by the
discrete time step τ . This notation is used, for instance, to represent sampled data

systems [69], which are continuous-time systems that are controlled with a digital
device.

When all the parameter matrices of Eq. (3.3) are constant ∀k ∈ N, the system
is called a linear time-invariant (LTI) system and is written as:

na

∑
i=0

Aiy(k− i) =
nb

∑
i=0

Biu(k− i) (3.5)

Otherwise, the system is called a linear time-varying (LTV) system.

To obtain a unique solution for y(k), two additional items must be specified,
the initial time k0 ∈ N (which defines the time sequence over which a solution is
desired), and a set of na initial conditions for y(k).

y(k0),y(k0 +1), . . . ,y(k0 +na−1) (3.6)

The problem defined over this initial time and with these initial conditions is called
an initial-value problem. For convenience, in the rest of this section, we assume
that the initial time k0 = 0.

Given a linear system and an initial-value problem, we can study the system
response (i.e., its solution) to different input signals. In the same way, given a
linear system and an input signal, we can study the system response to different
initial conditions. From the principle of superposition, the solution of the linear
system Eq. (3.3) can be studied by analyzing separately the solutions:

1. Forced response: the solution of the system corresponding to a given input
u(·) and with zero initial conditions.

2. Free response: the solution of the system corresponding to a given initial-
value problem and with the input set to zero.

30 CHAPTER 3. LINEAR SYSTEMS THEORY

The total response, that is the solution of Eq. (3.3) for a given initial-value problem
and input signal, is thus given by the sum of the two separate solution.

The forced response of a linear system can be stated in terms of the impulse

response function, which, intuitively, represents the response of the system to a
brief input signal, called an impulse.

Definition 3.3.1 (Impulse). A discrete-time impulse δ (k) (or unit pulse, or unit

sample) corresponds to a unit discrete-time pulse, that is:

δ (k) =

0, k ∈ N\{0},

1, k = 0
(3.7)

Definition 3.3.2 (Impulse Response). Given a discrete-time linear system in input-
output representation, there exists a matrix-valued signal h(n,k) ∈ Rny×nu called
discrete-time impulse response matrix (or simply impulse response), such that for
every input u(·), a corresponding output y(k) is given by the following superposi-

tion sum:
y(k) = ∑

n∈N
h(k,n)u(n), k ∈ N (3.8)

Each element hi j(k,n) of the impulse response can be viewed as the ith entry
of an output at time n, corresponding to a unit discrete-time pulse applied at the
jth input at time k.

Definition 3.3.3 (Forced Response). Given a discrete-time linear system in input-
output representation, the forced response is given by Eq. (3.8), and represents the
solution of the system when all of its initial conditions are zero.

It is worth noting that, the impulse response is the forced response of the system
to a unit impulse. Often, it is of particular interest to compute to forced response
to well-known input signals. For instance, in control-theoretic system analysis,
a particular family of singularity functions is used extensively. The three most
widely used singularity functions are the unit step, the unit impulse, and the unit

ramp (see Fig. 3.2).
The impulse response has several important properties. Among them, it is

important to mention the following ones:

3.3. SYSTEM REPRESENTATION 31

Figure 3.2: Common discrete-time signals (singularity functions).

1. For causal systems, one can choose the impulse response to satisfy:

h(k, i) = 0, ∀k, i ∈ N : i > k (3.9)

2. For LTI systems, one can choose the impulse response to satisfy:

h(k, i) = h(k− i,0)

, h(k− i), ∀k, i ∈ N : k ≥ i
(3.10)

3. For causal LTI systems, we can write Eq. (3.8) as the convolution sum ? of
the impulse response matrix and the input:

y(k) , (h?u)(k)

=
k

∑
i=0

h(k− i)u(i), i ∈ N
(3.11)

32 CHAPTER 3. LINEAR SYSTEMS THEORY

For causal LTI systems, the last property provides a convenient way to compute
the impulse response.

In addition to the forced response, the other term needed to compute the total
response is the free response.

Definition 3.3.4 (Free Response). The free response (also known as natural re-

sponse) of an linear system is the solution of Eq. (3.3) when the input sequence is
identically zero, that is the solution of the following characteristic equation:

na

∑
i=0

Ai(k)y(k− i) = 0 (3.12)

Finally, for the superposition principle, we can compute the total response of a
system in the following way.

Definition 3.3.5 (Total Response). The total response of a linear system, for a
given initial-value problem and input signal, is the sum of the forced and the free
responses:

total response = free response+ forced response (3.13)

The total response can also be characterized by two other quantities: the
transient response and the steady-state response.

Definition 3.3.6 (Transient Response). The transient response is the part of the
total response that does not approach zero as time approaches infinity.

Definition 3.3.7 (Steady-state Response). The Steady-state response is the part of
the total response that approaches zero as time approaches infinity.

The results discussed so far are related to the characterization of linear sys-
tems on the time domain; the fundamental result in this representation is that a
linear system can be characterized entirely by its initial-value problem and by
a single function called the impulse response. For LTI systems, an equivalent
characterization is available in the frequency domain, whereby any LTI system
can be characterized by a single function called transfer function, which is the
z-transform (see Appendix A) of system’s impulse response. 2

2An operational equivalent of the transfer function for the LTV case is more problematical and
is still an open research problem; some result is available in literature (e.g., see [19, 95, 126, 172]).

3.3. SYSTEM REPRESENTATION 33

Definition 3.3.8 (Transfer Function). The transfer function H(z) of an LTI system
for a given input signal is the z-transform of the system’s impulse response h(k).

From this definition, it follows that, as the impulse function completely char-
acterizes the system response y(·) for a given input signal u(·) at zero initial

conditions in the time domain, in a similar way, the transfer function H(z) com-
pletely characterizes the system response Y(z) for a given input U(z) at zero initial

conditions in the frequency domain, that is:

Y(z) = H(z)U(z) (3.14)

It is worth noting that the assumption of zero initial conditions is not a limitation
because of the principle of superposition, whereby the total system response can
be computed as the sum of the system response at zero initial conditions and the
one with input signal at zero, as stated by Eq. (3.13).

For the special case of SISO LTI systems, the transfer function H(z) of the
system (at zero initial condition) is given by the ratio between the z-transform Y (z)
of the output signal y(·) and the z-transform U(z) of the input signal u(·):

H(z) =
Y (z)
U(z)

(3.15)

Thus, intuitively, a SISO transfer function describes how an input U(z) is trans-
formed into the output Y (z), or, put differently, it describes the response to a unit
impulse. The denominator of H(z) is called the characteristic polynomial, which,
when set to zero, takes the name of characteristic equation; its degree is called
the degree of the transfer function and its roots are called the poles of the transfer

function. According to the fundamental theorem of algebra, the number of poles of
the transfer function is equal to its degree. The roots of the numerator of H(z) are
called the zeros of the transfer function. When the polynomials Y (z) and U(z) are
coprime, 3 then the zeros are simply the roots of Y (z) and the poles are the roots of
U(z).

3Two polynomials are coprime if they have no common roots.

34 CHAPTER 3. LINEAR SYSTEMS THEORY

To illustrate, the transfer function of the SISO LTI system:

na

∑
i=0

aiy(k− i) =
nb

∑
i=0

biu(k− i)

is given by:

H(z) = zna−nb
b0znb +b1znb−1 + · · ·+bnb

a0zna +a1zna−1 + · · ·+ana

The definition of transfer function can be extended to the MIMO case, where
now the effect of every input on every output has to be taken into consideration.
Specifically, for MIMO LTI systems, the transfer function matrix (or, simply, the
transfer matrix) H(z) ∈ Cny×nu relates input U(z) with output Y(z)

Y(z) = H(z)U(z) (3.16)

such that each element Hi j(z) of H(z) is a SISO transfer function relating the j-th
component U j(z) of the input to the i-th component Yi(z) of the output. A possible
generalization of poles and zeros concepts for a MIMO transfer function H(z) turn
out to be as follows:

• the poles of H(z) are the values of z ∈ C for which at least one of the entries
of H(s) becomes unbounded;

• the rank 4 of H(z) takes the same value for almost all values of z ∈C, but for
some z ∈ C, the rank of H(z) drops; these values are called the transmission

zeros of H(z).

For a formal treatment of MIMO transfer functions, the interested reader can refer
to [24, 46, 86].

The frequency-domain representation is particularly convenient for the analysis
and the manipulation of linear systems. Given a frequency-domain representation
Y(z) of the system response y(·) for a given input signal u(·) at zero initial condi-
tions, it is always possible to return to the time-domain counterpart by taking its
inverse z-transform Z −1{Y(z)}. In particular, as shown in Fig. 3.3, when all the

4The rank of a matrix A is equal to the number of linearly independent columns of A, which is
also equal to the number of linearly independent rows of W.

3.3. SYSTEM REPRESENTATION 35

Figure 3.3: Relationship between the time-domain and the frequency-domain
representation.

terms due to initial conditions are zero, the output of a linear system is given by
the convolution of the impulse response and the input signal functions in the time
domain, while it is simply the product of the transfer function and the transform of
the input in the frequency domain. This equivalence, depicted in Fig. 3.3, can be
expressed by the following relationship:

y(k) = Z −1 {Y(z)}

= Z −1 {H(z)U(z)}

= (h?u)(k)

(3.17)

3.3.2 State-Space Representation

When the internal structure (i.e., the state) of the system is known, the most general
form to represent a dynamical system is the state-space representation:

x(k +1) = A(k)x(k)+B(k)u(k), (3.18a)

y(k) = C(k)x(k)+D(k)u(k) (3.18b)

where Eq. (3.18a) is called state (difference) equation, and Eq. (3.18b) is called
output equation. The independent variable k ∈ N is the model sampling time (or

36 CHAPTER 3. LINEAR SYSTEMS THEORY

discrete time step). Vectors x(·) ∈ Rnx , u(·) ∈ Rnu , and y(·) ∈ Rny are the state

vector, the input vector, and the output vector of the system, respectively. Matrices
A(·)∈Rnx×nx , B(·)∈Rnx×nu , C(·)∈Rny×nx , and D(·)∈Rny×nu are the parameters

of the system and are called the state matrix, the input matrix, the output matrix,
and the feedforward matrix, respectively. The integer value nx, that is the dimension
of the state vector, is called the system order.

According to this representation, for a given input u(·), we need to solve the
state (difference) equation to determine the state x(·) and then replace it in the
output equation to obtain the output y(·). In general, one input corresponds to
several possible outputs; in order to fix it, one has to provide the initial value (or
initial condition): x(k0) = x0. In rest of this section, we assume that k0 = 0.

When all the parameter matrices of Eq. (3.18) are constant ∀k ∈ N, the above
system is called a linear time-invariant (LTI) system and is written as:

x(k +1) = Ax(k)+Bu(k), (3.19a)

y(k) = Cx(k)+Du(k), (3.19b)

Otherwise, the system is called a linear time-varying (LTV) system.
LTI state-space models are usually denoted with the tuple of their system

matrices; thus, the model Eq. (3.19) can be replaced by the following notation:

(A,B,C,D) (3.20)

In a similar way to the input-output representation, the total response of a
linear system in the state-space representation can be computed as the sum of two
independent terms, namely the zero-state response and the zero-input response,
and can expressed both in the time and in the frequency domain [24]. In order to
obtain a unique solution from Eq. (3.18), initial conditions x(k0) and the initial
time k0 ∈ N must be specified; this is known as the initial-value problem. In the
rest of this section, we assume that k0 = 0.

Definition 3.3.9 (Zero-input Response). The zero-input response is the response
(solution) of the system when the input u(·) is identically zero.

For instance, for the LTI system Eq. (3.19), the zero-input response in time-

3.3. SYSTEM REPRESENTATION 37

domain is given by:
yzi = CAkx(0) (3.21)

Definition 3.3.10 (Zero-state Response). The zero-state response is the response
(solution) of the system when all of its initial conditions x(·) are zero.

For instance, for the LTI system Eq. (3.19), the zero-state response in time-
domain is given by:

yzs(k) = C
k−1

∑
i=0

Ak−(i+1)Bu(i)+Du(k) (3.22)

The zero-state response can also be stated in terms of the discrete-time unit impulse

response matrix h(·):

yzs(k) =
k

∑
i=0

h(k, i)u(i) (3.23)

which for the system Eq. (3.19) is given by:

h(k,n) , h(k−n)

=

CAk−(n+1)B, k > n,

D, k = n

(3.24)

Definition 3.3.11 (Total Response). For a given initial-value problem x(0) and an
input u(·) the total response of Eq. (3.18) is given by:

total response = zero-input response+ zero-state response (3.25)

The total response of Eq. (3.19) in time-domain, with initial conditions x(0), is
given by:

y(k) = yzi(k)+yzs(k)

= C
(

Akx(0)+
k−1

∑
i=0

Ak−1−iBu(i)
)

+Du(k)
(3.26)

The total response can also be expressed in the frequency domain by means
of the z-transform. For instance, the total response in frequency domain of a LTI

38 CHAPTER 3. LINEAR SYSTEMS THEORY

system is obtained by taking the z-transform of Eq. (3.19):

zX(z)− zx(0) = AX(z)+BU(z), (3.27a)

Y(k) = CX(z)+DU(z), (3.27b)

and then solving for the output Y(z):

Y(z) = C
(
zI−A

)−1zx(0)+
[
C
(
zI−A

)−1B+D
]
U(z) (3.28)

The output signal y(·) in the time domain can be recovered from its one-sided
z-transform Y(z), by applying the inverse z-transform Z −1{Y(z)}.

Just like in the time domain, where the impulse response relates the output
signal to a particular input signal (at zero initial conditions), in the frequency
domain we can introduce an equivalent concept, namely the transfer function.

Definition 3.3.12 (Transfer Function). The transfer function matrix H(z) of system
Eq. (3.19) relates the z-transform of the output y(·) to the z-transform of the input
u(·) under the assumption that x(0) = 0, such that:

Y(z) = H(z)U(z) (3.29)

where:
H(z) , Z {h(k)}

= C
(
zI−A

)−1B+D
(3.30)

is the z-transform of the impulse response matrix h(·) (see Eq. (3.24)).

With respect to the input-output representation, the state-space representation
provides a convenient and compact way to model and analyze MIMO systems.
With nu inputs and ny outputs, we would otherwise have to write down nu× ny

transfer functions to encode all the information about a system. Moreover, unlike
the frequency-domain approach, the use of the state-space representation is not
limited to systems with linear components and zero initial conditions. Another
advantage of state-space representation, is that system dynamics are described
by first-order difference equations; instead, with the input-output representation,

3.3. SYSTEM REPRESENTATION 39

(a) Time-domain block. (b) Frequency-domain block.

Figure 3.4: Transfer function block.

system dynamics can require high-order difference equations, thus making the
analysis of the system harder.

3.3.3 Block Diagrams Algebra

Block diagrams are a shorthand, graphical representation of a physical system,
illustrating the functional relationships among its components in terms of cause-
and-effect relationships between its inputs and its outputs.

The basic building blocks of a block diagram include:

• Transfer function block, which represents the impulse response h(k) (see
Fig. 3.4a) or the transfer function H(z) (see Fig. 3.4b) of an LTI system
in the time-domain or frequency-domain, respectively. The latter (i.e., the
frequency-domain representation) is the preferred form because of ease of
manipulation. Transfer function blocks can represents different components
of a physical system. Examples of transfer function block include the
reference sensor (or input sensor), the output sensor, the actuator, the
controller, and the plant (i.e., the component whose variable are to be
controlled).

• Junction point (or summing point or comparator), which are used to sum or
subtract two or more signals (see Fig. 3.5).

• Take-off point (or branch point), which represents a signal branching, like a
feedback loop (see Fig. 3.6).

• Arrows, which represent unidirectional signal flows.

40 CHAPTER 3. LINEAR SYSTEMS THEORY

(a) Additive junction
point.

(b) Subtractive junc-
tion point.

(c) Multiple input
junction point.

Figure 3.5: Junction point.

Figure 3.6: Take-off point.

One of the main advantage offered by the block diagram algebra is the ease of
block interconnection and manipulation. The most common block interconnections
include:

• Series (or cascade): for two systems in series with transfer functions H1(z)
and H2(z), the overall transfer function is obtained as the product of the two
single transfer functions:

H(z) = H1(z)H2(z) (3.31)

• Parallel: for two systems in parallel with transfer functions H1(z) and H2(z),
the overall transfer function is obtained as the sum of the two single transfer
functions:

H(z) = H1(z)+H2(z) (3.32)

• Negative feedback: for two systems in a negative feedback path with transfer

3.4. REALIZATION OF A TRANSFER FUNCTION 41

functions H1(z) and H2(z), the overall transfer function is obtained as:

H(z) =
H1(z)

1+H1(z)H2(z)
(3.33)

Other common block manipulation rules are shown in Fig. 3.7.

3.4 Realization of a Transfer Function

The realization theory [24] provides a connection between the state-space and the
input-output representations. In the following, we present some basic result for
discrete-time LTI systems.

Definition 3.4.1 (Realization). Given a transfer function H(z), we say that a
discrete-time LTI state-space model (A,B,C,D) is a realization of H(z) if:

H(z) = C(zI−A)−1B+D (3.34)

We call Eq. (3.34), the transfer function of the state-space system.

In general, many state-space systems may realize the same transfer function,
which motivates the following definition.

Definition 3.4.2 (Zero-state equivalence). Two state-space systems are said to be
zero-state equivalent if they realize the same transfer function, which means that
they exhibit the same forced response to every input.

Definition 3.4.3 (Realizability). A transfer function H(z) is said to be realizable if
it there exists a state space model (A,B,C,D) with transfer function H(z).

Not all LTI state-space systems can realize a transfer function. It turns out
that only proper rational transfer functions can be realized by an LTI system.
Informally, a proper rational transfer function H(z) is a transfer function of the
form

H(z) =
N(z)
D(z)

42 CHAPTER 3. LINEAR SYSTEMS THEORY

Figure 3.7: Common rules for block diagram manipulation.

3.4. REALIZATION OF A TRANSFER FUNCTION 43

in which the degree of the numerator N(z) does not exceed the degree of the
denominator D(z). A transfer function H(z) is strictly proper rational is the degree
of the number N(z) is less than the degree of the denominator D(z). A proper
transfer function will never grow unbounded as the frequency approaches infinity.

Theorem 3.4.1 (MIMO Realization). A transfer function matrix H(z) can be

realized by an LTI state-space system if and only if H(z) is a proper rational

matrix.

It is worth noting that, if a realization of a given H(s) exists, then there exists an
infinite number of realizations (e.g., by performing an equivalence transformation
of the LTI state-space system). In particular, a minimal realization of the transfer
function H(z) is a state space representation of a system that has the minimum
possible number of states, that is a state-space system where the dimension of the
state vector (i.e., the number of states) is the same as the degree of the numerator
of H(z) (which, for proper rational transfer functions, does not exceed the one of
the denominator).

Definition 3.4.4 (Minimal Realization). A realization (A,B,C,D) of the transfer
function H(z) of least-order n, where A ∈ Rn×n, is called a least-order, or a
minimal, or an irreducible realization of H(z).

There are several way to construct an LTI system that realizes an arbitrary given
proper rational function H(z). Among them, canonical realizations are a very
commonly way to realize a strictly proper transfer function 5 in order to construct
a state-space system with specific properties, like controllability and observability.
In particular, with a controllable canonical form the resulting state-space system
is guaranteed to be controllable, while with an observable canonical form the
resulting state-space system is guaranteed to be observable. The controllability
and observability of a system are mathematical duals, which play a central role in
the study of state feedback controllers and state observers [69], and in establishing
the relations between internal and external system representations. The concept

5Transfer functions which are only proper can also be realised, by expressing them as the sum
of two terms: a strictly proper part Ĥ(z) and a constant one H(∞). The strictly proper transfer
function can then be transformed into a canonical state space realization, while the state space
realization of the constant is trivially Y(z) = H(∞)U(z).

44 CHAPTER 3. LINEAR SYSTEMS THEORY

of (state) controllability refers to the ability to manipulate the state by applying
appropriate inputs, while (state) observability observability refers to the ability
to determine the state vector of the system from knowledge of the input and the
corresponding output over some finite time interval.

It is important to realize that, although a model of a linear time invariant system
can be a transfer function as well as a state space model, these two models do not
give the same insight into the system’s properties. The transfer function is a very
efficient description of the relationship between the input and the output. The state
space model provides the same information but, in addition, it also gives detailed
information on the internal state variables. Moreover, when a transfer function
is constructed one can be sure that it is a unique model. In contrast to this, the
state-space model is not unique. One has considerable freedom when selecting the
state variables and the resulting model obviously depends on the specific choice of
state variables.

3.5 Stability

One of the most important properties of a system is stability. Intuitively, a system
can be considered unstable if its output is unbounded. There are different definitions
of system stability. For analysis and design purposes, we can classify stability as
absolute stability and relative stability.

Absolute stability refers to whether the system is stable or unstable; it is a “yes”
or “no” answer. The absolute stability of a system is determined by its response
to inputs or disturbances. Intuitively, a system is absolutely stable if it remains at
rest (in equilibrium) unless excited by an external source and returns to rest if all
excitations are removed. If action persists indefinitely after excitation is removed,
the system is considered absolutely unstable. Once the system is found to be
absolutely stable, it is of interest to determine how stable it is, and this degree of
stability is a measure of relative stability.

Absolute stability can be divided into internal stability (or Lyapunov stability),
that expresses how the (internal) state of the system evolves with time, and external

stability (or input-output stability), that expresses how the magnitude of the output
relates to the magnitude of the input in the absence of initial conditions [24].

3.5. STABILITY 45

Internal stability concerns with the stability of solutions near to a point of
equilibrium [114]. Informally, if all solutions of the system that start out near an
equilibrium point x̄ stay near x̄ forever, then the system is stable (in the Lyapunov
sense). More strongly, if a system is Lyapunov stable and all solutions that start out
near the equilibrium point x̄ converge to x̄, then the system is asymptotically stable

(in the Lyapunov sense). In addition, the notion of exponential stability guarantees
a minimal rate of decay (i.e., an estimate of how quickly the solutions converge).

For what concerns external stability, of particular interest is the concept of
Bounded-Input Bounded-Output (BIBO) stability, whereby a system is stable if,
for zero initial conditions, the output will be bounded for every input to the system
that is bounded. 6

Definition 3.5.1 (BIBO stability). A linear discrete-time system is said to be
(uniformly) Bounded-Input Bounded-Output (BIBO) stable if its impulse response
approaches zero as time approaches infinity, that is if there exists a finite constant c

such that, for every input u(·), its forced response y f (·) satisfies:

sup
k∈N
‖y f (k)‖ ≤ sup

k∈N
‖u(k)‖ ≤ c, c > 0 (3.35)

Examples of measures of relative stability are phase margin, which indicates
the tendency of a system to oscillate during its transient response to an input change
such as a step function, and gain margin, which provides the degree to which the
system will oscillate without limit given any disturbance [43].

A key role for the stability of a system is played by the poles of the transfer
function. As depicted in Fig. 3.8 (from [84]), the stability of a system can be
assessed by the location of the poles of the transfer function:

• poles inside the unit circle (|z|< 1) result in an unbounded signal,

• poles outside the unit circle (|z|> 1) result in a bounded signal that converges
to zero,

• poles on the unit circle (|z|= 1) result in a bounded signal that not converges
to zero.

6A discrete-time signal x(·) is bounded if there is a finite value c > 0 such that the signal
magnitude never exceeds c, that is |x(n)| ≤ c ∀n ∈ Z.

46 CHAPTER 3. LINEAR SYSTEMS THEORY

Figure 3.8: Relationship between location of the poles of the transfer function and
the time-domain behavior of the signal with those poles (from [84]).

When poles are inside the unit circle, the rate of convergence to zero depends
on the magnitude of the poles: the closer the pole is to the origin, the faster the
convergence. Moreover, the location of poles in the positive or negative real axis
determine the oscillatory behavior and the frequency of oscillation depends on the
angle of each pole relative to the origin.

A direct consequence of pole location analysis is the following theorem.

Theorem 3.5.1 (BIBO Stability). A system is BIBO stable if and only if all the

poles of its transfer function are inside the unit circle.

Chapter 4

Linear System Identification

System identification [112] is the process of building mathematical models of
dynamical system from measured data, representing inputs and outputs of the
system, and from prior knowledge. Theory behind system identification is vast and
covers both parametric and nonparametric techniques than can be applied to both
time- and frequency-domain system representation.

In this thesis, we focus on the black-box modeling approach as a mean
to describe linear systems. We use online parametric system identification to
estimate parameters of such black-box models, and, specifically, we employ
variants of the recursive least-squares algorithm.

In the rest of this chapter, we provide an overview of the identification process
of linear systems, with a particular focus to the techniques used in this thesis.

4.1 The System Identification Process

A system model is a mathematical description (in either the time or frequency
domain) of the dynamic behavior of a real system, which helps to capture and
study relevant aspects of the system in a tractable mathematical form. Several
approaches and techniques are available for deriving system models. Standard
modeling approaches include two streams: (1) the white-box approach, and (2)

47

48 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

the identification of a model. The white-box approach uses first principles to
build models based on the physical laws and relationships (e.g., Newton equations)
that are supposed to govern the behavior of the real system; in these models,
the structure reflects all physical insights about the process, and variables and
parameters have direct physical interpretations (e.g., heat transfer coefficients).
Often, such a direct modeling may not be possible. The reason may be that (a) the
knowledge of the system’s mechanisms is incomplete, (b) the properties exhibited
by the system may change in an unpredictable manner, or (c) the system is too
complex to model. In such cases, variables, characterizing the behavior of the
considered system, can be measured from the real system and used to construct
a model. This is where the identification approach takes place. Essentially, the
identification approach can be performed either by gray-box or black-box modeling.
The gray-box modeling approach utilizes physical insights about the underlying
system (i.e., by using first principles), but parameter values are not know in advance
and need to be derived from data observed from the real system. The black-box

modeling approach uses measured data to build a model which is representative
of the inputs and outputs observed from the real systems. Due to the difficulty of
constructing first-principles models of computing systems, the black-box modelling
approach is usually the preferred way to model such systems since it requires a less
detailed knowledge of the relationships between system inputs and outputs [84].
For this reason, in this thesis, we limit the discussion to only black-box models.

In the system identification framework, in addition to system inputs and outputs,
it is useful to consider additional type of signals, called disturbances, which are
external stimuli that affect the behavior of the system (see Fig. 4.1). Disturbances
cannot be manipulated since they are not generally under control (e.g., they are
part of the inherent nature of system dynamics or derive from the measurement
process). They are usually divided into noise (or measurement noise) v(·), which is
any effect that changes the observed output (e.g., the noise introduced by the sensor
that measures the output), and disturbance input (or uncontrollable input) w(·),
which is any change that affects the way in which the input influences the measured
output (e.g., wind guts and turbulence that affect the movement of an aeroplane).
The explicit modeling of disturbances leads to a stochastic system model, since
w(·) and v(·) are generally modeled as stochastic processes; conversely, when they

4.1. THE SYSTEM IDENTIFICATION PROCESS 49

Figure 4.1: Representation of a system with input u(t), output y(t), state x(t),
noise v(t) and input disturbance w(t), each of which varying with the independent
variable t (e.g., the time).

Figure 4.2: The system identification workflow.

are not explicitly modeled, the model is called deterministic. In addition to the
different type of signals, it is also useful to take into consideration the delay that
takes a given input to have effect on the system output. This is usually called input

delay or dead time.

As shown in Fig. 4.2, system identification is an iterative process which com-
prises the following steps: (1) experiment design, (2) data collection and pre-

processing, (3) model structure selection, (4) model estimation, and (5) model

validation. Every step is possibly driven by prior knowledge of the modeled
system in order to reduce uncertainty in the model estimation. In the rest of this
section we provide an overview of each step.

4.1.1 Experiment Design

In this step, an identification experiment is designed so that the real system is
suitably instrumented and stressed in order to excite all of the system dynamics

50 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

(even the ones that may be unknown) and to capture sufficient variability.

The design is primarily concerned with the selection of design variables and
their corresponding values. The selection of design variables comprise the choice
of which system variables to measure and when to measure them (i.e., system
inputs), which system variables to manipulate and how to manipulate them (i.e.,
system outputs), and finally which system variables affect the system behavior but
that are not manipulable (i.e., disturbance inputs). For what regards the choice of
input values, they should be enough “rich” in order to provide a dense and uniform
coverage of the range of possible input values, and thus to excite and force the
system to show all of its dynamics. Input values are usually represented as input
signals which probe the system under test. These signals determine the operating
points of the system. While the system under test often limits the choice of signals,
the input signal must exhibit certain characteristics. These characteristics must
produce a response that provides the information one needs for developing an
accurate model. The following list summarizes some of these characteristics.

• To obtain meaningful dynamic behavior, the system must be tested under con-
ditions similar to the actual operating conditions. This criterion is extremely
important for nonlinear systems.

• The input signal must sufficiently excite the system with an input frequency
similar to the frequency at which such inputs change during normal opera-
tions.

• The amplitude of the step input must cover a wide range of variations, so
that the normal operation range system inputs is covered as well.

• The input signal must stay within the limits of the physical system.

The system response data is dependent on the physics of the system under
study. Some systems tend to respond faster than others. Other systems have large
time constants and delays. For these reasons, defining an input signal that provides
enough excitation to the system is important. The system response must capture
the important features of the system dynamics. Common choice of input signals
include [152]:

4.1. THE SYSTEM IDENTIFICATION PROCESS 51

• Filtered Gaussian white noise, which is a signal randomly generated ac-
cording to a Normal probability distribution (with mean and variance given)
filtered by a linear filter.

• Random binary signal, which is a random process that can assume one of
two possible values at any time. A simple method of generating a random
binary signal is to take Gaussian white noise, filter it for the desired spectra
and then convert it to a binary signal by taking the sign of the filtered signal.

• Pseudo-random binary signal (PRBS): which is a periodic, deterministic
signal with white-noise-like properties, that can assume only two values.

• Sinusoidal signal, which is a periodic, deterministic signal generated accord-
ing to a sinusoidal law.

• Random uniform signal, which is a signal randomly generated according to
a Uniform probability distribution.

For verification and validation reasons, one should acquire two sets of input-
output data samples or split the data into two sets. The first set of samples is used
to estimate the mathematical model of the system, while the second one is used
to validate the resulting model. If the resulting model does not meet the desired
level of fit (e.g., measured by means of mean squared error), the structure and
parameters of the model should be revised, and then repeating the verification and
validation process.

4.1.2 Data Collection and Preprocessing

Data from the experiment are collected and possibly preprocessed in order to
remove possible external noise, scaling problems, outliers, corruptions, missing or
partial data, and other type of disturbances.

There are different techniques to dealing with such deficiencies:

• Visually inspecting data. The graphical exploration of the data is one of the
best way to detect disturbances that however is applicable when the size of
data is small and preprocessing can be performed offline. Traditionally, data

52 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

samples are examined either in the time domain or the frequency domain.
An effective approach is to display the data in the joint time-frequency
domain, which provides a better understanding about the measured signals.
To this end, one can use, for instance, a spectrogram, which is a time-varying
spectral representation [83], that shows how the spectral density of a signal
varies with time.

• Explicitly removing disturbances. Another approach to remove disturbances,
especially when they represents offsets and trends, is by explicit pretreatment
of the data [112]. Most of the available techniques can be considered as
variants the linearization around an equilibrium method, which consists
in subtracting some operating point from data samples, thus transforming
the original model in a model which relates deviations from a physical
equilibrium. It is possible to use either a single steady-state equilibrium
point, or, more generally, time-varying equilibria.

• Using statistical predictors to estimate missing data. In case some of the
input, or of the output, or both are missing it is possible to use some statistical
prediction framework (like regression) to estimate them.

• Filtering. In the case one is interested in only a specific frequency range of
the frequency response for a model, it is possible to filter and enhance the
data in the frequency range to improve the fit in the regions of interest. For
instance, high-pass filters are used to eliminate offsets and load disturbances,
while low-pass filters are employed to eliminate irrelevant high frequency
components, including noise and system response.

• Data scaling. Often inputs and outputs of a physical system have different
amplitude ranges and hence different magnitude. This diversity can result
in an ill-conditioned model estimation, which reduces the accuracy of the
model. A commonly used approach to this problem is to normalize both input
and output signals to ensure that they have a zero mean and unit variance
over the sample data range used for model estimation.

• Estimating the noise explicitly. Unlike the previously described approaches,
which directly aim at removing disturbances from the data, this approach

4.1. THE SYSTEM IDENTIFICATION PROCESS 53

take care of disturbances by explicitly adding a noise term to the input-output
model. This is done by employing specific models, like the AutoRegressive

Moving Average with eXogenous variables (ARMAX) model which is used
in the Box-Jenkins methodology [35].

4.1.3 Model Structure Selection

A model structure is a mathematical relationship between input and output variables
that contains unknown parameters. Examples of model structures are transfer
functions with adjustable poles and zeros, state space equations with unknown
system matrices, and nonlinear parameterized functions.

The system identification process requires that one chooses a model structure
and apply the estimation methods to determine the numerical values of the model
parameters. There are two basic approaches to select a model structure, namely
black-box modeling and grey-box modeling approaches.

In the black-box modeling approach, the system behavior is inferred by simply
relating system inputs and outputs from the data, without the need to know anything
about the internal structure of the system. Black-box modeling is usually a trial-
and-error process, where one estimates the parameters of various structures and
compare the results. Typically, one starts with the simple linear model structure and
progress to more complex structures. One can configure a model structure using the
model order. The definition of model order varies depending on the type of model
one selects. For example, in case of a transfer function representation, the model
order is related to the number of poles and zeros. For state-space representation,
the model order corresponds to the number of states. If the simple model structures
do not produce good models, one can select more complex model structures by:

• Specifying a higher model order for the same linear model structure. Higher
model order increases the model flexibility for capturing complex phenom-
ena. However, unnecessarily high orders can make the model less reliable.

• Explicitly modeling the noise, by using, for instance, an additive disturbance
model which treats the disturbance as the output of a linear system driven
by a white noise source. Using a model structure that explicitly models

54 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

the additive disturbance can help to improve the accuracy of the measured
system component. Furthermore, such a model structure is useful when the
main interest is using the model for predicting future response values.

• Using a different linear model structure.

• Using a nonlinear model structure. Nonlinear models have more flexibility
in capturing complex phenomena than linear models of similar orders.

Ultimately, one chooses the simplest model structure that provides the best fit to
the measured data.

For what concerns the gray-box modeling approach, first principles that de-
scribes the behavior of the system are known (e.g., in the form of a set of difference
equations) but not their parameters, which thus need to be estimated from data. In
general, the process for building grey-box models involves three steps:

1. Creating a template model structure.

2. Configuring the model parameters with initial values and constraints (if any).

3. Applying an estimation method to the model structure and computing the
model parameter values.

In this thesis, the focus is on the black-box modeling approach.

Black-box modeling can be performed both in a nonparametric and in paramet-
ric way. In a nonparametric model, the system is described by using the impulse
response or frequency response. The impulse response reveals the time-domain
properties of the system, such as time delay and damping. The impulse response
of a dynamic system can be estimated by means of least-squares and correlation

analysis methods [112]. The frequency response reveals the complete frequency-
domain characteristics of the system, including properties like the natural frequency
of the system. The frequency response of a dynamic system can be estimated with
the Fourier analysis or with the spectral analysis methods [32, 112]. New ap-
proaches to nonparametric system identification also include theories of modern
nonparametric regression, approximation, and orthogonal expansions [76].

4.1. THE SYSTEM IDENTIFICATION PROCESS 55

The other type of black-box models are parametric models, which describe
systems in terms of difference or differential equations, depending on whether
a system is represented by a discrete or continuous model, respectively. As the
name implies, such models has a specific analytic form and depend on a certain
number of parameters, whose values need to be estimated from data. Parametric
model structures for linear systems include transfer-function and state-space model
structures.

The transfer function (or polynomial) model structure is a family of linear
model that can be represented by the following general time-varying polynomial
equation:

Ak(q)y(k) =
Bk(q)
Fk(q)

u(k−nk)+
Ck(q)
Dk(q)

e(k) (4.1)

where Ak, Bk, Ck, Dk and Fk are time-varying polynomial matrices expressed in
terms of the time-shift operator q, 1 nk is the time delay associated to the input, 2

and e(k) is a zero-mean stochastic process with a given finite variance, modeling
the white noise.

A similar formulation is available for LTI systems, where polynomial matrices
are now independent from the time:

A(q)y(k) =
B(q)
F(q)

u(k−nk)+
C(q)
Dk(q)

e(k) (4.2)

To estimate polynomial models, it is necessary to specify the model order as
a set of integers that represent the number of coefficients for each polynomial of
the selected structure. For the general model of Eq. (4.1), this means to estimate
the numbers na, nb, nc, nd , and n f corresponding to the number of matrices Ak, Bk.
Ck. Dk, and Fk, respectively. It is also necessary to specify the number of samples
nk, corresponding to the input delay, given by the number of samples before the

1The time-shift operator q is such that when applied to an operand x(k), that is qτ x(k), it shifts
the time k of its operand x(·) by τ steps forward or backward, according to the sign of τ; for
instance, q−1x(k) , x(k− 1). The notation A(q) represents the time-shift operator applied to a
polynomial such that A(q)x(k) ,

(
1+∑

na
i=1 aiq−i

)
y(k) , y(k) + a1y(k− 1) + · · ·+ ana y(k− na).

The notation A(q) represents the time-shift operator applied to a polynomial matrix such that
A(q)x(k) ,

(
I+∑

na
i=1 Aiq−i

)
y(k) , y(k)+A1y(k−1)+ · · ·+Anay(k−na).

2It is worth noting that, in general, there may be a different input delay nk j for each component
u j(·) of the input u(·). However, to keep the notation simple, we assume the same input delay for
each input component.

56 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

output responds to the input. Typically, one begins modeling using simpler forms
of this generalized structure and, if necessary, increases the model complexity.

There are different specialization of the general structure of Eq. (4.1). Among
them, two widely adopted model structures are:

• AutoRegressive with eXogenous variables (ARX):

– LTV formulation:

Ak(q)y(k) = Bk(q)u(k− i−nk)+ e(k) (4.3)

– LTI formulation:

A(q)y(k) = B(q)u(k− i−nk)+ e(k) (4.4)

In this model structure, the model order is given by na and nb. Usually, the
notation ARX(na,nb,nk) is employed to indicate an ARX model with order
na and nb, and with input delay nk. This is one of the more simplest model
structure. The major drawback of this model is that, because of the noise
term is coupled to the model dynamics, ARX does not allow to model noise
and dynamics independently.

• AutoRegressive Moving Average with eXogenous variables (ARMAX)

– LTV formulation:

Ak(q)y(k) = Bk(q)u(k− i−nk)+Ck(q)e(k) (4.5)

– LTI formulation:

A(q)y(k) = B(q)u(k− i−nk)+C(q)e(k) (4.6)

In this model structure, the model order is given by na, nb, and nc. Usually,
the notation ARMAX(na,nb,nc,nk) is employed to indicate an ARX model
with order na, nb and nc, and with input delay nk. This model structure
extends the ARX structure by providing more flexibility for modeling noise

4.1. THE SYSTEM IDENTIFICATION PROCESS 57

(using a moving average of white-noise). For such reason, it is particularly
indicated to model systems where dominating disturbances enter at the input.

Several techniques have been proposed in the literature to estimate both the model
order and the input delay (e.g., see [91, 112]). For instance, in [112], a model
structure selection based on statistical hypothesis testing is proposed, whereby
each model structure is evaluated according to a specific goodness-of-fit criterion
like the Akaike’s Information Criterion (AIC) [124] or the Minimum Description

Length (MDL) criterion [141].

The other type of parametric linear model structure is the state-space model. In
this model, the relationship between input, output and noise signals is represented
as a system of first-order difference equations, instead of specifying one or more
nth-order difference equations, by using auxiliary state variables x(·):

x(k +1) = A(k)x(k)+B(k)u(k)+w(k), (4.7a)

y(k) = C(k)x(k)+D(k)u(k)+v(k), (4.7b)

with the noise covariance matrix:

E
[(w(p)

v(p)

)(
wT (q) vT (q)

)]
=

(
Q S
ST R

)
δpq ≥ 0 (4.8)

where w(·)∈Rnw is the disturbance input vector, v(·)∈Rnv is the noise vector, and
δi j is the Kronecker’s delta. Usually, w(·) and v(·) are assumed to be zero-mean
stationary white noise stochastic processes with a given variance.

An alternative and frequently used form for state-space model structures is
the one where disturbances w(·) and v(·) are related each other by the Kalman

matrix, such that w(k) = Kv(k). In this case, the disturbance vector w(k) is usually
denoted by e(k), and the state-space model structure form is called the innovation

form:

x(k +1) = A(k)x(k)+B(k)u(k)+K(k)e(k), (4.9a)

y(k) = C(k)x(k)+D(k)u(k)+ e(k) (4.9b)

58 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

with the noise covariance matrix:

E
[
e(p)eT (q)

]
= Sδpq ≥ 0 (4.10)

Similar formulations are available for LTI systems, where matrices are now
independent from the time. Thus, for Eq. (4.7), the following LTI form is obtained:

x(k +1) = Ax(k)+Bu(k)+w(k), (4.11a)

y(k) = Cx(k)+Du(k)+v(k), (4.11b)

while the LTI innovation form is given by:

x(k +1) = Ax(k)+Bu(k)+Ke(k), (4.12a)

y(k) = Cx(k)+Du(k)+ e(k) (4.12b)

Similarly to the transfer function model structure, also in the state-space model
structure it is possible to include time delays. However, unlike the transfer function
representation, there are different type of time delays:

• input delays, which model delays at the input;

• output delays, which model delays at the output;

• I/O delays, which model independent transport delays from a given input to
a given output of a MIMO transfer function model;

• internal delays, which model interconnection of systems with input, output,
or I/O delays, including feedback loops with delays. Internal delays can
arise, for instance, from:

– concatenating state-space models with input and output delays,

– feeding back a delayed signal, and

– converting MIMO transfer function with I/O delays to state-space
model.

4.1. THE SYSTEM IDENTIFICATION PROCESS 59

The state-space model structure is a good choice for quick estimation because it
requires only the estimation of the model order (which is an integer number equal
to the dimension of the state vector and relates to the number of delayed input and
outputs used in the corresponding linear difference equation) and, possibly, one or
more delays.

Compared to nonparametric models, parametric models might provide a more
accurate estimation if one has prior knowledge about the system dynamics to
determine parameters like model orders and time delays. Nonparametric model
estimation is more efficient, but often less accurate, than parametric estimation.
One possible use of nonparametric models, is as an estimation method to obtain
useful information about a system before applying parametric model estimation.
For example, one can use nonparametric model estimation to determine whether
the system requires preconditioning, what the time delay of the system is, what
model order to select, and so on. Another possible use of nonparametric model
estimation is for parametric model verification. For instance, one can compare the
Bode plot 3 of a parametric model with the frequency response of the nonparametric
model.

In this thesis, the focus is on parametric model structures.

4.1.4 Model Estimation

Once the model structure has been chosen, its parameters have to estimated from the
collected data according to a “best-fit” criterion. System identification techniques
for model parameters estimation can roughly be classified in two groups: offline
techniques and online techniques In the rest of this section, we describe some of the
most widely adopted algorithms both for offline and online system identification.

In this thesis, we concentrate on the online system identification of ARX
model structures and, specifically, on algorithms based on the least-squares

3The Bode plot is a graph of the transfer function of an LTI system versus frequency, plotted
with a log-frequency axis, to show the system’s frequency response

60 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

criterion.

Offline Algorithms

Offline system identification (or batch system identification) techniques are gener-
ally based on iterative methods that exploit the advantage of having a complete
set of data available for processing. Scientific literature provides many differ-
ent techniques for the offline estimation of model structure parameters (e.g., see
[112, 160, 152]).

For the identification of transfer function model structures, a widely adopted
technique is the prediction-error minimization (PEM) method. This approach,
has a close connection with the maximum likelihood method, originating from
[66] and introduced into the estimation of dynamical models by [138]. The basic
idea behind the prediction-error minimization method is very simple. Let M

be a particular model structure, Z N =
{(

yT (1),uT (1)
)T

, . . . ,
(
yT (N),uT (N)

)T
}

be the set of collected input-output pairs up to time N, and f (·) be an arbitrary
function of past, observed data.

1. Describe the model as a predictor of the next output:

ŷm(k|k−1) = f
(
Z k−1) (4.13)

where ŷm(k|k−1) denotes the one-step ahead prediction of the output.

2. Parameterize the predictor in terms of a finite-dimensional parameter vector
θ :

ŷ(k|θ) = f
(
Z k−1,θ

)
(4.14)

3. Determine the estimate θ̂ N of θ from the model parametrization of the
observed data set Z N , so that the distance between ŷ(1|θ), . . . , ŷ(N|θ) and

4.1. THE SYSTEM IDENTIFICATION PROCESS 61

y(1), . . . ,y(N) is minimized in a suitable norm VN(·), that is:

VN
(
θ ,Z N)=

1
N

N

∑
k=1

`
(
ε(k,θ)

)
, (4.15)

θ̂ N = argmin
θ

VN
(
θ ,Z N) (4.16)

where ε(k,θ) = y(k)− ŷ(k|θ) is the prediction error (i.e., the difference
between the observed and the predicted output value), and `(·) is a scalar-
valued (typically positive) function.

The PEM identification method can be considered a family of approaches each
of which varies according to the choice of the model structure M , the choice of
`(·), and, in some cases, the choice of the method by which the minimization is
realized. Under this family there are well-known procedures, such as the least-
squares (LS) method and the maximum likelihood (ML) method, and it is at the
same time closely related to the Bayesian maximum a posteriori (MAP) estimation
and Akaike’s information criterion (AIC) [112].

For instance, the least-squares (LS) method can be obtained by choosing:

M = ARX(na,nb,nk), (4.17)

f (Z k,θ) = θ
T

ϕ(k)+ µ(k), (4.18)

`(ε) =
1
2

ε
T

Λ
−1

ε (4.19)

where ϕ(k) is the regression vector at time k, that is an (nany +nbnu)-dimensional
vector (with ny and nu being the size of y(·) and u, respectively):

ϕ(k) =

−y(k−1)
. . .

−y(k−na)
u(t−1)

. . .

u(t−nb)

, (4.20)

µ(k) is a sequence of independent and identically distributed random variables

62 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

with zero mean (e.g., describing disturbances or non-modeled dynamics), and Λ is
a positive semidefinite ny×ny matrix, that weights together the relative importance
of the components ε . For ease of notation, in the rest of this section, we assume that
the matrix Λ = I, which means that all the components of ε are equally weighted.
In this case, the parameter θ is given by the following (nany +nbnu)×ny matrix:

θ =
(

A1 . . . Any B1 . . . Bnu

)T
(4.21)

The norm VN(·) becomes:

VN
(
θ ,Z N)=

1
N

N

∑
k=1

∥∥y(t)−θ
T

ϕ(k)
∥∥2 (4.22)

while the estimate θ̂ N is obtained as the least-squares estimate θ̂
LS
N given by:

θ̂
LS
N =

(1
N

N

∑
k=1

ϕ(k)ϕT (k)
)−1 1

N

N

∑
k=1

ϕ(k)yT (k) (4.23)

This approach is sometimes referred to as the output-error (OE) method since,
in the estimated model, the uncertainties due to noises acting on the system are
assumed to be lumped together as an additive perturbation at the output [164].

For the state-space model structure, there are essentially two approaches,
namely the optimization-based approach and the subspace-based approach. The
optimization-based approach is based on the PEM method, which in general
requires iterative methods to solve a multidimensional, nonlinear optimization
problem for the minimization of the prediction error. The subspace identification

method [160] offers numerically reliable algorithms for computing state-space de-
scriptions directly from data. The method is competitive with respect to traditional
PEM techniques, in particular for the high-order multi-input multi-output case.
The computations are based on QR-factorization and singular-value decomposition
(SVD), for which numerically reliable algorithms are available [75]. No numerical
search is necessary, nor is a potentially ill-conditioned canonical system descrip-
tion used. This approach is based on deriving a certain subspace that contains
information about the system, from structured matrices constructed from the input

4.1. THE SYSTEM IDENTIFICATION PROCESS 63

and output data. To estimate this subspace, the SVD is used. The singular values
obtained from this decomposition can be used to estimate the order of the system.

The subspace identification problem for an LTI system can be stated as follows.
Given measurements of the inputs u(k) and output y(k) of an unknown LTI system
of the state-space innovation form Eq. (4.12):

x(k +1) = Ax(k)+Bu(k)+Ke(k), (4.24a)

y(k) = Cx(k)+Du(k)+ e(k) (4.24b)

the problem is to determine an estimate of the system matrices A, B, C, and D and
the noise related matrices S and K.

The usual steps in a subspace identification algorithm are the following:

1. Construct a data block Hankel matrix from the measured input and output
data.

2. Perform a QR-decomposition with this matrix.

3. Perform an SVD on the low dimensional rank-deficient R-component of
the QR-decomposition to find the extended observability matrix and/or the
Kalman filter state sequence of the system.

Although these three steps are common to most of the subspace identification algo-
rithms, the way they are finally implemented in practice can differ considerably.
The next steps in the subspace identification algorithms, i.e. that of finding the
actual system matrices A, B, C, D, K, and S, can be completely different according
to the method. For instance certain methods use the observability matrix of the sys-
tem to find the system matrices whereas other methods use an estimate of the state
sequence (see [160, 164] for further details). Currently, the three most commonly
used subspace identification algorithms are the Canonical Variate Analysis (CVA)
[108, 131], the Multivariable Output-Error State-sPace (MOESP) [162, 163], and
the Numerical algorithms for Subspace State-Space System IDentification (N4SID)
[159, 160].

64 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

Online Algorithms

Algorithms for online system identification (or recursive system identification)
[113] use input-output data recursively (i.e., sequentially) as they become available.
This can be done by adding the new input-output observation

(
yT (k),uT (k)

)T

at time k to the previous set of observations and recomputing the estimate θ̂(k)
of model parameters θ . However, instead of recomputing the estimates with all
available data, the previous parameter estimates are updated with the new data
sample. In order to do this, the estimation formula is written in the form of a
recursive algorithm:

new estimate = old estimate

+ correction factor(new observation−prediction with old estimate)

Online system identification is a valuable tool in the design of adaptive control
and adaptive prediction since it allows to develop a model that adjusts based on
real-time data coming from the system, thus adapting itself to current operating
conditions. By comparison, the offline model estimation methods identify a model
for a system based on input-output data gathered at a time prior to the current time.
The reason for the need of online system identification might be that knowledge
about the properties of a system is not available offline and instead consolidates
as more observations become available. An even more common situation is that
the properties in question are varying over time, so that a model that continuously
adapts to a changing operating conditions is required.

In contrast to offline identification, there are two disadvantages in using online
identification. The first is that the decision of what model structure to use has to
be made a priori, before starting the (online) identification procedure; instead, in
the offline identification, different type of models can be evaluated. The second
disadvantages is that, with a few exceptions, recursive methods do not give as good
accuracy of the models as offline methods, even if for long datasets, this difference
should not be significant.

Like offline algorithms, scientific literature provides many different techniques
(e.g., see [113, 112]), and many of them have an offline counterpart. For instance,
for the identification of transfer function model structures, two widely adopted

4.1. THE SYSTEM IDENTIFICATION PROCESS 65

methods are the recursive prediction-error minimization method and the recursive
least-square algorithm. In the following, we limit the description to the recursive
least-squares method since it is the one we used in this thesis.

The recursive least-squares (RLS) algorithm is the online version of the
weighted least-squares offline algorithm, whereby, according to the notation used
for the description of the PEM method, the norm VN(·) is defined as:

VN
(
θ ,Z N)=

1
N

N

∑
k=1

β (N,k)
∥∥y(t)−θ

T
ϕ(k)

∥∥2 (4.25)

where β (N,k) are specific weights which may depend on the given time k.

In order to derive a recursive formulation, suppose that the weighting sequence
has the following property:

β (n,k) =

λ (n)β (n−1,k), 0≤ k ≤ n−1,

1, k = n

=
n

∏
i=k+1

λ (i)

(4.26)

Thus, after some algebraic manipulation, it is possible to obtain the following gen-
eral form for the RLS algorithm, where the weighting factor λ (k) is left unspecified:

ε(k) = y(k)− θ̂
T
(k−1)ϕ(k), (4.27a)

R(k) = λ (k)R(k−1)+ϕ(k)ϕT (k), (4.27b)

θ̂(k) = θ̂(k−1)+R−1(k)ϕ(k)εT (k) (4.27c)

In Eq. (4.27), the information matrix R−1(k) (also referred to as covariance ma-

trix 4) needs to be inverted at each time step k; in order to avoid this, the matrix
P(k) is introduced in place of matrix R−1(k), making the recursive step on R(k) to

4Matrix R−1(k) is referred to as the covariance matrix of the parameters θ(k) since
R2(k)R−1(k)/2 is approximately equal to the covariance matrix of the estimated parameters
(and R2(k) is the variance of the innovations, that is the true prediction errors e(k)).

66 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

become:
P−1(k) = P−1(k−1)+ϕ(k)ϕT (k) (4.28)

From the matrix inversion lemma [75, 154]:

(A+BCD)−1 = A−1−A−1B
(
C−1 +DA−1B

)−1 DA−1 (4.29)

we can make the following substitution:

A := λ (k)R−1(k−1) = λ (k)P(k−1),

B := ϕ(k),

C := 1,

D := ϕ
T (k)

and rewrite the recursive algorithm as follows:

ε(k) = y(k)− θ̂
T
(k−1)ϕ(k), (4.30a)

P(k) =
1

λ (k)

[
P(k−1)− P(k−1)ϕ(k)ϕT (k)P(k−1)

λ (k)+φ
T (k)P(k−1)ϕ(k)

]
, (4.30b)

L(k) =
P(k−1)ϕ(k)

λ (k)+ϕT (k)P(k−1)ϕ(k)
, (4.30c)

θ̂(k) = θ̂(k−1)+L(k)εT (k) (4.30d)

Initialization Step. The recursive algorithm needs some initial conditions from
which to start from. The regression vector is usually initialized to zero, that is:

ϕ(k0) = 0 (4.31)

For the parameters vector θ̂ and the information matrix P(k), when no prior
knowledge is available, a good choice would be to apply the ordinary least-squares

4.1. THE SYSTEM IDENTIFICATION PROCESS 67

method to the first k0 > (n+m) samples (if available):

P(k0) =

[
k0

∑
i=1

ϕ(i)ϕT (i)

]−1

, (4.32)

θ̂(k0) = P(k0)
k0

∑
i=1

ϕ(i)yT (i) (4.33)

However, it is not a simple matter to select the length of data required for ensuring
that P be invertible. Another common choice for θ̂(k0) and P(k0) is to set:

θ̂(k0) = ξ 1, (4.34)

P(k0) = δ I (4.35)

where ξ and δ are some small and large positive constants, respectively. A large
value for δ corresponds to large uncertainty about the initial values of the parame-
ters θ̂(k) (i.e., prior with high variance), thus ensuring a high degree of correction
(i.e., adaptation).

Variants of RLS. Several variants have been proposed in literature, each of
which essentially differs either for the definition of the weight λ (·) or for the
recursive step of the information matrix. In the following, we present the ones that
we used in this thesis.

RLS with Exponential Forgetting (RLS-EF). This variant is obtained by setting
λ (k) = λ for each k. This approach discounts old measurements exponen-
tially such that an observation that is τ samples old carries a weight that
is equal to λ τ times the weight of the most recent observation. The value
τ = 1

1−λ
represents the memory horizon of the algorithm. The parameter

λ ∈ (0,1) is called the forgetting factor and typically has a positive value
between 0.97 and 0.995. The main drawback of this strategy is the so-called
estimator wind-up, which occurs when the system input is not persistently
excited (as shown in [140]).

RLS with Directional Forgetting (RLS-DF). In this variant, first proposed by
[81, 104, 103], the discount effect is not uniformly distributed in the parame-

68 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

ter space, so that old data is forgotten only in the direction where the new
ones are coming from. This is motivated by the fact that, when the input is
not persistently excited, no information about system dynamics is available
in some direction. Therefore, the forgetting operation should be applied only
to the part of the information matrix, where new information is available
from input and output data. The RLS-DF algorithm is given by the following
steps:

ε(k) = y(k)− θ̂
T
(k−1)ϕ(k), (4.36a)

r(k) = ϕ
T (k)P(k−1)ϕ(k), (4.36b)

λ (k) =

µ− 1−µ

r(k) , r(k) > 0,

1, r(k) = 0
, (4.36c)

P(k) = P(k−1)−λ (k)
P(k−1)ϕ(k)ϕT (k)P(k−1)

1+λ (k)r(k)
, (4.36d)

L(k) =
P(k−1)ϕ(k)

1+ r(k)
, (4.36e)

θ̂(k) = θ̂(k−1)+L(k)εT (k) (4.36f)

where the parameter µ ∈ (0,1) is called forgetting factor. If µ is close to
one, the algorithm is sluggish; conversely, for values of µ near to zero, the
algorithm is faster but is also more sensible to disturbances.

RLS with Bittanti’s Correction (RLS-DF∗). This algorithm, proposed by [31],
is a variation of the RLS-DF algorithm Eq. (4.38), such that the recursive
equation Eq. (4.36d) for the information matrix P(k) is replaced by the
following:

P(k) = P(k−1)−λ (k)
P(k−1)ϕ(k)ϕT (k)P(k−1)

1+λ (k)r(k)
+δ I (4.37)

where the parameter δ > 0 is called correcting factor. Such a variant enforces
an increment of the covariance matrix aiming at improving the alertness of
the RLS algorithm, and thus at achieving exponential convergence.

4.1. THE SYSTEM IDENTIFICATION PROCESS 69

Exponential Weighting RLS (EW-RLS) This variant, proposed by [129], uses a
variable forgetting factor, in order to compensate for the inability of the RLS-
EF algorithm to track parameter changes in nonstationary (i.e., time-varying)
environments. The basic idea is to adequately vary the forgetting factor in
order to give a good tracking adaptability and low parameter error variance. If
the forgetting factor is kept small when the parameters are changed abruptly,
and is increased to unity appropriately so that the estimated parameter vector
converges to the true value, then the algorithm has good tracking capabilities
during the transient stage and fewer misadjustment errors of parameters in
the steady state. The EW-RLS algorithm is given by the following steps:

ε(k) = y(k)− θ̂
T
(k−1)ϕ(k), (4.38a)

λ (k) = λ0 +(1−λ0)2µ(k), (4.38b)

µ(k) =− round(ρ‖ε‖2), (4.38c)

P(k) =
1

λ (k)

[
P(k−1)−L(k)ϕT (k)P(k−1)

]
, (4.38d)

L(k) =
P(k−1)ϕ(k)

λ (k)+ϕT (k)P(k−1)ϕ(k)
, (4.38e)

θ̂(k) = θ̂(k−1)+L(k)εT (k) (4.38f)

where round(·) is the nearest integer function, and parameters λ0 and ρ are
called minimum forgetting factor and sensitivity gain, respectively. The
sensitivity gain parameter ρ is a design parameter which controls the width
of a unity zone. Specifically, when the error ε(k) goes to infinity, the value
forgetting factor λ (k) decreases to the minimum value λ0. Conversely, when
the error ε(k) goes to zero, the value of the forgetting factor λ (k) increases
to unity, at an exponential rate. This rate is controlled by the sensitivity gain
ρ .

4.1.5 Model Validation

The fitted model is validated against the observed data in order to test if it is “good-
enough” to describe the observed system behavior; it the result is unsatisfactory

70 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

(with respect to any prior knowledge and to the purpose for which the model
is used), model parameters need to be revised and the identification process is
reiterated. Informally, a “good model” is the simplest model that best describes the
dynamics and successfully simulates or predicts the output for different inputs. The
importance of model validation is motivated by the fact that an under-parameterized
model is inaccurate and not enough flexible, while an over-parameterized model is
not parsimonious and leads to unnecessary complicated computations.

The goodness of a model is usually determined by two factors, namely the
model quality and the model price. The model quality is a scalar measure of the
goodness of a model. One common choice for it is the mean-squared error (MSE),
which represents the expected value of the quadratic prediction error. The MSE is
equal to the sum of the variance and the squared bias of the model estimator, and
thus it assesses the quality of the model in terms of its variation and unbiasedness.
Usually, when considering the bias-variance reduction problem, one has to seek
a good trade-off between flexibility (i.e., if the model structure is “large” enough
to cover the true system) and parsimony (i.e., if the model structure does not
use unnecessary parameters to model the system), since the bias reduction leads
to more flexible model structures but increases model parameters, and variance
reduction decreases the number of estimated parameters but leads to less flexible
model structures. For what concerns the model price, it takes into consideration
the algorithm complexity, and hence the associated computational time needed to
estimate the model.

The first step in the model validation procedure is the choice of the validation

set (or test set), which is the set that has to be used for the evaluation of the model
quality. There are essentially two approaches to choose the validation test. The
first approach consists in using the same dataset used for model estimation. The
other approach, called cross-validation test, uses a dataset that is different from
the one used for model validation. This can be made possible by, for instance,
dividing the initial dataset into two parts. A common choice is to select the first
2/3th of the total number of samples for the parameter estimation, and using the
remaining 1/3th for evaluating the quality of the model by computing the value
of the prediction-error cost function and performing at least one of the above
correlation tests. Usually the cross-validation test is the preferred approach for

4.1. THE SYSTEM IDENTIFICATION PROCESS 71

model validation since it overcomes the chance of “over-fitting”. However, there
are cases where the cross-validation test cannot be applied, for instance when there
is a small number of observation in the original dataset.

Once, the validation set is chosen, one can use it to evaluate the flexibility
of the model. There are basically two ways to tackle this problem: a graphical
approach and an approach based on statistical tests on the prediction error [152].
The graphical approach is based on plots and common sense. In this approach, the
observed and the predicted outputs are plotted with respect to the same observed
input sequence. In a good model, the predicted output should resemble the observed
output; this evaluation is done visually according to prior knowledge and to the
purpose for which the model has been created (e.g., for simulation or for prediction).
For what regards the approach based on statistical tests, it consists in using the
residual analysis on the prediction error ε(k) (i.e., the residual). If the model is
capable of describing the observed data, the residual is zero-mean white noise and
independent of the input signal. To verify this hypothesis, different statistical tests
can be used. For instance, with the auto-correlation test, it is possible to test if
the residual is zero-mean white noise. In this test, the auto-correlation function
is estimated from the dataset and the model quality is evaluated by checking
whether the estimated correlation function represents a unit pulse (within a certain
confidence interval). Another commonly used test is the cross-correlation test,
which can be used to test if the residual is independent of the input signal. In this
test, the cross-correlation function is estimated from the dataset and the model
quality is evaluated by checking whether the estimated correlation function equals
zero (within a certain confidence interval).

72 CHAPTER 4. LINEAR SYSTEM IDENTIFICATION

Chapter 5

Linear Control Theory

Control theory is an interdisciplinary science, originating in engineering and
mathematics, that deals with the behavior of dynamical systems.

In this thesis, we focus on the adaptive feedback control structure with
self-tuning regulation scheme, and we use the linear quadratic control design
to synthesize controller parameters.

In the rest of this chapter, we provide an overview of control theory for linear
systems, with a particular focus on the techniques used in this thesis. First, in Sec-
tion 5.1, we introduce basic notions of linear control theory. Then, in Section 5.2,
we present common control structures. In Section 5.3, we describe the response of
linear systems under the closed-loop control structure. Finally, in Section 5.4, we
present common control design techniques.

5.1 Basic Definitions

A control system is an arrangement of components connected or related in such a
manner as to command, direct, or regulate itself or another system. The essential
elements of a control system are:

• Target system, which is the system to be controlled. It is also called plant,
process, or controlled system.

73

74 CHAPTER 5. LINEAR CONTROL THEORY

• Control input, which is the stimulus (or excitation, or command) applied
to the target system thus affecting its behavior and that can be adjusted
dynamically. It is also referred to as control signal or manipulated variable.

• Measured output, which is a measurable characteristic of the target system
and represents the actual response obtained from the target system. It is also
known as controlled output.

• Reference input, which is the desired value of the measured outputs (or
transformations of them). This is also referred to as desired output or set-

point.

• Controller, which determines the setting of the control input needed to
achieve a specified response from the target system (i.e., the reference input).
The controller computes values of the control input according to a given
mathematical law, usually referred to as control law (or control algorithm).

• Disturbance input, which is any uncontrollable change that affects the way
in which the control input influences the measured output.

• Noise input, which is any uncontrollable effect that changes the measured
output produced by the target system. This is also called sensor noise or
measurement noise.

A control system may be part of a larger system, in which case it is called a control

subsystem (or simply subsystem), and its inputs and outputs may then be internal
variables of the larger system.

A typical example of control system is the cruise control of a car, which is a
device designed to maintain the vehicle speed at a constant desired speed provided
by the driver. The controller is the cruise control, the target system is the car,
and the control system is the car and the cruise control. The system output is the
speed of the car, and the control input itself is the engine’s throttle position which
determines how much power the engine generates. Possible disturbances include
the wind direction and speed.

Controllers are designed for some intended purpose, commonly referred to as
control objective (or control goal). Some common control objectives are:

5.1. BASIC DEFINITIONS 75

• Regulation (or disturbance rejection), to ensure that the measured output
is equal to (or near) the reference input. The goal is to keep the measured
output near to the reference input in spite of disturbances.

• Tracking, to follow changes in the reference input. Tracking often comes
with disturbance rejection requirements as well.

• Optimization, rather than regulating a variable to a specified level, sometimes
there is a need to optimize a variable. This can be seen as regulating the
derivative of the variable to zero.

A central task in control theory is the design of control systems. The control

design is the process of design of control systems in order to obtain the configura-
tion, specifications, and identification of the key parameters of a given system to
meet an actual need. The ultimate goal of the controller design is, given a model of
the system to be controlled (including its sensors and actuators) and a set of control
objectives, to find a suitable controller, or determine that none exists.

The control system design process, shown in Fig. 5.1 (from [57]), consists of
seven main building blocks, which can be arranged into three groups:

1. Establishment of goals and variables to be controlled, and definition of
specifications (metrics) against which to measure performance.

2. System definition and modeling.

3. Control system design and integrated system simulation and analysis.

The first step in the design process consists of establishing the control goals.
For example, we may state that our goal is to control the response time of a Web
server accurately.

The second step is to identify the variables that we desire to control (for
example, the response time of the Web server).

The third step is to write the specifications in terms of the accuracy we must
attain. This required accuracy of control will then lead to the identification of a
sensor to measure the controlled variable. The performance specifications will de-
scribe how the control system should perform and will include (1) good regulation

76 CHAPTER 5. LINEAR CONTROL THEORY

Figure 5.1: The control system design process (from [57]).

5.2. CONTROL STRUCTURES 77

against disturbances, (2) desirable responses to commands, (3) realistic actuator
signals, (4) low sensitivities, and (5) robustness.

The fourth step is concerned with the configuration of a system that will result
in the desired control performance. This system configuration will normally consist,
at least, of a sensor, the process under control, an actuator, and a controller.

The fifth step consists of identifying a model for each component of the control
system, such as the sensor and the actuator. This will, of course, depend on the
process, but the actuation chosen must be capable of effectively adjusting the
performance of the process. For example, in the control of the response time of a
Web server, we can select the buffer length as the actuator. The sensor, in this case,
must be capable of accurately measuring the buffer size.

The sixth step is the selection of a controller, which often include a feedback
signal used to compare the desired response and the actual response.

The final step is the adjustment of the parameters of the system to achieve
the desired performance. If we can achieve the desired performance by adjusting
the parameters, we will finalize the design. If not, we will need to establish an
improved system configuration and perhaps select an enhanced actuator and sensor.
Then we will repeat the design steps until we are able to meet the specifications, or
until we decide the specifications are too demanding and should be relaxed.

5.2 Control Structures

In this section we describe basic structure of control systems, that can be used
to build more complex structures. First, we introduce the two simplest and most
common control structures, namely open-loop and closed-loop control structures.
Then, we present some other commonly used control structures.

5.2.1 Open-loop and Closed-loop Control Structure

As shown in Fig. 5.2 (from [84]), control systems are classified into two general
categories: open-loop and closed-loop systems. The distinction is determined by
the control action, which is responsible for activating the system to produce the
output.

78 CHAPTER 5. LINEAR CONTROL THEORY

(a) Open-loop control system.

(b) Closed-loop control system.

Figure 5.2: Control system categories (from [84]).

5.2. CONTROL STRUCTURES 79

Table 5.1: Comparison of open- and closed-loop control systems.

Feature Open-loop Closed-loop

Avoid using measured outputs Yes No
Cannot make stable systems unstable Yes No
Simple (i.e., not accurate) system model No Yes
Adapts/compensate to disturbances or noise No Yes

An open-loop (or feedforward) control system (shown in Fig. 5.2a) is one in
which the control action is independent of the output. 1 In such a system, the
controller computes values of the control input based on only the current value of
the reference input.

In contrast to an open-loop control system, a closed-loop (or feedback) control
system (shown in Fig. 5.2b) is one in which the control action is somehow depen-
dent on the output. In such a control system, the controller component determines
the setting of the control input, needed to achieve the reference input, according to
current and past values of control error, which is the difference between the refer-
ence input and the measured output. The measure of the output used to compute
the control error is called feedback signal. The transmission path from the sum-
ming point to the measured output is called forward path, while the transmission
path from the measured output back to the summing point is called feedback path.
Components of the control systems located on the feedforward path are called
feedforward (control) elements, and typically include controller(s), compensator(s)
and amplifier(s). Instead, components located located on the feedback path are
referred to as feedback (control) elements, and typically include sensor of the
measured output, compensator(s), and other controller elements.

The system shown in Fig. 5.2b is a negative feedback control system, because
the output is subtracted from the input and the difference is used as the input signal
to the controller.

Table 5.1 summarizes the comparison of open- and closed-loop systems in

1It is important to note that, according to some author(e.g., [88]), open-loop and feedforward
control denote two different control structure. Specifically, an open-loop control system is a
control system that is not able to deal with any disturbance, while feedforward control system is a
control system which is able to take into account of disturbances to the system by measuring the
disturbances and altering the control action accordingly.

80 CHAPTER 5. LINEAR CONTROL THEORY

terms of few important features. On the one hand, two outstanding features of
open-loop control systems are:

• their ability to perform accurately is determined by their calibration, that is
by their ability to establish (or reestablish) the input-output relation to obtain
a desired system accuracy, and

• they do not usually suffer of instability problems.

On the other hand, closed-loop controllers have a number of advantages over
open-loop controllers:

• unstable processes can be stabilized,

• guaranteed performance even with model uncertainties, when the model
structure does not match perfectly the real process and the model parameters
are not exact,

• reduced sensitivity to parameter variations,

• improved reference tracking performance, and

• disturbance rejection.

Although open-loop systems have are appealing for their ability of reducing design
complexity (e.g., avoiding the use of measured outputs) and ensuring stability, they
are rarely used in practice because they cannot adapt to change and it is almost
impossible to obtain an accurate system model (at least for what concerns the
modeling of computing systems).

For these reasons, in this thesis we focus on closed-loop systems.

It is worth noting that, in some systems, open- and closed-loop controls are
used simultaneously. In such systems, the open-loop control is termed feedforward

and serves to further improve reference tracking performance.

5.2. CONTROL STRUCTURES 81

5.2.2 Other Control Structures

Besides open- and closed-control, many other control structures are used in practice,
but they can be seen as a combination, or perhaps a repeated combination of these
two basic concepts.

Two Degrees-of-Freedom (2DoF) Control

The stability properties of a controlled system are determined by the control loop(s).
When stability is of concern, and there are also disturbances acting on the system,
and/or there are tracking requirements, a single loop control strategy does not
provide enough design freedom to achieve all objectives. Because signals can
be shaped by systems, the tracking performance clearly depends not only on the
loop but also on any system in cascade. This reasoning leads to the very common
control structure with two degrees of freedom, called two degrees-of-freedom

(2DoF) control [89]. This is a standard technique in linear control theory that
separates a controller into a feedforward compensator and a feedback compensator.
The feedforward compensator generates the nominal input required to track a given
reference trajectory. The feedback compensator corrects for errors between the
desired and actual trajectories.

Cascade Control

Full system state information may be unavailable, or difficult to use at once. In
cascade control, successive control loops are used, each using a single measurement
and a single actuated variable. The output of the primary controller is an input
to the secondary and so on. A judicious choice of how to pair variables and the
ordering of the multiple loops can lead to a very efficient control implementation
without the need for a full state feedback control.

Adaptive Control

In an adaptive control structure [140], the controller must adapt to a controlled
system where parameters may vary over time, or are initially uncertain. The way
the parameter estimation law, that is the adaptation law), is combined with the

82 CHAPTER 5. LINEAR CONTROL THEORY

control law gives rise to different approaches to adaptive control. In general one
should distinguish between two approaches:

• Direct methods, where the estimated parameters are those directly used in
the adaptive controller. In this approach, the plant model is parameterized in
terms of the desired controller parameters, which are then estimated directly
without intermediate calculations involving plant parameter estimates. This
approach has also been referred to as implicit adaptive control because the
design is based on the estimation of an implicit plant model.

• Indirect methods, where the estimated parameters are used to calculated
required controller parameters. In this approach, the plant parameters are
estimated online and used to calculate the controller parameters. In other
words, at each control time, the estimated plant is formed and treated as if it
is the true plant in calculating the controller parameters (i.e., the so called
certainty equivalence principle). This approach has also been referred to
as explicit adaptive control, because the controller design is based on an
explicit plant model.

In literature, several adaptation schemes have been proposed. The most widely
used adaption schemes are: gain scheduling, self-tuning regulation, and model
reference adaptive control.

Gain scheduling. In some situation it is known how system dynamics change
with the operating conditions. It is then possible to change the parameters of
the controller by monitoring the operating conditions of the system. This idea
is called gain scheduling. Essentially, the gain scheduler consists of a lookup
table and the appropriate logic for detecting the operating point and choosing
the corresponding value of other controller gain from the lookup table. With
this approach, plant parameter variations can be compensated by changing the
controller gains as functions of the input, output, and auxiliary measurements. The
advantage of gain scheduling is that the controller gains can be changed as quickly
as the auxiliary measurements respond to parameter changes. Frequent and rapid
changes of the controller gains, however, may lead to instability [153]; therefore,
there is a limit to how often and how fast the controller gains can be changed. One

5.2. CONTROL STRUCTURES 83

Figure 5.3: Adaptive control – The MIAC structure.

of the disadvantages of gain scheduling is that the adjustment mechanism of the
controller gains is precomputed offline and, therefore, provides no feedback to
compensate for incorrect schedules.

Self-Tuning Regulation (STR). The Self-Tuning Regulation (STR) adaptation
scheme, also known as Model Identification Adaptive Control (MIAC), is based
on the idea of separating the estimation of unknown parameters from the design
of the controller (as shown in Fig. 5.4). Specifically, target system parameters are
estimated on-line and controller parameters are obtained from the solution of a
control design problem using such estimated parameters as if they were correct
(as stated by certainty equivalence principle) The STR scheme is composed of
two control loops: (1) the inner loop, which contains the target system (i.e., the
“target system” box) and an ordinary feedback controller (i.e., the “controller”
box), acts on the controlled system in order to track the reference signal, while
(2) the outer loop, which is composed by a recursive parameter estimator (i.e., the
“estimation” box) and design calculations (i.e., the “controller design” box), adjusts
the parameters of the inner controller.

Model Reference Adaptive Control (MRAC). The Model Reference Adaptive

Control (MRAC) adaptation scheme, also known as Model Reference Adaptive

System (MRAS), is an adaptive control technique where the performance specifi-
cations are given in terms of a model, which represents the ideal response of the
process to a reference signal (see Fig. 5.4). The basic idea of MRAC, is to create a
closed-loop controller with parameters that can be updated to change the response

84 CHAPTER 5. LINEAR CONTROL THEORY

Figure 5.4: Adaptive control – The MRAC structure.

of the system. First, the output of the system is compared to a desired response
from a reference model, and then control parameters are update based on this error.
The goal is for the parameters to converge to ideal values that cause the system
response to match the response of the reference model.

Optimal Control

In an optimal control structure [122], the objective of the controller is to “determine
the control signals that will cause a process to satisfy the physical constraints and,
at the same time, minimize (or maximize) some performance criterion” [99]. Put
in another way, optimal control deals with the problem of finding a control law for
a given system such that a certain optimality criterion is achieved.

If the information which the control system must use is uncertain or if the
dynamic system is subjected to random disturbances, it may not be possible to
satisfy this criterion with certainty; in this case, the best one can hope is to minimize
(or maximize) its expected value. This leads to the concept of stochastic optimal

control.
An optimal control problem includes (1) a mathematical representation of the

controlled system, (2) a cost functional (or performance index) which is a function
of state and control variables, and (3) a statement of boundary conditions and
physical constraints on states and/or controls.

A special case of optimal control structure is the Linear Quadratic Regulator

(LQR) optimal control [107], a feedback controller where the optimal control
problem (in this case, called the LQ problem) comprises a set of linear difference
equations and the performance index is described by a quadratic functional. More

5.3. RESPONSE OF CLOSED-LOOP CONTROL SYSTEMS 85

details about the LQR, will be provided below, in Section 5.4.2.

Decentralized and Hierarchical Control

Decentralized control structures [150] present a practical and efficient way for
designing control algorithms that utilize just the state of each subsystem, possibly
without any information from other subsystems, to achieve a specific control
objective (e.g., the regulation of each subsystem state to zero)..

A special case of decentralized control structure is the hierarchical control

structure, where a coordinating (centralized) control is introduced to ensure that
the local controls are properly modified according to a common global objective.
Specifically, a hierarchical control system is a control system in which a set of
devices and governing software is arranged in a hierarchical tree. Each element
of the hierarchy is a linked node in the tree. Commands, tasks and goals to be
achieved flow down the tree from superior nodes to subordinate nodes, whereas
command results flow up the tree from subordinate to superior nodes. Nodes may
also exchange messages with their siblings. The two distinguishing features of a
hierarchical control system are [64]:

• each higher layer of the tree operates with a longer interval of planning and
execution time than its immediately lower layer;

• the lower layers have local tasks and goals, and their activities are planned
and coordinated by higher layers which do not generally override their
decisions.

5.3 Response of Closed-loop Control Systems

Usually, closed-loop control systems are used for various purposes and must meet
certain performance requirements. These requirements not only affect such things
as speed of response and accuracy, but also the manner in which the system
responds in carrying out its control function. All systems contain certain errors.
The problem is to keep them within allowable limits.

86 CHAPTER 5. LINEAR CONTROL THEORY

Figure 5.5: Closed-loop control properties (from [84]). Depicted are the reference
input rss, the steady-state output yss, the steady-state error ess, the settling time ks,
and the maximum overshoot Mp.

The most important properties to study when considering the response of a
closed-loop system are related to the concepts of stability, accuracy, settling time,
and overshoot:

• Stability. A system is said to be stable if for any bounded input, the output
is also bounded (see definition Def. 3.5.1 of BIBO stability in Section 3.5).
Stability is typically the first property considered in designing control systems
since unstable systems cannot be controlled.

• Accuracy. The control system is accurate if the measured output converges
(or becomes sufficiently close) to the reference input. Accurate systems are
essential to ensuring that control objectives are met. Typically, we do not
quantify accuracy. Rather, we measure inaccuracy (or steady-state error),
which is the steady-state value of the control error.

• Settling time. The time required for the response curve to reach and stay
within a range of certain percentage (usually 5% or 2%) of the final, steady-
state value. The system has short settling times if it converges quickly to
its steady-state value. Short settling times are particularly important for
disturbance rejection in the presence of time-varying workloads so that
convergence is obtained before the workload changes.

• Overshoot. The term overshoot is used to refer to an output signal exceeding

5.4. CLOSED-LOOP CONTROL DESIGN 87

its final, steady-state value. Under stability condition, the system should
achieve its objectives in a manner to reduce the overshoot. Thus, we are
interested to quantity the maximum overshoot of the system response, that is
the maximum peak value of the response curve measured from the desired
response of the system. Overshoot is usually followed by the ringing (or
hunting) phenomenon, representing unwanted oscillations around the final,
steady-state value.

These four properties are usually referred to as SASO properties [84]. In Fig. 5.5
(from [84]), the meaning of each SASO properties is graphically shown for the
response of a stable system to a step change in the reference input rss. At time
0, the reference input rss changes from the value 0 to 2. The system reaches its
steady-state output value yss when its measured output always lies between the
lightweight dashed lines.

5.4 Closed-loop Control Design

In this section we present common approaches used to design closed-loop controls.

5.4.1 Proportional-Integral-Derivative Control

In the proportional-integral-derivative (PID) control [139], the control action is
the sum of three separate terms related to the current error, the integral of the past
error, and a simple prediction of the future error.

The proportional (P) action is proportional to the observed error. It provides an
immediate response to a current error. The control law for the proportional action
is given by:

uP(k) = KPe(k) (5.1)

where uP(k) is the contribution of the proportional part to the control action u(k)
at time k, KP ∈Rny×ny is the proportional gain matrix, and e(k) is the control error
at time k.

The integral (I) action integrates the past error to provide an enduring response.
It aims to remove steady-state error in a regulation environment. The control law

88 CHAPTER 5. LINEAR CONTROL THEORY

Table 5.2: Effect of independent PID parameters tuning (from [23]).

Parameter Overshoot Settling time Steady-state error Stability

KP Increase Small increase Decrease Degrade
KI Increase Increase Large decrease Degrade

KD Decrease Decrease Minor change
Improve

(if KD is small)

for the integral action is given by:

uI(k) = KI

k

∑
i=0

e(i) (5.2)

where uI(k) is the contribution of the integral part to the control action at time k,
KI ∈ Rny×ny is the integral gain matrix, and e(k) is the control error at time k.

The derivative (D) action anticipates the process response by taking action
proportional to the derivative of the error. It aims to provide better damping, and
faster response.

uD(k) = KD
(
e(k)− e(k−1)

)
(5.3)

where uI(k) is the contribution of the integral part to the control action at time k,
KD ∈ Rny×ny is the derivative gain matrix, and e(k) is the control error at time k.

Different combination of the above control terms can lead to different control
laws. For instance, with a PI controller, the control law is given by the sum of the
proportional control law uP(·) with the integral control law uI(·). It is worth noting
that a D controller is never used by itself since, if the error remains constant, the
output of the derivative controller would be zero.

The resulting control law for the PID controller is thus given by the sum of the
above three terms:

u(k) = uP(k)+uI(k)+uD(k)

= KPe(k)+KI

k

∑
i=0

e(i)+KD
(
e(k)− e(k−1)

) (5.4)

In general, the design and the tuning of a PID controller is a difficult problem.

5.4. CLOSED-LOOP CONTROL DESIGN 89

The design of a PID controller involves the selection of three gains, while the tuning
of a PID controller is the task of adjusting its control parameters to the optimum
values for the desired control response. Stability is usually a basic requirement,
but beyond that, different systems have different behavior, different applications
have different requirements, and requirements may conflict with one another. The
primary difficulty in designing and tuning a PID controller, is that the three gain
parameters depends from each other. This can also be observed in Table 5.2 (from
[23]), which summarizes the individual effects of the three terms of a PID control
on the closed-loop performance. There is a vast scientific literature dedicated to
the design and the tuning of PID controllers (e.g., see [139, 93, 125]).

5.4.2 Linear Quadratic Control

The Linear Quadratic (LQ) control design is a widely adopted technique for
designing optimal controls [107, 122]. Basically, an LQ controller tries to compute
the best control inputs in order to follow a zero trajectory.

The LQ design is used to design state-feedback controllers, and thus works
with system models in the state-space representation. In the rest of this section, we
assume the following discrete-time state-space system model:

x(k +1) = Ax(k)+Bu(k), (5.5a)

y(k) = Cx(k)+Du(k) (5.5b)

Linear Quadratic Regulator

Given the system Eq. (5.5), the infinite-horizon discrete-time Linear Quadratic

Regulator (LQR) is an LQ controller whereby the following quadratic cost function
is minimized:

J(u) =
∞

∑
k=0

(
x(k)T Qx(k)+u(k)T Ru(k)+2x(k)T Nu(k)

)
(5.6)

where Q, R, and N are the output weighting matrix, the control weighting matrix

and the cross-coupling matrix (also known as transmission matrix), respectively.

90 CHAPTER 5. LINEAR CONTROL THEORY

It is possible to show that under the following condition [86]: 2

(A,B) is stabilizable, (5.7a)(
A−BR−1NT ,Q−NR−1NT) is detectable, (5.7b)

R > 0, (5.7c)

Q−NR−1NT ≥ 0 (5.7d)

the optimal control sequence u∗(k) that minimizes Eq. (5.6), at control interval k,
is

u∗(k) =−Lx(k) (5.8)

where L, given by:

L =
(
BT SB+R

)−1
(BT SA+NT) (5.9)

is the feedback gain matrix obtained from the solution S of the associated infinite-
horizon Discrete-time Algebraic Riccati Equation (DARE):

AT SA−S−
(
AT SB+N)(BT SB+R

)−1 (AT SB+N
)T

+Q = 0 (5.10)

If conditions shown in Eq. (5.7) hold, then the DARE Eq. (5.10) has a unique,
symmetric, positive-semidefinite and stabilizing solution S.

It is important to note that, for a tracking control objective (i.e., when the
trajectory to follow is different from zero), we can still use an LQR controller by
simply using as state x(k) the difference between the desired (reference) value
xr(k) and the actual value xa(k):

x(k) = xr(k)−xa(k) (5.11)

In this way, the tracking problem reduces to a regulation problem where now the
LQR controller try to minimize the error between the desired and the actual value.

2A matrix pair (A,B) is said stabilizable if all of its eigenvalues outside the unit disk of the
complex plane are controllable. A matrix pair (A,B) is said detectable if it has no unobservable
mode on the unit circle of the complex plane.

5.4. CLOSED-LOOP CONTROL DESIGN 91

Linear Quadratic Regulator with Output Weighting

The Linear Quadratic Regulator with Output Weighting (LQRY) is a state-feedback
regulator where the quadratic cost function to be minimized contains the output
variable in place of the state variable; that is:

J(u) =
∞

∑
k=0

(
y(k)T Qy(k)+u(k)T Ru(k)+2y(k)T Nu(k)

)
(5.12)

Basically, an LQRY can we considered as an LQR with weighting matrices Q̄,
R̄, and N̄, such that:(

Q̄ N̄
N̄T R̄

)
=

(
CT 0
DT I

)(
Q N
NT R

)(
C D
0 I

)
(5.13)

92 CHAPTER 5. LINEAR CONTROL THEORY

Part II

Methodology

93

Chapter 6

The Resource Management
Framework

The problem of reducing the TCO of a cloud infrastructure provider and, at the
same time, achieving SLAs of hosted services, is a difficult problem due to the
conflicting nature of these two objectives. Intuitively, on the one hand, resource
over-provisioning helps to achieve SLAs, but increases the TCO. On the other hand,
resource under-provisioning helps to reduce the TCO, but increases the possibilities
of incurring in SLA violations.

In this chapter, we present a framework able to automatically manage physical
and virtual resources of a cloud infrastructure in such a way to maximize the
profit of the IaaS provider by minimizing SLA violations while, at the same time,
reducing the energy consumed by the physical infrastructure.

Basically, we accomplish this goal (1) by providing each application with the
minimum amount of physical resource capacity needed to meet its SLAs, (2) by
dynamically adjusting it according to various parameters, that include the intensity
of its workload, the number of competing VMs allocated on the same physical
resource, and their time-varying behavior induced by variations in the respective
workloads, and (3) by consolidating as many VMs as possible onto few physical
machines, thus powering off those that are unused.

The rationale underlying this approach is that, in order to balance energy
consumption and SLAs satisfaction, each application needs exactly the fraction of

95

96 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

physical resource capacity dictated by current operating conditions of the cloud
infrastructure (e.g., workload characteristics and physical resource utilization, just
to name a few). As a matter of fact, on the one hand, a greater amount of physical
resource capacity would imply an increase of energy consumption without any
benefit to the profit (i.e., to stay away from the performance target is essentially
identical – in terms of positive income – to stay very close to such objective). On
the other hand, a smaller fraction of physical resource capacity would increase the
chance of incurring in a SLA violation.

The rest of this chapter is organized as follows. First, in Section 6.1, we provide
a high-level description of the architecture of the resource management framework.
Then, we focus on the design of the Resource Manager, the core of our framework,
which comprises three types of components: the Application Manager, the Physical
Machine Manager, and the Migration Manager. Specifically, in Section 6.2, we
present the design of the Application Manager component. Then, in Section 6.3,
we describe the design of the Physical Machine Manager component. Finally, in
Section 6.4, we present the design of the Migration Manager component.

6.1 System Architecture

The goal of our framework is three-fold: (1) to provide automated resource man-
agement mechanisms and policies, (2) to monitor and maintain application perfor-
mance targets and (3) to reduce energy consumption in cloud computing systems.

A high-level architecture of our framework is depicted in Fig. 6.1, where
a certain number of user applications (on the left side) have to be deployed as
virtualized services on a cloud infrastructure (on the right side). The applications
we considered are multi-tier; this choice does not limit the applicability of our
framework since other type of applications (like high-performance computing
applications) could always be modeled as single-tier applications. As shown in the
figure, every application tier is deployed in a separate VM, which in turn is placed
on one of the available physical machines. At the center of the figure, the Resource

Manager continuously monitors the performance of each deployed application and
suitably acts on the system in order to maintain application performance goals and,
at the same time, to minimize the energy consumption of computing resources.

6.1. SYSTEM ARCHITECTURE 97

Figure 6.1: Architecture of the proposed framework.

We suppose that each application comes with its SLA specifications. An SLA
is a formal description of the level of a service (i.e., of the guarantees offered for
hosting a certain application), upon which two negotiating parties (the provider and
the recipient of the service) agree. It is commonly described in terms of Service

Level Objectives (SLOs), which in turn define temporal and performance metrics
for measuring the quality of service (QoS). To illustrate, an SLA may specify
the level of availability, reliability and performance that must be guaranteed by
the infrastructure provider along with economical penalties the provider must pay
in case of QoS violation; a possible SLO may specify that 99% of served user
requests has a response time no greater than a particular amount of seconds.

Various techniques to determine the SLOs corresponding to a given SLA have
been published in the literature (e.g., [105, 169]). For instance, in [105] a state-
space modeling approach is integrated with Bayesian probabilistic techniques
in order to create several micro-models, each of which representing different
behaviour of the modeled application, while in [169] a combination of micro-
benchmarks and statistical regression is presented.

We assume that the SLO constraints of each application are known, and are

98 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

expressed in terms of a specific physical machine that we called reference machine

(e.g., in the Amazon EC2 terminology, this could be the equivalent of the “standard
instance” [1]). This choice appears to be natural, as (1) application performance
generally vary according to the capacity of physical resources assigned to that
application, and (2) physical resources inside cloud computing systems are usually
heterogeneous. It is responsibility of the Resource Manager to appropriately scale
SLO constraints according to the capacity of physical resources belonging to the
physical machines where each application tier is actually run. To do so, we assume
that the relative computing power of two physical resources of the same category
(i.e., the measure of how much a physical resource is more powerful than another
one) can be expressed by a simple proportional relationship between the capacity
of the two resources. This means that if a resource has capacity equals to 10, it
will be able to serve requests at a service rate double than a resource with capacity
equals to 5.

In order to reduce energy consumption and achieve application performance
targets, the Resource Manager combines virtualization technologies and control-
theoretic techniques. On the one hand, by deploying each application tier inside a
separate VM, virtualization provides both a runtime isolated environment and a
mean for dynamically provisioning physical resources to virtualized applications
so that an effective use of physical resources can be achieved. On the other hand,
control theory provides a way for enabling computing systems to automatically
manage performance and power consumption, without human intervention. Thus,
the Resource Manager accomplishes its goal by dynamically adjusting the fraction
of the capacity of physical resources assigned to each VM (hosting a particular
application tier), and, if needed, by migrating one or more VMs into other and
more appropriated physical machines (possibly, by turning on or off some of them).
As shown in Fig. 6.1, the Resource Manager consists in a set of independent
components that we called Application Manager, Physical Machine Manager, and
Migration Manager.

In the subsequent sections, we present the design of each of these component.
It is worth noting that, although out framework is general enough to deal with any
type of physical resource and performance metric, for the sake of simplicity, in this
thesis we restrict our focus to the CPU as the type of physical resource, and on the

6.2. APPLICATION MANAGER 99

application-level response time, as SLO performance metric.

6.2 Application Manager

The purpose of the Application Manager is to provide the controlled application
with the needed amount of resource capacity in order to satisfy its SLO constraints.
There is one Application Manager component for which hosted application, and
each application is controlled by a single Application Manager. Moreover, each
Application Manager component works independently from each other.

The Application Manager accomplishes its task by periodically performing
the following actions: (1) it monitors the interested performance metrics, (2) it
compares them with the related counterparts defined by the SLOs (associated to
the controlled application), (3) it computes the amount of resource capacity each
tier should obtain to meet its SLO constraints, and (4) it forwards these resource
capacity demands to Physical Machine Managers associated to physical machines
where each tier of the controlled application is running. Moreover, in order to
cope with physical machine heterogeneity, at the beginning and the end of its
periodic activity it converts actual resource demands (related to physical machines
where tiers are currently running) to/from “reference” ones (stated in terms of the
reference machine), respectively.

We designed the Application Manager by means of control-theoretic tech-
niques in order to automatically computes optimal CPU shares for each tier of the
controlled application, under time-varying workloads. Specifically we relied on:

• Feedback control theory (see Section 5.2.1), to achieve a sort of a self-
managing behavior by means of mechanisms (provided by this theory) for
creating a kind of “control loop” which continuously monitors the behavior of
the controlled system through “sensors”, analyzes collected measurements,
plans the next action according to a specific “reference value”, and then
executes that action through “actuators”.

• Adaptive control theory with the STR adaptation scheme (see Section 5.2.2),
in order to adapt to time-varying workloads and operating conditions.

100 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Figure 6.2: Internal structure of the Application Manager.

• Optimal control theory (see Section 5.2.2), to compute the optimal control
sequence which minimizes the control error.

As shown in Fig. 6.2, we used the STR adaptation scheme, whereby system
parameters are estimated on-line and controller parameters are obtained from the
solution of a control design problem using such estimated parameters as if they
were correct (according to the certainty equivalence principle).

In the rest of this section, we present some detail about the design of each
of its component. For the sake of clarity, we provide in Table 6.1 a summary of
the main mathematical symbols used along this section. Furthermore, to keep
notation simple, we fixed the number of tiers to be the same for every application
and denoted it as m.

For what regards the design of the “target system” box (which in our case
represents the behavior of the application controlled by the Application Manager),
we modeled it by means of a black-box model, whereby only inputs and outputs
of the target system need to be known and the system behavior is inferred by
experimentally measuring input-output relationships. This choice is motivated
by two important reasons. First, unlike many traditional physical systems, the
dynamics of computing systems can seldom be described by first-principle models
(which use known physical laws to describe the behavior of the target system),
thus making classical control theory not applicable [84]. Moreover, relying on
just input-output relationships, free us to make any assumption on the internal
structure of the modeled system, thus making our framework general enough to be

6.2. APPLICATION MANAGER 101

Table 6.1: Application Manager – Mathematical Notation.

Symbol Meaning

m The number of tiers of a multi-tier application
si(k) Mean CPU share of VM hosting tier i, at control interval k
pi(k) Mean residence time of tier i, at control interval k
s̄i(k) Operating value for mean CPU share for tier i, at control interval k
p̄i(k) Operating value for mean residence time of tier i, at control interval

k
∆s̃i(k) Normalized deviation for mean CPU share of tier i, at control

interval k
∆p̃i(k) Normalized deviation for mean residence time of tier i, at control

interval k
∆s̃(k) The m×1 column vector of mean CPU shares, at control interval

k
∆p̃(k) The m× 1 column vector of mean residence times, at control

interval k

adapted to any type of application. In our case, we modeled such relationship by a
discrete-time MIMO linear system model (see Chapter 3), where in our case, for a
given sampling interval k, system inputs si(k) are the fractions of CPU capacity (or,
simply, the CPU shares) assigned to VMs running each application tier i and scaled
with respect to the reference machine, while system outputs pi(k) are the mean
residence times observed from each application tier i (i.e., the average residence
time of requests departed from tier i during the sampling interval k), for i = 1, . . . ,m.
It is worth noting that, such input-output relationships is usually best described
by nonlinear models, mainly due to the complexity of computing systems and to
saturation phenomena (e.g., caused by the constrained nature of CPU shares which
are bounded in the [0,1] real interval) [84]. However, nonlinear models generally
make complex the system design. A standard way to cope with this situation is
the use of linearization. Specifically, we employed local linearization around an
equilibrium point (see Section 3.2), whereby the original input-output relationship
is restated in terms of perturbations with respect to such nominal point. This
operating point is dynamically recomputed at each control interval, by taking the
average of measures (representing both response times, residence times, and CPU
shares) observed in the last ne control intervals. In addition to the linearization
technique, we applied normalization with respect to the same operating point to

102 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

make sure that inputs and outputs were of the same order of magnitude and thus
to hopefully reduce numerical instability issues (as described in Section 4.1.2 and
suggested in [96]). After these transformations, for each tier i = 1, . . . ,m, original
inputs si(k) and outputs pi(k) were replaced by normalized deviations ∆s̃i(k) and
∆p̃i(k) from their equilibrium point (s̄i(k), p̄i(k)), respectively, such that:

∆s̃i(k) =
si(k)
s̄i(k)

−1,

∆p̃i(k) =
pi(k)
p̄i(k)

−1
(6.1)

To model this new input-output relationship we employed the following ARX
model (see Eq. (4.4) in Section 4.1.3), shown in matrix form:

∆p̃(k)+
na

∑
j=1

A j(k)∆p̃(k− j) =
nb

∑
j=1

B j(k)∆s̃(k− j−nk) (6.2)

where:

• ∆p̃(k) =
(

∆ p̃1(k) ... ∆ p̃m(k)
)T is the vector of system outputs at control interval

k,

• ∆s̃(k) =
(

∆s̃1(k) ... ∆s̃m(k)
)T is the vector of system inputs at control interval

k,

• A1(k), . . . ,Ana(k) and B1(k), . . . ,Bnb(k) are the matrices of system parame-
ters with dimension Rm×m and Rm×m, respectively, and

• na, nb and nk are the ARX model structure parameters: the number of poles,
the number of zeros plus one, and the input delay (i.e., the number of input
observations that occur before the input affects the output), respectively. 1

System parameters A1(k), . . . ,Ana(k) and B1(k), . . . ,Bnb(k) of the ARX model
can be estimated either offline or online (see Section 4.1.4). In general, models
estimated by offline system identification are unable to follow the dynamics that

1To simplify the notation, we assumed that each input variable has the same number of zeros
and the same delay; however, in general, this is not true and thus nb and nk, instead of scalar values,
should be represented as vectors whose dimension is equal to the number of system inputs.

6.2. APPLICATION MANAGER 103

may occur in a computing system (e.g., see [97, 128]). For such reason, we chose
the online approach in order to adapt them to dynamic workload changes, and, in
particular, we employed the RLS algorithm (see Section 4.1.4). With respect to
Fig. 6.2, the online identification algorithm represents the design of the “estimation”
box.

For what concerns the “transducer” box of Fig. 6.2, we designed it as an
Exponentially Weighted Moving Average (EWMA) filter [143] for the following
reasons:

• to take into account the recent past behavior of the system,

• to obtain smoothed increments of the system output in case of short peaks
in the observed system output (and hence to prevent the controller to be too
reactive), and

• to obtain smoothed decrements of the system output during idle or low-
intensity control periods (i.e., when no or too few requests leaving the
application are observed).

The peculiarity of this filter is that, by means of its smoothing factor parameter
α ∈ [0,1], the influence of past observations decays exponentially with time,
according to the following law:

pi(τ) = α p̂i(τ)+(1−α)pi(τ), τ ∈ (k−1,k] (6.3)

where k is the current control interval, and p̂i(τ) is the observed system output of
tier i at time τ .

For what concerns the “controller design” box, we chose, among the many
alternatives available in the literature, the discrete-time LQ control design (see
Section 5.4.2). We used this type of LQ controller since our ultimate goal is to
follow the trajectory described by the application-level response time (which, in
our case, is the sum of the residence time of each tier). As a matter of fact, the
physical meaning of the output variable y(k) (which in our case is a scalar) is that
of representing the normalized deviation from the expected mean response time, at
control interval k. In order to use such type of controller, we needed to convert our

104 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

original system model of Eq. (6.2) into an equivalent state-space representation. To
do so, we used the following (non-minimal) state-space realization (see Section 3.4):

x(k) =

∆p̃(k−na +1)

...
∆p̃(k)

 , (6.4a)

u(k) =

∆s̃(k−nb−nk +1)

...
∆s̃(k−nk)

 , (6.4b)

A =

Z I Z . . . Z
Z Z I . . . Z
...

...
...

...
Z Z Z . . . I

−Ana(k) −Ana−1(k) −Ana−2(k) . . . −A1(k)

, (6.4c)

B =

Z . . . Z
...

...
Z . . . Z

Bnb(k) . . . B1(k)

 , (6.4d)

C =
(

0T . . . 0T 1T
)

, (6.4e)

D = 0T (6.4f)

It is important to note that, in the above equations, the value of the matrix C implies
that the normalized deviation from the mean application-level response time is
computed as the sum of normalized deviations from the mean tier-level residence
times, that is:

y(k) = Cx(k)+Du(k)

=
m

∑
i=1

∆p̃i(k)
(6.5)

This assumption is valid since the mean is a linear function, for which the superpo-
sition principle holds.

6.3. PHYSICAL MACHINE MANAGER 105

Once the vector u∗(k) of optimal normalized CPU share deviations is computed
by the LQ controller (according to Eq. (5.8)), the optimal CPU shares s∗i (k), for
i = 1, . . . ,m, are obtained by applying back the transformation shown in Eq. (6.1),
such that:

s∗i (k) = s̄i(k)(1+∆s̃∗i (k)) (6.6)

Finally, each of such shares (which is stated in terms of the reference machine) is
rescaled back with respect to the CPU capacity of the physical machine where the
associated tier is running, and then is forwarded to the Physical Machine Manager
controlling that machine.

6.3 Physical Machine Manager

The purpose of the Physical Machine Manager is to satisfy CPU share demands
coming from those Application Managers which have tiers running on the con-
trolled physical machine. There is one Physical Machine Manager for each physical
machine of the cloud infrastructure.

The reason for the need of such a component is that, since (1) the same physical
machine may hosts VMs running tiers belonging to different applications, and (2)
Application Managers work independently from each others, CPU share demands
arriving at the Physical Machine Manager are generally uncorrelated, so that the
aggregated CPU share demand may exceed the maximum CPU capacity of the
controlled physical machine.

Thus, the Physical Machine Manager has to arbitrate among all incoming CPU
share demands by adjusting them according to a given policy. In our current imple-
mentation, we designed the Physical Machine Manager according to a proportional

policy, whereby adjusted CPU share demands are computed proportionally to the
original ones. Specifically, assuming that a particular physical machine hosts n

VMs, CPU shares are bounded in the (0,D] real interval (with 0 < D ≤ 1), and
denoting with d1, . . . ,dn the incoming CPU share demands for the n VMs, the ad-
justed CPU share demands d̂1, . . . , d̂n will be computed according to the following
formula:

d̂i =
di

∑
n
j=1 d j

D (6.7)

106 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

6.4 Migration Manager

The purpose of the Migration Manager is to find an optimal allocation of currently
running VMs on a group of physical machines (where the CPU is the only shared
physical resource), in order to preserve the SLO of hosted applications (as much
as possible) and, at the same time, to reduce the energy consumption of the cloud
infrastructure.

This objective is achieved with the combination of two tasks:

• the monitoring of application performance targets and of the energy con-
sumption of the cloud infrastructure, and

• the computation, at middle- or long-time scale, of a new optimal VMs alloca-
tion in order to achieve applications SLOs and reduce energy consumption.

Once the optimal allocation is computed, the following (non-mutually exclu-
sive) actions can be triggered:

• One or more physical machines need to be powered on since the actual ca-
pacity of the cloud infrastructure is unable to satisfy the aggregated resource
demand of current VMs.

• One or more VMs are migrated to more suitable physical machines.

• One or more physical machines can be powered off since the actual capacity
of the cloud infrastructure exceeds the aggregated resource demand of current
VMs.

The optimal allocation can be computed by means of mathematical optimiza-

tion. Thus, in the rest of this section, we focus on the formulation of the optimiza-
tion problem.

6.4.1 Optimization Problem

Before presenting the mathematical formulation of the optimization problem, we
introduce some notation.

6.4. MIGRATION MANAGER 107

To keep the notation simple, we assume that every application has associated
the same reference machine, and we denote with C̄ the capacity of its CPU. We use
the symbol M to denote the set of all physical machines in the cloud infrastructure
(including the one that are currently powered off), the symbol V to denote the
set of all powered on VMs hosted by the cloud infrastructure, and the symbol T

to denote the length of each control interval (i.e., the time elapsed between two
consecutive decisions taken by the Migration Manager). Furthermore, whenever
we use the proposition “control interval k” we refer to the kth execution of the
Migration Manager, with k ∈ N+; thus, if T denotes the length of each kth control
interval, the time at which the Migration Manager executes is given by kT .

For the sake of clarity, we provide in Table 6.2 a summary of all the mathemati-
cal symbols used along this section (which complements the table of mathematical
notation presented at the beginning of this thesis).

Objective Function

As a first step in the formulation of the optimization problem, we need to identify
the decision variables and to define the objective function J(·). The decision
variables for the optimization problem are the following:

• The binary decision variables xi(k), which indicate if the physical machine i

is selected to host one or more VMs (at control interval k); that is:

xi(k) =

1, physical machine i hosts at least one VM,

0, otherwise
, i ∈M (6.8)

• The binary decision variables yi j(k), which indicate if the physical machine
i is selected to host the VM j (at control interval k); that is:

yi j(k) =

1, physical machine i hosts the VM j,

0, otherwise
, i ∈M, j ∈V (6.9)

• The decision variables si j(k) ∈ [0,1], which indicate the CPU share (i.e., the
fraction of CPU capacity) of physical machine i assigned to VM j (at control

108 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Table 6.2: Migration Manager – Mathematical Notation.

Symbol Meaning

C̄ Capacity of the reference machine
Ci Capacity of physical machine i
ge Normalizing constant for the power consumption cost Je(·)
gm Normalizing constant for the migration cost Jm(·)
gp Normalizing constant for the performance cost Jp(·)
J(k) The objective function to be minimized, at control interval k
Je(k) The power consumption cost in the objective function J(k), at control interval k
Jm(k) The VM migrations cost in the objective function J(k), at control interval k
Jp(k) The performance cost in the objective function J(k), at control interval k
M The set of all physical machines
smax

i Maximum aggregated CPU share demand for physical machine i
si j(k) Decision variable representing the CPU share assigned to VM j on physical

machine i, at control interval k
s̃i jτ(k) Observed CPU share demand of VM j on physical machine i at time τ , in

control interval k
ŝi j(k) Predicted mean CPU share demand of VM j on physical machine i, at control

interval k
ŝ j(k) Predicted mean CPU share demand of VM j on the reference machine, at

control interval k
s̄t Mean CPU share of tier t on the reference machine
s̄min

t Minimum CPU share assignable to tier t on the reference machine
t j Tier hosted by VM j
umax

i CPU utilization threshold for physical machine i
ûi(k) Predicted mean CPU utilization of physical machine i, at control interval k
ūt Mean CPU utilization of tier t with respect to the reference machine
T Length of each control interval of the Migration Manager
V The set of all powered on VMs
Wi(k) The (instantaneous) power consumption (in Watt) of physical machine i, at

control interval k
we Weight for the power consumption cost Je in the objective function J
wm Weight for the VM migrations cost Jm in the objective function J
wp Weight for the performance cost Jp in the objective function J
xi(k) Binary decision variable; set to 1 if physical machine i is powered on, at control

interval k
yi j(k) Binary decision variable; set to 1 if physical machine i hosts VM j, at control

interval k
β Smoothing factor for the EWMA filter used to compute ûi j(·)
γ Smoothing factor for the EWMA filter used to compute ŝi j(·)
π jih Cost for migrating VM j from physical machine i to the physical machine h
υ̃i jτ(k) Observed contribution to the mean CPU utilization on physical machine i by

VM j at time τ , in control interval k
υ̂ j(k) Predicted contribution to the mean CPU utilization on the reference machine by

VM j, at control interval k
υ̂i j(k) Predicted contribution to the mean CPU utilization on physical machine i by

VM j, at control interval k
ωi0,ωi1, Power model parameters for physical machine i
ωi2,ρi

6.4. MIGRATION MANAGER 109

interval k).

The objective function J(k) of the optimization problem, at control interval
k, can be stated as a cost function that need to be minimized, which, in turn, can
be expressed as the weighted sum of three separate costs, namely: the energy

consumption cost Je(·), the VM migrations cost Jm(·), and the performance cost

Jp(·); that is:
J(k) = weJe(k)+wmJm(k)+wpJp(k) (6.10)

where we, wm, and wp are nonnegative real values (provided as configuration
parameters) that can be used to assign a different weight to each cost Je(·), Jm(·),
and Jp(·), respectively.

The cost Je(k) represents the cost due to the energy consumption induced by
whole cloud infrastructure (at control interval k), which is computed as the sum of
the energy consumptions due to each powered on physical machine. To provide an
analytical formulation of such cost, we introduce the following quantities:

• The contribution υ̃i jτ(k) to the CPU utilization of the physical machine i

brought by VM j as observed at time τ ∈
(
(k−1)T,kT

]
.

• The expected contribution υ̂ j(k) to the mean CPU utilization of a physical
machine equivalent to the reference machine, that will be brought by VM j

(at control interval k). In order to estimate such quantity, we apply an EWMA
filter to each observed contribution υ̃i jτ(k), at time τ ∈

(
(k−1)T,kT

]
(where

i is the physical machine where VM j runs at time τ). This filter provides a
way to take into account the past behavior of a VM, and to obtain smoothed
predicted values in case of sudden and short changes in the working condi-
tions (e.g., short bursts). Since, in general, the resource characteristics of the
reference machine may be different from the ones of the physical machines
of the cloud infrastructure, we have to formulate each υ̂ j(k) in a way that
is independent of the physical machine where VM j actually runs. To do
so, we express such quantity in terms of the characteristics of the reference
machine, by scaling each observed υ̃i jτ(k) with respect to the capacity Ci of
the physical machine i and the capacity C̄ of the reference machine; that is,

110 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

for τ ∈
(
(k−1)T,kT

]
:

υ̂ j(k) = βυ̃i jτ(k)
Ci

C̄
+(1−β)υ̂ j(k−1), i ∈M, j ∈V,k ∈ N+ (6.11)

where β ∈ [0,1] is the smoothing factor of the EWMA filter (that must
be provided as a configuration parameter), Ci

C̄ is the scaling factor (which
assumes a proportional relationship between both the CPU capacity and
utilization of two different physical machines), and υ̂ j(k− 1) is the mean
contribution to the utilization, in terms of the reference machine, brought
by VM j estimated at the previous control interval k−1. The initial value
υ̂ j(0) is computed from the reference utilization ūt j (i.e., the mean utilization
that the tier t j – running inside the VM j – would generate on the reference
machine); that is:

υ̂ j(0) = ūt j , i ∈M, j ∈V (6.12)

• The expected contribution υ̂i j(k) to the mean CPU utilization of physical
machine i, that will be brought by VM j (at control interval k). This quantity
is computed from υ̂ j(k), by performing a scaling operation similar to the
one described for υ̂ j(k); that is:

υ̂i j(k) = υ̂ j(k)
C̄
Ci

(6.13)

• The expected mean CPU utilization ûi(k) of physical machine i (at control in-
terval k). This quantity is computed as the sum of the expected contributions
υ̂i j(k) to the mean CPU utilization that will be brought by each powered on
VM j hosted by that machine (at control interval k); that is:

ûi(k) = ∑
j∈V

υ̂i j(k)yi j(k), i ∈M (6.14)

where the decision variables yi j(k) are used to select only those VMs hosted
by physical machine i (at control interval k).

• The (instantaneous) power Wi(·) (in Watt) consumed by a physical machine i.

6.4. MIGRATION MANAGER 111

To quantify this information, a power model for each physical machine needs
to be provided. Among the various power models available in literature (e.g.,
[142]), we adopted the one described in [62], whereby the power Wi(·) is
related to the CPU utilization ûi(·) by the following nonlinear model:

Wi(k) = ωi0 +ωi1ûi(k)+ωi2ûi(k)ρi, ωi0,ωi1,ωi2,ρi ∈ R (6.15)

where ωi0, ωi1, ωi2, and ρi are model parameters that vary according to the
characteristics of the physical machine i.

Thus, the energy consumption cost Je(·) is given by the cost (in Joule) due to
the energy consumed by all of the selected physical machines at control interval k;
that is:

Je(k) = T ∑
i∈M

Wi(k)xi(k) (6.16)

where the decision variables xi(k) are used to select the powered on physical
machines (at control interval k), and T is the length of control interval k.

The other cost in the objective function J(k) that needs to be presented is Jm(k),
which represents the cost due to VM migrations, that is the cost for moving one or
more VMs to different physical machines (at control interval k). We introduce the
variable π jhi, that represents the cost for migrating VM j from physical machine h

to physical machine i. To quantify this cost, we suppose that the impact of VM
migration on the networking layer is negligible; this assumption can be considered
realistic if the following conditions hold:

1. the cloud infrastructure is confined to a single data center,

2. the VM migration is performed by means of live migration [50], and

3. VM images are stored on storage system shared by all physical machines of
the cloud infrastructure.

According to this assumption, we can quantify π jhi by simply assigning a unit cost
to the migration of VM j from physical machine h to physical machine i, with

112 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

h 6= i; that is:

π jhi =

1, h 6= i,

0, h = i
, h, i ∈M, j ∈V (6.17)

Thus, the VM migrations cost Jm(k) is given by the cost due to all VM migra-
tions involved during control interval k; that is:

Jm(k) = T ∑
i∈M

∑
h∈M

∑
j∈V

π jhiyh j(k−1)yi j(k) (6.18)

where yh j(k−1) denotes the value of the decision variable yh j(·) at the previous
control interval k− 1, the decision variables yi j(k) are used to select only those
VMs hosted by physical machine i (at control interval k), and T is the length of
control interval k.

The last cost in the objective function J(k) that is to be presented is Jp(k), which
represents the cost due to the performance preservation of hosted applications. To
quantify the contribution to the performance of a given application brought by each
associated VM (i.e., by those VMs that run the application’s tiers), we need to
introduce the following quantities:

• The CPU share s̃i jτ(k) requested by VM j to physical machine i, as observed
at time τ ∈

(
(k−1)T,kT

]
.

• The expected mean CPU share ŝ j(k) that is assumed VM j will demand to
a physical machine equivalent to the reference machine (at control interval
k). In order to estimate such quantity, we apply an EWMA filter to each
observed CPU share demand s̃i jτ(k), at time τ ∈

(
(k−1)T,kT

]
. Such filter

allows to take into account the past behavior of a VM, and to obtain smoothed
estimates in case of abrupt and short changes in the working conditions (e.g.,
short bursts). Since, in general, the resource characteristics of the reference
machine may be different from the ones of the physical machines of the cloud
infrastructure, we have to express each ŝ j(k) in a way that is independent
of the physical machine where VM j actually runs. To do so, we formulate
such quantity in terms of the characteristics of the reference machine, by
scaling each observed s̃i jτ(k) with respect to the capacity Ci of the physical

6.4. MIGRATION MANAGER 113

machine i and the capacity C̄ of the reference machine; that is, for each time
τ ∈

(
(k−1)T,kT

]
:

ŝ j(k) = γ s̃i jτ(k)
Ci

C̄
+(1− γ)ŝ j(k−1), i ∈M, j ∈V,k ∈ N+ (6.19)

where γ ∈ [0,1] is the smoothing factor of the EWMA filter (that must
be provided as a configuration parameter), Ci

C̄ is the scaling factor (which
assumes a proportional relationship for both the CPU capacity and CPU
share of two different physical machines), and ŝ j(k−1) is the mean CPU
share demand of VM j, in terms of the reference machine, estimated at the
previous control interval k−1. The initial value ŝ j(0) is computed from the
reference CPU share demand s̄t j (i.e., the CPU share that the tier t j – running
inside the VM j – would require on the reference machine); that is:

ŝ j(0) = s̄t j , j ∈V (6.20)

• The expected mean CPU share ŝi j(k) that is assumed that VM j will demand
to the physical machine i (at control interval k). This quantity is computed
from ŝ j(k), by performing a scaling operation similar to the one described
for ŝ j(k); that is:

ŝi j(k) = ŝ j(k)
C̄
Ci

(6.21)

• The performance of an application, in principle, is determined by the perfor-
mance metric of interest (which, in our case, is the application-level response
time), and thus it can be assessed by comparing the observed performance
metric (i.e., the one measured from the system) with the one defined by the
SLO. Since the solution of the optimization problem is an optimal allocation
defined in terms of CPU shares, we need a way to relate such metric with
the CPU shares si j(·) computed by the optimization problem. Unfortunately,
to do so, one should assume a specific performance model for the applica-
tion (e.g., a queueing model), thus limiting the applicability of our resource
manager to the range of applications whose dynamics can be described by
this model. Since we want our framework to be as more general as possible,

114 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

we avoid to make this assumption and replace the use of such metric with a
“performance indicator” computed as the sum of the distances between the
CPU shares received and the ones expected by each tier. The rationale here
is to limit, as much as possible, cases of either over- or under-provisioning
of the CPU to each VM, because, on the one hand, CPU under-provisioning
can reduce the energy consumption to the expense of a higher risk to incur in
SLO violations, while, on the other hand, CPU over-provisioning can lower
the chance to incur in SLO violations to the expense of a greater energy
consumption. The use of a distance metric let us to summarize this idea
with a unique measure, since the larger is the distance of the obtained CPU
share from the one that is expected, the higher is the performance cost. We
compute such quantity as the sum of the contributions to the performance
cost brought by each application’s tier. Specifically, we define the contri-
bution of tier t j to the performance cost of its application as the squared
difference between the CPU share si j(k) that the associated VM j would
obtain if it is hosted by physical machine i, and the CPU share ŝi j(k) that
VM j is expected to demand to physical machine i (at control interval k);
that is: (

si j(k)− ŝi j(k)
)2

(6.22)

Therefore, if an application has n tiers each of which running into a separate
VM jh hosted by a physical machine ih, for h = 1,2, . . . ,n, we estimate the
performance cost of this application (at control interval k) as:

n

∑
h=1

(
sih jh(k)− ŝih jh(k)

)2
(6.23)

Thus, the performance cost Jp(k) is given by the cost due to all performance
costs of applications running at control interval k; that is:

Jp(k) = T ∑
i∈M

∑
j∈V

yi j(k)
(

si j(k)− ŝi j(k)
)2

(6.24)

where the decision variables yi j(k) are used to select only those VMs hosted by
physical machine i (at control interval k), and T is the length of control interval k.

6.4. MIGRATION MANAGER 115

The objective function J(·) cannot still be used in the optimization problem
since the three costs Je(·), Jm(·), and Jp(·) can have a different order of magnitude
and hence need to be normalized. To this end, we define the following quantities:

• The normalizing constant ge for the cost Je(·), which is computed by taking
the product between the number of physical machines |M| and the maximum
power consumption at full CPU capacity among the physical machines inside
the cloud infrastructure; that is:

ge =|M|max
i∈M

{
ω0i +ω1i +ω2i

}
(6.25)

• The normalizing constant gm for the cost Jm(·), which is computed by taking
the product between the number of VMs |V | and maximum VM migration
cost; that is:

gm = |V |max
i∈M

max
h∈M

max
j∈V

{
π jih

}
= |V |

(6.26)

where the last equality derive from how π jih has been defined (see Eq. (6.17)).

• The normalizing constant gp for the cost Jp(·), which is computed by taking
the product between the number of VMs |V | and the maximum distance
that can result between the obtained and expected CPU share. Since both
si j(k) and ŝi j (i.e., the terms involved in the computation of the distance) are
bounded in the [0,1] interval, we have:

gp = |V | (6.27)

116 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Thus, the resulting objective function J(k) (at control interval k) is given by:

J(k) =
we

ge
Je(k)+

wm

gm
Jm(k)+

wp

gp
Jp(k)

= T
[

we

ge
∑
i∈M

Wi(k)xi(k)

+
wm

gm
∑
i∈M

∑
h∈M

∑
j∈V

π jhiyh j(k−1)yi j(k)

+
wp

gp
∑
i∈M

∑
j∈V

yi j(k)
(

si j(k)− ŝi j(k)
)2
]

=
we

ge
∑
i∈M

Wi(k)xi(k)

+
wm

gm
∑
i∈M

∑
h∈M

∑
j∈V

π jhiyh j(k−1)yi j(k)

+
wp

gp
∑
i∈M

∑
j∈V

yi j(k)
(

si j(k)− ŝi j(k)
)2

(6.28)

where, in the last equality, the time-horizon T has been removed since it is a
common constant term.

For what concerns the energy consumption weight we, migration weight wm,
and performance weight wp, they are positive real numbers representing user-
configurable design parameters that can be used to assign different importance
to each cost of the objective function. According to the value assigned to these
weights, the user can design Migration Managers that can behave differently
from each other. For instance, in order to design an energy-conserving Migration
Manager (i.e., a Migration Manager which favors reduction of energy consumption
over SLO achievement), the user can choose a value for we which is much greater
than the other two. A typical choice is to use the same value for all the weights
(e.g. we = wm = wp = 1), thus resulting in a Migration Manager that will try to
find a good trade-off between all the three costs.

Constraints

The optimization problem is characterized by a number of constraints. In the rest
of this section, we refer to a “selected physical machine” as a physical machine i

6.4. MIGRATION MANAGER 117

such that xi(k) = 1 (at control interval k).
In the following we present each of the problem constraints: 2

(C01) Decision variables xi(·) are binary (integer) variables:

xi(k) ∈ {0,1}, i ∈M (6.29)

(C02) Decision variables yi j(k) are binary (integer) variables:

yi j(k) ∈ {0,1}, i ∈M, j ∈V (6.30)

(C03) Decision variables si j(·) are real variables bounded in [0,1]:

si j(k) ∈
[
0,1
]
, i ∈M, j ∈V (6.31)

(C04) In the optimal allocation , each VM must be hosted by one and only one
physical machine:

∑
i∈M

yi j(k) = 1, j ∈V (6.32)

(C05) In the optimal allocation, each VM must be hosted only by a selected
physical machine:

yi j(k)≤ xi(k), i ∈M, j ∈V (6.33)

The purpose of this constraint is to avoid that a VM is allocated to a physical
machine that will be powered off.

(C06) In the optimal allocation, each selected physical machine must host at least
one VM:

xi(k)≤ ∑
j∈V

yi j(k), i ∈M (6.34)

The purpose of this constraint is to avoid to keep powered on a physical
machine that does not host any VM.

2For the sake of readability, we omit to specify the validity range of control interval k, which is
k ∈ N.

118 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

(C07) In the optimal allocation, a VM can obtain a CPU share greater than 0 only
on the physical machine that hosts it:

si j(k)≤ yi j(k), i ∈M, j ∈V (6.35)

The purpose of this constraint is to avoid allocation inconsistencies in the
optimal solution.

(C08) In the optimal allocation, the CPU share assigned to a VM must be no
less than the minimum CPU share on the reference machine. To formulate
this constraint, we need to introduce the new quantity s̄min

t j
, representing the

minimum CPU share that tier t j (running inside VM j) can obtain on the
reference machine. Furthermore, we have to scale the CPU share si j(k),
assigned to a VM j on a given physical machine i (at control interval k),
in terms of the characteristics of the reference machine. Thus, the wanted
constraint is given by:

si j(k)
Ci

C̄
≥ yi j(k)s̄min

t j
, i ∈M, j ∈V (6.36)

where the decision variable yi j(k) is used to trigger the constraint only if the
physical machine i has been selected to host VM j (i.e., when yi j(k) = 1),
and Ci

C̄ is the scaling factor. The purpose of this constraint is to avoid to
assign to a VM a too small CPU share that makes unable the VM to react to
a change in the operating condition. For instance, in case of a change in the
working condition from an idle to a busy period, a too small CPU share can
lead to system instability for the combination of queueing phenomena and
the inability of the system to satisfy already queued requests.

(C09) In the optimal allocation, the aggregated CPU share demand for a physical
machine must not exceed the maximum allowable share. To formulate this
constraint, we need to introduce the new quantity smax

i , representing the
maximum CPU share that can be demanded to the physical machine i. Thus,

6.4. MIGRATION MANAGER 119

the wanted constraint is given by:

∑
j∈V

si j(k)≤ smax
i , i ∈M (6.37)

The purpose of this constraint is to avoid that hosted VMs occupy the whole
resource capacity; for instance, it is common practice to leave some fraction
of CPU unshared in order to run system or administration processes.

(C10) In the optimal allocation, the utilization of a physical machine must not
exceed a predefined threshold. To formulate this constraint, we need to
introduce the new quantity umax

i , representing the CPU utilization threshold
for the physical machine i. Thus, the wanted constraint is given by:

ûi(k)≤ umax
i , i ∈M (6.38)

The purpose of this constraint is to avoid to overload a physical machine.

The resulting mathematical program (shown on Alg. 1) is a Mixed-Integer

Nonlinear Program (MINLP) [67, 110] which is known to be NP-hard [71, 92]
(more details are provided in Appendix B). The nonlinearity arises in the objective
function, both for the quadratic terms in the performance cost Jp(·) and the non-
linear terms in the energy consumption cost Je(·). Moreover, both the objective
function and some of the constraint inequalities lack of the convexity property, thus
limiting the range of applicable and efficient solution techniques [36].

For these reasons, a global optimum cannot be found in a reasonable amount of
time, and thus we need to look for an approximated solution, which is the subject
of the subsequent subsection.

6.4.2 Approximated Algorithms

In this thesis we consider two approximated solutions: one based on a greedy
algorithm, and the other based on a local optimization technique.

120 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Algorithm 1 Optimization Problem.

minimize J(k) =
[

we

ge
∑
i∈M

Wi(k)xi(k)

+
wm

gm
∑
i∈M

∑
h∈M

∑
j∈V

π jhiyh j(k−1)yi j(k)

+
wp

gp
∑
i∈M

∑
j∈V

yi j(k)
(

si j(k)− ŝi j(k)
)2
]

subject to

xi(k) ∈ {0,1}, i ∈M,

yi j(k) ∈ {0,1}, i ∈M, j ∈V,

si j(k) ∈
[
0,1
]
, i ∈M, j ∈V,

∑
i∈M

yi j(k) = 1, j ∈V,

yi j(k)≤ xi(k), i ∈M, j ∈V,

xi(k)≤ ∑
j∈V

yi j(k), i ∈M,

si j(k)≤ yi j(k), i ∈M, j ∈V,

si j(k)
Ci

C̄
≥ yi j(k)s̄min

t j
, i ∈M, j ∈V,

∑
j∈V

si j(k)≤ smax
i , i ∈M,

ûi(k)≤ umax
i , i ∈M.

6.4. MIGRATION MANAGER 121

Greedy Algorithm

A possible way to obtain an approximated solution to the optimization problem
shown in Alg. 1 is by using a greedy algorithm which implements a Best-Fit

Decreasing (BFD) strategy.

The basic idea of this strategy is to place the largest number of VMs on the
fewest number of physical machines, while still preserving SLO constraints. To do
this, we order the set of all physical machines by three criteria: (1) by their power
status, by first taking the ones already powered on and then those still powered off,
(2) for each power status, by decreasing values of the shareable CPU capacity, and
(3) in case of same CPU capacity, by increasing values of idle power consumption.
Then, we order the set of powered on VMs by decreasing CPU share demand.
Finally, we sequentially iterate over the set of ordered VMs and place each of them
on the first physical machine that appears in the ordered set of physical machines
that has enough space to host it and for which the utilization threshold is not
exceeded.

The pseudocode of this strategy is shown in Alg. 2. The notation used for the
input and output arguments follows the one presented in Table 6.2.

A special consideration is to be given to the notation used for the sorting
operation. In Alg. 2, we denote this operation with a statement like the follow-
ing:

S′← SORT
(
S,{PROPERTY1 : CRITERION1, . . . ,PROPERTYN : CRITERIONN}

)
In this case, we mean that the sequence S, which is the first argument to the sorting
function, is ordered according to properties and criteria specified in the second
argument, and the result is assigned back to the new sequence S′. Each element in
the property-criterion list (i.e., the second argument to the sorting function) is a pair
that associates a property (of each element of S) to a sorting criterion to apply to
this property. The sorting operation is done in the order of the property-criterion list.
Specifically, the sequence S is first sorted by values of the property PROPERTY1
according to CRITERION1. In case there are elements of S with the same value
of PROPERTY1, the ordering is done by the value of the property PROPERTY2
according to CRITERION2, and so on. We use the special symbols ↑, and ↓ to
denote the increasing and decreasing order criterion, respectively.

122 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Algorithm 2 BESTFITDECREASING(M,V,C,C̄,smax, ŝ,umax, υ̂(k),ω0)
Input: M the set of all physical machines,

V the set of powered on VMs,
C the vector of CPU capacities,
C̄ the CPU capacity of the reference machine,
smax the vector of maximum aggregated CPU share demands,
ŝ(k) the vector of predicted CPU share demand for VMs,
umax the vector of maximum CPU utilizations,
υ̂(k) the vector of predicted contributions to CPU utilization,
ω0 the vector of idle power consumptions.

Output: x the vector of selected physical machines,
Y the matrix of VM allocations (each element yi j represent the allocation of VM

j on physical machine i),
S the matrix of CPU shares for all VMs (each element si j represent the CPU

share assigned to VM j on physical machine i).

//Initializations
x← 0
Y← Z
S← Z
r← pmin

{
1,C� smax

}
u← pmin

{
1,umax

}
//Sort physical machines and VMs
M′← SORT

(
M,{POWERSTATUS : (ON,OFF),r :↓,ω0 :↑})

V ′← SORT
(
V,{ŝ :↓}

)
//Find the “best” VMs placement
for all v ∈V ′ do

for all m ∈M′ do
ŝ← ŝv(k) C̄

Cm

υ̂ ← υ̂v(k) C̄
Cm

if ŝ≤ rm and υ̂ ≤ um then
xm← 1
ymv← 1
smv← ŝ
rm← rm− ŝ
um← um− υ̂

break
end if

end for
end for
return 〈x,Y,S〉

6.4. MIGRATION MANAGER 123

The rationale of this solution is that, since the power consumed by a physical
machine is largely determined by its idle (fixed) power consumption, it is better to
place the largest number of VMs first on those physical machines that exhibit the
highest idle power consumption.

Assuming that the two sorting operations take a loglinear time in the dimension
of their input, 3 the computational complexity of Alg. 2 is O(|V ||M|).

Unfortunately this solution may suffer of some issue. Firstly, there is no
guarantee to find a global optimum since the problem does not exhibit the greedy
optimal substructure 4 [54]. Another possible issue of this strategy is that it cannot
explore the whole space of possible CPU shares, since (1) each CPU share is a real
number and hence there are potentially infinite candidates to evaluate, and (2) all
VMs must be selected, so we cannot adopt a solution similar to the one used for
the fractional knapsack problem [54, 116].

Local Optimization

Local optimization is a method for solving computationally hard optimization
problems. A local optimization algorithm starts from a candidate solution and then
iteratively moves to a neighbour solution in the space of candidate solutions (the
search space) by applying local changes, until a solution deemed optimal is found
or a time bound is elapsed.

Typically, such algorithms only build up a local model of the problem. Fur-
thermore, to ensure convergence of the iterative process, many such algorithms
insist on a certain decrease of the target function (i.e., of the objective function or
of a merit function that is a combination of the objective and constraints). Such
algorithms will, if convergent, only find the local optimum; thus the name of local
optimization algorithms. Conversely, global optimization algorithms attempt to
find the global optimum, typically by allowing decrease as well as increase of the
target function. Such algorithms are usually computationally more expensive.

In this thesis, we use the local optimization algorithm provided by the Simple

3An algorithm take a loglinear time if its computational complexity is O(n logn), where n is
the size of its input.

4A problem exhibits optimal substructure if an optimal solution to the problem contains within
it optimal solutions to subproblems.

124 CHAPTER 6. THE RESOURCE MANAGEMENT FRAMEWORK

Branch & Bound (SBB) solver [14, 37], which is a nonlinear programming (NLP)
based branch-and-bound solver that is available through the General Algebraic

Modeling System (GAMS) modeling language [5]. The NLP subproblems can
be solved by CONOPT [58], MINOS [120, 121] and SNOPT [73]. As a node
selection strategy, depth-first search, best-bound, best-estimate or combination
these three can be employed.

A local optimization algorithm needs to start the (local) optimum search from
a feasible (candidate) solution. Usually, when no initial solution is specified,
the solver computes such candidate in a random way. Unfortunately, due to the
presence of constraints in our optimization problem, a randomly generated solution
can result in an unfeasible candidate. In order to overcome to this problem, we
explicitly pass an initial solution, generated by using the BFD algorithm presented
in Alg. 2.

In general, local optimization algorithms should perform better than greedy
algorithms like the one in Alg. 2. However there are several factors that can impact
on the quality of the solution (e.g., see [147]). Firstly, the starting condition may
lead to a local optimum, and different starting conditions can lead to worst or
better local optima. Moreover, the algorithm can get stuck into a plateau, which
is a (sufficiently) flat region of the search space that makes the value returned by
the target function indistinguishable from the value returned for nearby regions
(mostly due to the precision used by the machine to represent its value). Thus,
a plateau makes the solver unable to determine the direction that leads to an
improvement of the target function. A possible mitigation to such issues is the
use of the random-restart technique, whereby the algorithm is run several times
with randomly generated initial conditions. Unfortunately, in our case, we cannot
generate random initial conditions due to the presence of constraints.

Part III

Experimental Evaluation

125

Chapter 7

Experimental Settings

In order to assess the capability of the resource management techniques described
in this thesis, we perform an extensive experimental evaluation using discrete-event
simulation (DES). To this end, we developed a C++ ad-hoc discrete-event simulator,
that is used to run our experiments.

In this chapter, we present the experimental setup of the experiments we
perform for evaluating the performance of our resource management framework.
Specifically, in Section 7.1, we provide an overview of the DESEC simulator, that
is the simulator we use to perform the experiments. In Section 7.2, we describe
settings that are common to all of our experiments. Finally, in Section 7.3, we
describe how each experiment is designed.

7.1 The DESEC Simulator

In this section, we present an overview of the Discrete-Event Simulator for Energy-

aware Computing (DESEC) project, the simulator we developed to evaluate our
resource management framework.

The core of the DESEC simulator is a generic and extensible event-based engine
which provides two types of simulation (with regard to output analysis), namely
terminating and nonterminating simulation [28]. A terminating (or transient, or
finite-horizon) simulation is one that runs for some duration of time or until a given
terminating event occurs. The simulated system is not expected to achieve any

127

128 CHAPTER 7. EXPERIMENTAL SETTINGS

steady-state behavior and any parameter estimated from the output data will be
transient in the sense that its value will depend upon the initial conditions. Con-
versely, a nonterminating (or steady-state) simulation is one whose objective is to
study the long-run (steady-state) behavior of the system of interest. A performance
measure of a system is called a steady-state parameter if it is a characteristic of the
equilibrium distribution of an output stochastic process.

Currently, DESEC provides two output analysis techniques, namely batch
means and independent replications. For the independent replication method, the
duration of each replication and the total number of replications can be chosen
according to different criteria. Specifically, for the duration (length) of each repli-
cation, it is possible to set it on the base of either the time duration, the number of
observed output samples, or by the occurrence of a given event. For what concerns
the total number of replications, DESEC offers two methods. The first method
consists in to manually set it, by explicitly specifying the number of replications.
The second method allows an automatic computation through a statistical analysis
based on confidence intervals, such that the number of independent replicas needed
to achieve, for each statistic of interest, the required confidence level is computed
online by means of the relative precision of the confidence interval method [49].

The other output analysis technique provided by DESEC is the batch means

method, whereby DESEC offers two ways to specify the length of the initial
transient period and that of each batch. The first method consists in to manually
set the duration of the initial transient and of each batch (or, alternately, in to
specify the events that determine their termination). The second method is an
implementation of the automatic procedure described in [130].

In Fig. 7.1, is depicted a high-level block overview of the main components
composing the DESEC simulator architecture. As can be noted from the bottom
of the figure, DESEC is implemented in ISO C++. Also, from the figure, we
can observe that DESEC comprises of several components. In addition to the
event-based engine (that we have just described), we developed other components
incorporating different functionalities. Some of them are targeted at a particular
purpose, like algorithms for the control design (e.g., LQR) and system identification
(e.g., RLS-EF). Others are general-purpose functionalities, like container data
structures, random variate generators, and logging facilities, just to name a few.

7.1. THE DESEC SIMULATOR 129

Figure 7.1: The DESEC simulator – High-level block diagram.

Besides the code developed by use, we also rely upon some third-party library.
In particular, we extensively use the Boost project [4], a set of free peer-reviewed
portable C++ source libraries, that (in part) has been selected to be included in the
C++0x [9], that is the next-coming ISO/IEC C++ standard, also formerly known
as C++11.

For matrix computations, we mostly rely on FORTRAN algorithms provided by
the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra PACKage

(LAPACK) [10, 21], which are software libraries for numerical linear algebra.
They provides routines for solving systems of linear equations and linear least
squares, eigenvalue problems, and singular value decomposition. They also in-
cludes routines to perform several matrix factorizations such as LU, QR, Cholesky
and Schur decomposition.

130 CHAPTER 7. EXPERIMENTAL SETTINGS

7.2 Experimental Setup

7.2.1 Physical Infrastructure Configuration

For our experiments we consider a physical infrastructure consisting of a certain
number of physical machines (the exact number depends on the experimental case
under study), each one characterized by its computing power and its energy con-
sumption. Computing power is modeled as an integer number directly proportional
to the computing speed of the processor. The actual number of physical machines
and the associated values of computing power chosen for our experiments are
reported in chapters related to each experimental case study (see Chapter 8 and
Chapter 9). The reference machine is assumed to have a computing power set to
1000.

For all the physical machines of the cloud infrastructure, the consumption of
electrical energy is modeled by means of the power model described in [62, 142],
whereby the power W is related to the CPU utilization u by means of the formula:

W = ω0 +ω1u+ω2uρ (7.1)

We estimate the values of the parameters ω0, ω1, ω2 and ρ through a statistical
regression analysis over data collected by the SPECpower_ssj2008 benchmark
[15]. The actual values of the above coefficients are reported in chapters related to
each experimental case study (see Chapter 8 and Chapter 9).

It is worth noting that we do not take into consideration any possible overhead
introduced by the virtualization layer. As a matter of fact, we ignore possible
virtualization overhead since the availability of native (hardware-assisted) virtual-
ization solution has greatly reduced its impact on the performance of the hosted
application. Furthermore, we do not model any overhead of the networking layer,
since we assume a data-center based cloud infrastructure, where communication
delays are generally negligible.

7.2. EXPERIMENTAL SETUP 131

7.2.2 Application Configuration

We consider a set of 3 distinct multi-tier applications, that we name A1,A2, and
A3, respectively. All these applications have 3 tiers: each incoming service request
arrives at the first tier that, after processing it, forwards it to the second tier where
this process is repeated. Finally, after the processing in the third tier has taken
place, the result of the service request is sent back to the respective client. The
applications considered in our experiments differ from each other in the amount of
processing time requested by each tier. In particular:

• A1 is an application where all tiers have the same processing demand, that
has been set to 0.06 req/sec;

• A2 is an application with a bottleneck in the second tier; more specifically,
the first and third tiers have the same service rate set to 0.03 req/sec, while
the second tier has a service rate set to 0.06 req/sec;

• A3 is an application where tiers have decreasing processing capacity, and has
been obtained by setting the service rates of the first, second, and third tiers
to 0.015, 0.03, and 0.06 req/sec, respectively.

All the above service rates are expressed in terms of the computing power of the
reference machine.

Each application is characterized by its workload, that consists in a stream
of service requests, continuously generated by a population of users of unknown
size, arriving according to a specific arrival process. In order to reproduce various
operating conditions that may occur for real-world hosted services, we consider
three different arrival processes, namely:

• Deterministic Modulated Poisson Process (DMPP), to generate workloads
exhibiting user behavioral patterns like daily-cycles of activity. In particular,
we consider a three-state DMPP, henceforth denoted as

DMPP(λ1,λ2,λ3,τ) (7.2)

where λi, for i = 1, . . . ,3, is the arrival rate of the Poisson process in state i,
and τ is the deterministic state-residence time;

132 CHAPTER 7. EXPERIMENTAL SETTINGS

• Pareto Modulated Poisson Process (PMPP) [109] to generate self-similar
workloads. In particular, we consider a two-states PMPP, henceforth denoted
as

PMPP(λ1,λ2,xm,α) (7.3)

where λi, for i = 1,2, is the arrival rate of the Poisson process in state i,
and xm and α are the minimum value and shape parameters of the Pareto
distribution, respectively;

• Markov Modulated Poisson Process (MMPP) [65] to generate arrival pro-
cesses exhibiting temporal burstiness [118]. In particular, we consider a
two-states MMPP, henceforth denoted as

MMPP(λ1,λ2,µ1,µ2) (7.4)

where λi, for i = 1,2, is the arrival rate of the Poisson process in state i, and
µi, for i = 1,2, is the state-transition rate when the process is in state i.

7.2.3 Application Manager Configuration

The configuration of the Application Manager includes the parameters related to the
RLS algorithm, the ARX model structure, the smoothing factor of the EWMA filter,
the parameters for the LQ controller, the parameter for computing the operating
point, and the control sampling time. In the following, we provide some detail
about the choice of each of them.

RLS Algorithm

As described in Chapter 4, in this thesis we consider four variants of the RLS
algorithm, namely RLS-EF, RLS-DF, RLS-DF∗, and EW-RLS. For each variant
we provide the following parameters.

• RLS-EF. The RLS-EF algorithm is characterized by only one parameter, that
is the forgetting factor λ , which we set to the commonly used value of 0.98,
whereby the weight of past observations decays very rapidly with time.

7.2. EXPERIMENTAL SETUP 133

• RLS-DF. The RLS-DF algorithm is characterized by only one parameter, that
is the forgetting factor µ , which we set to the commonly used value of 0.98,
whereby the weight of past observations decays very rapidly with time.

• RLS-DF∗. The RLS-DF∗ algorithm is characterized by two parameters, that
is the forgetting factor µ and correction factor δ , which we set to 0.98 and
0.001 (where the choice of δ is based on [31]), respectively.

• EW-RLS. The EW-RLS algorithm is characterized by two parameters, that is
the minimum forgetting factor λ0 and the sensitivity gain ρ , which we set to
0.70 and 0.05 (as proposed by [129]), respectively

Furthermore, for all variants of RLS, we set the following initial conditions:

θ(0) = ε, (7.5a)

ϕ(0) = 0, (7.5b)

P(0) = 104I (7.5c)

where ε is the floating-point relatively accuracy [134] (i.e., the distance from 1.0
to the next largest double-precision number).

ARX Model Structure

The ARX model structure is parameterized by the system order (na,nb) and the
input delay nk (see Chapter 4).

To find such parameters, we performed, for each type of application, several
offline system identification experiments, by evaluating several combinations of
triplets (na,nb,nk) (specifically, from a (1,1,1) to a (10,10,10)) and selecting the
best one by means of the AIC criterion.

From these experiments, we found that, for each type of application, the model
structure with na = 2, nb = 2, and nk = 1 (i.e., with 2 poles, 1 zero and a single
delay per input) was good enough to approximate the behavior of our simulated
applications.

134 CHAPTER 7. EXPERIMENTAL SETTINGS

EWMA Filter

The EWMA filter has one parameter, namely the smoothing factor α (see Eq. (6.3)
in Chapter 6). We experimentally evaluated different candidates, from α = 0.5 to
α = 0.9 with a step increment of 0.1, and we found that the value of 0.70 provided
a good trade-off between memory and smoothness, such that the influence of past
observation does not vanish too fast and, at the same time, the impact of possible
outlier values is slightly delayed.

LQ Control Design

The LQ control design is parameterized by the weighting matrices Q, R, and N
(see Chapter 5). For our experiments, we set N to the zero matrix and used the
Bryson’s rule [27] for Q and R, so that the most effective way to decrease the LQ
cost function is to obtain a very small control output (or control state), even if this
is achieved at the expense of a large control input. Specifically:

Q =
1

0.052 I, (7.6a)

R = I, (7.6b)

N = Z (7.6c)

Operating Point

The operating point used to linearize the application system model, is recomputed
online by averaging observations of the last ne = 5 control intervals. Such value
has been found by means of trial-and-error experiments.

Control Sampling Time

The value of control sampling time is derived by means of offline trial-and-error
experiments, from which we found that a reasonable value (with respect to control
responsiveness and control overhead) was to set it to 8 times the value of the
request arrival rate. We used such trial-and-error approach since, to the best of our
knowledge, there is no systematic method that can be directly applied to computing
systems.

7.3. RESOURCE MANAGEMENT APPROACHES 135

The rationale under the choice of using the request arrival rate as a “reference”
value for control sampling time is that the arrival rate can be seen as an indicator of
how much effort is needed by the controller (i.e., the higher is the arrival rate, the
higher is the number of requests the application has to serve, and then the faster
the controller needs to operate, and vice versa).

7.2.4 Performance Metrics

We assess the performance of our resource management framework by measuring
the application-level response time and the number of violations with respect to the
SLOs constraints of the various applications, and the amount of electrical energy
(expressed in Joule) consumed to serve each submitted service request.

In our experiments, we use as SLO specification of each application the 99th

percentile of its response time. This means that the IaaS provider will pay penalties
only when the percentage of SLO violations (i.e., the percentage of the number of
times the observed response time is larger than the SLO value) is greater than 1%
during a pre-determined time interval.

To compute the SLO value for each application, we use a benchmark-like
approach similar to the one described in [169] for application profiling, that consists
in running a series of simulations for each application and for each type of arrival
process (assigning to each tier exactly the amount of CPU capacity as defined
by the reference machine specifications) and measuring the 99th percentile of the
response time empirical distribution.

A similar approach is adopted to compute the set-point used by the LQ control
design, such that the operating value for the response time is set to the mean
response time observed in each simulation, and the one for the CPU share is set to
the ratio between the CPU capacity of the reference machine and the one of the
machine used in the simulated system.

7.3 Resource Management Approaches

To show the effectiveness of our solution, hereinafter referred to as OUR-APPROACH,
we compare it with three other static approaches, traditionally applied in data center

136 CHAPTER 7. EXPERIMENTAL SETTINGS

resource management, named in the following as STATIC-SLO, STATIC-ENERGY,
and STATIC-TRADEOFF.

In the STATIC-SLO approach, the IaaS provider statically assigns to each
VM (running a particular application tier) the amount of CPU capacity defined by
the reference machine. This is a SLO-conserving approach since, by assigning
exactly the amount of capacity needed to satisfy SLOs, the provider favors SLOs
satisfaction in place of energy consumption reduction.

Conversely, in the STATIC-ENERGY approach, the IaaS provider statically
assigns to each VM a fixed amount of capacity that is 25% lower than the one
defined by the reference machine. This is an energy-conserving approach since,
by assigning less capacity than required, the provider favors energy consumption
reduction instead of SLOs satisfaction (in the hope to still get a low number of
SLO violations).

Finally, in the STATIC-TRADEOFF approach, the IaaS provider statistically
assigns to each VM a fixed amount of capacity that is 10% lower than the one
defined by the reference machine. Thus, this approach tries to find a reasonable
trade-off between energy consumption reduction and SLOs preservation.

For the sake of readability, we have grouped the results in four different scenar-
ios, namely S-DMPP, S-PMPP, S-MMPP and S-MIX, which differ from each
other in the type of arrival process, whose settings are summarized in Table 7.1
(where we used the same notation described in Section 7.2). It is important to point
out that in each scenario, except for S-MIX, we fixed the type of arrival process and
varied the type of application to A1, A2, and A3. Instead, in the S-MIX scenario,
we fixed the type of application to A3 and varied, for each application instance, the
type of arrival process. The purpose of this scenario is to show that under different
type of time-varying workloads our solution is still effective.

7.3. RESOURCE MANAGEMENT APPROACHES 137

Ta
bl

e
7.

1:
E

xp
er

im
en

ta
lE

va
lu

at
io

n
–

Sc
en

ar
io

s.

Sc
en

ar
io

A
pp

lic
at

io
n

#1
A

pp
lic

at
io

n
#2

A
pp

lic
at

io
n

#3
Ty

pe
A

rr
iv

al
Pr

oc
es

s
SL

O
Ty

pe
A

rr
iv

al
Pr

oc
es

s
SL

O
Ty

pe
A

rr
iv

al
Pr

oc
es

s
SL

O

S
-D

M
P

P
A

1
D

M
PP

(1
,5

,1
0,

36
00

)
1.

17
6

A
2

D
M

PP
(1

0,
5,

1,
36

00
)

0.
61

2
A

3
D

M
PP

(5
,1

0,
1,

36
00

)
0.

60
8

S
-P

M
P

P
A

1
PM

PP
(5

,1
0,

1,
1.

5)
1.

24
5

A
2

Sa
m

e
as

A
pp

lic
at

io
n

#1
0.

65
5

A
3

Sa
m

e
as

A
pp

lic
at

io
n

#1
0.

62
4

S
-M

M
P

P
A

1
M

M
PP

(5
,1

5,
0.

00
02

,0
.0

02
)

4.
00

1
A

2
Sa

m
e

as
A

pp
lic

at
io

n
#1

1.
96

2
A

3
Sa

m
e

as
A

pp
lic

at
io

n
#1

1.
93

5
S

-M
IX

A
3

D
M

PP
(5

,1
0,

1,
36

00
)

0.
60

8
A

3
M

M
PP

(5
,1

5,
0.

00
02

,0
.0

02
0)

1.
93

5
A

3
PM

PP
(5

,1
0,

1,
1.

5)
0.

62
4

138 CHAPTER 7. EXPERIMENTAL SETTINGS

Chapter 8

Performance Evaluation without
VM Migration

In this chapter, we evaluate the performance of our resource management frame-
work for the case where:

• only the Application Manager and Physical Machine Manager components
are used, and

• the lifetime of each hosted application spans for the length of each replica-
tion.

Put in another way, in this case study we do not use VM migration and we do not
allow an application to start of finish in the middle of the simulation.

The chapter is organized as follows. First, in Section 8.1, we describe specific
settings used to setup this case study. Then, in Section 8.2, we present experimental
results.

8.1 Experimental Setup

In addition to settings presented in Chapter 7, we provide the following configura-
tion setup.

139

140CHAPTER 8. PERFORMANCE EVALUATION WITHOUT VM MIGRATION

8.1.1 Physical Infrastructure Configuration

We consider a set of five homogeneous physical machines whose computing power,
set to 2000, is twice that of the reference machine.

For all physical machines, we consider the power consumption model as defined
by Eq. (7.1). We estimate the values of the parameters ω0, ω1, ω2 and ρ through
a statistical regression analysis over data collected by the SPECpower_ssj2008

benchmark [15], and we set them to ω0 = 143, ω1 = 258.2, ω2 = 117.2, and
ρ = 0.355, thus leading to the following model instantiation:

W = 143+258.2u+117.2u0.355 (8.1)

The placement of each VM is performed at the beginning of the simulation
with a static approach; each VM is randomly assigned to 1 of 5 physical machines,
thus resulting in at most 2 VMs per physical machine.

8.1.2 Performance Metrics

The performance of our resource management framework is assessed by means of
simulation, by using the independent replication method (see Section 7.1), where:

• the terminating condition of each replication is set to be the achievement of
at least 1000000 served requests per application, and

• the number of independent replicas needed to achieve, for each simulation
experiment, the required 95% confidence level is computed online by means
of the relative precision of the confidence interval method set to 4%.

8.2 Results and Discussion

The results of the various scenarios are presented in four separate tables: Table 8.1
for S-DMPP, Table 8.2 for S-PMPP, Table 8.3 for S-MMPP, and finally Table 8.4
for S-MIX. For the sake of readability, we limit to report only those results deriving
from the best combination of RLS algorithm and LQ control design, among all of
their variants we considered in this thesis.

8.2. RESULTS AND DISCUSSION 141

Ta
bl

e
8.

1:
E

xp
er

im
en

ta
lE

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-D
M

P
P

Sc
en

ar
io

.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

A
1

R
es

po
ns

e
(s

)
1.

16
(0

.0
2)

3.
08

(0
.0

7)
1.

54
(0

.0
3)

1.
15

(0
.0

2)
Ti

m
e

%
SL

O
(%

)
0.

66
19

.4
0

2.
77

0.
66

V
io

la
tio

ns

A
2

R
es

po
ns

e
(s

)
0.

61
(0

.0
1)

1.
58

(0
.0

3)
0.

81
(0

.0
1)

0.
61

(0
.0

1)
Ti

m
e

%
SL

O
(%

)
0.

75
14

.0
5

2.
68

0.
75

V
io

la
tio

ns

A
3

R
es

po
ns

e
(s

)
0.

61
(0

.0
0)

1.
69

(0
.0

2)
0.

82
(0

.0
1)

0.
61

(0
.0

0)
Ti

m
e

%
SL

O
(%

)
0.

78
19

.4
1

3.
14

0.
78

V
io

la
tio

ns

U
pt

im
e

(M
s)

0.
96

0.
96

0.
96

0.
96

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

20
1.

26
19

5.
35

19
9.

60
20

0.
47

C
on

su
m

pt
io

n
W

as
te

d
Jo

ul
es

(M
J)

1.
57

34
.6

8
5.

75
1.

47

142CHAPTER 8. PERFORMANCE EVALUATION WITHOUT VM MIGRATION

Table
8.2:E

xperim
entalE

valuation
–

R
esults

forthe
S

-P
M

P
P

Scenario.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

A
1

R
esponse

(s)
1
.24

(0.03)
3
.18

(0
.18)

1
.65

(0
.04)

1.24
(0

.03)
Tim

e
%

SL
O

(%
)

0
.66

21.52
3.00

0.67
V

iolations

A
2

R
esponse

(s)
0
.71

(0.15)
1
.68

(0
.06)

0
.87

(0
.03)

0.89
(0

.43)
Tim

e
%

SL
O

(%
)

0
.70

16.88
2.72

0.70
V

iolations

A
3

R
esponse

(s)
0
.59

(0.00)
1
.60

(0
.11)

0
.79

(0
.01)

0.60
(0

.01)
Tim

e
%

SL
O

(%
)

0
.47

15.77
2.03

0.47
V

iolations

U
ptim

e
(M

s)
0.74

0.78
0.74

0.74

E
nergy

TotalJoules
(M

J)
167.38

168.54
165.22

166.10
C

onsum
ption

W
asted

Joules
(M

J)
1.03

30.35
4.30

1.02

8.2. RESULTS AND DISCUSSION 143

Ta
bl

e
8.

3:
E

xp
er

im
en

ta
lE

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-M
M

P
P

Sc
en

ar
io

.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

A
1

R
es

po
ns

e
(s

)
4.

11
(0

.5
9)

n/
a

n/
a

4.
30

(1
.0

0)
Ti

m
e

%
SL

O
(%

)
0.

68
n/

a
n/

a
0.

81
V

io
la

tio
ns

A
2

R
es

po
ns

e
(s

)
1.

98
(0

.2
2)

n/
a

n/
a

1.
97

(0
.2

1)
Ti

m
e

%
SL

O
(%

)
0.

76
n/

a
n/

a
0.

77
V

io
la

tio
ns

A
3

R
es

po
ns

e
(s

)
1.

98
(0

.2
1)

n/
a

n/
a

1.
83

(0
.1

2)
Ti

m
e

%
SL

O
(%

)
0.

77
n/

a
n/

a
0.

66
V

io
la

tio
ns

U
pt

im
e

(M
s)

0.
87

n/
a

n/
a

0.
87

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

18
5.

81
n/

a
n/

a
18

5.
49

C
on

su
m

pt
io

n
W

as
te

d
Jo

ul
es

(M
J)

1.
37

n/
a

n/
a

1.
38

144CHAPTER 8. PERFORMANCE EVALUATION WITHOUT VM MIGRATION

Table
8.4:E

xperim
entalE

valuation
–

R
esults

forthe
S

-M
IX

Scenario.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

A
1

R
esponse

(s)
0
.61

(0.00)
n/a

0
.82

(0
.00)

0.61
(0

.00)
Tim

e
%

SL
O

(%
)

0
.77

n/a
3.15

0.79
V

iolations

A
2

R
esponse

(s)
2
.10

(0.12)
n/a

19
.92

(5
.71)

2.08
(0

.35)
Tim

e
%

SL
O

(%
)

1
.00

n/a
18.67

0.77
V

iolations

A
3

R
esponse

(s)
0
.61

(0.02)
n/a

0
.81

(0
.03)

0.70
(0

.20)
Tim

e
%

SL
O

(%
)

0
.65

n/a
2.59

0.65
V

iolations

U
ptim

e
(M

s)
0.82

n/a
0.85

0.82

E
nergy

TotalJoules
(M

J)
171.31

n/a
173.57

170.76
C

onsum
ption

W
asted

Joules
(M

J)
1.36

n/a
12.94

1.24

8.2. RESULTS AND DISCUSSION 145

In each table, every column reports the results obtained by the various ap-
plications, under a specific resource management approach (i.e., STATIC-SLO,
STATIC-ENERGY, STATIC-TRADEOFF, and OUR-APPROACH). A column filled
with the symbol “n/a” (which stands for “result not available”) means that the use
of the corresponding resource management approach made the simulation unable
to converge. Numbers inside parenthesis (when present) represent the standard
deviations of the related measures, while letters inside parenthesis represent unit
of measures (e.g., “(s)” means seconds). The rows of each table have instead the
following meaning. Tows labeled by Ai, for i = 1, . . . ,3, report the 99th percentile
of the response time (label “Response Time”), expressed in seconds (s), and the
mean percentage of SLO violations (label “% SLO Violations”) for each appli-
cation instance; lower values correspond to better results. The row labeled by
“Uptime” reports the sum of the mean uptime of all the physical machines, where
the uptime of a physical machine is defined as the total time (from the beginning
of each simulation replica) that the physical machine has been powered on. This
metric quantifies the efficiency of a given approach in using the physical machines
of the cloud infrastructure, since lower “Uptime” values indicate the usage of a
lower amount of physical resource capacity to serve a given workload. The “Up-
time” metric is expressed in million of seconds (Ms). The row labeled by “Energy
Consumption” reports two energy-related metrics: the total energy consumed, on
average, by the cloud infrastructure (label “Total Joules”) and an estimate of the
total consumed energy that the cloud infrastructure spend, on average, to serve
out-of-SLO requests (label “Wasted Joules”). In particular, the “Wasted Joules”
metric provides an indication of how efficiently a given approach used physical
resources of the cloud infrastructure in order to lower the number of SLO violations
and, at the same time, to reduce energy consumption; thus, the lower is its value,
the better is the result. Both metrics are expressed in MegaJoules (MJ).

By looking at the results reported in the tables, we can observe that our approach
(column OUR-APPROACH) always achieves a lower number of SLO violations
(with respect to the 1% threshold defined by SLO specifications), and always
outperforms the STATIC-ENERGY and STATIC-TRADEOFF approaches. As a
matter of fact, for all scenarios, OUR-APPROACH, with respect to the STATIC-
ENERGY and STATIC-TRADEOFF ones, is able to satisfy SLOs for a greater

146CHAPTER 8. PERFORMANCE EVALUATION WITHOUT VM MIGRATION

number of requests with a lower energy consumption and, more importantly,
without resulting in any penalty to be paid by the provider (as instead is for the
STATIC-ENERGY and STATIC-TRADEOFF approaches).

The advantage of OUR-APPROACH is more evident for both S-MMPP (see
Table 8.3) and S-MIX (see Table 8.4), where the STATIC-ENERGY approach has
not been able to converge to the prescribed accuracy because of the aggregation
of too many queueing phenomena (caused by the inability to dynamically adjust
CPU shares during high-intensity arrival periods), which resulted in an unstable
(simulated) system. A similar behavior can be observed for the STATIC-TRADEOFF

approach, whereby in S-MIX (see Table 8.4) the simulation fails to converge.

The comparison between OUR-APPROACH and STATIC-SLO approaches
needs more attention. First, the energy consumption implied by OUR-APPROACH is
always lower (or, at least, comparable) than the one obtained with the STATIC-SLO
one, thus resulting in a lower (or comparable) waste of Joules. Second, both ap-
proaches always keep the percentage of SLO violations under the 1% threshold (as
defined by SLO specifications). For all scenarios, but for S-MMPP, the percentage
of such violations yield by OUR-APPROACH is always lower than or comparable
to the STATIC-SLO one. For what regards the S-MMPP scenario, there are mixed
situations. Indeed, as can be observed in Table 8.3, OUR-APPROACH, with respect
to STATIC-SLO, leads to a greater percentage of SLO violations for application
A1; however, this is somewhat compensated by the lower percentage of SLO vio-
lations obtained for application A3. This can be ascribed to the following reason.
OUR-APPROACH, unlike the STATIC-SLO approach, is able to dynamically react
to high-intensity workload periods by increasing the fraction of resource capacity
for the interested application; thus it generally should exhibit a lower percentage
of SLO violations than the STATIC-SLO approach. However, there might be cases
where such periods overlap in a way that some tier get less resource capacity than
needed, thus increasing the probability to violate SLO constraints; indeed, this is
the main reason motivating the cases where the percentage of SLO violations ob-
tained with OUR-APPROACH is greater than the one resulted with the STATIC-SLO
one.

Finally, it is important to note that the STATIC-SLO approach requires an over-
commitment of resources, whereby a larger fraction of CPU capacity is assigned

8.2. RESULTS AND DISCUSSION 147

to each VM regardless of the fact that this fraction will be actually used by the

VM. As a consequence, this approach implies that the number of VMs that can
be consolidated on the same physical machine is lower than those attained by
OUR-APPROACH (that, instead, allocates to each VM the fraction of CPU capacity
it needs). Therefore, the STATIC-SLO approach potentially requires – for a given
number of VMs – a larger number of physical resources than the OUR-APPROACH

one, thus yielding a larger energy consumption.
In conclusion, OUR-APPROACH is able to achieve better results compared to

other approaches both in terms of efficiency and energy consumption.

148CHAPTER 8. PERFORMANCE EVALUATION WITHOUT VM MIGRATION

Chapter 9

Performance Evaluation with VM
Migration

In this chapter, we evaluate the performance of our resource management frame-
work for the case where:

• all components of the resource management framework are used, and

• the lifetime of each hosted application can potentially be shorter than the
length of a replication.

Put in another way, in this case study, VMs can migrate to different physical
machines and applications can start and finish in the middle of the simulation.

The chapter is organized as follows. First, in Section 9.1, we describe specific
settings used to setup this case study. Then, in Section 9.2, we report and discuss
experimental results.

9.1 Experimental Setup

In addition to settings presented in Chapter 7, we provide the following configura-
tion setup.

149

150 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Table 9.1: Experimental setup – Physical machines characteristics.

Instances CPU Capacity Reference Machine Power Model
Multiplier ω0 ω1 ω2 ρ

3 1000 x1 86.7 119.1 69.06 0.400
2 2000 x2 143.0 258.2 117.2 0.355
2 3000 x3 178.0 310.6 160.4 0.311
2 4000 x4 284.0 490.1 343.7 0.462

9.1.1 Physical Infrastructure Configuration

Unlike the case study presented in Chapter 8, the evaluation of our resource
management framework is done in a heterogeneous environment in order to better
take advantage of the potential offered by VM migration.

Specifically, we consider a set of nine heterogeneous physical machines whose
characteristics are reported in Table 9.1. In this table, there is one row for each
type of physical machines. In particular, the first column (named ”# Instances”)
shows the number of instances (of a particular type of physical machines) used in
the experiments. The second column (labeled “CPU Capacity”) reports the CPU
capacity. The third column (called “Reference Machine Multiplier”) indicates
the relative CPU capacity (in terms of a multiplicative factor) with respect to the
reference machine; for instance, a value of x2 means that the capacity of that type
of physical machines is twice the one of the reference machine. The fourth to last
columns (grouped under the label ”Power Model”) reports the coefficients of the
power consumption model, as defined by Eq. (7.1).

For the power consumption model, we estimate the values of the parameters
ω0, ω1, ω2 and ρ through a statistical regression analysis over data collected by
the SPECpower_ssj2008 benchmark [15], and the resulting fit is shown in the
last columns of Table 9.1. A graphical comparison of these power models is
shown in Fig. 9.1. Interestingly, from the figure we can observe that, assuming a
proportional relationship between capacities and utilizations of different physical
machines (as we do in this thesis), it is not always effective (in terms of power
consumption) to aggregate the largest number of VMs on the smallest number
of physical machines, mostly because of idle power consumption. For instance,
suppose that there are 3 identical VMs, each of which using the 100% of a physical

9.1. EXPERIMENTAL SETUP 151

Figure 9.1: Experiments setup – Utilization vs power consumption of physical
machines.

152 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

machine of CPU capacity 1000; this means, that (according to our assumptions on
proportional relationship between CPU capacities) if each VM is deployed on a
physical machine of capacity 2000, 3000, or 4000, it will lead to a utilization of
50%, 33%, or 25%, respectively. Thus the resulting aggregated power consumption
will amount to:

• 824.58 Watt, if 3 physical machines of capacity 1000 are used;

• 882.14 Watt, if 2 physical machines of capacity 2000 are used;

• 649.00 Watt, if 1 physical machine of capacity 3000 is used;

• 952.50 Watt, if 1 physical machine of capacity 4000 is used.

In this case, it is much more effective to consolidate the 3 VMs on the physical
machine of capacity 3000 rather than put them on two or more physical machines
with less capacity. However, this is not true if a physical machine of capacity 4000
is used in place of the one with capacity 3000.

9.1.2 Application Configuration

We use the same three types of applications, namely A1, A2, and A3, as defined in
Chapter 7. However, we allow each application to start and finish in the middle of
each replica of the simulation experiment. Specifically, for each type of application,
we create two instances, one with a lifetime that spans for the entire length of
each replication, and the other with a shorter duration, in order to study system
configurations in which the number of applications that are simultaneously present
dynamically varies over time.

In Table 9.2, we report the lifetime specifications for each application instance,
inside each simulation replica. In the table, there is a row for each instance of
application. Specifically, the first column (named “Type”) shows the type of
application. The second column (called “ID”) indicates the identifier associated
to a particular application instance, that will be used later in the discussion of
experiment results. The third to last columns (grouped under the label “Lifetime”)
reports the start time and the duration of the execution of a particular application

9.1. EXPERIMENTAL SETUP 153

Table 9.2: Experiments setup – Lifetime of each application instance.

Application Lifetime
Type ID Start Time Duration

A1 A11 0 –
A1 A12 10000 70000
A2 A21 0 –
A2 A22 70000 70000
A3 A31 0 –
A3 A32 130000 70000

instance inside each simulation replica; the symbol “–”, used for the duration time,
means that the application instance stops at the end of each replication.

From the above table, it can be noted that the maximum number of simultane-
ously running application instances is 5, which comprises the 3 “always running”
instances, and 2 instances with shorter lifetime. This happens during the time inter-
vals [70000,80000], when both A12 and A22 are executing, and [130000,140000],
when both A22 and A32 are running.

9.1.3 Migration Manager Configuration

The configuration of the Migration Manager includes the smoothing factor of
the EWMA filters, the parameters specific to the optimization problem, and the
sampling time. In the following, we provide some detail about the choice of each
of them.

EWMA Filters

The Migration Manager uses two EWMA filters: one for computing υ̂ j(k) (i.e., the
expected contribution to the mean CPU utilization of a physical machine with a
capacity equivalent to the one of the reference machine, that will be brought by VM
j at control interval k – see Table 6.2 and Eq. (6.11)), and the other for computing
ŝ j(k) (i.e., the expected mean CPU share that is assumed VM j will demand to a
physical machine with a capacity equivalent to the one of the reference machine, at
control interval k – see Table 6.2 and Eq. (6.19)).

154 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

For such filters, we need to specify their respective smoothing factors, namely
β and γ . For both of them, we choose a value of 0.70 so that the influence of past
observations does not vanish too fast.

Optimization Problem

For the parameters of the optimization problem, we choose the following values:

• Maximum aggregated CPU share demand smax
i for physical machine i: we

choose the value 1 for all the physical machines.

• Minimum CPU share s̄min
t assignable to tier t on the reference machine: we

choose the value 0.2 for all the tiers of all the applications. We derive it by
means of offline system identification experiments. Specifically, for every
experiment, we excite each application with three randomly generated and
uniformly distributed in [s̄min,1] signals (each of which representing the
CPU share assigned to each tier), by varying s̄min in the range (0,0.5] with a
step increment of 0.05. From these experiments, we find that, for values of
s̄min below 0.2, the behavior of an application becomes unstable due to too
many queueing phenomena, with the result that the response time diverges
(theoretically) to the infinity.

• CPU utilization threshold umax
i for physical machine i: we set it to 1 for

every physical machine.

• Weights we, wm, and wp for the objective function J: we choose the value
1 for all the weights, so that the three costs Je, Jm and Jp, of the objective
function, are equally weighted.

For what concerns the value of the mean CPU share s̄t of each tier t (of every
application) on the reference machine, we use the same benchmark-like approach
(similar to the one described in [169] for application profiling), already employed
for computing the set-point for the LQ control design of the Application Manager
(see Chapter 7).

9.1. EXPERIMENTAL SETUP 155

Sampling Time

The value of the sampling time T is derived by means of offline trial-and-error
experiments, from which we find that a reasonable value is to set it to 1800 ticks
of simulated times (e.g., if one tick of the simulated time represents 1 second, the
sampling time amounts to half hour).

9.1.4 Performance Metrics

The performance of our resource management framework is assessed by means of
simulation, by using the independent replications output analysis method, where
the length of each replication is fixed to 2100000 ticks of simulated time, and the
number of total replicas is fixed to 5.

We use these fixed values since the simulated system never reaches the steady-
state due to the presence of applications that can start and stop in the middle of the
simulation.

9.1.5 Experimental Scenarios and Resource Management Ap-
proaches

Experiments performed for this case study, use the same four scenarios described
in Chapter 7, that is S-DMPP, S-PMPP, S-MMPP, and S-MIX.

Also, as discussed in Chapter 7, for each scenario, we evaluate our approach
with three commonly used techniques, that is STATIC-SLO, STATIC-ENERGY,
and STATIC-TRADEOFF. However, in order to evaluate the efficacy of VM mi-
gration, we consider two different variants of our approach (instead of only one),
namely OUR-APPROACH-NM and OUR-APPROACH-M. Specifically, in OUR-
APPROACH-NM, we do not use the Migration Manager component, while in the
OUR-APPROACH-M variant, this component is employed.

For what concerns the implementation of the Migration Manager, as discussed
in Section 6.4, we propose two possible implementations based on approximated
algorithms, that is a greedy algorithm and a strategy based on local optimization.

In order to evaluate both implementations, we divide the experiments in two
different groups, namely MM-GREEDY and MM-LOCOPT. In the MM-GREEDY

156 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

group, the Migration Manager is implemented by means of the greedy algorithm,
while in the MM-LOCOPT group, the Migration Manager is driven by local
optimization (see Section 6.4.2).

9.2 Results and Discussion

This section is organized as follows. In Section 9.2.1 and Section 9.2.1, we present
and discuss the results obtained by each individual experiments groups, that is
MM-GREEDY and MM-LOCOPT, respectively. Finally, in Section 9.2.3, we
present some concluding remark about the convenience of using VM migration
and the behavior two different implementations of the Migration Manager.

9.2.1 Results for the MM-GREEDY Experiments Group

The results of the various scenarios, in the MM-GREEDY group, are presented in
four separate tables: Table 9.3 for S-DMPP, Table 9.4 for S-PMPP, Table 9.5 for
S-MMPP, and finally Table 9.6 for S-MIX. For the sake of readability, we limit to
report only those results deriving from the best combination of RLS algorithm and
LQ control design, among all of their variants we considered in this thesis.

In each table, every column reports the results obtained by the various applica-
tions, under a specific resource management approach (i.e., STATIC-SLO, STATIC-
ENERGY, STATIC-TRADEOFF, OUR-APPROACH-NM, and OUR-APPROACH-M).
A column filled with the symbol “n/a” (which stands for “result not available”)
means that the use of the corresponding resource management approach made
the simulation unable to converge. Numbers inside parenthesis (when present)
represent the standard deviations of the related measures, while letters inside paren-
thesis represent unit of measures (e.g., “(s)” means seconds). The rows of each
table have instead the following meaning. Rows labeled by Ai j, for i = 1, . . . ,3 and
j = 1,2, report the 99th percentile of the response time (label “Response Time”),
expressed in seconds (s), and the mean percentage of SLO violations (label “%
SLO Violations”) for each application instance; lower values correspond to better
results. The row labeled by “Uptime” reports the sum of the mean uptime of all the
physical machines, where the uptime of a physical machine is defined as the total

9.2. RESULTS AND DISCUSSION 157

Ta
bl

e
9.

3:
E

xp
er

im
en

ta
le

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-D
M

P
P

sc
en

ar
io

in
th

e
M

M
-G

R
E

E
D

Y
gr

ou
p.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

-N
M

O
U

R
-A

P
P

R
O

A
C

H
-M

A
11

R
es

po
ns

e
(s

)
1.

17
(0

.0
2)

3.
21

(0
.2

3)
1.

53
(0

.0
2)

1.
16

(0
.0

1)
1.

17
(0

.0
3)

Ti
m

e
%

SL
O

(%
)

0.
62

19
.1

9
2.

72
0.

63
0.

63
V

io
la

tio
ns

A
12

R
es

po
ns

e
(s

)
1.

17
(0

.0
0)

3.
08

(0
.0

4)
1.

57
(0

.0
1)

1.
17

(0
.0

0)
1.

17
(0

.0
0)

Ti
m

e
%

SL
O

(%
)

0.
63

19
.7

3
2.

84
0.

63
0.

63
V

io
la

tio
ns

A
21

R
es

po
ns

e
(s

)
0.

62
(0

.0
1)

1.
59

(0
.0

3)
0.

81
(0

.0
1)

0.
62

(0
.0

1)
0.

62
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
76

14
.3

5
2.

72
0.

76
0.

76
V

io
la

tio
ns

A
22

R
es

po
ns

e
(s

)
0.

63
(0

.0
2)

1.
66

(0
.0

1)
0.

84
(0

.0
2)

0.
63

(0
.0

2)
0.

63
(0

.0
2)

Ti
m

e
%

SL
O

(%
)

0.
76

14
.6

5
2.

75
0.

77
0.

76
V

io
la

tio
ns

A
31

R
es

po
ns

e
(s

)
0.

61
(0

.0
1)

1.
70

(0
.0

1)
0.

82
(0

.0
0)

0.
61

(0
.0

1)
0.

61
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
77

19
.4

0
3.

19
0.

77
0.

77
V

io
la

tio
ns

A
32

R
es

po
ns

e
(s

)
0.

61
(0

.0
0)

1.
69

(0
.0

4)
0.

83
(0

.0
0)

0.
61

(0
.0

0)
0.

61
(0

.0
0)

Ti
m

e
%

SL
O

(%
)

0.
80

19
.2

9
3.

20
0.

80
0.

80
V

io
la

tio
ns

U
pt

im
e

(M
s)

0.
97

1.
25

1.
03

0.
97

0.
85

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

31
9.

91
34

4.
98

32
5.

68
31

8.
42

29
9.

18
C

on
su

m
pt

io
n

W
as

te
d

Jo
ul

es
(M

J)
2.

32
61

.4
7

9.
48

2.
32

2.
18

158 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Table
9.4:E

xperim
entalevaluation

–
R

esults
forthe

S
-P

M
P

P
scenario

in
the

M
M

-G
R

E
E

D
Y

group.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

-N
M

O
U

R-A
P

P
R

O
A

C
H

-M

A
11

R
esponse

(s)
1
.19

(0
.02)

3.05
(0.04)

1
.59

(0
.02)

1.19
(0.02)

1.19
(0

.02)
Tim

e
%

SL
O

(%
)

0
.58

19.60
2.57

0.58
0.59

V
iolations

A
12

R
esponse

(s)
1
.29

(0
.00)

3.41
(0.10)

1
.73

(0
.01)

1.29
(0.01)

1.29
(0

.00)
Tim

e
%

SL
O

(%
)

0
.89

33.89
4.17

0.90
0.90

V
iolations

A
21

R
esponse

(s)
0
.81

(0
.23)

1.64
(0.01)

0
.86

(0
.00)

0.81
(0.23)

0.81
(0

.23)
Tim

e
%

SL
O

(%
)

0
.68

16.04
2.68

0.68
0.68

V
iolations

A
22

R
esponse

(s)
0
.68

(0
.02)

1.36
(1.29)

0
.90

(0
.02)

0.69
(0.00)

0.68
(0

.01)
Tim

e
%

SL
O

(%
)

0
.82

9.33
3.24

0.83
0.82

V
iolations

A
31

R
esponse

(s)
0
.59

(0
.00)

1.56
(0.01)

0
.79

(0
.00)

0.59
(0.00)

0.59
(0

.00)
Tim

e
%

SL
O

(%
)

0
.53

15.62
2.37

0.53
0.53

V
iolations

A
32

R
esponse

(s)
0
.59

(0
.01)

1.55
(0.05)

0
.82

(0
.03)

0.59
(0.01)

0.59
(0

.01)
Tim

e
%

SL
O

(%
)

0
.47

11.57
1.84

0.47
0.47

V
iolations

U
ptim

e
(M

s)
1.35

1.83
1.79

1
.32

1.04

E
nergy

TotalE
nergy

(M
J)

393.42
419.24

427.40
386

.33
353.78

C
onsum

ption
W

asted
Joules

(M
J)

2.51
74.33

11.64
2.47

2.26

9.2. RESULTS AND DISCUSSION 159

Ta
bl

e
9.

5:
E

xp
er

im
en

ta
le

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-M
M

P
P

sc
en

ar
io

in
th

e
M

M
-G

R
E

E
D

Y
gr

ou
p.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

-N
M

O
U

R
-A

P
P

R
O

A
C

H
-M

A
11

R
es

po
ns

e
(s

)
4.

29
(0

.1
7)

n/
a

43
.6

3
(0

.3
4)

4.
44

(0
.1

2)
4.

43
(0

.1
7)

Ti
m

e
%

SL
O

(%
)

1.
01

n/
a

28
.3

1
1.

12
1.

14
V

io
la

tio
ns

A
12

R
es

po
ns

e
(s

)
4.

45
(0

.4
5)

n/
a

24
.0

3
(1

.5
5)

4.
08

(0
.1

0)
4.

39
(0

.3
2)

Ti
m

e
%

SL
O

(%
)

0.
86

n/
a

19
.6

1
0.

88
0.

88
V

io
la

tio
ns

A
21

R
es

po
ns

e
(s

)
2.

04
(0

.1
8)

n/
a

35
.1

8
(3

.8
3)

2.
04

(0
.1

7)
2.

04
(0

.1
9)

Ti
m

e
%

SL
O

(%
)

0.
89

n/
a

21
.8

3
0.

90
0.

90
V

io
la

tio
ns

A
22

R
es

po
ns

e
(s

)
1.

73
(0

.3
5)

n/
a

10
.9

3
(0

.1
6)

1.
76

(0
.3

9)
1.

73
(0

.3
4)

Ti
m

e
%

SL
O

(%
)

0.
36

n/
a

9.
90

0.
37

0.
36

V
io

la
tio

ns

A
31

R
es

po
ns

e
(s

)
1.

82
(0

.0
6)

n/
a

21
.5

7
(0

.3
6)

1.
82

(0
.0

6)
1.

82
(0

.0
6)

Ti
m

e
%

SL
O

(%
)

0.
67

n/
a

15
.6

8
0.

67
0.

66
V

io
la

tio
ns

A
32

R
es

po
ns

e
(s

)
1.

95
(0

.5
8)

n/
a

15
.9

2
(2

.8
1)

2.
02

(0
.7

1)
2.

00
(0

.6
6)

Ti
m

e
%

SL
O

(%
)

0.
62

n/
a

15
.6

8
0.

62
0.

63
V

io
la

tio
ns

U
pt

im
e

(M
s)

0.
97

n/
a

1.
17

0.
97

0.
89

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

33
0.

81
n/

a
32

9.
94

33
0.

13
31

0.
11

C
on

su
m

pt
io

n
W

as
te

d
Jo

ul
es

(M
J)

2.
66

n/
a

67
.3

1
2.

76
2.

61

160 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Table
9.6:E

xperim
entalevaluation

–
R

esults
forthe

S
-M

IX
scenario

in
the

M
M

-G
R

E
E

D
Y

group.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

-N
M

O
U

R-A
P

P
R

O
A

C
H

-M

A
11

R
esponse

(s)
0
.61

(0
.00)

n/a
0
.83

(0
.00)

0.61
(0.00)

0.61
(0

.00)
Tim

e
%

SL
O

(%
)

0
.81

n/a
3.23

0.81
0.81

V
iolations

A
12

R
esponse

(s)
0
.62

(0
.00)

n/a
0
.83

(0
.00)

0.62
(0.00)

0.89
(0

.38)
Tim

e
%

SL
O

(%
)

0
.79

n/a
3.14

0.79
0.79

V
iolations

A
21

R
esponse

(s)
1
.98

(0
.03)

n/a
35

.14
(19

.65)
2.00

(0.05)
1.96

(0
.06)

Tim
e

%
SL

O
(%

)
0
.87

n/a
20.86

0.84
0.82

V
iolations

A
22

R
esponse

(s)
1
.71

(0
.19)

n/a
16

.19
(2

.95)
1.90

(0.36)
1.79

(0
.28)

Tim
e

%
SL

O
(%

)
0
.44

n/a
15.09

0.51
0.52

V
iolations

A
31

R
esponse

(s)
0
.59

(0
.03)

n/a
0
.79

(0
.04)

0.59
(0.03)

0.59
(0

.03)
Tim

e
%

SL
O

(%
)

0
.55

n/a
2.36

0.55
0.56

V
iolations

A
32

R
esponse

(s)
0
.61

(0
.02)

n/a
0
.83

(0
.02)

0.61
(0.02)

0.61
(0

.02)
Tim

e
%

SL
O

(%
)

0
.65

n/a
2.75

0.65
0.66

V
iolations

U
ptim

e
(M

s)
0.97

n/a
1.08

0
.97

0.86

E
nergy

TotalJoules
(M

J)
316.75

n/a
329..06

315
.27

297.53
C

onsum
ption

W
asted

Joules
(M

J)
2.25

n/a
25.63

2.23
2.10

9.2. RESULTS AND DISCUSSION 161

time (from the beginning of each simulation replica) that the physical machine has
been powered on. This metric quantifies the efficiency of a given approach in using
the physical machines of the cloud infrastructure, since lower “Uptime” values
indicate the usage of a lower amount of physical resource capacity to serve a given
workload. The “Uptime” metric is expressed in million of seconds (Ms). The row
labeled by “Energy Consumption” reports two energy-related metrics: the total
energy consumed, on average, by the cloud infrastructure (label “Total Joules”)
and an estimate of the total consumed energy that the cloud infrastructure spend,
on average, to serve out-of-SLO requests (label “Wasted Joules”). In particular, the
“Wasted Joules” metric provides an indication of how efficiently a given approach
used physical resources of the cloud infrastructure in order to lower the number
of SLO violations and, at the same time, to reduce energy consumption; thus, the
lower is its value, the better is the result. Both metrics are expressed in MegaJoules
(MJ).

By looking at the results reported in these tables, we can observe that both
variants of our approach (columns OUR-APPROACH-NM and OUR-APPROACH-
M) always achieve a lower number of SLO violations (with respect to the 1%
threshold defined by SLO specifications), but the S-MMPP scenario, where our
approach exceeds the 1% threshold. Moreover, we can note that while both OUR-
APPROACH-M and OUR-APPROACH-NM practically result in identical values of
SLO violations for all the scenarios, the former always leads to a more efficient
usage of physical resources. As a matter of fact, OUR-APPROACH-M always
results in lower values of both “Total Energy” and “Wasted Energy” metrics:
this means that the exploitation of VM migration allows to both save energy
(lower “Total Energy” values) and to better use the energy that is consumed (lower
“Wasted Energy” values). Furthermore, the lower value of “Uptime” exhibited by
OUR-APPROACH-M means that a smaller amount of physical resource capacity is
required to meet SLOs: this means that, potentially, more VMs can be consolidated
on the same number of physical machines without increasing the percentage of
violated SLOs.

With respect to the other approaches, both variants of our approach always
outperform the STATIC-ENERGY and STATIC-TRADEOFF approaches. Further-
more, STATIC-ENERGY can be considered worse than STATIC-TRADEOFF since

162 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

it results in a moderate improvement of (unit) energy consumption at the price
of much higher values of SLO violations. Therefore, we can conclude that, with
respect to these two approaches, our approach is able to satisfy SLOs for a greater
number of requests with a lower energy consumption, in a lower amount of time,
and, more importantly, without resulting in any penalty to be paid by the provider.

The comparison with the STATIC-SLO approach needs more attention. First of
all, we can observe that, for all scenarios, both our approaches practically exhibit
the same values of SLO violations as STATIC-SLO. Second, both approaches
keep the percentage of SLO violations under the 1% threshold (as defined by SLO
specifications) for all scenarios, except for the S-MMPP one, where, however,
also the STATIC-SLO approach exceeds this threshold. Specifically, in the S-
MMPP scenario, our approach results in a higher number of SLO violations
only for application A11, while, for the remaining applications, our approach and
STATIC-SLO practically show the same performance for this metric.

If, however, we look at the efficiency-related metrics, we can observe that our
approach, and in particular OUR-APPROACH-M, always results in lower values
of “Uptime”, “Total Energy” and “Wasted Energy” than STATIC-SLO, indicating
that the former is able to consume less energy and to use physical resources more
effectively. For instance, in the S-DMPP scenario, the STATIC-SLO approach
leads to an energy consumption which exceeds by nearly 7% (i.e., by approximately
20.73 MJ) the one obtained with OUR-APPROACH-M.

Moreover, it is important to observe that STATIC-SLO requires an overcom-
mitment of resources, whereby a larger fraction of CPU capacity is assigned to
each VM regardless of the fact that this fraction will be actually used by the VM.
As a consequence, this implies that the number of VMs that can be consolidated
on the same physical machine is lower than those attained by our approach (that,
instead, allocates to each VM just the fraction of CPU capacity it needs). Therefore,
STATIC-SLO potentially requires, for a given number of VMs, a larger number
of physical resources than the our approach one, thus yielding a larger energy
consumption.

Finally, it is worth noting that a possible reason to the inability of our approach
to always keep the percentage of SLO violations under the 1% threshold in the
S-MMPP scenario (e.g., see application A11), is the combination of the temporal

9.2. RESULTS AND DISCUSSION 163

burstiness (caused by the MMPP arrival process) with the dynamic execution of
application instances. Together, these two factors contribute to the increase of
the amount of physical resource demanded, so that if a VM has received a low or
medium CPU share (with respect to the reference machine) during a low-intensity
workload period, it is possible that it is unable to react in time to such bursts (even
if a greater share has been assigned to it), due to the aggregation of too many
queueing phenomena and to delays in the reaction time. This is also demonstrated
by the behavior of the STATIC-TRADEOFF approach, whereby neither a fixed share
of 90% (with respect to the capacity of the reference machine) per VM is able to
avoid these situations.

9.2.2 Results for the MM-LOCOPT Experiments Group

The results of the various scenarios, in the MM-LOCOPT group, are presented in
four separate tables: Table 9.7 for S-DMPP, Table 9.8 for S-PMPP, Table 9.9
for S-MMPP, and finally Table 9.10 for S-MIX. As done for the MM-GREEDY

group, for the sake of readability, we limit to report only those results deriving
from the best combination of RLS algorithm and LQ control design, among all of
their variants we considered in this thesis.

Results tables are structured as the one presented for the MM-GREEDY group.
Specifically, in each table, every column reports the results obtained by the vari-
ous applications, under a specific resource management approach (i.e., STATIC-
SLO, STATIC-ENERGY, STATIC-TRADEOFF, OUR-APPROACH-NM, and OUR-
APPROACH-M). A column filled with the symbol “n/a” (which stands for “result
not available”) means that the use of the corresponding resource management
approach made the simulation unable to converge. Numbers inside parenthesis
(when present) represent the standard deviations of the related measures, while
letters inside parenthesis represent unit of measures (e.g., “(s)” means seconds).
The rows of each table have instead the following meaning. Rows labeled by Ai j,
for i = 1, . . . ,3 and j = 1,2, report the 99th percentile of the response time (label
“Response Time”), expressed in seconds (s), and the mean percentage of SLO
violations (label “% SLO Violations”) for each application instance; lower values
correspond to better results. The row labeled by “Uptime” reports the sum of the

164 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Table
9.7:E

xperim
entalevaluation

–
R

esults
forthe

S
-D

M
P

P
scenario

in
the

M
M

-L
O

CO
P

T
group.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

-N
M

O
U

R-A
P

P
R

O
A

C
H

-M

A
11

R
esponse

(s)
1
.17

(0
.02)

3.02
(0.02)

1
.41

(0
.04)

1.18
(0.02)

1.18
(0

.02)
Tim

e
%

SL
O

(%
)

0
.62

19.87
1.86

0.62
0.64

V
iolations

A
12

R
esponse

(s)
1
.17

(0
.00)

3.08
(0.04)

1
.57

(0
.01)

1.18
(0.03)

1.19
(0

.03)
Tim

e
%

SL
O

(%
)

0
.63

19.73
2.84

0.63
0.64

V
iolations

A
21

R
esponse

(s)
0
.62

(0
.01)

1.65
(0.03)

0
.81

(0
.01)

0.62
(0.01)

0.62
(0

.01)
Tim

e
%

SL
O

(%
)

0
.76

14.69
2.72

0.76
0.77

V
iolations

A
22

R
esponse

(s)
0
.63

(0
.02)

1.66
(0.01)

0
.84

(0
.02)

0.63
(0.02)

0.63
(0

.02)
Tim

e
%

SL
O

(%
)

0
.76

14.65
2.75

0.76
0.77

V
iolations

A
31

R
esponse

(s)
0
.61

(0
.01)

1.68
(0.00)

0
.82

(0
.00)

0.61
(0.01)

0.61
(0

.01)
Tim

e
%

SL
O

(%
)

0
.77

19.30
3.19

0.77
0.77

V
iolations

A
32

R
esponse

(s)
0
.61

(0
.00)

1.69
(0.40)

0
.83

(0
.00)

0.61
(0.00)

0.61
(0

.00)
Tim

e
%

SL
O

(%
)

0
.80

19.29
3.20

0.80
0.80

V
iolations

U
ptim

e
(M

s)
0.97

1.18
0.97

0
.97

0.87

E
nergy

TotalJoules
(M

J)
321.67

340.14
319.20

319
.47

303.87
C

onsum
ption

W
asted

Joules
(M

J)
2.33

54.79
8.66

2.32
2.23

9.2. RESULTS AND DISCUSSION 165

Ta
bl

e
9.

8:
E

xp
er

im
en

ta
le

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-P
M

P
P

sc
en

ar
io

in
th

e
M

M
-L

O
C

O
P

T
gr

ou
p.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

-N
M

O
U

R
-A

P
P

R
O

A
C

H
-M

A
11

R
es

po
ns

e
(s

)
1.

19
(0

.0
2)

3.
26

(0
.0

3)
1.

46
(0

.0
1)

1.
19

(0
.0

2)
1.

19
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
58

32
.1

7
1.

74
0.

59
0.

60
V

io
la

tio
ns

A
12

R
es

po
ns

e
(s

)
1.

29
(0

.0
0)

3.
41

(0
.1

0)
1.

73
(0

.0
1)

1.
29

(0
.0

1)
1.

29
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
89

33
.8

9
4.

17
0.

89
0.

88
V

io
la

tio
ns

A
21

R
es

po
ns

e
(s

)
0.

81
(0

.2
3)

1.
89

(0
.0

2)
0.

86
(0

.0
0)

0.
81

(0
.2

3)
0.

81
(0

.2
3)

Ti
m

e
%

SL
O

(%
)

0.
68

18
.2

7
2.

68
0.

68
0.

68
V

io
la

tio
ns

A
22

R
es

po
ns

e
(s

)
0.

68
(0

.0
2)

2.
04

(0
.3

2)
0.

90
(0

.0
2)

0.
68

(0
.0

2)
0.

68
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
82

19
.4

2
3.

24
0.

82
0.

82
V

io
la

tio
ns

A
31

R
es

po
ns

e
(s

)
0.

59
(0

.0
0)

1.
46

(0
.0

7)
0.

79
(0

.0
0)

0.
59

(0
.0

0)
0.

59
(0

.0
0)

Ti
m

e
%

SL
O

(%
)

0.
53

10
.4

5
2.

37
0.

53
0.

53
V

io
la

tio
ns

A
32

R
es

po
ns

e
(s

)
0.

59
(0

.0
1)

1.
55

(0
.0

5)
0.

82
(0

.0
3)

0.
59

(0
.0

0)
0.

59
(0

.0
1)

Ti
m

e
%

SL
O

(%
)

0.
47

11
.5

7
1.

84
0.

47
0.

47
V

io
la

tio
ns

U
pt

im
e

(M
s)

0.
97

1.
24

0.
97

0.
97

0.
90

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

34
9.

47
38

7.
45

34
5.

10
34

6.
23

33
7.

17
C

on
su

m
pt

io
n

W
as

te
d

Jo
ul

es
(M

J)
2.

22
13

.3
2

8.
73

2.
22

2.
16

166 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Table
9.9:E

xperim
entalevaluation

–
R

esults
forthe

S
-M

M
P

P
scenario

in
the

M
M

-L
O

CO
P

T
group.

A
pproach

S
TA

T
IC-S

L
O

S
TA

T
IC-E

N
E

R
G

Y
S

TA
T

IC-T
R

A
D

EO
FF

O
U

R-A
P

P
R

O
A

C
H

-N
M

O
U

R-A
P

P
R

O
A

C
H

-M

A
11

R
esponse

(s)
4
.29

(0
.17)

n/a
21

.10
(1

.04)
15

.82
(16.00)

4.29
(0

.19)
Tim

e
%

SL
O

(%
)

1
.01

n/a
20.11

1.83
1.00

V
iolations

A
12

R
esponse

(s)
4
.45

(0
.45)

n/a
24

.03
(1

.55)
5.12

(1.10)
4.76

(0
.90)

Tim
e

%
SL

O
(%

)
0
.86

n/a
19.61

1.21
0.94

V
iolations

A
21

R
esponse

(s)
2
.04

(0
.18)

n/a
10

.43
(0

.16)
2.05

(0.18)
2.04

(0
.18)

Tim
e

%
SL

O
(%

)
0
.89

n/a
8.19

0.91
0.89

V
iolations

A
22

R
esponse

(s)
1
.73

(0
.35)

n/a
10

.93
(0

.16)
1.81

(0.45)
1.74

(0
.36)

Tim
e

%
SL

O
(%

)
0
.36

n/a
9.90

0.36
0.36

V
iolations

A
31

R
esponse

(s)
1
.82

(0
.06)

n/a
15

.03
(1

.38)
1.82

(0.06)
1.82

(0
.06)

Tim
e

%
SL

O
(%

)
0
.67

n/a
13.59

0.67
0.67

V
iolations

A
32

R
esponse

(s)
1
.95

(0
.58)

n/a
15

.92
(2

.81)
1.77

(0.31)
1.96

(0
.61)

Tim
e

%
SL

O
(%

)
0
.62

n/a
15.07

0.74
0.64

V
iolations

U
ptim

e
(M

s)
0.97

n/a
1.17

0
.97

0.89

E
nergy

TotalJoules
(M

J)
327.46

n/a
355.89

326
.41

315.22
C

onsum
ption

W
asted

Joules
(M

J)
2.63

n/a
17.73

3.48
2.55

9.2. RESULTS AND DISCUSSION 167

Ta
bl

e
9.

10
:E

xp
er

im
en

ta
le

va
lu

at
io

n
–

R
es

ul
ts

fo
rt

he
S

-M
IX

sc
en

ar
io

in
th

e
M

M
-L

O
C

O
P

T
gr

ou
p.

A
pp

ro
ac

h
S

TA
T

IC
-S

L
O

S
TA

T
IC

-E
N

E
R

G
Y

S
TA

T
IC

-T
R

A
D

E
O

FF
O

U
R

-A
P

P
R

O
A

C
H

-N
M

O
U

R
-A

P
P

R
O

A
C

H
-M

A
11

R
es

po
ns

e
(s

)
1.

25
(0

.0
0)

n/
a

1.
54

(0
.0

2)
1.

25
(0

.0
0)

1.
25

(0
.0

0)
Ti

m
e

%
SL

O
(%

)
1.

08
n/

a
3.

12
1.

09
1.

09
V

io
la

tio
ns

A
12

R
es

po
ns

e
(s

)
1.

25
(0

.0
1)

n/
a

1.
69

(0
.0

1)
1.

26
(0

.0
1)

1.
26

(0
.0

1)
Ti

m
e

%
SL

O
(%

)
1.

03
n/

a
4.

38
1.

03
1.

03
V

io
la

tio
ns

A
21

R
es

po
ns

e
(s

)
2.

02
(0

.0
3)

n/
a

35
.2

8
(1

9.
60

)
2.

29
(0

.4
0)

2.
29

(0
.4

5)
Ti

m
e

%
SL

O
(%

)
0.

90
n/

a
20

.9
1

0.
95

0.
92

V
io

la
tio

ns

A
22

R
es

po
ns

e
(s

)
1.

76
(0

.1
9)

n/
a

16
.6

5
(2

.4
1)

1.
74

(0
.2

1)
1.

71
(0

.2
0)

Ti
m

e
%

SL
O

(%
)

0.
47

n/
a

15
.1

2
0.

46
0.

40
V

io
la

tio
ns

A
31

R
es

po
ns

e
(s

)
0.

59
(0

.0
3)

n/
a

0.
79

(0
.0

4)
0.

59
(0

.0
3)

0.
59

(0
.0

3)
Ti

m
e

%
SL

O
(%

)
0.

55
n/

a
2.

36
0.

56
0.

56
V

io
la

tio
ns

A
32

R
es

po
ns

e
(s

)
0.

61
(0

.0
2)

n/
a

0.
83

(0
.0

2)
0.

61
(0

.0
2)

0.
61

(0
.0

2)
Ti

m
e

%
SL

O
(%

)
0.

65
n/

a
2.

75
0.

66
0.

65
V

io
la

tio
ns

U
pt

im
e

(M
s)

0.
97

n/
a

0.
89

0.
97

0.
89

E
ne

rg
y

To
ta

lJ
ou

le
s

(M
J)

33
4.

05
n/

a
31

8.
72

33
3.

46
32

0.
01

C
on

su
m

pt
io

n
W

as
te

d
Jo

ul
es

(M
J)

2.
69

n/
a

25
.1

0
2.

73
2.

58

168 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

mean uptime of all the physical machines, where the uptime of a physical machine
is defined as the total time (from the beginning of each simulation replica) that
the physical machine has been powered on. This metric quantifies the efficiency
of a given approach in using the physical machines of the cloud infrastructure,
since lower “Uptime” values indicate the usage of a lower amount of physical
resource capacity to serve a given workload. The “Uptime” metric is expressed
in million of seconds (Ms). The row labeled by “Energy Consumption” reports
two energy-related metrics: the total energy consumed, on average, by the cloud
infrastructure (label “Total Joules”) and an estimate of the total consumed energy
that the cloud infrastructure spend, on average, to serve out-of-SLO requests (label
“Wasted Joules”). In particular, the “Wasted Joules” metric provides an indication
of how efficiently a given approach used physical resources of the cloud infras-
tructure in order to lower the number of SLO violations and, at the same time, to
reduce energy consumption; thus, the lower is its value, the better is the result.
Both metrics are expressed in MegaJoules (MJ).

By looking at the results reported in these tables, we can observe that only
in the S-DMPP and S-PMPP scenarios (see Table 9.7 and Table 9.8, respec-
tively), both variants of our approach always achieve a lower number of SLO
violations (with respect to the 1% threshold defined by SLO specifications). For
the other two scenarios, the OUR-APPROACH-M exhibits better performance than
OUR-APPROACH-NM. As a matter of fact, in the S-MMPP scenario, the OUR-
APPROACH-M achieves very good performance, while that of OUR-APPROACH-
NM are very poor since (1) there is a very high variability in the distribution of
response time (e.g., see application A11), and (2) the number of SLO violations ex-
ceeds the prescribed threshold of 1% (e.g., see applications A11 and A12). For what
concerns the S-MIX scenario, the performance obtained by OUR-APPROACH-M
is better than the one of OUR-APPROACH-NM, since, despite the two approaches
nearly exhibit the same results in term of SLO violations, the former also leads to
a better reduction of energy consumption.

With respect to the STATIC-ENERGY and STATIC-TRADEOFF approaches,
both variants of our approach are always able to outperform them. As a matter of
fact, with respect to these two approaches, our approach is able to satisfy SLOs
for a greater number of requests with a lower energy consumption and, more

9.2. RESULTS AND DISCUSSION 169

importantly, without resulting (most of the time) in any penalty to be paid by the
provider.

The comparison with the STATIC-SLO approach needs more study. Firstly,
with respect to our approach, the STATIC-SLO approach is always able to achieve
similar (and sometimes better) performance in terms of percentage of SLO viola-
tions. However, for all scenarios, such better behavior is not useful since it does
not provide any benefit to the IaaS cloud provider because of the greater amount
of consumed energy. This can be observed both from the “Total Energy” and the
“Wasted Energy” metrics. For instance, in the S-DMPP scenario, the STATIC-SLO
approach leads to an energy consumption which exceeds by nearly 6% (i.e., by
approximately 17.73 MJ) the one obtained with OUR-APPROACH-M. In this case,
a behavior like the one exhibited by OUR-APPROACH-M is more desirable, since,
on average, allows to save energy, while still keeping the number of SLO violations
under the prescribed threshold.

Finally, it is important to note that between the two variants of our approach
there is no a clear winner. In general, both of them are able to keep the number of
SLO violations low, while limiting the energy consumption. However, as already
observed for the MM-GREEDY experiments group (see Section 9.2.1), the OUR-
APPROACH-M variant is more effective in reducing the energy consumption and in
trying to achieve SLO constraints, especially in high-intensity workload scenarios
like S-MMPP (see Table 9.4).

9.2.3 Concluding Remarks

In this section, we study the efficacy of using VM migration and the behavior of
the two different implementations of the Migration Manager, with respect to the
experiments presented in the above sections.

Effectiveness of VMs Migration. From the results of the experiments just de-
scribed, we can conclude that the use of the Migration Manager (and thus of VM
migration) helps to keep the percentage of SLO violations under (or very nearly
to) the prescribed threshold of 1%, even under high-intensity bursty workloads
(e.g., like in the S-MMPP scenario of the MM-GREEDY group – see Table 9.5).

170 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Moreover, even when the resulting performance are comparable with the one ob-
tained without the Migration Manager, the use of the Migration Manager leads to a
better reduction of energy consumption (e.g., like in the S-PMPP scenario of the
MM-GREEDY group – see Table 9.4).

Greedy vs Local Optimization Implementation. From the results of the above
experiments, we can note that the behavior of both implementations is very similar.
However, we can try to perform a thorough comparison by observing the following
facts:

• S-DMPP scenario: for approximately the same percentage of SLO viola-
tions, the greedy implementation is able to lead to a slightly lower energy
consumption, thus resulting in a (slightly) lower waste of Joules.

• S-PMPP scenario: the performance of both implementations are rather
comparable, even if the local optimization implementation seems to be able
to slightly waste less Joules.

• S-MMPP scenario: the advantages brought by one implementation over
the other one are not so clear. On the hand, for the OUR-APPROACH-
NM approach, the greedy implementation performs better than the local
optimization one, since it is able to achieve a lower number of SLO violations
and, at the same time, to lead to a lower waste of Joules. On the other hand,
for the OUR-APPROACH-M approach, the local optimization implementation
shows better performance than the greedy one, since it is able to keep
the percentage of SLO violations under (or very nearly to) the prescribed
threshold and, at the same time, to lead to a lower waste of Joules.

• S-MIX scenario: the greedy implementation performs better than the local
optimization one, since it is able to always keep the percentage of SLO
violations under the predefined threshold and, at the same time, to lead to a
greater reduction of energy consumption.

From these facts, it results that, for the scenarios taken into consideration, the
greedy implementation performs better than the one based on local optimization.

9.2. RESULTS AND DISCUSSION 171

This can be ascribed to the way the objective function has been formulated. Indeed,
interestingly, the local optimization algorithm starts the search for the (local)
optimum just from the solution computed by the greedy algorithm. Since the
solution obtained by the local optimization method is never worse than the one
provided as initial starting point, this may mean that the objective function does
not capture all the required dynamics that allow to strive the joint goal of power
consumption minimization and performance optimization.

172 CHAPTER 9. PERFORMANCE EVALUATION WITH VM MIGRATION

Part IV

Conclusion

173

Chapter 10

Related Works

In this chapter, we provide an overview of recent research works that are related
to the contributions of this thesis. First, in Section 10.1, we present related works
about resource management in cloud infrastructures. Then, in Section 10.2, we
discuss works related to simulation of cloud systems.

10.1 Resource Management for Cloud Systems

In this section, we provide a brief state-of-the-art about dynamic performance-
and power-aware resource management in cloud infrastructures. Over last years,
many research works have arisen for dynamically managing physical resources
of a Cloud infrastructure in order to take into consideration performance targets
of hosted applications and power consumption of the infrastructure. However,
the majority of them deals with these aspects separately (e.g., see [33, 44, 127,
157, 156] and [123, 135, 165] for disjoint performance-aware and power-aware
resource management approaches, respectively). Only very recently, several works,
combining dynamic power- and performance-aware resource management, have
published in the literature (e.g., see [25, 70, 106, 158, 170, 167]).

The rest of this section is organized as follows. First, we provide an overview
of separate performance- and power-aware resource management. Finally, we
present recent works on joint performance- and power-aware resource management
of cloud infrastructures.

175

176 CHAPTER 10. RELATED WORKS

10.1.1 Performance-aware Resource Management

In this section, we present recent works aimed at satisfying application perfor-
mance constraints in cloud computing systems, without explicitly considering the
reduction of power consumption.

In [157, 156], the authors present a dynamic resource provisioning framework
that uses an analytical model for multi-tier Web applications to determine how
much resource to allocate to each application tier. The analytical model consists in
a closed queueing network model where each tier is represented by a G/G/1/PS
queueing station. The model is designed to handle session-based workloads and can
account for application characteristics such as replication at tiers, load imbalances
across replicas, caching effects, and concurrency limits at each tier. Resource
provisioning is implemented via a combination of predictive and reactive methods
that determine when to provision resources over both long- and short-time scales.
Predictive provisioning, employed for long-term decisions, is based on historical
data and is done by means of a statistical workload predictor that predicts (from
the tail of the arrival rate empirical distribution) the peak demand that will be
seen over a specific time period. The predicted peak arrival rate (one for each
application) is used together with the queueing network model to determine the
number of servers that should be allocated to each application tier in current
control period. Reactive provisioning, used to swiftly react to unexpected workload
demands at the short-time scale, compares the currently observed arrival rate with
the one predicted by the analytical model and, if the twos differ by more than a
threshold, corrective actions are taken. Model validation, performed by means of
an experimental prototype, consists in running two real applications and comparing
observed response times with the ones predicted by the model. Results indicate
that the proposed model is able to capture the performance of tested applications
under a number of workloads and configurations. There two key points that make
this work different from our solution. First, this work only handles average-based
performance indices, since it relies on steady-state queueing model estimation.
Instead, our solution can work with any performance index (like quantiles), and
hence can offer a wider and possibly more realistic applicability (e.g., SLOs are
usually expressed by means of threshold or quantile values). Second, reactive

10.1. RESOURCE MANAGEMENT FOR CLOUD SYSTEMS 177

provisioning in response to workload anomalies relies only on a user-defined
threshold parameter; this value may be hard to know in advance. Instead, our
solution is potentially able to work with any type of workload (like bursty workload)
since model parameters are estimated online. Finally, this work can suffer of limited
applicability in highly transient workload conditions since the model is accurate
only for systems in steady-state condition. Instead, our solution can also work with
system characterized by transient behavior.

In [127], the authors present a resource control system that automatically
adapts to dynamic workload changes to achieve application-level performance
constraints. The proposed solution is based on feedback control theory, and, specif-
ically, on a combination of an online model estimator and a two-layer MIMO
resource controller. The model estimator captures the complex relationships be-
tween application-level performance and resource allocations, by modeling them
with a MISO ARX model whose parameters are estimated online with the RLS
algorithm. The resource controller, based on the LQR control design, allocates the
right amount of multiple virtualized resources to achieve application performance
constraints. The first layer of the resource controller consists of a set of adaptive
feedback controllers that, by using the information gathered by model estimators,
automatically determine the amount of resources necessary to achieve individual
application performance. The second layer is comprised of a set of controllers
that detect resource bottlenecks on shared physical machines and properly allocate
multiple types of resources to individual application tiers. The work is evaluated
through experimental testbeds, and results show that it can detect and mitigate
CPU and disk I/O bottlenecks that occur over time and across multiple nodes by al-
locating each resource accordingly. Conceptually, this work is very similar to ours
for what concerns the Application and Physical Machine Manager components.
However there is one important difference. Since this work models input-output
relationships by a MISO model (which relates tier-level resource allocations to
the single application-level performance index), one may loose the possibility to
dynamically capture bottlenecks at tier-level; instead, in our solution this possibility
is preserved since we model such relationships with a MIMO model, which relates
tier-level resource allocations with tier-level performance index.

In [33], the authors provide a control framework for managing cloud infras-

178 CHAPTER 10. RELATED WORKS

tructure that uses statistical machine learning to predict system performance for
future configurations and workloads. The resource controller uses a statistical
performance model of the application to dynamically adjust the resource allocation
in response to changes in the workload. Such model is built by means of nonlinear
regression techniques based on splines (to avoid to select in advance the shape
of the nonlinear function) and LOESS regression [52, 53] (to capture nonlinear
relationships between workload and application-level performance). The optimal
control policy for the resource controller is found via a control policy simulator,
which uses the Pegasus policy search algorithm (to compare by simulation different
control policies), historical workload data (to predict spikes or usage patterns in
the workload), and a local search heuristic (to find those optimal parameter values
that minimize the total cost of running the application). The performance model is
dynamically adapted to changes via change-point detection techniques based on
statistical hypothesis testing. The control framework is evaluated by means of an
experimental prototype running a Web 2.0 benchmark application driven by work-
load traces on Amazon’s EC2 cloud. Preliminary results show that the proposed
solution is able to effectively control the number of servers, even in the face of
performance anomalies. Due to lack of details in the way each component of the
framework is implemented, it is hard to provide an accurate comparison of this
work with ours. For instance, there is no mention on how the resource controller is
implemented, and hence we are unable to know if it is able to support multi-tier
applications and how it determines resource allocations for each application tier.
Also, we do not know if this solution is able to support virtualized resources and,
if it does, how conflicting demands for a shared virtualized resource are arbitrated.

Finally, in [44], an optimal resource provisioning algorithm for medium- and
long-term resource reservation plan is proposed for minimizing resource provision-
ing cost in cloud computing environments. The work is motivated by the fact that,
in general, from the point of view of cloud consumer (like service providers), the
cost of utilizing computing resources provisioned by a reservation plan is cheaper
than that provisioned by an on-demand plan. The resource provisioning algorithm
is formulated as a stochastic integer programming model with multi-stage recourse
which considers multiple provisioning stages with resource demand and price
uncertainties. The solution methods to solve such optimization problem are based

10.1. RESOURCE MANAGEMENT FOR CLOUD SYSTEMS 179

on deterministic equivalent formulation [30], Benders decomposition [29] and
sample-average approximation [101] algorithms. Performance evaluation, carried
out by means of numerical studies, shows that, with the proposed algorithm, cloud
consumer can successfully minimize the total cost of resource provisioning in
cloud systems. Conceptually, this work is similar to our optimal initial placement
strategy and optimal migration controller, since both aim to provide an optimal
medium- to long-term placement of VMs. However, there are two key differences.
The first difference is in the type of mathematical programming model, since we
use a mixed-integer nonlinear programming model. The second difference is in the
perspective from which the optimization problem has been formulated; indeed, this
work focuses on the cloud consumer point-of-view (because the objective function
includes resource provisioning costs and demands) while our approach focuses on
both the service and infrastructure provider point-of-views (because the objective
function includes both resource utilization and power consumption).

10.1.2 Power-aware Resource Management

In this section, we present recent works aimed at reducing power consumption in
computing systems, but that are not necessarily subjected to application perfor-
mance constraints. It is important to note that, in these works, the achievement of
application performance (when considered) is not the primary goal, which instead
consists in minimizing the energy consumption induced by the computing systems.

In [123], the authors propose VirtualPower, an online power management
which integrates multiple independent power management mechanisms and policies
with virtualization technologies, by exploiting both hardware power scaling and
software-based methods for controlling the power consumption of underlying
platforms. The objectives of VirtualPower are (1) to support the isolated and
independent operation assumed by guest VMs running on virtualized platforms
and (2) to make it possible to control and globally coordinate the effects of the
diverse power management policies applied by these VMs to virtualized resources.

To attain these goals, VirtualPower extends to guest VMs virtualized (“soft”)
versions of the hardware power states for which power management policies are
designed; these “soft” states create an abstraction that allows guest VMs (1) to

180 CHAPTER 10. RELATED WORKS

run their own power management methods, regardless of the underlying hardware
power management support (like processor frequency scaling), and (2) to have a
consistent view of hardware management capabilities, regardless of the underlying
set of physical resources. Such “soft” power states are interpreted as “hints” to be
passed to localized power management and/or global policies (e.g., VM migration),
thus enabling a sort of coordination between VM-level and hardware-level power
management system. VirtualPower captures these “soft” states by intercepting
(inside the VM hypervisor) power state change events, issued by each independent
VM-level power management system via privileged actions (e.g., via the virtual
ACPI interface).

VirtualPower uses state changes requested by VMs as inputs to virtualization-
level management policies and maps actual power management actions to rules
provided by hardware vendors and/or system administrators. These rules are based
on a rich set of underlying virtual power management mechanisms that provide
a uniform basis for implementing management methods across heterogeneous
hardware platforms. Such methods include both local policies, to efficiently use
specific platforms and their power management capabilities, and global policies,
that consider goals derived from entire applications running across multiple ma-
chines and/or derived from global constraints, such as cluster-level power budget.
Experimental evaluation is based on a real implementation of VirtualPower with
the Xen hypervisor. Results show that VirtulPower is able (1) to considerably
improve the active power consumption of underlying computing platforms, (2) to
perform QoS-aware power throttling, and (3) to exploit the consolidation capabili-
ties inherent in modern multi-core platforms.

With respect to this work, our solution takes a different approach on power
management. Specifically, we ignore any power state change directly issued by
a guest VM and concentrate on power management at the underlying hosting
virtualized resource. This choice is primarily motivated by the fact that (1) we
consider full system power consumption and (2) power consumption induced by a
specific VM could be in principle inferred by the related resource utilization (e.g.,
as shown in [142]). Nevertheless, the integration of this work in our framework
can potentially improve the reduction of power consumption since it can bring
information that is not always possible to obtain from the hypervisor (such as

10.1. RESOURCE MANAGEMENT FOR CLOUD SYSTEMS 181

idleness detection of the virtual CPU in a specific guest VM).

In [135], the authors present an integrated solution for peak and average power
management that is able to coordinate different individual software and hardware
approaches. The work leverages a mechanism to federate multiple power man-
agement solutions and builds on a control-theoretic approach to unify solutions
for tracking, capping, and optimization problems, with minimal interfaces across
controllers. Experimental evaluation is carried out by means of trace-driven simula-
tion, with traces coming from real-world enterprises. Results demonstrate that the
proposed solution is “correct” (i.e., no excessive power budget violations), stable
(i.e., no large oscillations), and efficient (i.e., it is able to obtain good trade-offs
between power and performance). With respect to this work, our approach do
not take into consideration neither power budget nor the coordination of different
power management policies. Power budget can be easily integrated in our Resource
Manager component (and, in particular, in the Migration Manager), while the coor-
dination of different power management policies can be considered as future work
since it can potentially allow a finer reduction of overall power consumption.

Finally, in [165], the authors present pMapper, a power-aware application
placement framework for heterogeneous virtualized computing systems. The
central intelligence of pMapper lies inside the Arbitrator component which ensures
consistency among soft, hard, and consolidation actions. The Arbitrator consists
of a power-aware application placement strategy and algorithm. The application
placement strategy is formulated as a cost minimization problem under performance
constraints and computes the best VM placement, while the application placement
algorithm is implemented as a dynamic placement controller which applies the
solution of the aforesaid strategy. The authors evaluates three strategies: (1) mPP
which is designed to only minimize power cost and uses a first-fit decreasing
heuristic (a local search algorithm traditionally used to solve bin packing problems)
to relate VMs to physical servers, (2) mPPH which essentially is identical to
mPP but applies the first-fit decreasing heuristic incrementally in order to reduce
migration costs by migrating as few VMs as possible, and (3) pMaP which uses
mPPH and aims to find an allocation that minimizes the aggregated power and
migration cost. The authors also proposes a variant of pMaP, named pMaP+, which
is particularly suitable for high load intensities. Performance evaluation is carried

182 CHAPTER 10. RELATED WORKS

out on a real prototype, by interfacing pMapper with existing commercial workload
and power managers. Experiments compare the proposed application placement
strategies with others that are traditionally adopted, namely Load Balanced (where
the VM placement is done in a way that the load is balanced across all the physical
servers) and Static (where the VM placement that minimizes the power is computed
by taking into account long-term history). Results show that pMapper with pMaP
and pMaP+ (and, partially, also with mPPH) strategies is always able to outperform
both Load Balanced and Static strategies. The proposed solution can be used to
complement our initial and incremental VM placement strategies. In particular,
we can use either mPPH, pMaP or pMaP+ to provide our solution an alternative
incremental VM placement strategy.

10.1.3 Integrated Power-aware and Performance-aware Resource
Management

In order to achieve a good trade-off between energy consumption reduction and
SLA achievement, the resource manager of a cloud system should take into consid-
eration both the energy consumed by the system and the performance of hosted
services. In the rest of this section, we present some of recent advances on this
topic and we compare them with our proposed solution.

In [158], a two-level resource manager is proposed, which combines a utility-
based approach to constraint programming for dynamic VM provisioning and
placement. Specifically, the dynamic VM provisioning process aims at maximizing
a global utility function which captures both application performance and energy
consumption; the utility maximization problem is formulated as a constraint sat-
isfaction problem (and, specifically, as a multi-choice knapsack problem), where
constraints represent bounds over resource capacities. The dynamic VM placement
process aims at consolidating VMs on the minimum number of physical servers
through VM live migration so that idle servers can be turned off to save energy.
It tries to achieve this goal by taking as input the solution computed by the VM
provisioning problem and formulating a constraint satisfaction problem (with con-
straints on resource capacities) for maximizing the number of idle physical servers
that can be turned off. Performance evaluation is done through experiments on a

10.1. RESOURCE MANAGEMENT FOR CLOUD SYSTEMS 183

real testbed. Results show the flexibility of the framework in reaching different
trade-offs between application performance and energy consumption, and in ar-
bitrating resource allocations in case of contention. This work differs from ours
mainly in that (1) the architecture of the framework is not decentralized since both
the VM provisioning and placement problems need a global view of the computing
system state, (2) performance metrics are estimated offline by a queueing network
model which, thus makes this work unable to adapt to time-varying workloads.
In contrast, our approach (1) is based on a decentralized and time-hierarchical
architecture, and (2) is able to adapt to time-varying workloads by using online
model estimation.

In [25], a time-hierarchical and decentralized resource allocation framework
for multi-tier applications is presented, which is able to dynamically place VMs
and to turn on or off physical machines when needed, while preserving application
SLAs. The proposed solution addresses the resource management problem as a
unifying framework, by exploiting as actuation mechanisms both the allocation
of VMs to servers, load balancing, capacity allocation, server power state tuning,
and DVFS. The resource management problem is formulated as a mixed integer
nonlinear programming problem, where the objective function includes revenues
and penalties incurred on the achieved level of performance and the energy costs
associated with the use of physical servers; since the problem is NP-hard, it is
solved by means of a local search heuristic procedure. To validate its effective-
ness, the proposed model is compared to state-of-the-art resource management
techniques. The evaluation is based both on simulation and on real experiments
performed in a prototype environment. Synthetic as well as realistic workloads
and a number of different scenarios of interest are considered. Results show that
the proposed solution is able to yield significant revenue gains for the provider
when compared to alternative methods. Moreover, it is robust to service time and
workload variations. Besides of the conceptual similarity with our framework,
this work mainly differs from ours for the approach taken to minimize power
consumption and SLO violations, which, in this case, consists in a utility-based
approach combined to mixed integer nonlinear programming (while ours combines
mixed-integer nonlinear programming with control theoretic techniques).

In [70], a combined predictive and reactive provisioning technique is proposed,

184 CHAPTER 10. RELATED WORKS

where the predictive component estimates the needed fraction of capacity according
to historical workload traces analysis, while the reactive component is used to
handle workload excess with respect to the analyzed one. The proposed approach
works at different time scales; in particular, predictive control provisions the esti-
mated “base” (regular) workload at coarse time scales (e.g., hours), while reactive
control handles any excess demand at finer time scales (e.g., minutes). Workload
forecasting is done by means of periodicity analysis (to find the periodogram of his-
torical data) and workload discretization based on dynamic programming (to find
disjoint time intervals, representing specific behavioral patterns, that minimizes the
deviation of represented workload demand from the actual one). Predictive control
is driven by a queueing performance model which is used to determine how much
capacity has to be allocated (with respect to the forecast demand) to ensure that
SLA requirements are met, and, at the same time, to avoid to consume too much
power. Reactive control is based on a feedback approach with fixed monitoring
interval. Performance evaluation is based on both trace-based analysis (with traces
coming from real systems) and on experiments performed on a real testbed. Re-
sults show that the proposed approach is able to meet SLA requirements, is more
power efficient than existing approaches, and avoids unnecessary provisioning
changes. Unlike this work, our solution, by means of online system identification,
is potentially able to work with any type of workload without any prior knowledge.
Furthermore, our solution is able to work with multi-tier applications and can
leverage virtualization technologies for resource provisioning.

In [167], a two-levels control architecture for coordinating power and perfor-
mance management in virtualized computing systems is proposed. The outermost
layer includes cluster-level power control loops which change hardware power
states of each server in the cluster (by means of DVFS) with no regard to the
application-level performance. The design of power controllers is based on the
MPC theory, a control design method which is able to work with MIMO control
problems with constraints (but that, in general, provides suboptimal control deci-
sions). The innermost layer consists of a series of performance control loops, one
for every VM, each of which trying to achieve the desired application performance
(in this case, the application-level response time), even when the system model
varies significantly due to the impact of power control actions. The design of

10.1. RESOURCE MANAGEMENT FOR CLOUD SYSTEMS 185

performance controllers is based on offline system identification (by means of
the least-squares method) and on PID control. Empirical results on a real testbed
show that the proposed solution can simultaneously provide effective control on
both application-level performance and underlying power consumption. Unlike
our framework, the achievement of performance targets is always subjected to the
reduction of power consumption; conversely, in our framework, the reduction of
power consumption is integrated with the achievement of application performance
targets. Moreover, our approach is able to work with multi-tier applications and to
leverage virtualization technologies for driving server consolidation and reducing
power consumption. Furthermore, our work uses online system identification,
which can potentially cover a wider range of time-varying workloads.

In [106], an online resource provisioning framework is proposed for combined
power and performance management in a virtualized computing environment serv-
ing session-based workloads. The resource management problem is formulated as
a sequential multi-objective optimization problem under uncertainty and is solved
using limited lookahead control, which is a form of MPC. The approach accounts
for the switching and opportunity costs incurred when provisioning VMs or turning
on or off physical servers, and explicitly encodes the risk of provisioning resources
in an uncertain and dynamic operating environment. Performance evaluation is
done through experiments on a real testbed. Results indicate that the proposed
solution is able, on average, to significantly save power consumption costs over a
given period, when compared to a system operating without dynamic control. The
key difference between this work and our approach is in the type of the architectural
design adopted. As a matter of fact, this work uses a centralized architecture, while
our framework has a decentralized architecture which makes it potentially more
scalable. It is important to note that authors also show, via trace-driven simula-
tion, that the computational burden caused by the centralized architecture can be
reduced by using a feed-forward neural network (trained to learn tendencies of the
controller in terms of decision making) as a mean to obtain run-time approximate
control decisions; with this adjustment, authors demonstrate that the proposed
solution is potentially able to scale to large systems while still preserving good
performance, similar to the one obtained with the baseline implementation (i.e.,
the one without the neural network). Unfortunately, the lack of details about this

186 CHAPTER 10. RELATED WORKS

modification makes us unable to perform any sort of comparison.

Finally, in [170], a two-layers hierarchical control approach is used for tackling
the resource provisioning problem for multi-tier Web applications. Specifically, in
the outermost layer, an application controller (one for each multi-tier application)
determines the total budget of CPU resources that are required for the application to
meet SLA requirements (expressed in terms of end-to-end response time threshold)
as the workload varies. The application controller uses an ARX model to represent
relationships between CPU shares and end-to-end application response time, with
parameters estimated offline using a least-squares method; moreover, the controller
is designed as a Proportional-Integral controller, with parameters estimated offline
by means of the Root-Locus method. In the innermost layer, an optimal resource
partition controller allocates the per application total CPU resource (provided by
the outermost level) to the different application tiers, given a specific end-to-end
application response time threshold. The optimal (minimal) CPU resource enti-
tlement for each tier is computed by relating the end-to-end application response
time to CPU utilization; such relationship is found by modeling the multi-tier
application as a tandem queueing network, where each tier is represented by an
M/G/1/PS queueing station. Performance evaluation is done through experiments,
by running a real application subjected to three different workload models (open,
closed, and semi-open). Results indicate that, with respect to previous works, (1)
fewer resources are provisioned to the applications to achieve the same perfor-
mance, and (2) the proposed approach is robust enough to address various types
of workloads with time-varying resource demand without reconfiguration. Even
though this work shares some architectural similarity with our framework, there are
two important differences; the first difference regards the way ARX parameters are
computed (i.e., through offline system identification, in this work, and by means
of online identification, in our solution), while the second one is about the way
CPU shares are assigned to application tiers (which is not well suited for situations
where tiers of different applications are hosted on the same physical machine).

10.2. CLOUD COMPUTING SYSTEM SIMULATORS 187

10.2 Cloud Computing System Simulators

In this section, we present some recently proposed simulation tool suitable to cloud
computing systems, and compare them with DESEC, the simulator we developed
for this thesis (see Chapter 7).

In [39, 41], the authors propose CloudSim, an extensible simulation toolkit
written in Java, that enables modeling and simulation of cloud computing sys-
tems and application provisioning environments. The CloudSim toolkit supports
modeling and simulation of different cloud computing system components, in-
cluding data centers, VMs, service brokers, resource allocation and provisioning
policies, and also network connections among the simulated system components.
It implements generic application provisioning techniques that can be extended
with ease and limited effort. It also supports modeling and simulation of cloud
computing environments consisting of inter-networked (federated) clouds. From
the point-of-view of users, CloudSim provide following advantages: (1) availability
of a virtualization engine (that helps in the creation and management of multiple,
independent, and co-hosted virtualized services on a data center node), and (2)
flexibility (to switch between space-shared and time-shared allocation of process-
ing cores to virtualized services). Instead, from the point-of-view of developers,
CloudSim brings following benefits: (1) extensibility (obtained by exposing cus-
tomer interfaces for implementing policies and provisioning techniques to allocate
VMs in – possibly inter-networked – cloud computing environments), and (2)
time effectiveness (since developers can model and test the performance of their
application services in heterogeneous cloud environments with little programming
and deployment effort). The usefulness of CloudSim is demonstrated by a case
study involving dynamic provisioning of application services in a hybrid feder-
ated clouds environment. There are several differences between CloudSim and
DESEC. For instance, on one hand, CloudSim does not provide built-in facilities
for simulating cloud system at the service provider level, but only ones at the
infrastructure provider level; conversely, DESEC provides several abstractions
(like multi-tier applications) and facilities (like workload models, and application
performance and simulation models). Moreover, CloudSim does not provide any
output analysis method since the simulation consists in a single long run; instead,

188 CHAPTER 10. RELATED WORKS

DESEC provides different output analysis methods (e.g., independent replications
and batch means), several type of statistical estimators (e.g., average and order
statistics) and various simulation terminating condition strategies (e.g., relative
precision of output statistic confidence intervals). Furthermore, CloudSim is an
ad-hoc simulator for cloud computing systems; instead, the core of DESEC is a
general-purpose discrete-event simulator which can be used and extended sepa-
rately. On the other hand, DESEC still lacks of important features provided by
CloudSim, like the possibility of modeling and simulating federated clouds.

In [102], the authors present GreenCloud, a simulation environment for energy-
aware cloud computing data centers written in C++ and TCL. Along with the
workload distribution, GreenCloud is designed to capture details of the energy
consumed by data center components (e.g., servers, switches, and links) as well as
packet-level communication patterns in realistic setups. GreenCloud is developed
as an extension of a packet-level discrete-event network simulator ns-2. The simu-
lation results obtained for two-tier, three-tier, and three-tier high-speed data center
architectures demonstrate the effectiveness of the simulator in utilizing power
management schema, such as voltage scaling, frequency scaling, and dynamic shut-
down that are applied to the computing and networking components. GreenCloud
and our DESEC simulators have a different target. Specifically, GreenCloud is
particularly indicated to advanced low-level energy-aware studies of cloud com-
puting systems in realistic setups, while DESEC is better suited to study resource
management strategies for cloud computing systems.

In [80], the authors present the Green Data Center Simulator (GDCSim), a
simulation tool that unifies existing techniques to green data center management
and allows holistic physical data center design and analysis before deployment.
Specifically, GDCSim allows to analyze data center energy efficiency by studying
and testing: (1) different data center geometries, (2) workload characteristics, (3)
platform power management schemes, (4) scheduling algorithms, and (5) data
center configurations. Features of GDCSim include: (1) automated processing
(which allows interfacing different modules together and does not require user
intervention once the simulation has started), (2) online analysis capability (which
allows real time simulation of management decisions based on changes in the phys-
ical environment in the data center), (3) iterative design analysis (which enables

10.2. CLOUD COMPUTING SYSTEM SIMULATORS 189

design time testing and analysis of different configurations before deployment),
(4) thermal analysis capability (which characterizes the thermal effects within the
data center room), (5) workload and power management (which enables workload
scheduling and controlling the power modes of servers for higher data center effi-
ciencies), and (6) consideration of cyber-physical interdependency (which enables
feedback of information on temperature and air flow patterns in the data center
to the management algorithms and the closed loop operation of the servers and
cooling units to achieve energy efficient operation). The functionality of GDCSim
is demonstrated by two case studies with two different data center layout and
workload types. GDCSim and our DESEC simulator have different targets. In
particular, DESEC can be used to study different power- and performance-aware
resource management schemes, while GDCSim is especially indicated to study the
design of green data centers.

Finally, in [85], a large-scale computing infrastructure simulator is proposed,
in order to evaluate the impact of “what-if” scenarios on performance, availability
and reliability of the system. The main goal is to provide data center operators a
tool that allows understanding and predicting the consequences of the deployment
of new network topologies, hardware configurations or software applications in
a global computing infrastructure, without affecting hosted services. The sim-
ulator is implemented as a multi-agent system, using a multi-layered approach
formed by components and operations. Components are stateful autonomous
agents that represent computing infrastructure elements at various granularities
(e.g., servers and network device) and interact with each other through message
exchange. Operations define interactions between components (e.g., login to a
server). The simulator takes as input the workload specification of each application,
the resources allocated by individual user requests, the network topology of the
organization, the hardware configuration deployed in each data center and details
on background processes. Using this information, the simulator produces (by
means of queueing network models modeling the behaviour of low-level devices)
estimates of the response time for each user request, along with measurements
of the resource allocation and network utilization, so as to facilitate optimization
goals for data center operators. The simulator is validated using data gathered from
different applications running together on a downscaled version of a real enterprise

190 CHAPTER 10. RELATED WORKS

data center. Moreover, the usefulness of the simulator is demonstrated by analyzing
a case study of the same enterprise aiming to reduce costs by cutting down the
number of data centers, while keeping the same quality of service. The simulator
proposed in this work has the advantage to potentially provide a very low-level of
abstraction, thus allowing a very precise and realistic simulation of a real system
(possibly at the expense of extensibility and usability). Conversely, our DESEC
simulator works at a higher level of abstraction, by replacing many low-level details
with few high-level models, thus enabling extensibility and usability.

Chapter 11

Conclusions and Future Work

In this chapter, we provide a summary of the work presented in this thesis and then
we present possible future works.

Cloud computing is an emerging computing paradigm which is gaining pop-
ularity in IT industry for its appealing property of considering “Everything as a
Service”.

In this thesis, we tackled the problem of efficiency managing computing re-
sources of a cloud infrastructure under service performance constraints.

The goal of a cloud infrastructure provider is to maximize its profit by mini-
mizing the amount of violations of Quality-of-Service levels (SLOs) agreed with
service providers, and, at the same time, by lowering infrastructure costs (TCO).
Among these costs, the energy consumption induced by the cloud infrastructure,
for running cloud services, plays a primary role.

Unfortunately, the minimization of SLO violations and, at the same time, the
reduction of energy consumption is a conflicting and challenging problem since, in
general:

• the higher is the amount of resources provisioned to hosted services, the
better are their performance, but the higher is the energy consumption spent
to run such services, and, conversely

• the lower is the amount of resources provisioned to hosted service, the lower
is the energy consumed by the cloud infrastructure, but the higher is the
chance to incur in SLO violations.

191

192 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

In this thesis, we provided two contributions in order to pursue this goal:

• we proposed a framework to automatically manage computing resources of
cloud infrastructures in order to simultaneously preserve SLO constraints
and to reduce as much as possible the amount of energy used for providing
services, and evaluated its performance by means of an exhaustive simulation
study, and

• we implemented an ad-hoc discrete-event simulator in C++, which we used
to evaluate the proposed framework.

Our resource management framework consists of a decentralized and time-
hierarchical architecture, where different types of components, namely the Applica-
tion Manager, the Physical Machine Manager and the Migration Manager, operate
independently from each other and at different time scales.

To design the resource management framework, we used techniques based on
adaptive and optimal feedback control theory and mathematical optimization.

By means of simulation, we showed that, compared to traditional static ap-
proaches, our work is able to dynamically adapt to time-varying workloads (without
any prior knowledge) and, at the same time, to reduce both SLO violations and
energy consumption.

In particular, results showed that our approach was almost always able to
outperform traditional approaches based on static resource allocation, because of
the dynamic modulation of VMs resource shares according to current working
conditions. The only static approach that sometimes obtained better performance
than ours, is STATIC-SLO, which however is an unrealistic approach, based on
resource over-provisioning, that can be used only when enough prior knowledge
about the dynamics of the services (hosted by the cloud infrastructure) is known.

We also evaluated the effectiveness of using VM migration by means of the
Migration Manager. From the results, we observed that the use of the Migration
Manager component (and hence of VM migration) is really effective especially
in the presence of high-intensity and bursty workloads, which may cause sev-
eral resource demand conflicts among the various VMs deployed on the cloud
infrastructure(e.g., see the S-MMPP scenario).

193

A possible limitation of our framework is related to the number of configuration
parameters that needs to be manually specified. Indeed, for most of them, it is
necessary to perform trial-and-error experiments in order to find those values
that better suit to the system under study. It is worth noting that, in part, this
problem has already been solved by means of specific techniques, like online
system identification. However, still there are different components that needs to
be tuned by means of offline experiments (e.g, for the Application Manager, the
weighting matrices of the LQ control design have to be specified).

Regarding possible future works, there are some interesting activity that can be
carried on.

First, we would like to improve the Migration Manager, for instance by studying
a different objective function or evaluating different predictors, others than the
EWMA filters, for estimating resource share demands and utilizations.

In addition, we want to investigate different types of control design to use
for the Application Manager. In particular, we are interested in the evaluation of
minimum-variance controllers [137, 51], in order to reduce possible oscillations
around the control set-point, and Model Predictive Control design [42, 115], to
explicitly constraints control inputs (i.e., resource shares) during the computation
of the optimal control sequence.

Then, we want to simplify our framework in order to reduce the number of
configuration parameters that needs to be manually specified.

Also, we plan to extend our framework to consider federation of cloud infras-
tructures. Cloud federations are useful to realize, for instance, the practice known
as cloud bursting, whereby a service bursts into a different cloud infrastructure
to use its physical resources (e.g., either because of economical motivation, the
capacity of the original infrastructure is reached, or the computing capacity spikes).
To this end, we plan to introduce a new Resource Negotiator component, which is
responsible to negotiate physical resources among different cloud infrastructures.

Another possible future work is the integration of our framework with existing
green (power-aware) networking strategies; as a matter of fact, the lack of coor-
dination among the computing and networking “green” strategies could bring in
practice to suboptimal results because of conflicting decisions.

Finally, we plan to integrate our framework into a real testbed.

194 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

Part V

Appendices

195

Appendix A

z-transform

The z-transform provides a way to represent a discrete-time signal as polynomial
in z.

In this chapter, we provide an overview of basic notions and properties of the
z-transform. For more information, the interested reader can refer to several books
on systems and control theory, like [69, 84, 146].

In the rest of this chapter, we denote with {x(k)}, for k ∈ S, a real-valued
sequence indexed by a countable set S (typically, S = Z or S = N), while we denote
with x(·) the function (signal) generating such sequence.

A.1 Basic Definitions

Definition A.1.1 (Bilateral z-transform). The bilateral z-transform X(z) of a real-
valued sequence time-domain signal x(·) is defined as:

X(z) , Z {x(k)}

, ∑
k∈Z

x(k)z−k, z ∈ C (A.1)

Definition A.1.2 (Unilateral z-transform). The unilateral z-transform X(z) of a

197

198 APPENDIX A. Z-TRANSFORM

generic discrete-time signal x(·) is defined as:

X(z) , Z {x(k)}

, ∑
k∈N

x(k)z−k, z ∈ C (A.2)

If the rate of increase in the terms of sequence {x(k)} is no greater than that
of some geometric series as k approaches infinity, then {x(k)} is said to be of
exponential order. In this case, there exists a real number r, called the radius of

convergence, such that the z-transform X(z) of {x(k)} converges for |z|> r. If r is
finite, the signal x(·) is called z-transformable.

Since the z-transform is an infinite power series, it exists only for those values
of the variable z for which the series converges to a finite sum. The region of

convergence (ROC) of X(z) is the set of all the values of z for which X(z) attains a
finite computable value.

Definition A.1.3 (Region of Convergence). The region of convergence (ROC)
is the set of points in the complex plane for which the z-transform summation
converges; that is:

ROC ,

{
z :
∣∣∣∣ ∞

∑
n=−∞

x(k)z−k
∣∣∣∣< ∞

}
(A.3)

The inverse z-transform represents a time-domain sequence of a z-transform.
The formal definition of the inverse z-transform is stated in terms of a counter
integral in the z-plane.

Definition A.1.4 (Inverse z-transform). The inverse z-transform is defined as:

x(k) , Z −1{X(z)}

,
1

2π j

∮
C

X(z)zk−1 dz
(A.4)

where C is a counterclockwise closed path encircling the origin and entirely in the
ROC.

The contour (or path) C must encircle all of the poles of X(z). A special case
of this contour integral occurs when C is the unit circle. In this case, the inverse

A.2. BASIC PROPERTIES 199

z-transform simplifies to the inverse discrete-time Fourier transform:

x(k) =
1

2π

∫ +π

−π

X(e jω)e jωkdω (A.5)

There are other more practical way to obtain the inverse z-transform. A com-
mon method, known as the inspection method corresponds to utilizing the fact
that simple z-transforms and the sequences that generate them are recognizable
by inspection. An extension of this method, known as the partial expansion

method, consists of expanding a more complicated z-transform in a partial fraction
expansion and then recognizing the sequences that correspond to the individual
terms.

A.2 Basic Properties

Definition A.2.1 (Linearity). Given two signals x1(·) and x2(·), the linearity prop-
erty implies that for any linear combination of x1(·) and x2(·) we have:

Z {a1x1(k)+a2x2(k)}, a1X1(z)+a2X2(z), a1,a2 ∈ R (A.6)

where Xi(Z) , Z {xi(k)}, for i = 1,2.

The Eq. (A.6) is known as the superposition principle.

Definition A.2.2 (Time Shifting). Given a signal x(·), the time shifting property
implies that:

Z {x(k−m)}, z−mZ {x(k)} (A.7)

Definition A.2.3 (Convolution). Given two signals x1(·) and x2(·), the convolution

property states that:

Z
{(

x1(k)? x2(k)
)}

, X1(z)X2(z) (A.8)

where Xi(Z) , Z {xi(k)}, for i = 1,2.

that is the convolution of two signals in the time domain is equivalent to
multiplication of their z-transforms and vice versa.

200 APPENDIX A. Z-TRANSFORM

Appendix B

Mixed-Integer Nonlinear
Programming

Mixed-Integer NonLinear Programs (MINLPs) are optimization problems where
some of the variables are constrained to take integer values and the objective and
feasible region of the problem are described by nonlinear function [67, 110].

The general form of a MINLP is

minimize f (x,y)

subject to g j(x,y)≤ 0, j ∈ J

x ∈ X , X ⊆ Rn

y ∈ Y, Y ⊆ Zm

(B.1)

The function f (x,y) : X×Y →R is a nonlinear objective function and g j(x,y) : X×
Y →R a nonlinear constraint function. Both functions are sufficiently smooth. The
variables x and y are the decision variables, where y is required to be integer valued.
X and Y are bounding-box-type restrictions on the variables (e.g., αi ≤ xi ≤ βi).
If both f and g j, for every j ∈ J, are convex functions 1, the problem Eq. (B.1) is
called a convex MINLP problem.

1A set C is said to be convex if, for all x and y in C and all t in the interval [0,1], the point
(1− t)x+ ty is in C. In other words, every point on the line segment connecting x and y is in C. A
real-valued function f : X → R defined on a convex set X in a vector space is called convex if, for
every two points x and y in X and every t ∈ [0,1], it results f (tx+(1− t)y)≤ t f (x)+(1− t) f (y).

201

202 APPENDIX B. MIXED-INTEGER NONLINEAR PROGRAMMING

MINLP problems are known to be NP-hard, and some of them are even unde-
cidable [71, 92]. The class of convex MINLP is NP-hard as well. Nevertheless,
many efficient solution techniques for convex MINLP have been proposed in the
scientific literature [36].

Several MINLP methods have been proposed over the past few decades (e.g.,
see [22, 56, 59, 72, 79, 100, 111, 148, 151]).

The basic concept underlying algorithms for solving MINLP problems is to
generate and refine bounds on its optimal solution value. Lower bounds are
generated by solving a relaxation of the MINLP problem (usually referred to as
RMINLP), and upper bounds are provided by the value of a feasible solution to
the MINLP problem. Algorithms differ in the manner in which these bounds
are generated and the sequence of subproblems that are solved to generate these
bounds.

Bibliography

[1] Amazon elastic compute cloud (EC2). Available: http://aws.amazon.

com/ec2.

[2] Amazon simple storage service (S3). Available: http://aws.amazon.

com/s3.

[3] Amazon Web Services. Available: http://aws.amazon.com.

[4] Boost C++ Libraries. Available: http:www.boost.org.

[5] General algebraic modeling system (GAMS). Available: http://www.

gams.com.

[6] Google AppEngine: Run your web apps on Google’s infrastructure. Avail-
able: http://code.google.com/appengine/.

[7] Google Apps. Available: http://www.google.com/apps.

[8] IBM Smart Cloud. Available: http://www.ibm.com/cloud-computing.

[9] JTC1/SC22/WG21 - The C++ Standards Committee. http://www.

open-std.org/jtc1/sc22/wg21/.

[10] Linear algebra package (lapack). Available: http://www.netlib.org/
lapack/.

[11] Microsoft connected service framework (CSF). Available:
http://www.microsoft.com/serviceproviders/solutions/

connectedservicesframework.mspx.

203

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://aws.amazon.com
http:www.boost.org
http://www.gams.com
http://www.gams.com
http://code.google.com/appengine/
http://www.google.com/apps
http://www.ibm.com/cloud-computing
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.microsoft.com/serviceproviders/solutions/connectedservicesframework.mspx
http://www.microsoft.com/serviceproviders/solutions/connectedservicesframework.mspx

204 BIBLIOGRAPHY

[12] Microsoft Windows Azure platform. Available: http://www.microsoft.
com/windowsazure.

[13] Salesforce.com. Available: http://www.salesforce.com.

[14] Simple branch & bound (sbb). Available: http://www.gams.com/dd/

docs/solvers/sbb.pdf. User Manual.

[15] SPECpower_ssj2008 benchmark. Available: http://www.spec.org/

power_ssj2008.

[16] Hal Abelson, editor. Architects of the Information Society, Thirty-Five Years

of the Laboratory for Computer Science at MIT. MIT Press, 1999.

[17] R. Adair, R. U. Bayles, L. W. Comcau, and R. J. Creasy. A virtual machine
system for the 360/40. Technical Report C320-2007, IBM Cambridge
Scietific Center, May 1966.

[18] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. CHAOS: An

Introduction to Dynamical Systems. Springer-Verlag, New York, 1997.

[19] Daniel Alpay, Joseph A. Ball, and Yossi Peretz. System theory, operator
models and scattering: the time-varying case. Journal of Operator Theory,
47(2):245–286, 2002.

[20] AMD. AMD64 virtualization codenamed “Pacifica” technology: Secure
virtual machine architecture reference manual. Manual 33047 – Rev. 3.01,
AMD, May 2005.

[21] Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, 3rd edition.

[22] I.P. Androulakis, C.D. Maranas, and C.A. Floudas. al phaBB: A global
optimization method for general constrained nonconvex problems. Journal

of Global Optimization, 7(4):337–363, 1995.

http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://www.salesforce.com
http://www.gams.com/dd/docs/solvers/sbb.pdf
http://www.gams.com/dd/docs/solvers/sbb.pdf
http://www.spec.org/power_ssj2008
http://www.spec.org/power_ssj2008

BIBLIOGRAPHY 205

[23] Kiam Heong Ang, Gregory Chong, and Yun Li. PID control system analysis,
design, and technology. IEEE Transactions on Control Systems Technology,
13(4):559–576, 2005.

[24] Panos J. Antsaklis and Anthony N. Michel. Linear Systems. Birhaüser,
Boston, 2006.

[25] Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang. Energy-
aware autonomic resource allocation in multi-tier virtualized environments.
IEEE Transactions on Services Computing, 99(PrePrints), 2010.

[26] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and MateiZaharia. Above the Clouds: A Berkeley
view of Cloud computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[27] Jr. Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control: Optimization,

Estimation, and Control. Taylor & Francis, revised edition, 1975.

[28] Jerry Banks, John S. Carson, II, Barry L. Nelson, and David M. Nicol.
Discrete-Event System Simulation. Prentice Hall, 5th edition, 2010.

[29] Jacques F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4(1):238–252, 1962.

[30] John R. Birge and François Louveaux. Introduction to Stochastic Program-

ming. Springer Science+Business Media, LLC, 2nd edition, 2011.

[31] S. Bittanti, P. Bolzern, and M. Campi. Exponential convergence of a modi-
fied directional forgetting identification algorithm. System Control Letter,
14:131–137, 1990.

[32] Peter Bloomfield. Fourier analysis of time series: An introduction. Wiley-
Interscience, 2nd edition, 2000.

[33] Peter Bodík, Rean Griffith, Charles Sutton Armando Fox, Michael Jordan,
and David Patterson. Statistical machine learning makes automatic control

206 BIBLIOGRAPHY

practical for Internet datacenters. In Proc. of the 2009 USENIX Conf. on

Hot Topics in Cloud Computing (HotCloud’09), 2009.

[34] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Cham-
pion, Chris Ferris, and David Orchard. Web Services Architecture. Working
Group Note NOTE-ws-arch-20040211, W3C Web Services Activity, Feb
2004.

[35] George E.P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series

Analysis: Forecasting and Control. Prentice Hall, 3rd edition, 1994.

[36] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[37] Micheal R. Bussiek and Arne S. Drud. SBB: A new solver for mixed
integer nonlinear programming. In Proc. of the 2001 Operation Research

Conference (OR’01), 2001.

[38] Rajkumar Buyya, James Broberg, and Andrzej Goscinski, editors. Cloud

Computing: Principles and Paradigms. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2011.

[39] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Modeling and
simulation of scalable cloud computing environments and the cloudsim
toolkit: Challenges and opportunities. In Proc. of the International Confer-

ence on High Performance Computing Simulation (HPCS’09), pages 1–11,
Leipzig, Germany, 2009.

[40] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future Generation

Computer Systems, 25(6):599–616, 2009.

[41] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A.F. De Rose,
and Rajkumar Buyya. CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

BIBLIOGRAPHY 207

[42] Eduardo F. Camacho and Carlos Bordons Alba. Model Predictive Control.
Springer, 2nd edition, 2004.

[43] Philip D. Cha, James J. Rosenberg, and Clive L. Dym. Fundamentals of

modeling and analyzing engineering systems. Cambridge University Press,
2000.

[44] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of resource
provisioning cost in cloud computing. IEEE Transactions On Services

Computing, 99(PrePrints), 2011.

[45] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing prob-
lems. SIAM Journal on Computing, 33(4):837–851, 2004.

[46] Chi-Tsong Chen. Linear System Theory and Design. Oxford University
Press, 3rd edition, 1999.

[47] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau,
David Orchard, and Sanjiva Weerawarana. Web Services Description Lan-
guage (WSDL) version 2.0 part 2: Adjuncts. Recommendation REC-wsdl20-
adjuncts-20070626, W3C Web Services Activity, Jun 2007.

[48] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) version 2.0 part
1: Core language. Recommendation REC-wsdl20-20070626, W3C Web
Services Activity, Jun 2007.

[49] Y.S. Chow and Herbert Robbins. On the asymptotic theory of fixed-width
sequential confidence intervals for the mean. Annuals of Mathematical

Statistics, 36(2):457–462, 1965.

[50] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proc. of the 2nd Symposium on Networked Systems

Design & Implementation (NSDI’05), pages 273–286. USENIX Association,
2005.

208 BIBLIOGRAPHY

[51] D.W. Clarke and R. Hastings-James. Design of digital controllers for ran-
domly disturbed systems. In Proc. of the Institution of Electrical Engineers,
pages 1503–1506, Oct 1971.

[52] William S. Cleveland. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74(368):829–
836, 1979.

[53] William S. Cleveland and Susan J. Devlin. Locally weighted regression: An
approach to regression analysis by local fitting. Journal of the American

Statistical Association, 83(403):596–610, 1988.

[54] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[55] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal

of Research and Development, 25(5):483–490, Sep 1981.

[56] R.J. Dakin. A tree search algorithm for mixed integer programming prob-
lems. The Computer Journal, 8(3):250–255, 1965.

[57] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice
Hall, 12th edition, 2010.

[58] Arne S. Drud. CONOPT: A large-scale GRG code. Journal on Computing,
6(2):207–216, 1994.

[59] Marco Duran and Ignacio Grossmann. An outer-approximation algorithm for
a class of mixed-integer nonlinear programs. Mathematical Programming,
36(3):307–339, 1986.

[60] ENERGY STAR Program. Report to congress on server and data center
energy efficiency. Technical report, U.S. EPA, Aug 2007.

[61] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology,

and Design. Prentice Hall, 2005.

BIBLIOGRAPHY 209

[62] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provi-
sioning for a warehouse-sized computer. In Proc. of the 34th International

Symposium on Computer Architecture (ISCA’07), pages 13–23, 2007.

[63] R. Figueiredo, P. A. Dinda, and J. Fortes. Resource virtualization renaissance.
In Proc. of the IEEE Internet Computing, volume 38, May 2005.

[64] Władysław Findeisen, F.N. Bailey, M. Bryds, K. Malinowski, P. Tatjewski,
and A. Wozniak. Control and Coordination in Hierarchical Systems. John
Wiley & Sons, Ltd, 1980.

[65] Wolfgang Fischer and Kathleen Meier-Hellstern. The Markov-modulated
Poisson Process (MMPP) cookbook. Performance Evaluation, 18(2):149–
171, 1993.

[66] R.A. Fisher. On an absolute criterion for fitting frequency curves. Messenger

of Mathematics, 41:155–160, 1912.

[67] Christodoulos A. Floudas. Nonlinear and mixed-integer optimization: Fun-

damentals and applications. Oxford University Press, 1995.

[68] Ian Foster and Carl Kesselman. The Grid: Blueprint for e New Computing

Infrastructure. Morgan Kaufmann, 1999.

[69] Gene F. Franklin, J. David Powell, and Michael Workman. Digital Control

of Dynamic Systems. Addison-Wesley Longman, Inc., 3rd edition, 1998.

[70] Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish
Marwah. Minimizing data center SLA violations and power consumption
via hybrid resource provisioning. In Proc. of the 2nd International Green

Computing Conference (IGCC’10), 2010.

[71] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[72] A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimiza-

tion Theory and Applications, 10(4):237–260, 1972.

210 BIBLIOGRAPHY

[73] Philipt E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An
SQP algorithm for large-scale constrained optimization. SIAM Journal of

Optimization, 12(4):979–1006, 2002.

[74] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer

Magazine, 7(6), 1974.

[75] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns
Hopkins University Press, 3rd edition, 1996.

[76] Włodzimierz Greblicki and Mirosław Pawlak. Nonparametric System Iden-

tification. Cambridge University Press, 2008.

[77] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version
1.2 part 1: Messaging framework (second edition). Recommendation REC-
soap12-part1-20070427, W3C Web Services Activity, Apr 2007.

[78] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version
1.2 part 2: Adjuncts (second edition). Recommendation REC-soap12-part2-
20070427, W3C Web Services Activity, Apr 2007.

[79] Omprakash K. Gupta and A. Ravindran. Branch and bound experiments in
convex nonlinear integer programming. Management Science, 31(12):1533–
1546, 1985.

[80] Sandeep K.S. Gupta, Rose Robin Gilbert, Ayan Banerjee, Zahra Abbasi,
Tridib Mukherjee, and Georgios Varsamopoulos. GDCSim - an integrated
tool chain for analyzing green data center physical design and resource
management techniques. In Proc. of the 2nd International Green Computing

Conference (IGCC’11), Orlando, FL, USA, Jul 2011.

[81] T. Hägglund. Recursive estimation of slowly time-varying parameters. In
Proc. of the Symposium on Identification and System Parameter Estimation,
pages 1137–1142, 1985.

BIBLIOGRAPHY 211

[82] Brian Hayes. Cloud computing. Communications of the ACM, 51(7):9–11,
2008.

[83] Simon Haykin, editor. Advances in Spectrum Analysis and Array Processing

(vol. I). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[84] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. Wiley-IEEE Press, 2004.

[85] Sergio Herrero-Lopez, John R. Williams, and Abel Sanchez. Large-scale
simulator for global data infrastructure optimization. In In Proc. of the IEEE

International Conference on Cluster Computing (CLUSTER’11), pages
54–64, Austin, Texas, USA, 2011. IEEE Computer Society.

[86] João P. Hesphana. Linear Systems Theory. Princeton Press, 2009.

[87] G. E. Hoernes and H. Hellerman. An experimental 360/40 for time-sharing.
Datamation, 14(4):39–42, Apr 1958.

[88] Adrian A. Hopgood. Intelligent Systems for Engineers and Scientists. CRC
Press, 2nd edition, 2001.

[89] Isaac M. Horowitz. Synthesis of Feedback Systems. Academic Press, 1963.

[90] IBM. An architectural blueprint for autonomic computing (fourth edition).
White paper, IBM, Jun 2006.

[91] Enso Ikonen and Kaddour Najim. Advanced Process Identification and

Control. Marcel Dekker, Inc., 2002.

[92] R.G. Jeroslow. There cannot be any algorithm for integer programming with
quadratic constraints. Operations Research, 21(1):221–224, 1973.

[93] Michael A. Johnson and Mohammad H. Moradi, editors. PID Control: New

Identification and Design Methods. Springer-Verlag, 2005.

[94] Rudolf E. Kalman. Mathematical description of linear dynamical systems.
Journal of the Society for Industrial and Applied Mathematics, 1(2):152–192,
1963.

212 BIBLIOGRAPHY

[95] E.W. Kamen, P.P. Khargonekar, and K.R. Poolla. A transfer-function ap-
proach to linear time-varying discrete-time systems. SIAM Journal of

Control and Optimization, 23(4):550–565, 1985.

[96] Christos Karamanolis, Magnus Karlsson, and Xiaoyun Zhu. Designing
controllable computer systems. In Proc. of the 10th USENIX Conference on

Hot Topics in Operating Systems (HotOS’05), pages 1–6, 2005.

[97] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage: Perfor-
mance differentiation for storage systems using adaptive control. Transac-

tions on Storage, 1(4):457–480, 2005.

[98] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[99] Donald E. Kirk. Optimal Control Theory: An Introduction. Prentice Hall,
1970.

[100] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[101] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem de Mello. The
sample average approximation method for stochastic discrete optimization.
SIAM Journal on Optimization, 12(2):479–502, 2002.

[102] Dzmitry Kliazovich, Pascal Bouvry, Yury Audzevich, and Samee Ullah
Khan. Greencloud: A packet-level simulator of energy-aware cloud com-
puting data centers. In Proc. of the 2010 IEEE Global Telecommunications

Conference (GLOBECOM’10), pages 1–5, Miami, FL, USA, Dec 2010.
IEEE Communications Society.

[103] R. Kulhavý. Restricted exponential forgetting in real-time identification. In
Proc. of the Symposium on Identification and System Parameter Estimation,
pages 1143–1148, 1985.

[104] R. Kulhavý and M. Karny. Tracking of slowly varying parameters by
directional forgetting. In Proc. of the 9th World Congress of IFAC, pages
79–83, Budapest, Hungary, 1984.

BIBLIOGRAPHY 213

[105] Vibhore Kumar, Karsten Schwan, Subu Iyer, Yuan Chen, and Akhil Sahai.
A state-space approach to SLA based management. In Proc. of the 11th

IEEE/IFIP Network Operations and Management Symposium (NOMS’08),
pages 192–199, 2008.

[106] Dara Kusic, Nagarajan Kandasamy, and Guofei Jiang. Combined power
and performance management of virtualized computing environments serv-
ing session-based workloads. IEEE Transactions on Network and Service

Management, 8(3):245–258, 2011.

[107] Huibert Kwakernaak and Raphel Sivan. Linear Optimal Control Systems.
Wiley-Interscience, 1972.

[108] Wallace E. Larimore. Canonical variate analysis in identification, filtering,
and adaptive control. In Proc. of the 29th IEEE Conference on Decision and

Control, pages 596–604, Honolulu, HI, USA, Dec 1990.

[109] T. Le-Ngoc and S.N. Subramanian. A Pareto-modulated Poisson process
(PMPP) model for long-range dependent traffic. Computer Communications,
23(2):123–132, 2000.

[110] Jon Lee and Sven Leyffer, editors. Mixed Integer Nonlinear Programming,
volume 154 of The IMA Volumes in Mathematics and its Applications.
Springer Science+Business Media, LLC, 2012.

[111] Sven Leyffer. Integrating sqp and branch-and-bound for mixed integer
nonlinear programming. Computational Optimization and Applications,
18:295–309, 1998.

[112] Lennart Ljung. System Identification: Theory for the User. Prentice Hall,
2nd edition, 1999.

[113] Lennart Ljung and Torsten Söderström. Theory and Practice of Recursive

Identification. The MIT Press, 1983.

[114] Alexander M. Lyapunov. The General Problem of the Stability of Motion.
PhD thesis, University of Kharkov, 1892.

214 BIBLIOGRAPHY

[115] Jan M. Maciejowski. Predictive Control with Constraints. Pearson Educa-
tion Limited, 2002.

[116] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and

computer implementations. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[117] Peter Mell and Timothy Grance. The NIST definition of Cloud computing:
Recommendations of the national institute of standards and technology.
Special Publication 800-145, NIST, Sep 2011.

[118] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni.
Injecting realistic burstiness to a traditional client-server benchmark. In
Proc. of the 6th IEEE International Conference on Autonomic Computing

(ICAC’09), pages 149–158, 2009.

[119] Lars Mieritz and Bill Kirwin. Defining Gartner total cost of ownership.
Research Report G00131837, Gartner, Inc., Dec 2005.

[120] Bruce A. Murtagh and Michael A. Saunders. Large-scale linearly con-
strained optimization. Mathematical Programming, 14:41–72, 1978.

[121] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.0 User’s Guide.
report SOL 83-20, Department of Operations Research, Stanford University,
1983.

[122] Desineni Subbaram Naidu. Optimal Control Systems. CRC Press, 2003.

[123] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated power
management in virtualized enterprise systems. In Proc. of 21st ACM SIGOPS

Symposium on Operating Systems Principles (SOSP’07), pages 265–278,
2007.

[124] A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974.

[125] Aidan O’Dwyer. Handbook of PI and PID Controller Tuning Rules. Imperial
College Press, 3rd edition, 2009.

BIBLIOGRAPHY 215

[126] Przemysław Orłowski. Discrete-time, linear periodic time-varying system
norm estimation using finite time horizon transfer operators. Automatika,
51(4):325–332, 2010.

[127] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated control of
multiple virtualized resources. In Proc. of the 4th ACM European Conference

on Computer Systems (EuroSys’09), pages 13–26, 2009.

[128] Sujay Parekh, Kevin Rose, Joseph Hellerstein, Sam Lightstone, Matthew
Huras, and VictorChang. Managing the performance impact of adminis-
trative utilities. In Proc. of the 14th IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management (DSOM’03), volume
2867, pages 130–142, Heidelberg, Germany, October 2003.

[129] D.J. Park, B.E. Jun, and J.H. Kim. Fast tracking RLS algorithm using novel
variable forgetting factor with unity zone. Electronics Letters, 27(23):2150–
2151, Nov 1991.

[130] Krzysztof Pawlikowski. Steady-state simulation of queueing processes:
survey of problems and solutions. ACM Computing Surveys, 22(2):123–170,
1990.

[131] Klaus Peternell, Wolfgang Scherrer, and Manfred Deistler. Statistical analy-
sis of novel subspace identification methods. Signal Processing, 52(2):161–
177, 1996.

[132] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412–421, 1974.

[133] Ben Pring, , Robert H. Brown, Andrew Frank, Simon Hayward, and Lydia
Leong. Forecast: Sizing the Cloud; understanding the opportunities in cloud
services. Research Report G00166525, Gartner, Inc., Mar 2009.

[134] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathemat-

ics. Springer, 2nd edition, 2007.

216 BIBLIOGRAPHY

[135] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui
Wang, and Xiaoyun Zhu. No “power” struggles: Coordinated multi-level
power management for the data center. In Proc. of the 13th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XIII), pages 48–59, 2008.

[136] Michael A. Rappa. The utility business model and the future of computing
services. IBM Systems Journal, 43(1):32–42, 2004.

[137] Karl J. Åström. Introduction to Stochastic Control Theory. Academic Press,
1970.

[138] Karl J. Åström and Torsten Bohlin. Numerical identification of linear
dynamic systems from normal operating records. In Proc. of the 2nd IFAC

Symposium on Self-Adaptive Systems, Teddington, UK, Sep 1965.

[139] Karl J. Åström and Tor Hägglund. PID Controllers: Theory, Design, and

Tuning. Instrument Society of America, 2nd edition, 1995.

[140] Karl J. Åström and Björn Wittenmark. Adaptive Control. Addison-Wesley,
2nd edition, 1994.

[141] Jorma Rissanen. Modeling by the shortest data description. Automatica,
14:465–471, 1978.

[142] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A
comparison of high-level full-system power models. In Proc. of the

2008 USENIX Conference on Power Aware Computing and Systems (Hot-

Power’08), pages 1–5, 2008.

[143] S.W. Roberts. Control chart tests based on geometric moving averages.
Technometrics, 1(3):239–250, 1959.

[144] Mendel Rosenblum and T. Garfinkel. Virtual machine monitors: Current
technology and future trends. In Proc. of the IEEE Internet Computing,
volume 38, May 2005.

BIBLIOGRAPHY 217

[145] Jeanne W. Ross and George Westerman. Preparing for utility computing:
The role of IT architecture and relationship management. IBM Systems

Journal, 43(1):5–19, 2004.

[146] Wilson J. Rugh. Linear System Theory. Prentice Hall, Upple Saddle River,
NJ, USA, 1996.

[147] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Inc., 2010.

[148] Hong S. Ryoo and Nikolaos V. Sahinidis. A branch-and-reduce approach to
global optimization. Journal of Global Optimization, 8(2):107–138, 1996.

[149] D. Sayre. On virtual systems. Technical report, IBM T. J. Watson Research
Laboratory, Apr 1966.

[150] Dragoslav D. Šiljak, editor. Decentralized Control of Complex Systems,
volume 184 of Mathematics in Science and Engineering. Elsevier, 1991.

[151] Edward M.B. Smith and Constantinos C. Pantelides. Global optimisa-
tion of nonconvex MINLPs. Computers & Chemical Engineering, 21,
Supplement(0):S791–S796, 1997.

[152] Torsten Söderström and Petre Stoica. System identification. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[153] Kostas S. Tsakalis and Petros A. Ioannou. Linear time-varying systems:

control and adaptation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993.

[154] Daniel J. Tylavsky and Guy R.L. Sohie. Generalization of the matrix
inversion lemma. In Proc. of the IEEE, volume 74, pages 1050–1052, July
1986.

[155] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kägi, Felix H.
Leung, and Larry Smith. Intel virtualization technology. IEEE Computer,
38(5):48–56, 2005.

218 BIBLIOGRAPHY

[156] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi. Analytic modeling of multitier internet applications. ACM

Transaction on the Web, 1(1), 2007.

[157] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, and Pawan Goyal.
Dynamic provisioning of multi-tier internet applications. In Proc. of the

2nd International Conference on Autonomic Computing (ICAC’05), pages
217–228, Seattle, WA, USA, 2005. IEEE Computer Society.

[158] Hien Nguyen Van, Frédéric Dang Tran, and Jean-Marc Menaud. Perfor-
mance and power management for cloud infrastructures. In Proc. of the

2010 IEEE 3rd International Conference on Cloud Computing (CLOUD’10),
pages 329–336, 2010.

[159] Peter Van Overschee and Bart De Moor. N4SID: subspace algorithms for the
identification of combined deterministic and stochastic systems. Automatica,
30(1):75–93, 1994.

[160] Peter Van Overschee and Bart De Moor. Subspace Identification For Lin-

ear Systems: Theory, Implementation, Applications. Kluwer Academic
Pulishers, 1996.

[161] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the Clouds: towards a Cloud definition. SIGCOMM Computer

Communication Review, 39(1):50–55, Dec 2009.

[162] Michel Verhaegen and Patrick Dewilde. Subspace model identification part
1: The output-error state-space model identification class of algorithms.
International Journal of Control, 56(5):1187–1210, 1992.

[163] Michel Verhaegen and Patrick Dewilde. Subspace model identification part
2: Analysis of the elementary output-error state-space model identification
algorithm. International Journal of Control, 56(5):1211–1241, 1992.

[164] Michel Verhaegen and Vincent Verdult. Filtering and System Identification:

A Least Squares Approach. Cambridge University Press, 2007.

BIBLIOGRAPHY 219

[165] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: Power and
migration cost aware application placement in virtualized systems. In Proc.

of the 9th ACM/IFIP/USENIX International Conference on Middleware

(Middleware’08), pages 243–264, 2008.

[166] Werner Vogels. Beyond server consolidation. ACM Queue, 6(1):20–26,
2008.

[167] Xiaorui Wang and Yefu Wang. Coordinating power control and performance
management for virtualized server clusters. IEEE Transactions on Parallel

and Distributed Systems, 22(2):245–259, 2011.

[168] Aaron Weiss. Computing in the clouds. netWorker, 11(4):16–25, 2007.

[169] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy.
Profiling and modeling resource usage of virtualized applications. In Proc.

of the 9th ACM/IFIP/USENIX International Conference on Middleware

(Middleware’08), pages 366–387, 2008.

[170] Pengcheng Xiong, Zhikui Wang, Simon Malkowski, Qingyang Wang,
Deepal Jayasinghe, and Calton Pu. Economical and robust provisioning of
n-tier cloud workloads: A multi-level control approach. In Proc. of the 31st

International Conference on Distributed Computing Systems (ICDCS’11),
pages 571–580, 2011.

[171] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified
ontology of cloud computing. In In Proc. of the 2008 Grid Computing

Environments Workshop (GCE’08), pages 1–10, Nov 2008.

[172] L.A Zadeh. Frequency analysis of variable networks. In Proc. of the Institute

of Radio Engineers (IRE’1950), volume 38, pages 291–299, Mar 1950.

[173] Qi Zhang, Lu Cheng, and RaoufBoutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications,
1(1):7–18, 2010.

	Introduction
	Motivation
	Contributions
	Outline of the Thesis

	I Background
	Cloud Computing
	Overview of Cloud Computing
	Definition of Cloud Computing
	Architecture of a Cloud System
	Enabling Technologies

	Resource Management in Cloud Systems
	Server Consolidation
	Service Quality and Availability
	Cost Management

	Linear Systems Theory
	Characterization of Dynamical Systems
	Linearization
	System Representation
	Input-Output Representation
	State-Space Representation
	Block Diagrams Algebra

	Realization of a Transfer Function
	Stability

	Linear System Identification
	The System Identification Process
	Experiment Design
	Data Collection and Preprocessing
	Model Structure Selection
	Model Estimation
	Model Validation

	Linear Control Theory
	Basic Definitions
	Control Structures
	Open-loop and Closed-loop Control Structure
	Other Control Structures

	Response of Closed-loop Control Systems
	Closed-loop Control Design
	Proportional-Integral-Derivative Control
	Linear Quadratic Control

	II Methodology
	The Resource Management Framework
	System Architecture
	Application Manager
	Physical Machine Manager
	Migration Manager
	Optimization Problem
	Approximated Algorithms

	III Experimental Evaluation
	Experimental Settings
	The DESEC Simulator
	Experimental Setup
	Physical Infrastructure Configuration
	Application Configuration
	Application Manager Configuration
	Performance Metrics

	Resource Management Approaches

	Performance Evaluation without VM Migration
	Experimental Setup
	Physical Infrastructure Configuration
	Performance Metrics

	Results and Discussion

	Performance Evaluation with VM Migration
	Experimental Setup
	Physical Infrastructure Configuration
	Application Configuration
	Migration Manager Configuration
	Performance Metrics
	Experimental Scenarios and Resource Management Approaches

	Results and Discussion
	Results for the MM-Greedy Experiments Group
	Results for the MM-LocOpt Experiments Group
	Concluding Remarks

	IV Conclusion
	Related Works
	Resource Management for Cloud Systems
	Performance-aware Resource Management
	Power-aware Resource Management
	Integrated Power-aware and Performance-aware Resource Management

	Cloud Computing System Simulators

	Conclusions and Future Work

	V Appendices
	z-transform
	Basic Definitions
	Basic Properties

	Mixed-Integer Nonlinear Programming

