
University of Torino
Computer Science Department

Doctoral School of Science and High Technology
XXV Cycle

Ph.D. Thesis

States, actions and path properties
in Markov chains

Author:
Elvio Gilberto Amparore

Advisor:
Susanna Donatelli

July 22, 2013

II

Contents

1 Introduction and motivations 1
1.1 Subject of the thesis . 3
1.2 Contribution of the thesis . 4
1.3 Outline of the thesis . 5

2 Measuring properties of Markov chains 7
2.1 Stochastic processes . 8
2.2 Discrete time Markov chains . 9

2.2.1 Discrete-time Markov Transition System 9
2.2.2 Forward DTMC probabilities 10
2.2.3 Backward DTMC probabilities 10
2.2.4 Stationary behavior of DTMCs 11
2.2.5 Reducible DTMCs . 11

2.3 Continuous-time Markov chains 14
2.3.1 Continuous-time Markov Transition System 14
2.3.2 Forward CTMC probabilities 15
2.3.3 Backward CTMC probabilities 15
2.3.4 Stationary behavior of CTMCs 16
2.3.5 Reducible CTMCs . 17

2.4 Markov Regenerative Processes 19
2.4.1 Linear representation of a MRP 20
2.4.2 Markov Regenerative Transition System 22
2.4.3 The embedded DTMC . 23
2.4.4 Stationary behavior of MRPs 26

2.5 Measuring indexes on Markov Chains 27
2.5.1 Reward-based measure definitions 29

3 Measuring path-based properties 31
3.1 Path probabilities on the measurable space 32
3.2 Path probabilities in discrete-time 32

3.2.1 Probabilistic Computation Tree Logic 33
3.3 Path probabilities in continuous-time 34

3.3.1 Continuous Stochastic Logic 35
3.3.2 Computation of CSL formulas 36

3.4 Specifying path properties with automata 39
3.4.1 CSL with Timed Automata 39
3.4.2 Computation of CSLTA formulas 43

3.5 Specifying properties with Probes 47

III

IV CONTENTS

3.5.1 Probe Automata . 49
3.5.2 Computation of the passage time 50

4 Numerical computation of measures 57
4.1 Transient solution methods . 57
4.2 Steady-state solution methods . 59

4.2.1 Preconditioning linear systems 61
4.2.2 Numerical solution of linear systems 62
4.2.3 Matrix-free solution of MRPs 66

4.3 Preconditioning MRP solutions 69
4.3.1 Construction of the approximate P̃ of the EMC P. 69
4.3.2 Preconditioning strategies 71
4.3.3 Experimental assessment of the MRP preconditioner . . . 72

4.4 Reducible MRPs: the component method 75
4.4.1 Explicit with single transient set 77
4.4.2 Implicit with single transient set 77
4.4.3 Explicit and component-based 78
4.4.4 Implicit and component-based 79
4.4.5 Backward component method 87
4.4.6 Experimental assessment of the component method 87

5 Improving the Model Checking of CSLTA 95
5.1 Performance mismatch of CSL and CSLTA 95

5.1.1 CSLTA with the component method 98
5.1.2 Experimental comparison of CSL and CSLTA 100
5.1.3 On-the-fly state space construction 102

5.2 Tool support . 108
5.2.1 The MC4CSLTA tool . 108
5.2.2 The DSPN-Tool tool . 109

List of Publications 113

Bibliography 115

Chapter 1

Introduction and
motivations

In the domain of performance and reliability analysis, high-level specification
languages have become the standard approach for the formal verification of
system properties.

In traditional performance analysis, only a limited number of simple proper-
ties are expressible, like the mean number of clients in a system, the probability
that a failure happens in a time frame, or some reliability indexes like the mean
time to failure (MTTF) or the mean time to repair (MTTR).

Not all properties have the same characteristics, and it is possible to identify
some general classes of properties that share a similar schema, like properties of
correctness, of performance, of reliability or performability. A property of cor-
rectness involves the guarantee that the system always satisfies some qualitative
properties, like it does always respond (liveness), it does not block for invalid
input of the user (it is deadlock-free), or it performs the requested operation
(safety). Since these requirements are in some sense a yes-or-no question, they
are usually referred to as functional or qualitative requirements.

In the context of real-time systems, a property does not only have to be true,
but also has to respect certain time bounds. These are performance properties.
Usually, these systems are classified as hard real-time, where the time bounds
are strict, and soft real-time, where the time requirement is expressed within a
probability of failure. For instance, the requirement that a hardware controller
has to respond to interrupt signals is strict, to avoid malfunctions. On the
contrary, a voice-over-IP service that wants to provide a smooth continuous
voice stream, can only be modeled as a soft requirement due to the unpredictable
behavior of the IP-level packet delivery mechanism, which does not support hard
real-time requirements. Typical performance questions include querying the
expected waiting time experienced by a customer in queue, the mean number of
client waiting, the throughput and the utilization of a service, and so on. These
are typically referred to as quantitative measures.

A reliability property assess that a system is operational and functional
with high probability, and that in case of failure the downtime is predictable
and short. For instance, a highly redundant transaction system may need to
satisfy that at most it has 3 hours of downtime per year, no matter how many

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

power losses, storage failures or network link crashes may happen.

Some systems employ redundancy to achieve a greater reliability, like a mul-
ticore system where CPUs may fail. In these scenarios, the system may undergo
different degradation steps before failing, and in each step the system could be
less able to accomplish its jobs. These requirement are expressed with a per-
formability property. Typical performability questions have form like: “How
long can the system be expected to work without interruption?” or: “What is
the probability that the system operates above a certain level of efficiency during
an observation period?”. These questions are a mix of qualitative/quantitative
properties, since a certain qualitative property is ensured by having some ca-
pacity of the system above/below a certain threshold. Typically, performability
questions are answered using a reward model.

A certain set of these properties are almost always requirements for many
systems in use today in the industry, in medicine, in the software industry,
etc. To verify if a system really meets these expectations, there are many
methodologies. The system could be designed by only using the experience of
the designer, which requires a trial-and-error process to discover what is good
and what has to be redone. Usually, systems developed in this way require many
iterations to achieve a reasonable functionality, and no guarantee of correctness
can be stated on the system. However, for large systems this iterative process has
met a large success and is nowadays an established practice in many engineering
fields. This process typically involves a test phase to verify that the system
actually works. Testing has the advantage of verifying a working and realistic
system, so the results are realistic. Unfortunately, to test a system at least
a prototype has to be developed. If the required properties do not hold, a
redesign and reimplementation is often necessary. Also testing cannot provide
an exhaustive verification of all the possible cases and scenarios that the system
will face.

A different approach could be simulating the system before constructing it.
Simulation is similar to testing, except that an abstract model of the system
is used instead of the real one. The model itself is a simplified description of
the system behavior. The advantage lies in the fact that designing an abstract
model of a system is usually much cheaper than building the real one. On the
other hand, if the modeled system is not descriptive enough or too simplified,
the simulation results will be unrealistic. Given a system model, it is also possi-
ble to verify the properties with some kind of formal verification, which involves
the generation of a formal proof of correctness of the property. Formal verifica-
tion requires both the system and the properties to be specified with a formal
language. A verification method is then used to prove that the property holds
in every possible configuration of the system. Techniques for formal verification
includes proof-based verification, where the system is provided as a set of logi-
cal formulae, and model-based verification, where the system is described as a
transition system between discrete or continuous states.

It should be clear that while direct system design and testing are highly
empirical and depend heavily on the capacity of the designer of verifying all
the possible situations that the system will face, it will be impossible to state
that the system has no design flaws, because such flaws could pass undetected
by the modeler. Simulating a system is somewhat similar, but since it can be

1.1. SUBJECT OF THE THESIS 3

done automatically by a system (instead of doing it manually in a test phase)
it is possible to check complex queries just from the model of the system with
a high degree of accuracy. Accuracy can be very high but never 100%, since
there is no guarantee that any possible behavior has been simulated. Formal
verification is instead the most complex to specify, since it requires many details
on the model, and usually requires large quantity of memory to store the data
needed to perform the verification. However, the answer to a verified formula is
completely accurate, since every possible behavior of the system is considered.

1.1 Subject of the thesis

The work of this thesis focuses on formal verification of model based systems.
The advantage of formal verification is that the provided results are exact. The
verification algorithm usually proves the property in every possible configuration
of the modeled system, which is equivalent to an exhaustive testing that covers
every possible situations. The set of all possible configurations is the state space
of the system. Constructing and storing a large state space is an hard problem,
since it usually grows exponentially in the number of system parameters. In
addition, quantitative properties are answered by doing a numerical analysis on
the state space of the model, which may encounter problems of accuracy and
numerical stability.

Systems have to be designed accurately to model the real entity they repre-
sent. Otherwise, a property verified on an unrealistic model will not provide any
guarantee on the real entity. Many formal languages exists for specifying system
models. To do performance analysis, the specification has to include timing in-
formation. Petri Nets and process algebra are instances of these formalisms. We
will consider systems where the timing is stochastic, i.e. its behavior is described
by a statistical law. Techniques that verify stochastic systems are either ana-
lytical, based on a structural check, or numerical, based on the full exploration
of all the possible states of the system.

A Markov chain is a low-level formalism to specify the state-transition graph
of a stochastic system. The Markov chain describes both its state properties
and its future evolution. We focuses on both discrete-time and continuous-time
Markov chains, which represent systems sampled at discrete time instants or
observed in continuum.

The thesis focuses on the specification of measures for Markov chains, and the
techniques needed to compute these measures. Therefore, we will assume that
systems are described in any language that can produce a Markov chain, and
then the Markov chain is used as input system. We will focus on two different
ways of specifying properties: properties on states/transitions and properties
on paths.

Performance properties of states and transitions are usually described as the
expected probability of finding the system in a given condition after a certain
amount of time. Mean probabilities of state-based conditions, rewards assigned
to system conditions, and throughput of transitions are examples of these per-
formance properties.

Path-based properties specifies the set of allowed behaviors of the system,
for any possible model execution. This may complicate the analysis even fur-

4 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

ther, since the set of paths is larger that the set of states (and possibly infinite).
Under some assumptions, an analysis of path properties can be carried out, as
done by stochastic temporal logics. Typical stochastic logics include PCTL for
the probabilistic case, and CSL or CSLTA for the stochastic case. An important
topic that is considered in the thesis regards the efficiency of the model check-
ing algorithm of the latter logic, CSLTA. A series of numerical techniques are
presented and studied, in order to improve the model checking algorithm.

1.2 Contribution of the thesis

The thesis tries to provide a treatment of the concept of measure for Markov
chains. Therefore, the presented material contains both concepts already found
and established in the literature of Markov processes and performance evalua-
tion, plus some new techniques that contribute to improve the context of formal
verification of stochastic processes. The thesis aims to contribute a solution to
these problems.

Sections 2.2.3 and 2.3.3 provide an easy way to reformulate numerical prob-
lems that employs forward probabilities into problems that use backward proba-
bilities. This result is used to simplify the demonstration of how strictly-forward
temporal logics (like CSL or CSLTA) are computed numerically using backward
probabilities. We believe that this reformulation is easier than the demonstra-
tions found in literature. Also, the forward-backward conversion allowed us to
derive the backward conversion formula for EMC/MRP probabilities in 2.4.4,
which was not present in literature.

Section 3.4.2 contains an improved reformulation of the CSLTA model check-
ing procedure. The new formulation allows for backward and forward solutions,
and is designed around the construction of a Markov regenerative transition
system (MRTS).

Section 4.3 describes a problem-specific preconditioner1 for MRPs. The
proposed preconditioner may be used to improve both the accuracy and the
convergence rate of steady-state MRP solution methods. This preconditioner
can also be used in the model checking procedure of CSLTA. A numerical
assessment shows the behavior of the preconditioner.

Section 4.4 describes the component-method for the steady-state solution of
non-ergodic MRPs. The component method breaks down the initial transient of
the Markov process into smaller components, and compute for each of these com-
ponents the vector of ingoing/outgoing probabilities. The component-method is
empirically evaluated in section 4.4.6 with a set of non-ergodic DSPNs (a class
of Petri nets with deterministic transitions, whose underlying stochastic process
is a MRP).

Chapter 5 shows that CSLTA in its basic form has a computational cost
that is higher than CSL. A set of techniques employing the component method
and the problem specific-preconditioner described before are used to reduce
the performance mismatch. The various techniques described in the previous

1A preconditioner is a numerical technique that improves the convergence and the condi-
tioning of a problem expressed as system of linear equations.

1.3. OUTLINE OF THE THESIS 5

chapters are used to build up an adaptive strategy that improves the numerical
solution of a CSLTA model checker. Some numerical tests are done to evaluate
the resulting strategy against previous CSLTA model checkers and against state-
of-the-art CSL model checkers. Finally, a new on-the-fly state space construction
technique is proposed, to help reduce the memory occupation.

1.3 Outline of the thesis

The thesis is structured around the general concept of measure for Markov
chains. A special focus is then given to the stochastic temporal logic CSLTA

and on how to improve its model checking algorithm.

Chapter 2 introduces Markov chains and describes a set of classical per-
formance properties. The presentation focuses on both forward and backward
timing reasoning, for three classes [Kul95] of Markov chains: DTMCs, CTMCs
and MRPs. Each of these classes is represented by a specific labeled transition
system [BK08], which provides its formal description. Forward and backward
measures based on steady-state and transient timings are derived, for both re-
ducible and irreducible systems.

Chapter 3 describes path-based properties. The focus is on stochastic tem-
poral logics and probe-based specifications. These properties are verified with
model composition, i.e. a new modified system is constructed to extract the
specified behavior. The treated logics include PCTL [Han91], CSL [Azi+00]
and CSLTA [DHS09]. Temporal logics are assimilated as a type of measures,
although the strict definition of these logics does not provide any quantitative
information: only the truth value of a logic expression could be tested. In
practice, probabilistic and stochastic temporal logics are used to compute the
probability of formulas of paths inside a Markov chain. The emerging topic of
stochastic probe specifications is also covered.

Chapter 4 focuses on the numerical solution methods needed to compute the
quantitative value of performance measures. The chapter focuses on both tran-
sient and stationary numerical solutions. The numerical stability is considered,
and a set of preconditioning techniques are described as a possible improvement
for hard-to-solve systems. The last part of Chapter 4 describes the component-
method for the solution of non-ergodic MRPs.

Chapter 5 focuses on the improvement of the model checking algorithms for
the stochastic temporal logic CSLTA, over the original solution method. The
presentation shows that CSLTA can learn from CSL a set of techniques that
can be used to improve its model checking algorithm. Moreover, it is shown
that the component-method is a convenient technique for the model checking
of CSLTA, providing a significant improvement in efficiency. The section ends
with a description of the MC4CSLTA model checker and of its numerical solver,
which implements the techniques described in the previous chapters.

6 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Chapter 2

Measuring properties of
Markov chains

This chapter is devoted to Markovian processes, which are introduced in section
2.1. The chapter focuses on three commonly used Markov processes: Markov
chains in discrete time, Markov chains in continuous time and Markov regener-
ative processes, described in section 2.2, 2.3 and 2.4 respectively. For each of
the three classes of processes, a linear algebra and an automaton-based repre-
sentation is given, followed by the forward/backward properties and formulas
(in transient and steady state). The presentation then extends to the case of
non-ergodic processes. The class of Markov regenerative processes is also stud-
ied, because the presented forward/backward framework of measurement can
be applied easily to the embedded discrete-time Markov chain that describes
the regeneration points of the process, and because it is a central subject of the
following chapters.

Most of the content is commonly found in most books on stochastic processes.
However, the focus of the presentation is about how influential are the forward
and backward Kolmogorov equations on Markov chains. Almost any measure
of interest is essentially based on one of these two equations. Interestingly, it is
less known that forward measures can be computed with the backward equation,
and vice-versa, using a small equation. Following the established convention,
we use π to denote the vector of forward probabilities. There is no similar
conventions for backward measures, so we choose to use ξ. The presentation
points out the many similarities and the differences of these two measures.

Non-ergodic processes also enlighten some substantial differences between
the forward solution process (based on forward Kolmogorov equations) and the
backward one. This conversion is of large importance for the computation of
stochastic logics, treated in chapter 3.

Finally, section 2.5 uses the defined formulas to describe a commonly used
framework for state-based and event-based performance measures, based on
rewards. These measures can be computed with both forward and backward
formulas, but the choice of the Kolmogorov equation has a consequence on how
many computations have to be done to compute a measurement and on the
algorithmic complexity.

7

8 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

2.1 Stochastic processes

A system is a model of some real-world phenomenon, and takes value on a sample
space S (also called state space). The state of a system is a random variable X
with image in S. A stochastic process is a probabilistic model that describes the
evolution of the states of a system, and is represented as a collection of random
variables {Xt} indexed through a parameter t that usually represents the time
of the system.

Definition 1 (Stochastic process). A stochastic process {Xt | t ∈ T } is a
collection of random variables defined over a common state space S and indexed
by t ∈ T (with T usually is the set of non-negative natural numbers N≥0 or the
set of non-negative real numbers R≥0).

When the state space S is finite or countable set, the process is a discrete-
state process, or a chain. In all other cases, it is a continuous-state process, which
is not a topic of this thesis. An important classification of stochastic processes
concerns the conditional dependence of the random variables in the process. In
an independent chain, each random variable Xt is independent. However, this
is excessively restrictive, and is usually relaxed in the Markov chain:

Definition 2 (Markov chain). A stochastic process {Xt | t ∈ T } with discrete
state space S is a Markov chain iff:

Pr{Xtk+1
= xk+1 | Xtk = xk, . . . , Xt0 = x0} =

= Pr{Xtk+1
= xk+1 | Xtk = xk}

so that the evolution of the chain (at tk+1) depends only on the current state (at
tk). This property is known as the Markov property or the memoryless property.

In a Markov chain, only the current state is needed to probabilistically pre-
dict the future evolution. The Markov property implies [CL06] that:

(M1) all past information is irrelevant (no state memory);

(M2) the time elapsed in the current state is irrelevant (no age memory).

In section 2.4 the aspect (M2) is relaxed to allow for age memories to control
the probabilistic evolution of the chain. When the Markov chain is observed at
a set of discrete time points, it is described as a discrete-time Markov chain,
while if it observed continuously in every instant, it is a continuous-time Markov
chain. Discrete and continuous chains are described in sections 2.2 and 2.3.

Definitions of distribution vectors

A function µ : S → [0, 1] that assigns to each element (i.e. state) of S a real value
in [0, 1] is a measure over S. Let Measure(S) be the set of all measure functions
over S. Moreover, µ may be a probability distribution if

∑
s∈S µ(s) = 1. The

set of all probability distributions over S is denoted as Distr(S), and clearly
Distr(S) ⊂ Measure(S). Let Distr0(S) be the set of all probability distributions
plus the zero vector. Given a state s ∈ S we denote with is the indicator function
of s (or the Dirac function of s), which is a probability distribution with is(s) = 1
and is(p) = 0,∀ p ∈ S \ {s}.

2.2. DISCRETE TIME MARKOV CHAINS 9

2.2 Discrete time Markov chains

We indicate with {Yn | n ∈ N≥0} a Discrete Time Markov Chain (DTMC)
defined over a finite state space S observed at discrete non-negative time points
n ∈ N≥0. Let P be the stochastic matrix of {Yn}, which is a non-negative real
square matrix defined over S × S such that each row Pi of P is in Distr(S).
The j-th entry P(i, j) of row Pi describes the probability of going from state
i to state j in one discrete time step. Also let’s assume that {Yn} is time-
homogeneous, i.e. each probability value P(i, j) that describes the evolution of
each Yn from state i to state j is constant and does not depend on the time
parameter n, so that:

P(i, j)
def
= Pr{Xn+1 = j | Xn = i} = Pr{X1 = j | X0 = i}

DTMCs can be classified according to the connectivity of the states. If from
every state i it is possible to reach every other state of S with a finite number
of steps, then the DTMC is irreducible. Otherwise, if there exists (at least) a
state i that cannot reach all the states of S after any number of steps, than the
DTMC is reducible. In terms of linear algebra, a DTMC is irreducible if lim

n→∞
Pn

has no zero entries, i.e. there is a non-zero route probability Pn(i, j) for every
pair of states i, j. For now we consider the irreducible case. The reducible case
is treated in section 2.2.5

2.2.1 Discrete-time Markov Transition System

The usual representation of a DTMC in statistics is the one given before: a
family of random variables governed by a stochastic matrix P. Alternatively,
a DTMC can be described as a deterministic finite automaton (DFA) whose
state-transition relation is governed by a probabilistic law. The automaton
representation has the advantage of being more compact and self-contained, and
is a common representation in contexts like model checking [BK08]. In addition,
it is useful to include labels attached to states, as used by Kripke structures
(KS), and actions names to transitions, as used by Labeled Transition Systems
(LTS or simply TS) [BK08, pp. 20-21].

Definition 3 (DMTS). A Discrete-time Markov Transition System (DMTS) is
a tuple D = 〈S,Act ,AP , lab,T , P,α0〉 where:

• S is a finite set of states;

• Act is a finite set of action names;

• AP is a finite set of atomic propositions;

• lab : S → 2AP is a state-labeling function.

• T ⊆ S ×Act × S is a transition relation;

• P : T → R(0,1] is a transition probability function, with the restriction

that for all states s it holds that:
∑
a∈Act P (s, a) ∈ Distr0(S);

• α0 ∈ Distr(S) is an initial distribution.

State labels are taken from a set of atomic propositions AP and are used to
express properties that hold in states. Given a state s ∈ S, the value of lab(s) is
the set of atomic propositions that hold in s. The notation s |= a with a ∈ AP
means that a ∈ lab(s). Action names are taken from a set Act of actions. The

10 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

notation i a−→ j means that (i, a, j) ∈ T . We assume that P (i, a, j) = 0 if the
transition i a−→ j is not in T . The notation i a−→ j ∼λ means that the transition
τ = i a−→ j has a probability P (τ) equal to λ ∈ R(0,1].

The DMTS D starts in some state s0 ∼ α0 and evolves according to T . That
is, if the current state is i, then a transition τ = i a−→ j is taken with probability
P (τ). In D the process may go from a state i to a state j with different actions,
each with its own probability P (i, a, j). The non-zero entries of the stochastic
matrix are derived from the distributions of P by summing all actions, denoted
as: P(i, j) =

∑
a∈Act P (i, a, j). Hence, a DMTS has the behavior of a DTMC

with stochastic matrix P.

2.2.2 Forward DTMC probabilities

The dynamic behavior of a DTMC can be described in terms of forward prob-
ability or in terms of backward probability distributions, based on the forward
and backward Chapman-Kolmogorov equations [Tri02, p. 342].

Forward probabilities give the behavior of the evolution of the system after
t time units, for a given initial fixed state i The probability of being in state j
after n steps, knowing that at time 0 the state was i, is denoted by:

πD(i, j, n)
def
= Pr{Yn = j | Y0 = i} (2.1)

When we consider an initial distribution α ∈ Distr(S) rather than a single
initial state, the vector πD(α, t) of forward state probabilities conditioned by
α becomes:

[
πD(α, n)

]
(j)

def
= Pr{Yn | Y0 ∼ α} =

=
∑

i∈S
α(i) · πD(i, j, n)

(2.2)

Equation (2.2) is subject to the forward Chapman-Kolmogorov equations (for
the time-homogeneous case), for n ≥ 0:

πD(α, n) = α ·Pn (2.3)

The j-th element of the vector πD(α, n) is the probability of reaching state j in
n steps starting from an initial distribution α. The irreducibility of the DTMC
ensures that πD(α, n) ∈ Distr(S) for all vectors α ∈ Distr(S), since a product
with Pn is an ergodic function that preserves the magnitude of α (and therefore
|πD(α, n) = |α|). When we need instead to compute the probability of reaching
the fixed state j in n steps from every other state i, we need to recompute the
above formula |S| times, one for each α = ii.

2.2.3 Backward DTMC probabilities

Backward probabilities represent the probability that the system started in state
i at time 0, given that at step n it is observed in a given destination state j:

ξD(i, j, n)
def
= Pr{Y0 = i | Yn = j} (2.4)

2.2. DISCRETE TIME MARKOV CHAINS 11

If we now consider a measure vector ρ ∈ Measure(S) over a target set of
states at step n, we can introduce the backward probability vector ξD(ρ, n) that
represents the backward probabilities conditioned by the target vector ρ:

[
ξD(ρ, n)

]
(i)

def
= Pr{Y0 | Yn ∼ ρ} =

=
∑

j∈S
ρ(j) · ξD(i, j,m)

(2.5)

The measure vector ξD(ρ, n) does not represent a probability distribution: in-
deed it does not sum to one, and each entry is an independent quantity. When
ρ = ij then the vector ξD(ρ, n) gives the probability of reaching the fixed state
j in n steps from each possible initial state i. Equation (2.5) is governed by the
backward Chapman-Kolmogorov equation:

ξD(ρ, n) = Pn · ρ (2.6)

and it is important to observe that forward and backward probabilities are tied
together by the relation:

πD(α, n) · ρ = α · ξD(ρ, n) (2.7)

which can be easily proven since:
(
α ·Pn

)
· ρ = α ·

(
Pn · ρ

)
.

2.2.4 Stationary behavior of DTMCs

Under the restriction of aperiodicity, the limiting behaviors πD(α, n) and ξD(ρ, n)
for n→∞ do not depend on the time parameter n, but are somewhat constant
vectors that depend only on P. We denote the forward/backward limiting state
probability with:

πD(α)
def
= lim

n→∞
πD(α, n) = α · lim

n→∞
Pn (2.8)

ξD(ρ)
def
= lim

n→∞
ξD(ρ, n) = lim

n→∞
Pn · ρ (2.9)

and again forward and backward are tied together by the relation:

πD(α) · ρ = α · ξD(ρ) (2.10)

We recall that for irreducible DTMCs, πD(α) always exists, it is unique and
independent of α, i.e. πD = πD(α), ∀α ∈ Distr(S). Non-null entries of πD

are said to be recurrent nonull, or positive recurrent. It is less known instead
that the limiting backward vector ξD(ρ) always depends on ρ (ξD(ρ) 6= ξD(ρ′)
for ρ 6= ρ′), and that each entry of the vector has the same scalar value ξρ
(ξD(ρ)[s] = ξρ, for every s ∈ S) and ξρ is uniquely dependent on ρ.

2.2.5 Reducible DTMCs

When the DTMC is reducible, its stochastic matrix P can be reordered as an
upper triangular block form (called reducible normal form):

P =




T F1 · · · Fm
0 R1 · · · 0
...

...
. . .

...
0 0 · · · Rm


 (2.11)

12 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

The state space S is partitioned into the set of transient states ST and m
sets of recurrent states SRi

(recurrent classes). The sub-matrix T is the sub-
stochastic DTMC of the transient states ST. Each rectangular sub-matrix Fi
is the probability matrix of going into the i-th recurrent class from ST. Each
square sub-matrix Ri is the DTMC of the i-th recurrent class.

For simplicity, the notation of [Ger00] is followed, for which all matrices
(and vectors) have the same size of S ×S (and S). Therefore T, F and Ri have
the same size S × S, and actually P (and Q) should be regarded as a simple
summation of T + F +

∑m
i=1 Ri.

As mentioned before, P is stochastic, which means that each row of P is
a probability distribution. Rows corresponding to transient states are split
into T and the various Fi sub-matrices, therefore each of these matrices is not
stochastic but sub-stohastic, having (at least) one row that sums up to a value
in the range [0, 1). A sub-stochastic matrix A has many interesting properties:
the most important is that the spectral radius ρ(A) is strictly less than one.
This implies that lim

k→0
Ak is the zero matrix. Also, many numerical methods

whose convergence depend on the value of the spectral radius to be less than 1
will typically work well with sub-stocastic matrices.

We now derive the structure of lim
n→∞

Pn, as in equations (2.8) and (2.9) when

P is reducible. The powers of P are:

P0 = I, Pn =




Tn Λ1(n) · · · Λm(n)
0 Rn

1 · · · 0
...

...
. . .

...
0 0 · · · Rn

m




with Λi(n) =

n−1∑

k=0

Tk Fi R
n−k−1
i and Λi(0) = 0.

The n-th power of P reveals the well-known structure of a reducible process
after n steps: the process stays for k steps (k≤n) in the transient class ST, then
a single Fi transition occurs and moves the process in the i-th recurrent class
SRi , after which the process remains in SRi for the remaining (n−k−1) steps.

Transient forward and backward probabilities can then be rewritten from
equations (2.3) and (2.6) using the expression for Pk derived above; it is con-
venient to separate the part for the recurrent and transient states, to obtain:

πDT (α, n) = αT ·Tn

πDRi
(α, n) = αT ·Λi(n) +αRi ·Rn

i

ξDT (ρ, n) =

n∑

i=1

(
Λi(n) · ρRi

)
+ Tn · ρT

ξDRi
(ρ, n) = Rn

i · ρRi

(2.12)

Let J be the fundamental matrix [Tri02, p. 7.9] of T, defined as:

J =

∞∑

k=0

Tk = (I−T)−1 (2.13)

The existence of J is ensured by the fact that T is substochastic, thus invertible
(the spectral radius ρ(T) is < 1, therefore the series of Tk converges). The

2.2. DISCRETE TIME MARKOV CHAINS 13

fundamental matrix carries an important information for the reducible process:
each entry J(i, j) is the expected number of times the process visits state j,
before entering an absorbing set, given that it started from state i. Observe
that since J = (I − T)−1, then it is possible to compute any vector-matrix
products with J as the solutions of a linear equation system in (I−T), instead
of computing a product with J directly, i.e.:

x = b · J ⇒ solution of: (I−T) · x = b

x = J · b ⇒ solution of: x · (I−T) = b

for any measure vector b in the R|S| space.
Considering that lim

n→∞
Tn = 0, using the definition of J we can rewrite the

limiting behavior of Pn as:

lim
n→∞

Pn =




0 J · F1 · lim
n→∞

Rn
1 · · · J · Fm · lim

n→∞
Rn
m

0 lim
n→∞

Rn
1 · · · 0

...
...

. . .
...

0 0 · · · lim
n→∞

Rn
m




from which the limiting behaviors of (2.12) result in:

πDT (α) = 0

πDRi
(α) =

(
αT · J · Fi + αRi

)
· lim
n→∞

Rn
i

ξDT (ρ) = J ·
m∑

i=1

(
Fi · lim

n→∞
Rn
i · ρRi

)

ξDRi
(ρ) = lim

n→∞
Rn
i · ρRi

(2.14)

The vector πD(α) is zero in every transient state, which is an expected
result since the process cannot be found in a transient state in the long run.
The vector αT ·J ·Fi can be interpreted as the probability of entering SRi

in the
long run, from the transient set ST. Given a recurrent class SRi , the long-run
probabilities πDRi

(α) are obtained by multiplying the steady state solution in
isolation of that recurrent class (lim

n→∞
Rn
i) with the vector of the probability

that reaches that class in the long run.
For backward probabilities we can observe that ρ values associated with ST

(ρT) have no influence on the probability of neither the transient states (ξDT (ρ))
nor the recurrent states (ξDRi

(ρ)). This is indeed a consequence of the fact that
a transient state cannot be encountered as a target on the long run. Moreover
the steady state backward probability of a recurrent state can be computed on
the recurrent class in isolation (all the quantities in the equation for ξDRi

(ρ)
refer only to the recurrent class SRi). Note that, as explained before, all the
states of the same recurrent class have the same value of backward probability.
More interesting is the case of backward probability of transient states ξDT (ρ),
in which the probability of each recurrent class is “projected back” to the initial
transient states through the multiplication with matrix Fi (one step probability
of reaching SRi from ST) and matrix J (transient behavior).

14 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

The two relations (2.7) and (2.10) still hold for reducible Markov chains,
which can be proven easily by expanding them with the terms of (2.14) and
(2.12).

Note that when ρ is the indicator vector of a set of absorbing states then
ξD(ρ, n) is commonly known as “transient absorption probability”[Kul95].

2.3 Continuous-time Markov chains

Continuous-time Markov chains (CTMCs) are Markov chains defined over a con-
tinuous time domain in R≥0. The behavior of a CTMC {Xt | t ∈ R≥0}, defined
over a finite state space S, is described by the infinitesimal generator matrix
Q, which we assume to be time-homogeneous (i.e. it is constant for Xt and does
not depend on t). An infinitesimal generator describes the instantaneous exit
rates Q(i, j) for each pair of source and destination states i and j, and accounts
in each diagonal entry Q(i, i) for the total exit rate (in negative sign) from state
i. So, each row of Q sums up to 0, making Q a singular matrix.

Let pi,j(∆t) be the discrete probability of going from state i to state j in the
time interval ∆t. In this way, the value of ∆t gives the length of the discrete
time step of a DTMCs with stochastic matrix P =

[
pi,j(∆t)

]
. The tangential

behavior of pi,j(∆t) in the rounding of a small time step (∆t → 0) defines the
mean rate of the transition from i to j, measured in events/time:

qi,j
def
= − d

dt
pi,j(∆t)

∣∣∣∣
∆t→0

= lim
∆t→0

pi,j(0)− pi,j(∆t)
∆t

=

= lim
∆t→0

pi,j(∆t)

∆t
(2.15)

and similarly for the rate of remaining in state i:

qi
def
= − d

dt
pi,i(∆t)

∣∣∣∣
∆t→0

= lim
∆t→0

pi,i(0)− pi,i(∆t)
∆t

=

= lim
∆t→0

1− pi,i(∆t)
∆t

(2.16)

Given a matrix Q =
[
qi,j
]

with the diagonal entries Q(i, i) = −qi, it is easy
to see that

∑
j Q(i, j) = 0 for all i. Given that definition, it is possible to write

the matrix equations [Tri02, p. 408]:

d P

dt
= P ·Q = Q ·P (2.17)

along with the forward and backward Kolmogorov differential equations that
will be used in sections 2.3.2 and 2.3.3.

2.3.1 Continuous-time Markov Transition System

A CTMC can be described as a transition system similarly to a DMTS (as in
definition (3)), with a timed transition relation, state labels and action names.

Definition 4 (CMTS). A Continuous-time Markov Transition System (CMTS)
is a tuple M = 〈S,Act ,AP , lab,T , P, E,α0〉 where:

2.3. CONTINUOUS-TIME MARKOV CHAINS 15

• 〈S,Act ,AP , lab,T , P,α0〉 is a DMTS;

• E : S → R≥0 is the exit rate function;
The value of E(i) gives the Markovian exit rate from state i. The notation
i a−→ j ∼λ means that the transition τ = i a−→ j has a probability P (τ) equal
to λ ∈ R(0,1], while the notation i a−→ j ∼

rate
µ means that the transition has an

exit rate E(i) · P (τ) equal to µ ∈ R>0.

The evolution of a CMTS is analogous to that of a DMTS, except that the
system remains in each state i for an amount of time that is distributed according
to an exponential distribution with rate E(i). The probability to exit state i in t

time units is therefore:
∫ t

0
E(i) · e−E(i)x dx. Then a new transition τ = i a−→ j is

chosen from T with probability P (τ). The entries of the infinitesimal generator
matrix are derived from P and E as: Q(i, j) =

(∑
a∈Act P (i, a, j)−I(i, j)

)
·E(i).

A CMTS has therefore the behavior of a CTMC with infinitesimal generator Q.

2.3.2 Forward CTMC probabilities

The time evolution of a CTMC is governed by the forward/backward Kol-
mogorov differential equations [Kul95, th. 2.3]. The probability of being in
state j at time t, knowing that at time 0 the state was i, is denoted by:

πM(i, j, t)
def
= Pr{Xt = j | X0 = i} (2.18)

or, in vector form:
[
πM(α, t)

]
(j)

def
= Pr{Xt | X0 ∼ α} =

=
∑

i∈S
α(i) · πM(i, j, t)

(2.19)

with α ∈ Distr(S) a probability distribution at time 0. Vector (2.19) is the
solution of the forward Kolmogorov differential equation:

dπM(α, t)

dt
= πM(α, t) ·Q (2.20)

with entrance condition πM(α, 0) = α.
The solution of the linear first-order homogeneous matrix differential equa-

tion (2.20) for t ≥ 0 is:

πM(α, t) = α · eQt (2.21)

2.3.3 Backward CTMC probabilities

Backward probability gives the probability that the CTMC was in state i at
time 0, given that at time t is observed in state j, is:

ξM(i, j, t)
def
= Pr{X0 = i | Xt = j} (2.22)

or, in vector form:
[
ξM(ρ, v)

]
(i)

def
= Pr{X0 | Xt ∼ ρ} =

=
∑

j∈S
ρ(j) · ξM(i, j, v)

(2.23)

16 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

with ρ a measure vector over the target states at time t. The resulting vector
is the solution of the backward Kolmogorov differential equation:

d ξM(ρ, t)

dt
= Q · ξM(ρ, t) (2.24)

with exit condition ξM(ρ, t) = ρ. Solution of (2.24) is:

ξM(ρ, t) = eQt · ρ (2.25)

Forward and backward formulas are tied by the relation:

πM(α, t) · ρ = α · ξM(ρ, t) (2.26)

which is equivalent to:
(
α · eQt

)
· ρ = α ·

(
eQt · ρ

)
, and:

πM(α) · ρ = α · ξM(ρ) (2.27)

The computation of the transient measures (2.21) and (2.25) may be carried
out in many ways [ML78]; the popular uniformisation method can be defined for
both forward and backward probabilities, leading to the two following Taylor
series expansion of the solution of the first-order constant coefficients ODE of
the Kolmogorov differential equations (2.21) and (2.25):

πM(α, t) = α · eQt = α ·
∞∑

n=0

(
e−qt(qt)n

n!
Un

)

ξM(ρ, t) = eQt · ρ =

∞∑

n=0

(
e−qt(qt)n

n!
Un

)
· ρ

(2.28)

with q ≥ −maxi∈S Q(i, i) and U = 1/qQ + I the uniformized matrix of Q.
As usual, U is the stochastic matrix of the mean behavior after a time step of
duration 1/q.

2.3.4 Stationary behavior of CTMCs

The stationary behavior can be defined also for CTMCs. Taking the limit to
infinity of (2.21) and (2.25) we get:

πM(α)
def
= lim

t→∞
πM(α, t) = lim

t→∞
α · eQt (2.29)

ξM(ρ)
def
= lim

t→∞
ξM(ρ, t) = lim

t→∞
eQt · ρ (2.30)

Therefore πM(α) and ξM(ρ) denote the stationary forward and backward vec-
tors of the CTMC. Under the condition of irreducibility, the vector πM(α)
is unique and does not depend on α, and we denote it as πM. Steady state
formulas are computed as the solutions of the two linear equation systems in
Q:

πM ·Q = 0

Q · ξM(ρ) = ρ (2.31)

Since πM(α) does not depend on α, we write it simply as πM. Backward
solution instead depends on ρ, since ρ is the given limiting distribution for
t → ∞. Many well-established algorithms exist [Ste94] for the computation of
the limiting behavior of a CTMC.

2.3. CONTINUOUS-TIME MARKOV CHAINS 17

2.3.5 Reducible CTMCs

When the CTMC is reducible, its infinitesimal generator Q can be written in
reducible normal form:

Q =




T F1 · · · Fm
0 R1 · · · 0
...

...
. . .

...
0 0 · · · Rm


 (2.32)

The sub-matrices Ri are infinitesimal generators, but the matrices T and Fi are
not, because (at least) one of their rows does not sum up to 0. Like in section
2.2.5, this has various numerical implications. The most important is that T
and Fi are not singular, and the matrix exponential lim

t→∞
eTt is the zero matrix.

As for DTMCs, we start from the structure of lim
t→∞

eQt to show how to derive

transient and stationary (for both forward and backward) formulas. The matrix
powers of Q are:

Q0 = I, Qn =




Tn Λ1(n) · · · Λm(n)
0 Rn

1 · · · 0
...

...
. . .

...
0 0 · · · Rn

m




with Λi(n) =

n−1∑

k=0

Tk Fi R
n−k−1
i and Λi(0) = 0. The exponential of Q t is then:

eQt =

∞∑

n=0

Qn tn

n!
=




eTt Θ1(t) · · · Θm(t)
0 eR1t · · · 0
...

...
. . .

...
0 0 · · · eRmt




with the term Θi(t) defined as:

Θi(t) =

∞∑

n=0

Λi(n) tn

n!
=

∞∑

n=0

n−1∑

k=0

Tk Fi R
n−k−1
i tn

n!
=

=

∞∑

n=0

∞∑

k=0

Tn Fi R
k
i

tn+k+1

(n+ k + 1)!

The last factor can be rewritten:

tn+k+1

(n+ k + 1)!
=

1

n! k!

∫ t

0

xn (t− x)k dx

18 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

so that the term Θi(t) can be reformulated:

Θi(t) =

∞∑

n=0

Tn

n!
· Fi ·

(∞∑

k=0

Rk
i

k!

∫ t

0

xn (t− x)k dx

)
=

=

∫ t

0

(∞∑

n=0

Tn xn

n!

)
· Fi ·

(∞∑

k=0

Rk
i (t− x)k

k!

)
dx =

=

∫ t

0

eTx · Fi · eRi(t−x) dx (2.33)

Equation (2.33) can be interpreted as follows: the process initially passes x time
units in the transient class ST, then one Fi transition occurs, after which the
process spends the remaining time (t− x) in the i-th recurrent class.

Transient forward and backward equations for ST and SRi
state partitions

can then be written in vector form as:

πMT (α, t) = αT · eTt

πMRi
(α, t) = αT ·Θi(t) +αRi

· eRit

ξMT (ρ, t) =

m∑

i=1

(
Θi(t) · ρRi

)
+ eTt · ρT

ξMRi
(ρ, t) = eRit · ρRi

(2.34)

Let W be a matrix defined as:

W =

∫ ∞

0

eTx dx (2.35)

so that each entry W(i, j) gives the expected sojourn time left in state j, before
entering an absorption class, given that the initial state was i. With W it is
possible to rewrite the limit of Θi(t) by integration by parts:

lim
t→∞

Θi(t) =

∫ ∞

0

eTx dx · Fi · lim
t→∞

eRit =

= W · Fi · lim
t→∞

eRit (2.36)

The term lim
t→∞

eRit is the stationary stochastic matrix of the i-th recurrent class.

The limiting behavior of a reducible Markov chain is therefore:

lim
t→∞

eQt =




0 W · F1 · lim
t→∞

eR1t · · · W · Fm · lim
t→∞

eRmt

0 lim
t→∞

eR1t · · · 0

...
...

. . .
...

0 0 · · · lim
t→∞

eRmt




The limiting behavior of lim
t→∞

eTt tends to 0, since T has at least one row

that has a negative row sum. Therefore lim
t→∞

eQt has the column of ST states

zeroed. Observe that since lim
t→∞

eTt = 0, then the integral (2.35) is equivalent

2.4. MARKOV REGENERATIVE PROCESSES 19

to: W = −T−1, so that a product with W can be computed as the solution of
a linear system in T.

Stationary expressions for πM(α) and ξM(ρ) are:

πMT (α) = 0

πMRi
(α) =

(
αT ·W · Fi + αRi

)
· lim
t→∞

eRit

ξMT (ρ) = W ·
m∑

i=1

(
Fi · lim

t→∞
eRit · ρRi

)

ξMRi
(ρ) = lim

t→∞
eRit · ρRi

(2.37)

and the same considerations done for the corresponding discrete equations (2.14)
hold.

2.4 Markov Regenerative Processes

In this section we consider a class of stochastic processes that extends the CTMC
definition (Def. 2) by allowing firing times to have any general distribution
(general events), thus weakening the M2 requirement. These processes, known
as Markov regenerative processes, have been introduced in [Pyk59], and then
studied in detail in [Ger00]. Events with an exponentially distributed firing
times are called exponential events. General events that can fire from a state s
are said to be enabled. A set of random variables G accounts for the age of the
enabled general events. A renewal time is a point in time where the value of
every random variable g is zero. States of the process encountered at renewal
times are called regeneration points. A stochastic process {Zt | t ∈ R≥0} where
general events are restricted to be enabled at most one per state [Cox55] is a
Markov Regenerative Process (MRP), which can be described upon a Markov
Renewal Sequence (MRS).

Definition 5 (Markov renewal sequence). Let S be a finite state space. A
sequence of bivariate random variables {〈Yn, Tn〉 | n ∈ N} is called a Markov
renewal sequence with regeneration points Yn ∈ S encountered at renewal times
Tn ∈ R≥0 iff:

• 0 = T0 < T1 < T2 < . . .

• Pr{Yn+1 =j, Tn+1−Tn ≤ t | Yn= i, Tn, . . . , Y0, T0} = (Markov property)

= Pr{Yn+1 =j, Tn+1−Tn ≤ t | Yn= i} = (Time homogeneity)

= Pr{Y1 =j, T1 ≤ t | Y0 = i}

The renewal sequence is a stochastic process whose purpose is to count state
transitions of a continuous-time process Zt. When the renewal sequence is
memoryless, the process Yn is a discrete-time Markov chain, called the embedded
Markov chain (EMC), while the process Tn is the time where the process Zt
jumps to a new state. Therefore, Zt and Yn are bound together by the relation
ZTn

= Yn for all n ∈ N. In general, the process Tn is not a Markov process,
since the durations Tn+1 − Tn are not i.i.d.1, but depend on Yn.

1Identically and independently distributed.

20 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

Definition 6 (Markov regenerative process). A stochastic process {Zt | t ∈
R≥0} is a Markov regenerative process if there exists an MRS {〈Yn, Tn〉 | n ∈ N}
such that all the conditional finite dimensional distributions of {ZTn+t | t ≥ 0}
given the past history {Zu | 0 ≤ u ≤ Tn, Yn = i} only depend on the last
regeneration point 〈Yn, Tn〉, i.e. are the same as {Zt | t ≥ 0} given Y0 = i, so
that:

Pr{ZTn+t = j | Zu, 0 ≤ u ≤ Tn, ZTn
= i} =

= Pr{ZTn+t = j | ZTn
= i} =

= Pr{Zt = j | Z0 = i}

Definition 6 implies that Zt may not be memoryless between two renewal
times Tn and Tn+1, but at Tn+1 the process has no age memory, so it behavior
depends only on the state reached. Therefore, the process Yn that follows ZTn

is a Markov chain.
The process behavior {Zt | Tn ≤ t < Tn+1} between two regeneration points

Yn and Yn+1 may be described by any process: it is commonly described by a
CTMC (called the subordinated process of Yn), but other choices are possible.

An MRP may have an important property that is known as the enabling-
retriction. In those processes, there is at most one general (non-memoryless)
event enabled between two regeneration points Yn+1 and Yn. All the MRPs
considered in this thesis will have the enabling-retriction, so we drop the term
“MRP with enabling retriction” ad we just use the term MRP.

2.4.1 Linear representation of a MRP

MRP analysis can be done at two levels: at the level of the continuous-time
non-Markovian process Zt, and at the level of the embedded DTMC Yn. It is
not possible to give a simple linear representation to Zt (like an infinitesimal
generator Q), because it is not memoryless. On the contrary, Yn is a Markov
chain, for which it is possible to derive a stochastic matrix P, which gives the
transition probabilities between two consecutive regeneration points:

P(i, j)
def
= Pr{Yn+1 = j | Yn = i} = Pr{Y1 = j | Y0 = i} (2.38)

Every single discrete step of P gives the next regeneration point in the MRS.
It is possible to convert the distributions of the regeneration points into the MRP
distribution. However, the time elapsed between two regeneration points (the
Tn sequence) is not uniformly distributed. Therefore, it is necessary to count
how much time the embedded process spends in every subordinated process. A
matrix of conversion factors is defined to count for these elapsed times:

C(i, j)
def
= E

[
time of Zt in state j during [0, T1) | Y0 = i

]
=

=

∫ T1

0

Pr{Zt = j | Y0 = i} dt
(2.39)

The EMC definition is given with the notation of [Ger00]. Let G be the set of
random variables that describe the ages of the general events. Given g ∈ G, we
denote with F g(x) the firing time distribution, with fg(x) the density function
of g, and with xgmax the maximum support.

2.4. MARKOV REGENERATIVE PROCESSES 21

The set SE ⊆ S is the exponential state subset, where no general event is
enabled; Sg is the set of states where g is enabled, and SG =

⋃
g∈G Sg is the

general state subset.
State transitions are classified into three kinds:

[δ] Transition due to a general event completion (firing of a general event).

[q] Exponential event whose firing has no effect on the age of the enabled
general transition (non-preemptive firing of an exponential event).

[q] Exponential event whose firing resets the age of the currently enabled
general transition (preemptive firing of an exponential event).

Events of type δ and q may only happen in a general state i ∈ SG. The next
state j depends on the current state i and on the age of the currently enabled
general event g (if any), but not on the past history (the semi-Markov property,
which relaxes the constraint M2 of section 2). We assume a preemptive repeat
different (prd policy) for general events: when a general event g is preempted,
its memory is lost, so, when it will become active again, a new duration for that
event is resampled from its random variable.

A sample dynamic of an MRP is depicted in Figure 2.1.

Figure 2.1 Sample MRP dynamic.

Xt

Tn

Yn

x0 x1 x2 x3 x4 x5 x6 x7

t1 t2 t3 t4

y0=x0

t0

y1=x1 y2=x4 y3=x6 y4=x7

q̄δ

in SE

︷ ︸︸ ︷ in SE

︷ ︸︸ ︷in Sg

︷ ︸︸ ︷ in Sg

︷ ︸︸ ︷

In Figure 2.1 the MRP process Zt passes through various states: from state
x1 to state x4 a general event g is enabled, and this enabling ends with the
firing event of g. The same happens from state x4 to x6, where the enabling
of g ends due to an exponential event that disables g. Arcs of type q are not
labeled. The age of g is not 0 in states x2, x3 and x5, therefore these states are
not regeneration points, and do not appear in the embedded process Yn.

The dynamic of Zt can be described [Ger00] by 3 matrices Q, Q̄ and ∆:

• Q(i, j), i 6= j: non-preemptive exponential events rate from state i to
state j;

• Q̄(i, j), i∈Sg: preemptive exponential events rate from state i to state j
that disable g enabled in i;

• Q(i, i) is the negative sum of all the rates of exponential events leaving
state i;

• ∆(i, j), i∈Sg: probability that the firing of g in state i leads to state j.

Observe that Q̄(i, i) can indeed be non-zero as well (a self-loop with preemp-
tion), which represents a state transition that does not change the state but
resets the age of g, thus making i a new regeneration point in the MRS.
The diagonal of Q accounts for the rates of both Q and Q̄, i.e. Q(i, i) =

22 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

−∑j 6=i
(
Q(i, j) + Q̄(i, j)

)
. Rows of Q̄ and ∆ corresponding to exponential

states are zero. The matrix ∆ is a stochastic matrix, while Q and Q̄ are rate
matrixes.

MRP formulas are simpler with the help of a filtering notation.

Definition 7 (Filtering). Let SU ⊆ S be a subset of states of S, and let A
be a matrix. With AU we denote the filtered matrix where all rows which do
not correspond to SU states are zeroed. With AU,V we denote a doubly-filtered
matrix where the rows not in U and the columns not in V are zeroed.

For instance, IG, Q̄g and QE are all filtered matrices w.r.t. the set of states
with g enabled, the general subset SG, and the exponential subsets of S. The
filtering notation will be used extensively also for vectors.

2.4.2 Markov Regenerative Transition System

An MRP can be represented more compactly as a transition system, as done for
def. (3) and (4). The three transition types {q,q, δ} are represented as action
types. The set of actions Act is partitioned into three disjoint subsets:

• ActG is the set of general actions (type δ), one ag ∈ ActG for each g ∈ G;

• ActE is the set of non-preemptive Markovian transitions (type q);

• ActE is the set of preemptive Markovian transitions (type q).

Let ActM = ActE ∪ActE be the set of Markovian actions.

Definition 8 (MRTS). A Markov Regenerative Transition System (MRTS) is
a tuple R = 〈S,G,Γ,Act ,AP , lab,T , P, E,α0〉 where:

• S is a finite set of states.

• G is a finite set of general distributions, with Fg(x) the probability mass
function of g ∈ G.

• Γ : S → G] {E} is a state-partition function that assigns to each state s
a general transition enabled in s, or E if no general transition is enabled
in s; Function Γ induces the partitioning of S into the set of exponential
states SE = {s ∈ S | Γ(s) = E} and, for each g ∈ G, the set where g is
enabled Sg = {s ∈ S | Γ(s) = g}.

• Act = ActG]ActE]ActE is a finite set of action names;

• AP is a finite set of atomic propositions.

• lab : S → 2AP is a state-labeling function.

• T ⊆ S ×Act × S is a transition relation, such that:

T \
[(⋃

g∈G

((
Sg ×ActE × Sg

)
∪
(
Sg × (ActE ∪ {ag})× S

)))
∪

∪
(
SE ×ActE × S

)]
= ∅

• P : T → R(0,1] is a transition probability function, subject to:

1. for all states s ∈ S it holds that:
∑
a∈ActM P (s, a) ∈ Distr0(S);

2. for all states s ∈ SG it holds that:
∑
a∈ActG P (s, a) ∈ Distr(S);

• E : S → R>0 is the Markovian exit rate function.

• α0 ∈ Distr(S) is an initial distribution.

2.4. MARKOV REGENERATIVE PROCESSES 23

As before, the set SG is defined as ∪g∈GSg. The two notations i a−→ j ∼λ and
i a−→ j ∼

rate
µ mean that the transition τ = i a−→ j has a probability P (τ) = λ

and an exit rate E(i) ·P (τ) = µ, respectively, with λ ∈ R(0,1] and µ ∈ R>0. The
rate notation is used only for Markovian transitions.

The restrictions on the T relation describes which kind of transitions may de-
part from exponential and general states. Note that in a MRTS the probability
relation P accounts separately for general and Markovian actions.

An MRTS R starts in a state s ∼ α0. States where Γ(s) = g are represented
by a tuple 〈s, x〉, where x is the age of the enabled general event g. The value
of the variable x increases linearly over time. Let x̄ be the value of x. The
evolution of R is governed by the transition relation T . In each state, either
an exponential event or a general event may fire. If either a general event or
preemptive exponential event fire, the value of x is reset to zero. The probability
of taking a transition τ ∈ T (s) is given by P (τ). General transitions and
exponential transitions have separate probability distributions.

2.4.3 The embedded DTMC

The time evolution of the EMC follows that of the regeneration points, and
the evolution from one regeneration point Yn to the next Yn+1 is given by the
subordinated CTMC of state Yn (i.e. each state i encountered as a regeneration
point Yn has its own subordinated CTMC). Therefore it is possible to isolate the
behaviour of the sole embedded process Yn, for which a DTMC can be provided.
The steady-state solution of the EMC is called the embedded solution, and gives
the expected probability of encountering a state as a regeneration point. The
usefulness of the conversion factors matrix C is that it allows to convert from
the embedded solution πD to the MRP solution πR, thus taking the expected
probabilities of the Zn process.

We now introduce some basic definitions, in order to derive a closed-form
expression for P and C. Following [Ger00], let Ωg be the state probability matrix
in the instant before g fires, defined for a subset Sg as:

Ωg(i, j)
def
= Pr{ZT−1 = j | Y0 = i, i ∈ Sg} =

= Ig
∫ xg

max

0

eQgx · fg(x) dx (2.40)

Let Ψg be the conditional expected sojourn time matrix in the states of Zt
from the enabling of g to the firing, defined for a subset Sg as:

Ψg(i, j)
def
= E

[
sojourn time of X in j during [0, T1), | Y0 = i, i ∈ Sg

]
=

=

∫ T1

0

Pr{X(τ) = j | Y0 = i, i ∈ Sg}dτ =

= Ig
∫ xg

max

0

eQgx · (1− F g(x)) dx (2.41)

The two shorthand notations:

Ω =
∑

g∈G

Ωg, Ψ =
∑

g∈G

Ψg

24 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

denote the summation of (2.40) and (2.41) for each general event.
Let diag−1(QE) be the diagonal matrix where the non-zero diagonal entry

of every exponential state i ∈ SE is Q(i, i)−1, and 0 in every other entry. In the
exponential state subset SE, the process {Zt} behaves like a CTMC. Therefore
the next renewal state is reached with the next exponential event fires. Expected
sojourn times are just the reciprocal of the rates in each state:

CE = −diag−1(QE)

so that CE(i, i) = −1/QE(i, i) when QE(i, i) 6= 0. The rows of PE are:

PE(i, j) =

{
Q(i,j)
Q(i,i) if i 6= j, Q(i, i) 6= 0, i ∈ SE

0 otherwise

or, alternatively, in matrix notation:

PE = IE − diag−1(QE)QE = IE + CE QE (2.42)

When Zt enters a general state s ∈ Sg, the instant when either g will be
preempted or g will fire constitutes the next renewal time. Let ḡ be the valua-
tion of event g, randomly sampled from the distribution Fg(x) of g at time T0.
Starting from (2.38) we split the age reset case (when the renewal is T1 < ḡ)
from the activation case (when T1 = ḡ), obtaining:

Pg(i, j) = Pr{Y1 = j | Y0 = i, i ∈ Sg, T1 < ḡ}︸ ︷︷ ︸
Probability that g gets preempted

+

+ Pr{Y1 = j | Y0 = i, i ∈ Sg, T1 = ḡ}︸ ︷︷ ︸
Probability that g fires

A matrix form for Pg is then derivable with the help of a SMC matrix.

Definition 9 (Subordinated Markov chain matrix). Let Bg be a generator
matrix of the subordinated Markov process of Y0 for the Sg state subset, defined
over a duplicated state space {S ∪ S̄} as:

Bg =

[
Qg Q̄g

0 0

]

where the set of states S gives the behavior before the firing of g, and the set
of absorbing states S̄ are the destination states when a preemptive transition
fires, disabling g.

The EMC matrix Pg for Sg-states is:

Pg =
[
Ig 0

] (
lim
t→∞

eB
gt
)[

∆g

I

]
(2.43)

The subordinated process starts in the S-states of Bg, as described by the
left matrix factor [Ig 0]. If no preemptive transition in Q̄g is taken up to time
t, the process goes to the next regeneration point according to the branching
distribution in ∆g. Otherwise, when a Q̄g transition fires, the process goes to
an absorbing S̄ state, which gives the next regeneration point.

2.4. MARKOV REGENERATIVE PROCESSES 25

Theorem 1. Given the SMC Bg of definition 9, the limiting behavior of the
matrix exponential of Bg is given by:

lim
t→∞

∫ t

0

eB
gx · fg(x) dx =

[
Ωg Ψg Q̄g

0 I

]
(2.44)

with the matrixes Ωg and Ψg as defined in Eq. (2.40) and (2.41).

Proof. The powers of the subordinated Markov chain matrix Bg are:

(
Bg
)0

=

[
I 0
0 I

]
,

(
Bg
)k

=

[
(Qg)k (Qg)k−1 Q̄g

0 0

]

Expanding the Taylor series of the matrix exponential eB
gt results in:

eB
gx =

∞∑

k=0

(Bgx)k

k!
=

[∑∞
k=0

(Qgx)k

k!

∑∞
k=1

xk(Qg)k−1Q̄g

k!

0 I

]
=

[
eQ

gx ?
0 I

]

Equation (2.44) is therefore:

lim
t→∞

∫ t

0

eB
gx · fg(x) dx = lim

t→∞

∫ t

0

[
eQ

gx ?
0 I

]
· fg(x) dx

The term lim
t→∞

∫ t
0
eQ

gt · fg(x) dx is equivalent to Ωg, by definition (2.40).

The ? term can be rewritten as:
∞∑

k=1

xk (Qg)k−1 Q̄g

k!
=

∞∑

k=0

xk+1 (Qg)k

(k + 1)!
Q̄g

The conditional expected sojourn time Ψg of Eq. (2.41) can be rewritten as:

Ψg = lim
t→∞

Ig
∫ t

0

eQ
gx · F̄ g(x) dx = lim

t→∞
Ig
∫ t

0

∞∑

k=0

(Qgx)k

k!
· F̄ g(x) dx =

= lim
t→∞

Ig
∞∑

k=0

(Qg)k

k!

∫ t

0

xk · F̄ g(x) dx =

= lim
t→∞

Ig
∞∑

k=0

(Qg)k

k!

(
xk+1 · F̄ g(x)

k + 1

∣∣∣∣
t

0

)
=

= lim
t→∞

Ig
∞∑

k=0

(Qg)k xk+1

(k + 1)!
= lim

t→∞
Ig
∞∑

k=0

xk+1 (Qg)k

(k + 1)!

which implies that the term lim
t→∞

∫ t
0
? · fg(x) dx is exactly Ψg Q̄g.

The relation (2.44) of theorem 1 allows to simplify the formula for Pg.

Corollary 2. Theorem 1 allows to derive a compact analytical formula for the
EMC matrix (2.43) for Sg states:

Pg =
[
Ig 0

] (
lim
t→∞

eB
gt
)[∆g

I

]
=

=
[
Ig 0

] [Ωg Ψg Q̄g

0 I

] [
∆g

I

]
=

= Ωg ∆g + Ψg Q̄g

26 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

The stochastic matrix P of the DTMC embedded at renewal points is then [Ger00]:

P = IE − diag−1(QE)QE + Ω∆ + ΨQ̄ (2.45)

which is a compact formulation for P. Such a matrix can be used to compute
the steady-state distribution of the MRP.

For general states, the matrix of conversion factors Cg is easily given by:

Cg = Ψg

since the definition of C of Eq. (2.39) is the same as Ψ (2.41) for Sg states.
Therefore, the conversion factors matrix C of the MRP is:

C = −diag−1(QE) + Ψ (2.46)

2.4.4 Stationary behavior of MRPs

Once the EMC matrix P and the conversion factors matrix C have been derived
with (2.45) and (2.46), the stationary distribution of the embedded process Yn
can be computed using the DTMC formula (2.8) and (2.9). We assume, for
now, that Yn is irreducible.

The forward and backward stationary behaviors of the embedded process D
of an MRP R are:

πD(α) = α · lim
n→∞

Pn (2.47)

ξD(ρ) = lim
n→∞

Pn · ρ (2.48)

We may also write πD instead of πD(α) since it does not depend on α.
The forward behavior of the MRP is then derived from that of the EMC as:

πR =
πD ·C
πD ·C · e

(2.49)

where πD · C is the conversion of the embedded probability into a (not nor-
malized) MRP probability, and πD ·C · e is the normalization coefficient. This
normalization is needed because a product with C turns a probability distri-
bution vector into a vector of mean sojourn times. Therefore, the product has
to be re-normalized to be a probability distribution. When R is reducible, the
normalization has to be done separately for each recurrent class and not globally.

Given a product πR(α) · ρ, it is possible to derive a backward formulation
of (2.49), by taking the limiting condition ρ:

πR(α) · ρ =
πD ·C · ρ
πD ·C · e =

α · lim
n→∞

Pn ·C · ρ
α · lim

n→∞
Pn ·C · e =

α · ξD(C · ρ)

α · ξD(C · e)
(2.50)

With (2.50) the same product πR(α) ·ρ for multiple initial distributions α can
be computed more efficiently by precomputing the two backward distributions
ξD(C · ρ) and ξD(C · e). If R is irreducible, then ξD(C · e) is a uniform vector
e ξ, for some value ξ ∈ R≥0, and any product α ·ξD(C ·e) has value ‖α‖ · ξ. For
reducible MRPs, the normalization coefficient is not unique but instead depends
on α.

2.5. MEASURING INDEXES ON MARKOV CHAINS 27

2.5 Measuring indexes on Markov Chains

The usual purpose for computing the forward distribution or the backward mea-
sure on a Markov chain at time t is that we want to use the computed distribu-
tion with some form of knowledge on the state space to determine quantitatively
a scalar measure. Two important classes of scalar measures may be computed
from a stochastic process, namely state-based measures and event-based mea-
sures (or action-based measures). Following the conventions of [Ger00, sec. 4.3],
a formalism can be derived which is based on rate rewards and impulse rewards.
States and actions can be taken from the labels of the transition system that
describes the process.

State-based measures

A rate reward rr : S → R is a function that assigns to each state s in S a real
value. Typically, rate rewards are defined as expression over the set of atomic
propositions AP , like rr(i) = (3 if i |= Φ), with Φ a proposition expression over
AP .

A state reward variable Rr(t) is a scalar variable that accumulates rr(i) units
whenever a given process spends time in state s ∈ S in the interval [0, t]. State
reward variables may be defined for DTMCs, CTMCs and MRPs. In a DTMC
Yn, the variable RDr (n) accumulates rr(n) in every step, where i is the state of
that step.

RDr (n) =

n∑

i=0

rr(Yi) (2.51)

In a CTMC Xt (or in an MRP Zt), the variable RMr (t) accumulates rr(i) · t
every times the process stays in state i for an amount of time of t units.

RMr (t) =

∫ t

0

rr(Xτ) dτ (2.52)

Event-based measures

An impulse reward ir : T → R is a function that assigns a positive real value
to each transition event τ ∈ T of the transition system. An impulse reward
variable Ri(t) is a scalar variable that accumulates impulse rewards whenever a
transition τ ∈ T takes place in the process during the interval [0, t]. For instance,
an impulse reward irA(i a−→ j) = (1 if a ∈ A) assigns a value of 1 whenever an
action a ∈ A happens. An event-based measure can be computed by having the
probability of each state combined with the event frequency from each state.

In a DTMC a transition event happens in every discrete step. An impulse
reward variable RDi (n) is defined as:

RDi (n) =

n−1∑

i=0

∑

a∈Act

ir(Yi, a, Yi+1) (2.53)

In a CTMC, the definition of reward variables is given by taking the sequence
{Tn | n ∈ N} of time instants where Xt takes a transition event. An impulse

28 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

reward variable RMi (n) is then defined as:

RMi (t) =

Tn−1≤t∑

n=0

∑

a∈Act

ir(XTn , a,XTn+1) · (Tn+1 − Tn) (2.54)

The firing frequency of exponential event τ = i a−→ j in a CTMC is just the
exponential rate λ of the event τ . Therefore, the impulse reward variable RMi (t)
that measures the event τ grows linearly in time, as shown in Figure 2.2(a).

Exponential events in an MRP behaves in the same way as CTMC events. A
general event g is instead more complex, and its behavior is not constant during
the time t because g is not memoryless.

Figure 2.2 Firing frequencies of Markovian and general (deterministic) events.

1

2δ 3δ 4δδ

t
1

2δ 3δ 4δδ

2

3

4

tt

RM
i (t) = λ

λe

Accumulated firings of an
exponential event.

(a) Firing frequency of a deterministic
process with delay .

(b)
δ

Accumulated firings of (b)(c)

1

RR
ag

(t)

Figure 2.2(b) and (c) shows instantaneous and accumulated firing frequencies
of a general event g with deterministic duration δ. In this case, firing frequencies
can be represented as Dirac impulses in the roundings of kδ, k > 0, where the
probability of g firings is 1. Therefore, the values of RRg (t) strictly depends on
the time where g has become active, i.e. it depends on t. Other general events
with distributions different from the deterministic distribution have a different
firing frequency diagram.

The reward variable for an exponential event RMi (t) has the same diagram
of a state reward variable with a reward rr(i) equivalent to the exit rate of the
measured event in i. Therefore RMi (t) can be assimilated to a state reward
variable. Impulse rewards are a concept relevant only for general event firings,
and are of no use for regular Markov chains. Since MRP restrict general events
to be enabled at most one at a time, it is possible to redefine i : S → R as a
function that assigns a reward in a state i if the measured event g fires in that
state. Let ϕ be a vector defined as:

ϕ(i)
def
= E[probability of g firing in state i from 0 to T1] (2.55)

The stationary value of ϕ has been derived in [Ger00, p. 272] from the forward
stationary distribution πR:

ϕ = πRΩ =
uΩ

uCe
(2.56)

with u = uP subject to ue = 1.

2.5. MEASURING INDEXES ON MARKOV CHAINS 29

2.5.1 Reward-based measure definitions

The advantage of defining quantitative properties with rate and impulse rewards
is [Ger00, p. 47] that it provides a systematic framework that can express a
large variety of measures. The structure is very similar for CTMCs, DTMCs
and MRPs.

For MRPs, it is convenient to define a reward structure for a quantitative
measure as a vector of rate rewards rr and, for each general event g, a vector of
impulse rewards irg: Given a reward structure, four measures can be computed
in an MRP:

Rinst(t)
def
= rr · π(t) +

∑

g∈G

irg ·ϕg(t) (2.57)

Rsteady
def
= lim

t→∞
Rinst(t) (2.58)

Racc(t)
def
=

∫ t

0

Rinst(x) dx (2.59)

Raverage(t)
def
=

1

t
Racc(t) (2.60)

The value of Rinst(t) gives the instantaneous reward in a specified time instant
t. The expected instantaneous reward in the long-run is given by Rsteady. The
value of Racc(t) gives the accumulated reward until time t, and Raverage(t) gives
the average reward in the interval [0, t]. For continuous-time Markov processes,
the accumulated reward Racc(t) is a continuous measure, which increases over
the time when the process stays in a state with non-zero reward rate, and for
the reward of exponential transition firings. In a MRP, the value of Racc(t) may
contain discontinuity due to the impulses of general event firings.

The same kind of measures can be defined for CTMCs and DTMCs, given
that the value of ir is not needed.

A quite different approach to measuring performance indexes on Markov
chains is that of assigning rewards to execution paths of the entire Markov chain,
instead of taking only isolated states/events. In this way, performance indexes
may follow a property that describes an accepted behaviour of the chain. This
approach is discussed in chapter 3 and is commonly referred to as stochastic
model checking.

30 CHAPTER 2. MEASURING PROPERTIES OF MARKOV CHAINS

Chapter 3

Measuring path-based
properties

The framework introduced in chapter 2 defines three classes of processes, namely
DTMCs, CTMS and MRPs, and allows to define and compute various perfor-
mance indexes based on per-state and per-event reward measures. For each of
these three classes, a labeled transition system is described, which incorporates
the stochastic behavior along with state labels and action names.

In the area of formal methods, many powerful systems have been defined
to express temporal properties of systems. Systems are usually modeled as
transition systems. Temporal properties allows to specify the dynamics of those
systems by describing the allowed executions of the system. An important
temporal logics of this kind is CTL (Computation Tree Logic) [EC82], which
allows the formulation of properties over path of transition systems. A typical
CTL property is the verification that, when some initial conditions are met, all
possible executions of a program avoid some undesirable condition. Verifying
such a property requires a software tool, known as model checker, to construct
all the possible execution of the model from the initial states and to verify
that the condition holds in each path. Usually, the path tree is infinite, so it
is represented as a language automaton. Other stochastic logics include LTL
(Linear Temporal Logic) [Pnu77] and CTL∗ [EH86], among many others.

Temporal logics have been extended into both the probabilistic and stochas-
tic domains. The temporal logic PCTL (Probabilistic CTL) [Han91] is a variant
of CTL defined for DTMCs in which path properties accept/reject paths when
the overall probability of the specified condition is above/below a given thresh-
old. Stochastic temporal logics measure path durations instead of path prob-
abilities, and are defined for CTMCs. The first of these logics, and probably
the most influential, is CSL (Continuous Stochastic Logic) [Azi+00], introduced
in the early 2000 and then improved algorithmically in 2003 with the work of
[Bai+03]. CSL includes both probabilistic and timed constraints over path ex-
ecutions in CTMCs, so that a specified condition has to be met with a given
probability in a specified amount of time t. In [MH06], CSL has been extended to
the class of MRP (although with limitations), while in [Hor+11] the logic CSL
has been derived in analytical form for the class of generalized semi-Markov
processes, using the concept of stochastic state classes.

31

32 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

3.1 Path probabilities on the measurable space

Measuring paths is different from measuring rewards on set of states/events,
because paths in a Markov transition system are intrinsically infinite. The
formal structure of the set of paths of a Markov transition system is based on
measure theory. A probability space can be constructed from the σ-algebra of
the possible paths. This section introduces the basic formalism of σ-algebra and
measurable spaces. These definitions are then used to define the measurability
of set of paths in discrete-time and continuous-time Markov chains.

Definition 10 (σ-algebra). Given a set H, let FH be the σ-algebra of H ob-
tained as some subset of the power set 2H that satisfies the three properties:

• FH 6= ∅;

• Closed under complementation: if E ∈ FH then (H \ E) ∈ FH ;

• Closed under countable union: if E1, E2, . . . ∈ FH then
⋃
n≥0En ∈ FH .

The pair 〈H,FH〉 is called a measurable space. The set H is interpreted as a
collection of possible outcomes, or events, which can be assigned probabilities.
In the context of this chapter, the set H is the set of infinite paths that starts
from an initial state (or path prefix). Since paths are infinite in length, their
probability will (in general) be infinitesimal. Entries in the set FH are collection
of paths. Probabilities are then assigned to set of paths E ∈ FH .

Definition 11 (Probability measure). A function Pr : FH → R[0,1] is called
a probability measure for the σ-algebra FH if Pr(FH) = 1 and if it is addi-
tive over the union of disjoint events {En ∈ FH}, such that:

∑
n≥0 Pr(En) =

Pr
(⋃

n≥0En
)
.

A proper probability measure is given for paths in a DMTS and in a CMTS
in sections 3.2 and 3.3. A measurable space paired with a measure function Pr
forms a triple 〈H,FH ,Pr〉 called a measure space. Sections 3.2 and 3.3 describe
the measurable spaces of DTMC and CTMC paths, along with the formalisms
used to express and compute measures on path probabilities.

3.2 Path probabilities in discrete-time

This section deals with the σ-algebra definition for discrete-time Markov chains,
based on [Var85]. LetD = 〈S,Act ,AP , lab,T , P,α0〉 be a DMTS with stochastic
matrix P. A finite path of length n is a sequence of states:

σ = s0
a0−−→ s1

a1−−→ . . . an−1−−−→ sn, σ ∈ Sn (3.1)

such that P (si−1, ai−1si) > 0 for all i ∈ [1, n]. Let PathsDn be the set of all
paths of length n with the structure of (3.1). Given a path σ ∈ PathsDn , let
|σ| = n be the length of σ, and let σ[i] = si be the i-th state of the path.
Let PathsDω = lim

n→∞
PathsDn be the set of infinite paths of D. The set H of the

measurable space of D is given by PathsDω .
The cylinder set Cyl(σ̄) of a finite path σ̄ ∈ PathsDn is defined as:

Cyl(σ̄)
def
= {σ ∈ PathsDω | σ̄ is a prefix of σ} (3.2)

3.2. PATH PROBABILITIES IN DISCRETE-TIME 33

The cylinder set that stems from σ̄ is the set of all infinite paths that start with
σ̄ as a prefix. The σ-algebra FD of a DMTS is [BK08, def. 10.10] the smallest
σ-algebra that contains all the cylinder sets Cyl(σ̄), where σ̄ ranges over all path
fragments in D.

There is a unique [BK08, p. 758] probability measure PrD on the σ-algebra
FDH , that gives the probability of any cylinder set as:

PrD(Cyl(s0 . . . sn)) = α(s0) ·
∏

0<i≤n
P (si−1, ai−1, si) (3.3)

with α(s0) is the initial probability of state s0, and P is the probability function
of D transitions.

3.2.1 Probabilistic Computation Tree Logic

The probabilistic logic PCTL is a branching-time temporal logic, similar to
CTL [EC82] with the addition of probabilistic operators specifically designed
for model checking discrete-time Markov chains.

PCTL verifies properties of a given DMTS D. PCTL formulas use state
labels but do not use action names of D, which are just ignored. The syntax of
PCTL is given by state-formulas and path-formulas, which are interpreted over
states and paths of the DMTS. The syntaxes are defined as:

Definition 12 (PCTL syntax). A state formula Φ in the PCTL temporal logic
is defined by:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | P./λ(Ψ) |

with Ψ a PCTL path formula, defined by:

Ψ ::= X Φ | Φ1 U [n1,n2) Φ2

where p ∈ AP , ./ is a comparison operator in {<,≤,≥, >}, λ ∈ R[0,1] is a
probability, and 0 ≤ n1 ≤ n2 is an integer bound.

The operator P./λ(Ψ) means that the probability of following a path that
satisfies the path formula Ψ is ./ λ. PCTL provides two fixed path formulas,
namely X (neXt) and U (Until). The path formula XΦ means that the next
state of the DMTS satisfies Φ, while Φ1 U [n1,n2)Φ2 means that a Φ2-state is
reached at the discrete step in the range [n1, n2) passing only through Φ1-states.

The boolean value of a PCTL state formula Φ in a state s is given by means
of a satisfaction relation, denoted as s |= Φ. The pair 〈s,Φ〉 belongs to the
relation |= iff Φ is satisfied in s. The set of all states that satisfies a formula Φ
is denoted as Sat(Φ) and obeys the following semantic:

Definition 13 (PCTL state-based semantic). Let Sat(Φ) = {s ∈ S | s |= Φ} be
the set of states that belongs to the satisfaction relation |=, defined recursively
as:

s |= a iff a ∈ lab(s)
s |= ¬Φ iff s 6|= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= P./λ(Ψ) iff ProbD(s,Ψ) ./ λ

34 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

where ProbD(s,Ψ) denotes the probability of all paths in the cylinder set Cyl(s)
that satisfies the path formula Ψ:

ProbD(s,Ψ)
def
= Pr{σ ∈ Cyl(s) | σ |= Ψ}

The measurability of the set {σ ∈ Cyl(s) | σ |= Ψ} comes from the definition
of the σ-algebra FDH of D. The semantic of state-based PCTL formulas of
definition 13 requires the semantic of the the two path-based PCTL formulas.

Definition 14 (PCTL semantic of path operators). Let {σ ∈ Cyl(s) | σ |= Ψ}
be the set of paths that satisfy the path-formula Ψ, defined as:

σ |= X Φ iff |σ| ≥ 1 and σ[1] |= Φ
σ |= Φ1 U [n1,n2) Φ2 iff ∃i ∈ [n1, n2) : σ[i] |= Φ2 and ∀j ∈ [0, i) : σ[j] |= Φ1

The until operator with bound [0,∞) is called unbounded until, otherwise it
is called step-bounded until.

Many temporal operators of CTL can be derived from the basic operators
of PCTL. The temporal operator 3 that means “eventually/in the future” (and
its step-bounded variant 3[n1,n2)) are derived as:

3 Φ = true U Φ, 3[n1,n2) Φ = true U [n1,n2) Φ

The step-bounded operator “always” �[n1,n2) Φ is derived as:

P≥λ(�[n1,n2) Φ) = P≤1−λ(3[n1,n2) ¬Φ)

which requires to invert the probability bound of P. The unbounded operator
� Φ is derived analogously.

3.3 Path probabilities in continuous-time

This section deals with the σ-algebra definition for continuous-time Markov
chains, as in [Bai+03, sec. 2.3]. Let M = 〈S,Act ,AP , lab,T , P, E,α0〉 be a
CMTS with infinitesimal generator matrix Q. A finite timed path of length n
is a sequence of states:

σ : s0
a0,t0−−−→ s1

a1,t1−−−→ . . . an−1,tn−1−−−−−−−→ sn (3.4)

with σ ∈ (S ×Act ×R>0)n−1 × (S × {∞}), such that P (si−1, ai−1, si) > 0 and
ti−1 > 0 for all i ∈ [1, n]. Let PathsMn be the set of all timed paths of length
n with the structure of (3.4). Given a path σ ∈ PathsMn , with |σ|, σ[i], σ@t
and τ(σ, k) we denote: the length n of σ, the i-th state of the path, the state of

the path at time t, and the total time
∑k−1
i=0 ti up to step k, respectively. Let

PathsMω = lim
n→∞

PathsMn be the set of infinite paths of M. The set H of the

measurable space of M is given by PathsMω .
The definition of cylinder set Cyl(σ̄) of a finite timed path σ̄ ∈ PathsMn is

analogous to that of 3.2, and is:

Cyl(σ̄)
def
= {σ ∈ PathsMω | σ̄ is a prefix of σ} (3.5)

3.3. PATH PROBABILITIES IN CONTINUOUS-TIME 35

The σ-algebra FM of a CMTS is given by the smallest σ-algebra that contains
all the cylinder sets Cyl(σ̄) of M.

The unique probability measure PrM on the timed σ-algebra FMH is defined
as follows: let Cyl(s0, I0, . . . , In−1, sn) be a cylinder set of a finite path of length
n, with I0, . . . , In−1 nonempty intervals in R≥0. The probability is defined
recursively as:

PrM(Cyl(s0, I0, . . . , In−1, sn)) =

PrM(Cyl(s0, I0, . . . , In−2, sn−1)) ·
∫

In−1

Q(sn−1, sn) · e−Q(sn)τ dτ
(3.6)

with PrM
(
Cyl(s0)

)
= α(s0) the initial probability of state s0. Following the

definition of [Bai+03, prop. 1], any infinite timed path σ ∈ PathsMω with finite
durations τ(σ) is considered “unrealistic”, since the probability of such path σ
converges to zero. Therefore, infinite paths must have infinite duration.

3.3.1 Continuous Stochastic Logic

The stochastic logic CSL is a branching-time temporal logic similar to CTL [EC82]
initially developed in [Azi+00]. The formal forward solution has been given
in [Bai+03], while the backward solution is in [Kat+01]. The relation between
these two methods is given in [AD12b]. CSL has many points in common with
PCTL; the main difference is that it is defined in continuous-time for CMTSs,
so that CSL path formulas specify time bounds instead of step bounds.

CSL verifies properties on a given CMTS M. The definition of CSL uses
state labels but not action names, which are just ignored. CSL provides both
state-formulas and path-formulas, interpreted over states and paths of the CMTS.
Like PCTL, CSL has two probabilistic operators that check the probability of
the specified formulas. Since CSL reads timed paths, the path formulas are
extended with time constraints.

Definition 15 (CSL syntax). A state formula Φ in the CSL temporal logic is
defined by:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | S./λ(Φ) | P./λ(Ψ)

with Ψ a path formula defined by:

Ψ ::= X [α,β] Φ | Φ1 U [α,β] Φ2

where p ∈ AP , ./ is a comparison operator in {<,≤,≥, >} and λ ∈ R[0,1] is a
probability.

Like PCTL, the operator P./λ(Ψ) means that the probability of following
a path that satisfies the path formula Ψ is ./ λ. Additionaly, CSL offers an
operator for steady-state probabilities, introduced in [Bai+03]. The operator
S./λ(Φ) means that the sub-expression Φ holds in steady-state with probability
./ λ.

CSL provides two fixed path formulas, namely X (neXt) and U (Until). The
path formula X [α,β] Φ means that the next state is reached at time [α, β] and

36 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

satisfies Φ, while Φ1 U [α,β] Φ2 means that a Φ2-state is reached in the time
interval [α, β] passing only through Φ1-states.

The boolean value of a CSL state formula Φ in a state s is given by means of
a satisfaction relation, denoted as s |= Φ. The pair 〈s,Φ〉 belongs to the relation
|= iff Φ is satisfied in s. The set of all states that satisfies a formula Φ is denoted
as Sat(Φ) and obeys the following semantic:

Definition 16 (CSL state-based semantic). Let Sat(Φ) = {s ∈ S | s |= Φ} be
the set of states that belongs to the satisfaction relation |=, defined recursively
as:

s |= a iff a ∈ lab(s)
s |= ¬Φ iff s 6|= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= S./λ(Φ) iff πM(is) · iΦ ./ λ

s |= P./λ(Ψ) iff ProbM(s,Ψ) ./ λ

where iΦ is an indicator vector with value 1 in each state of Sat(Φ), and
ProbM(s,Ψ) denotes the probability of all paths in Cyl(s) that satisfies the
path formula Ψ:

ProbM(s,Ψ)
def
= Pr{σ ∈ Cyl(s) | σ |= Ψ}

The measurability of the set {σ ∈ Cyl(s) | σ |= Ψ} comes from the definition
of the σ-algebra FMH of M. The semantic of state-based CSL formulas of
definition 16 requires the semantic of the path-based CSL formulas.

Definition 17 (CSL path-based semantic). Let {σ ∈ Cyl(s) | σ |= Ψ} be the
set of paths that satisfy the path-formula Ψ, defined as:

σ |= X [α,β] Φ iff |σ| ≥ 1 and σ[1] |= Φ and τ(σ, 0) ∈ [α, β]
σ |= Φ1 U [α,β] Φ2 iff ∃t ∈ [α, β] : σ@t |= Φ2 and ∀t′ ∈ [0, t) : σ@t′ |= Φ1

The relation between CSL and CTL is provided in [Bai+03, sec. 3.2]. The
untimed version of X and U are simply obtained using the time interval [0,∞).
The temporal operator 3, which means “eventually/in the future” (or the timed
variant 3I) is formulated as: P./λ(3I Φ) = P./λ(true UI Φ). Analogously, the �
operator of “always” and its timed variant �I can be expressed as: P≥λ(�I Φ) =
P≤1−λ(3I ¬Φ).

3.3.2 Computation of CSL formulas

The calculation of a CSL formula Φ for a state s is done as a recursive bottom-
up evaluation of the CSL sub-formulas, for which the Sat(Φ) set of states has
to be computed. Non probabilistic operators (the first three of Def. 16) are
computed by applying their logical formula, in a way that is analogous to CTL.
Terminal leaves of the evaluation tree are made by atomic propositions, which
are evaluated using the labeling function lab of the CMTS. The S./λ(Φ) and
P./λ(Ψ) operators instead require a numerical computation that can be derived
from the formulas of section 2.3.

3.3. PATH PROBABILITIES IN CONTINUOUS-TIME 37

Stationary measures with S./λ(Φ)

The semantic of the s |= S./λ(Φ) formula of Def. 16 says that the formula is
true in state s if the long run probability πM(is) starting from state s has a
mean probability of satisfying Φ that is ./ λ. By definition, such a probability
is:

s |= S./λ(Φ) ⇔
(
πM(is) · iΦ

)
./ λ (3.7)

with iΦ the indicator vector for Sat(Φ) states. Another solution method, based
on the BSCC (bottom strongly connected components) isolation, is given in
[Bai+03, sec. 3.4]. The key observation is that the computation depends from
s when the CMTS M is reducible. Therefore, (3.7) may be computed by sepa-
rating the computation of the steady-state probabilities of each BSCC from the
computation of the probability of reaching the BSCCs from s.

A more interesting approach is the use of backward probabilities. Equation
(2.26) can be applied to change the solution formula (3.7) into:

πM(is) · iΦ ⇔ ξM(iΦ) · is (3.8)

The backward formulation has the advantage that ξM(iΦ) only depends on the
Sat(Φ) set, and not from the initial state s. Therefore, a single computation of
ξM(iΦ) allows to compute easily the formula for each initial state, independently
from the number of BSCCs.

Probability measures with P./λ(Ψ)

A path-based measure for state s is expressed with the CSL formula s |=
P./λ(Ψ). The formula is true if the probability of the set of paths Cyl(s)
that satisfies Ψ is ./ λ, indicated as ProbM(s,Ψ). In [Bai+03, p. 8] a set of
Volterra integral equations are derived for the computation of path-based mea-
sures, which are then reduced to transient/stationary measures on CTMCs. In
this section, we summarize the latter.

Some formulas require the concept of modified CMTS, obtained through the
Sat-based filtering operator M[Φ] for a certain CSL formula Φ.

Definition 18 (Modified CMTS). Given a labeled CMTS M and a CSL for-
mula Φ, the labeled CMTSM[Φ] is obtained by making absorbing all the states
that satisfy Φ in M.

Computing the timed next operator: Ψ = X [α,β] Φ

The next operator measures the probability that the next state-transition of
the CMTS M happens in the time interval [α, β] and reaches a Sat(Φ)-state.
Therefore:

ProbM(s,X [α,β] Φ) =

∫ β

α

exQ(s) dx ·
∑

s′|=Φ

P(s, s′) =

=
(
eβQ(s) − eαQ(s)

)
·
∑

s′|=Φ

P(s, s′)
(3.9)

38 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

where P = diag−1(Q)Q is the transition probability matrix of M. Recall that
Q(s) is the total exit rate from s, with negative sign.

The intuition of (3.9) is that CSL allows the process to jump to a Sat(Φ)
state (the probability collected in the summation of P(s, s′)) conditioned by the
probability that the Poisson process of rate −Q(s) makes a jump in the interval
[α, β].

Computing the timed until operator: Ψ = Φ1 U [α,β] Φ2

The until operator observes paths of length more than 1. An accepted path
reaches a Sat(Φ2) state in the time interval [α, β], having only visited Sat(Φ1)
states before. According to [AD12b], it is possible to split the problem into
three cases, according to the bounds of the interval [α, β]. The interval can be
[0, β], [β, β], or [α, β], with 0 < α < β, leading to:

ProbM(s,Φ1 U [0,β] Φ2) = iΦ2
· πM[¬Φ1∨Φ2]

(
is, β

)

ProbM(s,Φ1 U [β,β] Φ2) = iΦ1∧Φ2
· πM[¬Φ1]

(
is, β

)

ProbM(s,Φ1 U [α,β] Φ2) =

= iΦ2 · πM[¬Φ1∨Φ2]
(
IΦ1 · πM[¬Φ1]

(
is, α

)
, β−α

)
(3.10)

Forward measures are computed using modified CMTSs, as in Def. 18. When
β =∞, the computed measures is a stationary solution of the modified CMTS.
In the other cases, the solution is computed with a forward transient analysis.
The vectors iΦ2

, iΦ1∧Φ2
and is are indicator vectors for the states of Sat(Φ2),

Sat(Φ1 ∧ Φ2) and {s}, respectively, and 0 in every other state. The IΦ1 is the
filtered identity matrix (as in Def. 7) where rows corresponding to states that
do not satisfy Φ1 are set to zero.

The intuition behind is simple. The probability ProbM(s,Φ1 U [0,β] Φ2) is
computed as the probability of being, at time t, in any Φ2-state on the modified
CMTSM[¬Φ1∨Φ2]. In the modified chain the Φ2 states are absorbing, so even
if a Φ2 state is reached before t, the chain will still be in that state at time t, the
time horizon for the transient probability computation. Similarly, if a ¬Φ1-state
s′ is encountered before a Φ2-state is reached, the modified chain stays trapped
in s′, and that path will not be counted (unless s′ is also a Φ2-state). Note
the use of the inner product with iΦ2 to sum over all possible Φ2 states, and
that the computation of the transient probability assumes the modified chain
is in state s at time 0 (initial vector is). The more complicated case of [α, β]
requires the path to stay in Φ1-states during the time interval [0, α], and then
to behave as a path that satisfies Φ1 U [0,(β−α)] Φ2. This requires the transient
solution of two modified CMTSs: at time α, assuming we start in s at time
0, for the chain πM[¬Φ1] and at time β−α, assuming we start at time 0 with
a probability vector which is the result of the previous computation, for the
chain πM[¬Φ1∨Φ2]. Note that the result of the first computation is filtered out
using the IΦ1 vector, to put to zero the probability of all states which are not
Φ1-states: as a consequence the second transient analysis starts from an initial
vector that does not necessarily sum up to one.

The work in [Kat+01] shows that the three equations (3.10) can be rewritten

3.4. SPECIFYING PATH PROPERTIES WITH AUTOMATA 39

using the forward-backward relation (2.26), leading to:

ProbM(Φ1 U [0,β] Φ2) = ξM[¬Φ1∨Φ2]
(
iΦ2

, β
)

ProbM(Φ1 U [β,β] Φ2) = ξM[¬Φ1]
(
iΦ1∧Φ2 , β

)

ProbM(Φ1 U [α,β] Φ2) = ξM[¬Φ1]
(
IΦ1 · ξM[¬Φ1∨Φ2]

(
iΦ2 , β−α

)
, α
) (3.11)

with ProbM(Ψ) a vector of probabilities such that ProbM(Ψ)·is = ProbM(s,Ψ),
for every state s ∈ S. The third formula in (3.11) is derived in two steps as:

ProbM(s,Φ1 U [α,β] Φ2) = iΦ2
· πM[¬Φ1∨Φ2]

(
IΦ1 · πM[¬Φ1]

(
is, α

)
, β−α

)
=

= πM[¬Φ1]
(
is, α

)
·
(
IΦ1 · ξM[¬Φ1∨Φ2]

(
iΦ2

, β−α
))

=

= ξM[¬Φ1]
(
IΦ1 · ξM[¬Φ1∨Φ2]

(
iΦ2

, β−α
)
, α
)
· is =

= ProbM(Φ1 U [α,β] Φ2) · is
which proves the relation. With (3.11) a model checker can compute the until
operator for every initial state s with one (or two for the case [α, β]) backward
computations.

The original definition of CSL [Azi+00] allows also cascades of multiple
timed-until formulas, which are not easily treated. An innovative technique for
dealing with this special case has been proposed in [Zha+12], by introducing
of the concept of CTMC stratification. Further details can be found in that
paper. However, complex path specification requires a richer language than the
one proposed in CSL. Path specification done with timed automata is treated
in the following sections.

3.4 Specifying path properties with automata

PCTL and CSL describe path properties with a fixed set of path operators,
that provide the set of constraints for the measured cylinder sets. A more
flexible approach is to allow for path operators to be specified by a language of
accepted paths. This section considers two different approaches: the stochastic
logic CSLTA [DHS09], which is a superset of CSL with path properties specified
with automata, and probe automata[Amp+11], which is a specialized language
for specifying path-based properties. In the literature, however, there are many
other proposals for path-based measures: a survey of a number of approaches can
be found in [DHS09, sec. 4] and in [Kun06, sec. II]. Automata-based extensions
of PCTL will not be covered.

3.4.1 CSL with Timed Automata

CSL path properties can be specified with the two predefined timed operators,
X I and UI . More complex paths with additional constraints or with multiple
time intervals cannot be described. The temporal stochastic logic CSLTA (CSL
with Timed Automata) has been introduced in [DHS09] as an extension to CSL
in which path properties are specified with a Deterministic Timed Automaton
(DTA). In this way, the set of accepted paths can be described arbitrarily. Unlike
CSL, the logic CSLTA reads both state labels and action names of the CMTS.

40 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

A DTA is an automaton that reads the language of CMTS paths. DTAs
are deterministic in the sense that each CMTS path σ generates a unique DTA
computation (or run) ς. Each DTA is equipped with a clock, named x, that
runs constantly and whose value increases linearly over time. A clock valuation
x̄ is the actual value of the clock variable. In [Che+11a] DTAs with multiple
clocks are defined, which will not be covered in this text. A DTA has a set
of locations and a set of edges. Edges describe the transition relation and are
labeled with a clock constraint.

The language CC of clock constraints is given by:

CC ::= x = c1︸ ︷︷ ︸
Boundary

| c1 < x < c2︸ ︷︷ ︸
Inner

c1, c2 ∈ N, c1 < c2

An edge with a constraint in the form x = c1 is a Boundary edge, while an edge
with a constraint c1 < x < c2 is an Inner edge. The value of c2 is allowed to be
infinite, to represent unbounded Inner constraints. Given a constraint γ ∈ CC ,
let x̄ |= γ denote that γ is satisfied by substituting x with x̄.

Definition 19 (DTA). A deterministic timed automaton A is a tuple:

A = 〈Σ,Act , L, L0, LF ,Λ,→〉

where:

• Σ is a finite set of state propositions;

• Act is a finite set of action names;

• L is a finite set of locations;

• L0 ⊆ L is the set of initial locations;

• LF ⊆ L is the set of final locations;

• Λ : L → B(Σ) is a location labeling function, with B(Σ) the language of
boolean expressions over Σ;

• →⊆ (L \ LF) ×
(
(Inner × 2Act)] (Boundary × {]})

)
× {∅, x} × L is a

finite set of edges, where l
γ,A,r−−−→ l′ denotes the edge 〈l, γ, A, r, l′〉 ∈→;

that fulfills the following restrictions:

• Initial determinism: ∀l, l′ ∈ L0,Λ(l) ∧ Λ(l′)⇔ false;

• Determinism on edges: ∀l, l′, l′′ ∈ L, if l′′
γ,A,r−−−→ l ∧ l′′ γ

′,A′,r′−−−−−→ l′ then
either Λ(l) ∧ Λ(l′)⇔ false or A ∩A′ = ∅ or γ ∧ γ′ ⇔ false;

• No loops of Boundary edges: there exists no sequence of Boundary

edges: l0
γ0,],r0−−−−→ l1

γ1,],r1−−−−→ . . .
γn−1,],rn−1−−−−−−−−→ ln, with ln = l0.

Given an edge e = l
γ,A,r−−−→ l′, let source(e) = l, guard(e) = γ, action(e) = A,

reset(e) = r and target(e) = l′. The reset set reset(e) indicates whether the clock
x is reset to zero when the DTA follows the edge e. Let the notation x̄[x := 0]
indicate that the valuation x̄ is equal to 0, and let x̄[∅ := 0] indicate that it is
equal to x̄. Assume also that the set Σ of state propositions is equivalent to the
set AP of atomic proposition of the verified CMTS.

Boundary edges have priority over Inner edges, and are urgent. Urgency
specifies that if a Boundary edge is enabled, it must be taken immediately.

3.4. SPECIFYING PATH PROPERTIES WITH AUTOMATA 41

A configuration of A is a pair 〈l, x̄〉 with l ∈ L and x̄ a clock valuation. A
configuration describes the current state of A.

A step of A from a configuration 〈l, x̄〉 is 〈l, x̄〉 τ,e−−→ 〈l′, x̄′〉 with τ ∈ R≥0 an
elapsed time, e ∈→ an edge, and such that: l′ = target(e) and x̄+ τ |= guard(e)
and x̄′ = (x̄+τ)[reset(e) := 0]. A step is a single transition of configuration in A
after an elapsed time of τ instants, after which an edge e is taken. Note that τ
could be zero. Boundary edges have a concept of urgency : as soon as the guard
x = c is satisfied, the edge is enabled and a step with that edge is immediately
taken. In addition, boundary edges have priority, i.e. a step with an Inner edge
is not allowed if there is a Boundary edge that can be taken instead.

Definition 20 (Run in a DTA). A finite run ς of length n of a DTA A starting
from an initial configuration 〈l0, x̄0〉 is a sequence of steps:

ς : 〈l0, x̄0〉 τ0,e0−−−→ 〈l1, x̄1〉 τ1,e1−−−→ . . .
τn−1,en−1−−−−−−−→ 〈ln, x̄n〉

where, for all 0 ≤ i < n, τi ∈ R≥0 and ei ∈→.

Let |ς| be the length of ς. Let RunsAn be the set of all runs ς of length n that
are valid, i.e. that satisfies the condition of Def. 19, and where Boundary edges
are urgent and have priority over Inner edges. Let RunsAω =

⋃
n≥0 RunsAn be

the set of all runs of A.

Examples of DTAs of the CSLTA logic

Figure 3.1 shows the DTAs corresponding to the CSL next path formula and
the three cases of the CSL until path formula.

Figure 3.1 DTAs for the CSL path formulas neXt and Until.

Φ1∧¬Φ2

l0

Φ2

l1

l0

Φ2

Φ1

x=β

l1

l0

l1

l2
Φ1 Φ2

Φ1∧¬Φ2

0<x<α

α<x<β

α<x<β

l0

l1
Φ

0<x<β

α<x<β 0<x<β

0<x<β

x=α

x=α

(a) DTA of:

X [α,β] Φ
(b) DTA of:

Φ1 U [0,β] Φ2

(c) DTA of:

Φ1 U [β,β] Φ2

(d) DTA of: Φ1 U [α,β] Φ2

The DTA in Figure 3.1(a) is the DTA corresponding to the CSL path for-
mula X [α,β] Φ. The initial location is l0, and the CMTS path is accepted if
the first transition satisfies the location constraint Φ of l1 and happens in the

42 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

time interval [α, β]. Figure 3.1(b) is the DTA that accepts paths that satisfy
Φ1 U [0,β] Φ2. This DTA accepts all CMTS paths that reach a Sat(Φ2) state
before time β, while visiting only Sat(Φ1) states, or that start at time 0 already
in a state that satisfies Φ2. There are therefore two initial locations, one of
which is final, since any path that starts in a Φ2 state should be accepted. If
a paths starts instead in a Sat(Φ1 ∧ ¬Φ2) state and it goes through another
Φ1-state, then the transition is read by the self loop over l0, if it happens before
time β. If the CMTS transition reaches a Sat(¬Φ1 ∧ ¬Φ2) state, then the path
is rejected since neither the condition over l0 nor that over l1 are satisfied. If
the transition goes to a Sat(Φ2) state, before the automata clock x reaches β,
then the automata moves to location l1 and the path is accepted.

Figures 3.1(c) and (d) depict the other two cases for the Until interval ([β, β]
and [α, β]). Paths are recognized in a similar manner, but it is worth noting the
use of boundary edges with guard x = t to mark the lower limit of the interval:
it is indeed only after the time barrier has been reached that a CMTS transition
from a Sat(Φ1) state to a Sat(Φ2) state can lead to the acceptance of the path
(if it happens before β).

The example also shows that the CSL semantic of the Until requires multiple
CSLTA DTAs to express all the cases for the time intervals.

Acceptance of CMTS paths

Definition 20 provides the basis for accepting or rejecting CMTS paths. Intu-
itively, a DTA run ς has to follow a CMTS path σ ∈ PathsMω . Inner edges
in the run ς are triggered by the transitions in σ, while Boundary edges are
triggered by the elapse of time of the clock x. If a transition in σ cannot be
matched by any Inner edge, the path σ is rejected. When the run ς reaches
a configuration 〈l, x̄〉 with l a final location, the path σ is accepted and any
further CMTS transition is ignored. Therefore, a run ς that accepts σ up to the
n-th transition, accepts every path in Cyl(σ[0] . . . σ[n]), which ensures the mea-
surability of accepted paths (see [Che+11a, th. 1] for a formal demonstration of
measurability).

The initial configuration of ς is 〈l, 0〉, where l ∈ L0 and such that σ[0] satisfies
the condition Λ(l). The condition of initial determinism of A ensures that there
exists at most one initial location l for a given initial state ω[0]. If no such
location l exists, then the entire path ω is rejected.

Definition 21 (Path acceptance). Given a DTA A and a CMTS path σ ∈
PathsMω up to length n, we say that σ |= A if there exists a run ς ∈ RunsAω of
length m and a function κ : {0 . . .m} → {0 . . . n} that maps indices of ς into
indices of σ and such that:

• Initial : l0 ∈ L0, x̄0 = 0, κ(0) = 0;

• Final : lm ∈ LF and ∀0 < i < m : li 6∈ LF ;

• State propositions: ∀0 ≤ i ≤ m : sκ(i) |= Λ(li);

• Index correspondence: ∀0 ≤ i < m if ei is Inner then κ(i+ 1) = κ(i) + 1
and aκ(i) ∈ action(ei), else κ(i+ 1) = κ(i);

• Time correspondence: ∀0 ≤ i < n : τ(σ, i) =
∑κ(j)≤i
j=0 τj ;

• Boundary edges are urgent: ∀0 ≤ i < m if ei is Inner then there does not
exists any Boundary edge e′ enabled in [x̄i, x̄i + τi);

3.4. SPECIFYING PATH PROPERTIES WITH AUTOMATA 43

• Boundary edges have priority: ∀0 ≤ i < m if ei is Inner then there does
not exists any Boundary edge e′ enabled in x̄i + τi;

Figure 3.2 illustrates the correspondence of a path σ accepted by a run ς.

Figure 3.2 Acceptance of a CMTS path σ by a DTA run ς.

�l0, 0� �l1, x̄1� �l2, x̄2� �l3, x̄3� �lm, x̄m�

s0 s1 s2 sn

τ0, e0 τ1, e1 τ2, e2 τ3, e3

t0 t1 t2

...

...

τm−1, em−1

tn−1σ :

ς :

For every CMTS transition in Figure 3.2 there is an Inner edge in ς that
follows the transition. There could be also Boundary edges, like e2, that are
triggered by the elapse of time. Therefore, the length m of ς could be greater
than the length n of σ.

Syntax of CSLTA.

State formulas in the stochastic temporal logic CSLTA have the following syntax:

Definition 22 (CSLTA syntax). A state formula Φ in CSLTA is defined by:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | S./λ(Φ) | P./λ(A)

with A a DTA.

Definition 22 differs from the definition 15 of CSL in the probabilistic path
operator P./λ(A), which now describes the set of accepted paths through a DTA
A. A state s of M satisfies the CSLTA path operator P iff:

s |= P./λ(A) iff ProbM(s,A) ./ λ

where the probability measure ProbM(s,A) denotes the probability of all paths
in Cyl(s) that are accepted by A:

ProbM(s,A)
def
= Pr{σ ∈ Cyl(s) | σ |= A} (3.12)

where σ |= A means that there exists a run ς in A that accepts σ.

3.4.2 Computation of CSLTA formulas

The computation of (3.12) cannot be done easily as in CSL, where for each of the
two path operators X and U a fixed formula is given. The overall probability of
accepting paths can be computed by defining a new stochastic process, denoted
as M×A, which describes the joint evolution of M with A from the initial
state to the accepting states. The processM×A is enriched with two additional
states: >, which identifies the acceptance, and ⊥, which identifies the rejection.
Therefore:

• When the DTA is not able to follow M, the process ends in ⊥;

• When the DTA location is in LF , the process ends in >;

44 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

• In every other instant, the process has not yet identified if the path is
accepted or rejected: therefore, the state is made by a triple 〈s, l, x̄〉 which
encodes the current CMTS state s, the current DTA location l and the
current clock valuation x̄;

• The computation of ProbM(s,A) starts in state 〈s, l0, 0〉, with l0 ∈ L0 ∧
s |= Λ(l0). If there is no l0 ∈ L0 whose state proposition Λ(l0) is satisfied
in state s, then the process M×A starts in ⊥.

To simplify the description of the process, only states where the time may
elapse are considered. Therefore, states where Boundary edges may trigger are
removed with a transitive closure.

Definition 23 (Closure of tangible states). Let 〈s, l, x̄〉 ∈ S × L × R≥0 be a
state of M×A: then closure(s, l, x̄) is defined as:

l ∈ LF
closure(s, l, x̄) = > CL–FINAL

∃! l x=x̄,], r−−−−−→ l′ s.t. s |= Λ(l′) ∧ l 6∈ LF
closure(s, l, x̄) = closure(s, l′, x̄[r := 0])

CL–BOUNDARY

@ l x=x̄,], r−−−−−→ l′ s.t. s |= Λ(l′) ∧ l 6∈ LF
closure(s, l, x̄) = 〈s, l, x̄〉 CL–TANGIBLE

As long as there is a Boundary edge enabled, it is followed using the recursive
rule CL–BOUNDARY. The state resulting from closure(s, l, x̄) is either > if the
location reached is final (by rule CL–FINAL), or is a tangible state with no
Boundary edge enabled (by rule CL–TANGIBLE). Note that loops of Boundary
edges are forbidden by definition 19, so the premise of rule CL–BOUNDARY

can be satisfied by at most one Boundary edge.

The set of tangible states of M×A is constructed as a subset of:

{>,⊥} ∪ {〈s, l, x̄〉 | 〈s, l, x̄〉 = closure(s, l, x̄)}

that is reachable from the initial state.
A remaining problem is that the state 〈s, l, x̄〉 contains a continuous part x̄,

therefore the state space of M×A is not enumerable. A solution is provided
in [DHS09, p. 7] using the method of supplementary variables[Cox55]. Let K =
{k0, . . . , km} be the set of constants that appear in all the clock guards of A,
with k0 = 0, and let K = {[ki, ki+1) | 0 ≤ i ≤ m} be the set of intervals induced
by K, with the last interval [km,∞). The m + 1 entries ci of K partitions the
set R≥0 into m+ 1 clock zones. Given a clock zone ci 6= cm, let next(ci) be the
successive zone in the sequence K, and let δ(ci) = ki+1 − ki be the duration of
zone ci.

The states (different from > and ⊥) of M×A can be rewritten in terms of
the clock zone ci = [ki, ki+1) of K where x̄ is encountered, generating an MRP.
Let Xt be the continuous-time stochastic process of M×A.

Theorem 3. The process Xt is a Markov regenerative process.

Proof. The proof for this theorem is given by showing that there exists a Markov
renewal sequence embedded inM×A. The processM×A can be rewritten with

3.4. SPECIFYING PATH PROPERTIES WITH AUTOMATA 45

form Zt = 〈st, lt, ct, x̄t− ct〉, where x̄t = x̄0 + t and ct is the zone with interval
[ki, ki+1) such that x̄0 = ki, x̄t ∈ [ki, ki+1) and t ∈ [0, δ(ct)). Let {Tn | n ∈ N}
be a sequence of increasing time points in the evolution of M×A, defined as
follows:

• T0 = 0;

• In each point Tn the valuation x̄ assumes a value k ∈ K;

• Given a time point Tn, the next time point Tn+1 is taken when:

– The valuation x̄ enters a new clock zone next(ct);

– The valuation x̄ is reset to 0;

– The process M×A reaches the > or ⊥ states.

Let {Yn = ZT+
n
} be the state of Zt right after the time point Tn. Then

{〈Yn, Tn〉 | n ∈ N} is a Markov renewal sequence by construction (see Def. 5),
where the process ZTn+t depends only on t and on the state YTn .

Let S be the state space of Yn. States of S have form 〈sT+
n
, lT+

n
, cT+

n
〉, with

cT+
n
∈ K; in addition, S has the two terminal states > and ⊥. Note that if Yn

reaches one of the two terminal states, the Markov renewal sequence becomes
finite. Since Yn is an MRP with enabling restriction, it can be characterized as
an MRTS.

Construction of the MRTS of M×A:

Let R = 〈S,G,Γ,Act ,AP , lab,T , P, E,α0〉 be the MRTS of Zt with Yn as its
renewal sequence. The set AP is taken as that of the CMTS. The lab function
assigns to each s ∈ S the same atomic propositions as the corresponding CMTS
state. The set of random variables G is defined as {gi ∼ Det(δ(ci)) | 0 ≤ i < m},
where each gi has a deterministic duration of δ(ci). There is a general event
gi in G assigned to each clock zone ci ∈ K, apart from the last clock zone cm
of infinite duration. The partition function Γ assigns the proper gi variable to
each state s ∈ S that resides in the i-th clock zone, and assigns all other states
(including > and ⊥) in the exponential partition. The state space S is therefore

divided into one subset Sg for each g ∈ G, plus a subset of states SE
where no

general event is enabled.
The set of actions Act includes one action agi ∈ ActG for each clock zone,

and a pair a ∈ ActE, ā ∈ ActE for each CMTS action a.
The state space S and the transition relation T (along with P and E) are

constructed inductively. Let S0 be the set of initial states of the MRTS.

Definition 24 (Initial states ofM×A). Let S0 = {〈s, l0, 0〉 | s ∈ S, l0 ∈ L0, s |=
Λ(l0)} be a subset of states of Yn, one for each state s ∈ S of M that has an
initial location l0 ∈ L0 that satisfies s |= Λ(l0). Let init : S → S0 ∪ {⊥} be
a function that assigns to each CMTS state s the corresponding M×A state
〈s, l0, 0〉 if it exists, or ⊥ otherwise.

The initial set of states S0 is constructed to contain all CMTS states that
can be read by the DTA. In this way, given a CMTS state s ∈ S, the set S0

contains the appropriate state init(s). This construction also allows, with the
method (3.14) given in the next section, to evaluate a CSLTA formula for each
initial state with a single numerical computation.

46 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

Given the initial states S0 and the final states {>,⊥}, the other states of the
process and the transition relation T are generated inductively by the following
rules:

Definition 25 (Production rules of M×A). The state space S and the state
transitions of M×A are constructed from S0 ∪ {>,⊥} by following the rules:

s a−→ s′ ∼rate µ, ∃! l γ,A,r−−−−→ l′ : s′ |= Λ(l′) ∧ a ∈ A ∧ c |= γ

〈s, l, c〉 a/ā−−→ closure(s′, l′, c[r := 0]) ∼rate µ
M–MOVE

s a−→ s′ ∼
rate

µ, @ l γ,A,r−−−−→ l′ : s′ |= Λ(l′) ∧ a ∈ A ∧ c |= γ

〈s, l, c〉 a/ā−−→ ⊥ ∼
rate

µ
M–KO

c 6= cm
〈s, l, c〉 ag−−→ closure(s, l, next(c)) ∼ 1

M–CLOCK

The label a/ā indicates that the CMTS transition with action name a be-
comes a non-preemptive Markovian transition in the MRTS (type q) with name
a, unless one of the following two conditions is met:

1. there is a reset of the clock variable x along the transition;

2. the process M×A enters the > or ⊥ state (which is in the SE subset)
from a state with ci 6= cm (which is in the Sgi subset), thus preempting
the general event gi.

If one of these two conditions is satisfied, the MRTS transition is preemptive
(type q) with action name ā.

Rule M–MOVE describes all Markovian transitions of M that are matched
by an Inner edge of A, such that the conditions on the state propositions, action
sets and clock guards are satisfied. If the reset set of the DTA edge is {x}, the
clock is reset (with c[r := 0]) and the closure relation triggers all the (possibly)
enabled Boundary edges. The closure is also responsible of setting the target
state to > when a final location is reached.

Rule M–KO describes a Markovian transition that is not matched by A. In
that case, the process moves to the ⊥ state with rate µ.

Finally, rule M–CLOCK describes the elapse of time of the clock, and is used
in every clock zone except the last. The closure relation is needed because the
clock move could trigger Boundary edges or could reach a final location. Since
there is no probabilistic choice, the branching probability has value 1. Clock
transitions are labeled with the action agi corresponding to the clock zone ci
with general distribution g ∈ G.

The matrices Q, Q̄ and ∆ are then constructed from the MRTS as described
in section 2.4.2.

Computing the path probabilities ProbM(s,A)

Given that the embedded Markov chain can be constructed for the synchronized
process M×A, the probabilities of the set of paths starting from state s ∈ S of
the CMTS that are matched by the DTA are equivalent to the probabilities of
the set of paths starting from init(s) ∈ S and reaching the > state. Equation

3.5. SPECIFYING PROPERTIES WITH PROBES 47

(3.12) can be rewritten as:

ProbM(s,A)
def
= Pr{σ ∈ CylS(s) | σ |= A} =

= Pr{ς ∈ CylM×A(init(s)) | ∃ i : ς[i] = >} =

= πM×A(iinit(s)) · i>

(3.13)

where iinit(s) and i> are the indicator vector for the init(s) and the > states in
S. The computation of πM×A(iinit(s)) requires one steady-state solution of the
embedded DTMC of M×A.

Definition 26. Backward solution of CSLTA path probabilities Equation (3.13)
can be rewritten using the forward-backward relation (2.26), (as done for CSL
with (3.10)) leading to:

ProbM(s,A) = ξM×A(i>) (3.14)

Proof. The relation (3.14) can be proved for every state s ∈ S as follows:

ProbM(s,A) · iinit(s) = ξM×A(i>) · iinit(s) = πM×A(iinit(s)) · i> =

= ProbM(s,A)

which completes the derivation.

As before, formula (3.14) has the advantage of computing the path probabil-
ity for each initial state ofM×A in a single, backward computation. Therefore,
the set Sat(P./λ(A)) can be computed at once. This is useful for nested CSLTA

formulas. CSLTA path properties are always computed as a steady state solu-
tion (either with (3.13) or (3.14)). This is different from CSL, where a mix of
transient and steady-state solution is used.

The work in [Brá+11] extends automata-based stochastic logics with semi-
Markov Processes (SMP), where non-competitive generally-distributed transi-
tions are allowed. The work in [Che+11b] instead extends the concept of DTAs
with a new logic, called metric temporal logic (MTL), which is claimed to be
more expressive. In [Bal+11] the language of DTA is enriched toward hybrid
automata, where multiple clocks (called data variables) are supported, along
with linear constraints. However, that richer language is too hard to compute
numerically, and can be evaluated only by means of simulations.

3.5 Specifying properties with Probes

A different approach to path-based measurement for CTMCs is given by di-
rectly assigning reward variables to paths. The work in [OIS98] introduced the
idea of defining reward variables that capture the sequence of events and states
of the modeled system. A path-based reward structure is a generalization of a
state/action based reward structure (as defined in section 2.5). A Path Au-
tomata (PA) is an automaton that follows the CMTS and assign rewards to
its states and actions. A PA is defined from a given reward structure, and the
current state/action reward is made dependent on the PA location.

A more structured approach to path-based measures, outside of temporal
logics, is provided by Stochastic Probes. Stochastic probes have been developed

48 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

originally in [CG08] with the name XSP (for eXtended Stochastic Probes), and
subsequently improved in [HBA11] with the name USP (for Unified Stochastic
Probes). We will mainly refer to the latter. USP is a query mechanism for
stochastic processes. It has been developed to be formalism-independent, al-
though the original definition has been given around process algebra (PEPA)
with immediate actions, state labels and action names. We provide a small
summary of USP around the CMTS model formalism.

A USP query has a syntax similar to regular expressions: probe transitions
are triggered by CMTS actions, while probe conditioned read CMTS state labels.
The probe specifies a set of source state and a set of target states. The quantity
measured is the time delay in reaching any target state from the set of start
states. This is different from CSL (and partially from CSLTA), because the
measurement does not start immediately, but waits for a signal of the probe. A
sample probe has syntax:

probe ::= initialise : start, completion : stop (3.15)

which measures the time distribution from the initialise event to the completion
event in the CMTS. The special labels start and stop indicates which probe
transitions start and end the measurement.

A USP probe like (3.15) is then translated into one (or more) Deterministic
Finite Automaton that run in parallel with the system model. Probe terms
may also be local and follow specific parts of the system. When a term DFA
first matches the stop-labeled action, the probe stops and registers the path
duration. The probe starts in the initial state of the model, and follows each
transition of it. When the probe reads the initialize action, it goes into a
new location and starts measuring. Any other action read before the initialize
action is silently ignored. When the completion action is read, the probe stops
the measurement. After the stop event is reached, a probe may end or may
be restarted: repetitive probes simulates a sort of steady-state measurement.
However, since the probe started in the initial state of the model, it could be
synchronized with it. Therefore, it is not an “exact” steady-state measurement.
Consider, for instance, a model that generates repetitively the following path:

s1
a−→ s2

a−→ s3
a−→ s4

b−→ s1
a−→ . . .

where the sequence s1 . . . s4 repeats forever, and consider a repetitive probe
p = a : start, b : stop. Since the probe p starts with the initial state s1 of the
CTMC, it will always read the sequence s1 . . . s4 as a measured path, even if
s2 . . . s4 and s3 . . . s4 are also steady-state paths that satisfies p. This happens
because the probe can maintain a form of synchronization on the verified model,
that may hide these behaviors.

A formalism similar to stochastic probes is provided by Probe Automata
(PrA), defined in [Amp+11] as an extension of XSP with a more regular steady-
state semantic. A probe automaton P is specified as a DFA that follows the
tangible execution of a GSPN model. The language of PrA allows for more
control than XSP, allowing for pre and post conditions. The main peculiarity,
however, is the way probe automaton defines the path measure. Instead of
attaching the probe in the initial state, and observing the behavior in steady-
state condition, a PrA automaton is attached at some random point in the

3.5. SPECIFYING PROPERTIES WITH PROBES 49

stationary regime of the CTMC, and then the passage time is computed from
that point. In this way, no residual of synchronization may happen, and the
probe measures the expected mean stationary behavior.

3.5.1 Probe Automata

A PrA is a DFA with constraint-labeled edges. Given a CMTS M and a path
σ ∈ PathsMω , a PrA identifies a passage subrun in σ, that is used to compute
the passage time distribution.

Definition 27 (Probe Automaton (PrA)). A probe automaton is a tuple P =
〈Σ,Act , L, L0, init , LP , LF , E〉 where:

• Σ is a finite set of state propositions;

• Act is a finite set of action names;

• L is a finite set of locations;

• L0 ⊆ L is the set of initial locations;

• init : L→ B(Σ) is the initial location constraint function;

• LP ⊆ L is the set of passage locations;

• LF ⊆ L is the set of final locations;

• E ⊆ (L \ LF)× B(Σ)× 2Act × B(Σ)× L is the edge relation;

where B(Σ) is the language of boolean expressions over Σ. An edge e =
〈l, γpre, A, γpost, l

′〉 represents a transition from location l to location l′, where
γpre is the pre-condition, A ⊆ 2Act is the set of activating actions, and γpost is
the post-condition. For each edge e in E, it should hold that l ∈ LP ⇒ l′ ∈ LP .

We restrict the set of probe automatons to that of deterministic probe au-
tomatons, where:

• For every value-assignment m over the set of state propositions Σ, there
exists at most one initial location l0 such that init(l0) |= m.

• For every location l ∈ L, and for every action a, there exists at most one
edge e〈l, γpre, A, γpost, l

′〉 such that a ∈ A, γpre is satisfied in l and γpost is
satisfied in l′.

The state of the probe automaton P is given entirely by its current location
l ∈ L. Final locations LF select the states of the TRG that conclude the passage
time computation, passage locations LP select states of the TRG along which
the passage time is computed, while initial locations in L0 and init identify, for
each TRG marking, the starting location of the probe. Once a passage location
is reached, the probe may no longer visit non-passage locations until a final
location is reached.

Figure 3.3 illustrates a simple PrA. Non-passage (l0) and passage (l1, l2 and
l3) locations are drawn with diamonds and circles, and are labeled with a name.
Final locations have a double border. Edges are labeled with constraints written
as γpre/A/γpost. Each L0 location has an associated init constraint, shown as
an entering arrow (l0, l1). The minus sign denotes the absence of a pre/post
condition, and an asterisk denotes the entire Act set. For example, the edge from
l0 to l1 is triggered by the firing of any action, as soon as the post-condition Φ1

holds in the path. This probe automaton has two final locations and therefore
accepts two languages. For instance, the language Ll2(P) contains all the runs

50 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

Figure 3.3 Probe automaton example.

l0

l2

l3

l1

−/∗/Φ1

−/{fail}/−

−/{ok}/Φ2

Φ1

¬Φ1

that first match the ok action when Φ2 holds, after a state where Φ1 holds has
been visited.

As for DTAs of CSLTA, probe automata are restricted to be deterministic,
i.e. for each path σ inM there is a single run ς in P that follows σ up to a final
location.

Probe automata describe a passage subrun, which is the subset of states in
each path σ from where the probe location enter a LP location, until an LF
location is reached. The time of each passage subrun is the time value measured
by the probe over σ.

The evaluation of a PrA P against a model M works as follows. A path
σ ∈ Cyl(i) is chosen probabilistically according to an initial state i0 ∼ α0. This
is equivalent to starting the probe at any time when the process is in stationary
regime. The probe starts in the initial location l0 whose constraint init(l0) |= s.
A joint process 〈l, i〉 then describes the evolution from 〈l0, i0〉. Let S0 be the set
of all the possible initial 〈l, i〉 configurations. Let k be the state ofM where the
probe first enters a passage location, called the start state. The measurement
starts in state k. Let SE be the set of all possible start states that can be
encountered starting from S0 states. The probe followsM until a state j where
P is in a final location l ∈ LF . Let SF (l) be the set of all states with a final
location l ∈ LF . We now explain in more details the construction of a joint
process M×P that incorporates the notion of these three barriers S0, SE and
SF (l). From the joint process a CTMC can be derived, whose passage time
values give the measured value of the probe.

Passage times are computed from a concatenation of two forward probabili-
ties. First, the stationary distribution πM(α) ofM is computed. Then the set
of states S0 of the joint process starts with the distribution πM(α), and the
probability of reaching the barrier SE is computed. This is a forward steady-
state non-ergodic computation. Finally, the passage time from the enter set SE
to the stop set SF (l) is computed, which gives the measure value.

3.5.2 Computation of the passage time

A probe automaton P follows passively the actions of a CMTSM. Each action
is read by the probe, that has a chance of moving from its current location
according to the conditions specified on the outgoing edges of l. This results in
a joint process that can be constructed as a synchronized product of the probe
with the state space S of M.

The initial states set S0 of the product is a set of pairs made by a CMTS

3.5. SPECIFYING PROPERTIES WITH PROBES 51

state and by a probe location, defined as:

S0 = {〈s, l〉 ∈ S × L0 | s |= init(l)}

S0 contains the initial configuration of the probe in each reachable state
of M. We call product of the probe P with M the union of all synchronized
products of P starting from each initial state in S0.

Definition 28 (ProductM×P of a CMTSM with a probe P). A Prod-
uct of a CMTSM with a probe automaton P is a tupleM×P = 〈S, S0, SP , SF ,→
, ρ̂〉, where:

• S ⊆ S × L is a finite set of states, given by the cross product of CMTS
state space S with the probe location set L;

• S0 ⊆ S is the set of initial states, defined before;

• SP = (M × LP) ∩ S is the set of passage states;

• SF = (M × LF) ∩ S is the set of final states;

• T ⊆ S× TM × S is the transition relation;

• ρ̂ : T → R≥0 is the transition rate function;

where TM is the CMTS transition relation.
The state space S is defined inductively according to these rules:

1. The set of initial states belongs to S: (S ∩ S0) = S0.

2. Transition rule “probe moves”: let s = 〈s, l〉 be a state in S, m =
(s, a, s′) ∼

rate
λ a CMTS transition, and e = (l, γpre, X, γpost, l

′) a probe
edge in E, such that m |= e. Then the state s′ = 〈s′, l′〉 is also in S and
the arc t = (s,m, s′) is in T , with its exponential transition rate ρ̂(t) = λ.

3. Transition rule “probe stands still”: let s = 〈s, l〉 be a state in S with
l 6∈ LF , let m = (s, a, s′) ∼

rate
λ be a CMTS transition, such that there

is no probe edge e ∈ E where m |= e is true. Then the state s′ = 〈s′, l〉
belongs to S, and the arc t = (s, a, s′) is in T , with rate ρ̂(t) = λ.

The product M×P is deterministic if and only if:

• Initial location determinism: for each CMTS state s ∈ S, there exists at
most one initial location l ∈ L0 such that s |= init(l).

• Probe edges determinism: for each state s = 〈s, l〉 and for each CMTS
transition m = (s, a, s′) leaving s, there exists at most one location l′ ∈ L
s.t. any probe edges e ∈ E that satisfies the transition m, i.e. m |= e,
reaches location l′.

WhenM×P is deterministic, each path τ in PathsMω is matched by a single
run r of the probe. Therefore, the stochastic behavior of M×P is fully deter-
mined and can be described as a CTMC. Given a (infinite) path τ in PathsMω
starting in s, there exists a unique path σ rooted in 〈s, l〉, with s |= init(l), that
follows each transition in τ until the probe reaches a final location. Such path
σ is unique due to determinism constraints. Vice versa, the sequence of states
of each path σ rooted in 〈s, l〉 corresponds to the (infinite) set J(σ) of CTMC
paths in PathsMω , which share the common prefix. Since transition rates are
“copied” by the construction rules of M×P, the continuous-time behavior of
each M×P path σ is the same behavior of the common prefix of each path in
J(σ).

52 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

The state space ofM×P has an asymptotical memory occupation of O(|M | ·
|L|), since the state space S is a subset of the Cartesian product of CMTS state
space S with the location set L. A deterministic productM×P may be treated
as a CMTS with reachable state space S, transition set T and rate function ρ̂.
Unlike CSLTA, probe automata produces a CTMC as a solution object, and not
an MRP.

Figure 3.4 shows two simple probes (A and B), a cyclic CMTS C, and the
products of both probes with C. The sets SE and SF (lok) highlighted in the
products will be explained later, and constitutes a sort of “barriers” used for
the passage time computation.

Figure 3.4 Probes, CMTS and products.

l0 l1 lok
− -/a/- -/b/-

l0 l1

lok

lko

− -/a/-
-/b/-

l2
-/a/-

-/a/-

-/b/-
m1 m2

m3m4

a, λ1

a, λ2

a, λ3

b, µ

m1, l0

m2, l0

m3, l0

m4, l0

S0 SE SF (lok)

m2, l1

m3, l1

m4, l1

m3, l2

m4, l2 ok

ko

a

a

a
b

a

a

a

b

b

Probe A

Probe B

TRG C

Product T =B×C of probe B with the cyclic TRG C

S0 SE SF (lok)

m1, l0

m2, l0

m3, l0

m4, l0

m2, l1

m3, l1

m4, l1 ok

a

a

a
b

a

b
a

Product T =A×C of probe A with the cyclic TRG C

Observe that we are considering all the possible initial states S0 for the
product state space, since we are assuming that the probe may start “randomly”
in any possible state of the model. The probe partitions the state space S into
the passage set SP (on the right of the SE line) and the non-passage set (on the
left). All the possible runs are indeed in the product CMTS M×P.

From a CMTS M, a CTMC is derived, as usual, in the domain space of

3.5. SPECIFYING PROPERTIES WITH PROBES 53

S by summing up the outgoing transition rates that leave each marking. Let
{X(t) | t ∈ R≥0} be the stochastic process that behaves according to the CTMC
given by M×P, and let Q be its infinitesimal generator. Entries of Q are:

Q(i, j) =





∑

t= (i,a,j)
t∈T

ρ(t) i 6= j

−
∑

k 6=i
Q(i, k) i = j

In order to compute the passage time on the underlying CTMC, we need the
set of initial states S0 and two additional state subsets: the set of start states
SE , where the measure time starts, and the target states SF (l), for a given final
location l ∈ LF . Hence:

SE
def
=
{
s′ ∈ SP | s′ ∈ S0 ∨

(
∃s ∈ (S \ SP) ∧ ∃(s, a, s′) ∈ T

)}

is the set of states where the probe enters the passage set for the first time,
starting the passage time computation. Let:

SF (l)
def
= {〈s, l′〉 ∈ S | l′ = l}, l ∈ LF

be the set of states where the joint process accepts a run ofM×P in the specified
final location l, thus ending the passage time computation.

We consider that a probe may start at any time in the process described by
the CMTS, in stationary conditions, so a marking s is chosen according to its
probability in the steady state distribution π of M. The probe starts in the
initial location l0 satisfied by the init constraint. Therefore, the joint process
M×P begins in the state i = 〈s, l0〉, as shown in Figure 3.5. The stochastic
process X(t) then continues its execution until an SP state is reached, i.e. a
state k ∈ SE is first entered. If the initial state i is already an entering state
(i.e. i ∈ SE), then k = i. At this point a clock starts, and the execution
continues in the passage subset SP . The measure Passage(t, l) is the probability
of reaching a state j ∈ SF (l) before time t, starting at time 0 from any k.

Figure 3.5 Passage time for a path σ.

path inside the
passage set SPSP

i

k

j

time ≤ t

� �� � � �� �
path through

(S \ SP)-states

initial
state

stop
state

start
state

S0 SE SF(l)SPS

Passage time measure for a probe automaton P inM can be easily described
by means of accepted runs. The measure Passage : R≥0×LF → R[0,1] describes
the cumulative distribution function for the passage time that starts in an SE-
state and ends in the specified SF (l)-state in less that t ∈ R≥0, conditioned on

54 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

an initial probability distribution over S0-states. Let π be such distribution
over S0-states in the product M×P. Then the Passage(t, l) at time up to t to
a set of final states SF (l) = {〈s, l′〉 ∈ S} is:

Passage(t, l) =
∑

i∈S0
π(i) ·

︸ ︷︷ ︸
(1)

∑

k∈SE
HS\SP
i,k ·

︸ ︷︷ ︸
(2)

∫ t

0

∑

j∈SF (l)

HSP
k,j (x) dx

︸ ︷︷ ︸
(3)

where HS\SP
i,k is the long-run probability of going from state i to state k passing

through (S\SP) states only (note that k ∈ SE , which implies that k ∈ SP), and

HSP
k,j (x) is the probability of going from state k to state j at time x passing only

through SP -states.
The term HS′

i,j(t) = Pr{Z ′(t) = j | Z ′(0) = i} is the kernel matrix of
the stochastic process {X ′(t) | t ≥ 0}. Such process X ′(t) behaves like X(t)
restricted to the subset S′ ⊆ S, which means that transitions may occur in
S′-states only. Therefore, the infinitesimal generator Q′ of X ′(t) has non-zero

rows only for S′ states. The term HS′
i,j is the limit lim

t→∞
HS′
i,j(t).

Remember that all SF states are absorbing by construction, and SF (l) ⊆ SF .
The integral (3) is the cumulative passage time distribution up to time t from
an entering state k ∈ SE to any final state in the target set SF (l).

Definition 29 (Computation of Passage(t, l)). The passage time distribution
computation at time t for a specified final location l ∈ LF can be computed
with these steps:

1. Generate the cross-product process M×P.

2. Starting from S0-states with initial steady state probability distribution
πM(α), compute the probability distribution of reaching the entering set
SE , assuming that SE states are made absorbing.

3. Compute the transient probability of reaching, from the SE state subset
of M×P, the subset SF (l) at time t.

As the reader may observe, the measure Passage(t, l) can be seen as a steady-
state measure, in the sense that the accepted sequences do not depend on the
initial probability distribution α of the CMTS. Instead, it is more like inserting
the probe in the CMTS in steady-state, and observing the probe behavior from
that point on.

Tool support and experimentation.

A prototype implementation of probe automata exists as an add-on of Great-
SPN [Baa+09]. It generates the CTMC derived by the product between the
probe automaton and a GSPN, and exports it to HYDRA [DHK03] for the
computation of the (first) passage time distribution (from SE to SF (l)), while
GreatSPN is used to compute the initial distribution of the entering states (up
to SE). The CTMC generation and the product between the GSPN and the
probe is based on Meddly [BM10], an existing open-source library for Decision
Diagrams. The solution takes advantage (in terms of both memory utilization
and execution time) of the efficacy of Multi-valued Decision Diagrams (MDDs)
and of the saturation approach [CLS01] for state space generation. An empirical
assessment of probe automata can be found in [Amp+11].

3.5. SPECIFYING PROPERTIES WITH PROBES 55

Final remarks

Temporal logics like CSL and CSLTA provides a general framework for logic
formulas that incorporates probabilistic path-based measurements. PrA and
USP provide an explicit path-based measurement oriented to the computation
of passage time measures. In general, it can be said that a path measure can be
computed for a process {Xt} by constructing a new process {X ′t} that mimics
Xt until the measure is recognized to be satisfied or not. This method has
shown to be very flexible and efficient, and has been a large area of research for
stochastic processes in the last 20-or-more years.

It can be said that path measures extend the possibility of expressing prop-
erties of Markov chains, and at the same time their solution still rely on the
analytical foundation of Markov chains: computation of reward measures on
forward and backward probabilities in transient and steady-state conditions.

56 CHAPTER 3. MEASURING PATH-BASED PROPERTIES

Chapter 4

Numerical computation of
measures

In chapter 2, the basic definitions for computing measures have been provided for
DTMC, CTMC and MRP. In particular, the focus was about forward/backward
measures computed in transient and steady state. The subject of MRP has
been considered only in steady-state, by providing the solution of its embedded
Markov process and by converting it back to the MRP solution. Finally, reward
measures have been shown to be computable using the previously introduced
formulas.

In chapter 3 the class of computable measures has been extended to path
properties. Paths are expressed using formal temporal logics, which compute the
probability of set of accepted paths. The computation of these probabilities for
PCTL, CSL and CSLTA reduces to a set of transient/steady-state computations
on (modified) Markov processes. In particular, PCTL analyses DTMC, CSL
uses CTMCs and CSLTA uses an MRP.

Therefore, all the presented computations reduce to either a forward/backward
analysis of a discrete-time or a continuous-time Markov chain. For MRPs, the
DTMC is represented as the embedded Markov chain with equation (2.45).

This chapter focuses on the numerical analysis of transient and steady-state
measures. The ultimate goal of the chapter is to introduce a set of techniques
used to improve the performance of the model checking of CSLTA, which is the
main contribution of the thesis.

4.1 Transient solution methods

Given a DTMC {Yn | n ∈ N} with stochastic matrix P, a discrete step n ∈ N
and two boundary conditions α,ρ ∈ Measure(S) for Y0 and Yn, we have the
two equations: (2.3) and (2.6):

πD(α, n) = α ·Pn, ξD(ρ, n) = Pn · ρ

which describe forward and backward transient probabilities. These two formu-
las are easily computed as-is, by multiplying n times the vector α (or ρ) with
the stochastic matrix P. Since P has no negative entries, the computation is

57

58 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

numerically stable. It is also stable for reducible DTMC, although the formulas
(2.12) provide a more efficient computation.

Transient computation is slightly different for CTMCs. Given a CTMC
{Xt | t ∈ R≥0} with infinitesimal generator Q, a time step t ∈ R≥0 and two
boundary conditions α,ρ ∈ Measure(S) for X0 and Xt, we have the two forward
and backward equations (2.21) and (2.25):

πM(α, t) = α · eQt, ξM(ρ, t) = eQt · ρ (4.1)

The computation of these two formulas require to compute a vector-product
with a matrix exponential of Qt. The work in [ML78] and in [Ste94] provide a
survey of the numerical methods that can be used to compute such expressions.

In the case of deterministic general events, the two MRP matrices Ω and
Ψ are also defined as a matrix exponential eQg t and as an integral of a matrix
exponential

∫∞
0

eQg x dx. These two qantities can be derived as follows.
A common technique is the uniformisation method (also called Jensen’s

method [TRS87]), which was already used in (2.28). Uniformisation exploits
the Taylor approximation:

eQt =

∞∑

k=0

(Qt)k

k!
,

∫ ∞

0

eQg x dx =

∞∑

k=0

1

k!

∫ ∞

0

(Qx)k dx, (4.2)

Since Q contains both positive and negative entries, the above formula is not nu-
merically stable. A common transformation of (4.2) works by defining a DTMC
process {Yn | n ∈ N} that samples the CTMC Xt at identically-distributed time
intervals of length q ≥ −maxi∈S Q(i, i), so that Yn = Xnq for all n ∈ N. The
stochastic matrix of Yn is given by U = 1/qQ + I, which can be used to rewrite
(4.1) into (2.28).

The multiplications in (2.28) are done only with positive vector and ma-
trixes, making these formulas numerically stable. Infinite summations can be
approximated with a proper truncation interval [R,L], leading to:

eQt ≈
R∑

k=L

(
e−qt(qt)k

k!
·Uk

)
=

R∑

k=L

β(k, qt) ·Uk

∫ ∞

0

eQg x dx ≈
R∑

k=L

(∫ ∞

0

e−qx(qx)k

k!
dx ·Uk

)
=

R∑

k=L

β̂(k, qt) ·Uk

(4.3)

where β(k, qt) = (k!)−1e−qt(qt)k is the probability of having k renewals in a

Poisson process with rate q at time t, and β̂(k, qt) = 1 −∑j = 0k−1β(k, qt).
The truncation points are chosen such that the modulus of the sum of the
excluded entries is less than a small ε. The method of [FG88] can be used to

compute L, R and all the β(k, qt) and β̂(k, qt) coefficients for k ∈ [L,R].
With (4.3) the forward and backward equations for CTMCs become:

πM(α, t) ≈
R∑

k=L

(
e−qt(qt)k

k!
·
(
α ·Uk

))
=

R∑

k=L

β(k, qt) ·
(
α ·Uk

)

ξM(ρ, t) ≈
R∑

k=L

(
e−qt(qt)k

k!
·
(
Uk · ρ

))
=

R∑

k=L

β(k, qt) ·
(
Uk · ρ

)
(4.4)

4.2. STEADY-STATE SOLUTION METHODS 59

These equations are numerically stable since they employs only products of
non-negative vectors with a non-negative matrix U.

4.2 Steady-state solution methods

Limiting forward and backward equations for DTMC and CTMC can be reduced
to the solution of a linear equation system. The solution of the embedded DTMC
of a MRP can be assimilated to the solution of a DTMC.

All linear equation systems share the standard form:

A x = b (4.5)

with A an N×N matrix, b ∈ RN , and x = A−1b is the solution to be found.
We take back the DTMC and CTMC solutions to the standard form.

Given a DTMC {Yn | n ∈ N} with stochastic matrix P, the limiting forward
and backward vectors πD(α) and ξD(α) are given by (2.8) and (2.9). Since
πD(α) does not depend on α we drop it and write simply πD.

A DTMC is in steady state if Yn+1 has the same distribution of Yn. Let
πD be that distribution. By equation (2.2) we derive that πD = πDP, and
therefore:

(
P− I

)T · πD = 0 ⇒ A = (P− I)T and b = 0 (4.6)

with the additional condition that πD is a probability distribution, i.e. πDe = 1.
The backward solution defines the boundary condition: lim

n→∞
ξD(ρ, n) = ρ.

By equation (2.6) we know that:

ξD(ρ) = lim
n→∞

ξD(ρ, n) = lim
n→∞

Pn · ρ = (I−P)−1ρ

since lim
n→∞

Pn = (I−P)−1, so the linear equation system for ξD(ρ) is:

(
P− I

)
· ξD(ρ) = ρ ⇒ A = (P− I) and b = ρ (4.7)

An almost equivalent derivation can be done for CTMCs. Given a CTMC
{Xt | t ∈ R≥0} with infinitesimal generator Q, we may derive the forward

and backward vectors πM and ξM as the solutions of the two linear equation
systems:

QT · πM = 0 ⇒ A = QT and b = 0 (4.8)

Q · ξM(ρ) = ρ ⇒ A = Q and b = ρ (4.9)

Equations (4.6)–(4.9) shows that both forward and backward steady-state
vectors can be computed by solving a proper linear equation system in standard
form (4.5).

The linear properties of a Markov chain are expressed by the Perron-Frobenius
theorem, which gives the basic properties of stochastic matrices.

Definition 30 (Perron-Frobenius theorem). Given a non-negative matrix A
(i.e. A(i, j) ≥ 0 for all i, j), if A is primitive1 and irreducible, then:

1A primitive Markov chain is sometimes called an aperiodic Markov chain.

60 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

• The maximum eigenvalue λ∗ is positive and real;

• There is a single eigenvector v∗ with eigenvalue λ∗;

• The eigenvector v∗ is positive real, and has no imaginary parts;

• Every other eigenvector of A is negative;

The uniqueness of v∗ depends on the primitivity (aka periodicity) of P. If A
is irreducible but not primitive, then there is a set of k eigenvectors v∗1 . . .v

∗
k,

with the same eigenvalue λ∗.

Figure 4.1 Specters of P, (P− I) and Q, with q = −maxQ(i, i).

R

I
1

1

(a) Spectral radius of P (b) Spectral radius of A = P−I

R

I

-2 0-1

(c) Spectral radius of A = Q

R

I

0

q

2q-
-

Figure 4.1 clarifies the spectral properties of Markov chain matrices. The
three circles show where eigenvalues of P, of (P−I) and of Q lie in the complex
plane. Note that P − I is the equation system of (4.5). The Perron-Frobenius
theorem refers to the diagram (a). For stochastic matrices, the eigenvalue λ∗

has value 1, and every other eigenvalue lies in the unit disk with center in
the origin. Since any eigenvector other than v∗ has an eigenvalue that is less
than 1, the product α lim

n→∞
Pn must be equal to v∗, for any non-zero vector α.

Therefore v∗ is the solution vector x of A x = b. For non-primitive matrices,
there is a vector space made by the linear span {v∗1 . . .v∗k} of eigenvectors with
module λ∗, such that any vector x in the span is a solution of A x = b. Spectral
properties have a role in the interpretation of the effect of preconditioning, that
will be explained later. In few words, the disposition of eigenvalues on the unit
disk determines the conditioning, and thus the effectiveness and reliability of
numerical solution methods.

Figure 4.2 Specters of P for increasingly ill-conditioned systems.

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

(a) (b) (c) (d)

Figure 4.2 shows how the spectrum of a stochastic matrix appears, for in-
creasingly ill-conditioned P matrices ((a) is well-conditioned, (d) is the most
ill-conditioned). It can be said that the more the eigenvalues of a stochastic
matrix are spread and near the disk perimeter (and have a norm near 1), the

4.2. STEADY-STATE SOLUTION METHODS 61

more the system is ill-conditioned; non-unit eigenvalues with small norms and
clustered around the zero means instead that the system is well-conditioned and
favorable to a numerical solution.

Solving well-conditioned system is an important requirement, since ill-conditioned
systems may break numerical solvers or could lead to potentially inaccurate so-
lutions. In section 4.2.1 we look at a practical way of improving the conditioning
of linear systems.

4.2.1 Preconditioning linear systems

Section 4.2 framed the problem of computing the forward and backward limiting
behavior of Markov chains. So, the entire problem reduces to the solution of a
system of linear equations: A x = b. Before describing the numerical methods
that can be used to compute a linear equation system, we consider the problem
of transforming (4.5) in an easier problem.

Linear equation systems can be transformed to improve the accuracy and the
reliability of the numerical methods. The main technique for doing this kind of
transformations is preconditioning. The use of preconditioning usually improves
the convergence rate and the reliability of a numerical solution method.

There are three general types of preconditioning [Auz11]:
1. Left preconditioning by a matrix ML:

M−1
L A x = M−1

L b (4.10)

2. Right preconditioning by a matrix MR:

AM−1
R y = b, x = M−1

R y (4.11)

which involves a substitution of y for the original variable x.

3. Split preconditioning by a matrix M = ML MR multiplied on both sides:

M−1
L AM−1

R y = M−1
L b, x = M−1

R y (4.12)

Split preconditioning extends both (4.10) and (4.11) by setting MR = I or
ML = I, respectively. The matrices ML and MR are called preconditioners.
A preconditioner M is a matrix that transforms the coefficient matrix A into
another system that is more favorable for an iterative solution. Usually, a
preconditioned system has more non-unit eigenvectors clustered together around
the zero.

Preconditioners are always evaluated as a product M−1u with some vector
u. An evaluation of a product v = M−1 u has to be intended as the solution of a
linear equation system M v = u. Of course, the convenience of preconditioning
requires that such solution has to be cheap, in comparison to the solution of the
original system.

The choice of left, right and split preconditioning is not particularly relevant.
In fact, M−1

L A, AM−1
R and M−1

L AM−1
R have the same spectrum of eigenvalues.

Of course, in floating point arithmetic there could be minor differences. In any
case, it is not needed to form the actual system matrix M−1A explicitly (or
AM−1, M−1

L AM−1
R).

There is a wide literature on preconditioning methods [Ben02], either gen-
eral purpose or tied to some specific problems. Algebraic preconditioners are
built from a direct manipulation of the coefficient matrix A. A set of classical
algebraic preconditioners is given below.

62 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Classical algebraic preconditioners.
Let say that A is given in split form: A = D + L + U, where D is the diagonal
part of A, L is the strictly lower-diagonal part of A, and U is the strictly
upper-diagonal part of A. Three different preconditioners can be constructed
as:

(Jacobi) M = D (4.13)

(Gauss-Seidel) M = D + L (4.14)

(Symmetric SOR) M = (D + L)D−1(D + U) (4.15)

Each of these three algebraic preconditioners is then used either as left or
right preconditioners. The evaluation of M−1x is easily done because D is
easily invertible, and by forward and backward substitution for L and U. The
rationale for these preconditioners is that are in some sort an approximate of
A, taken by removing some entries of the original coefficient matrix.

Incomplete LU factorization preconditioners.
The Incomplete LU factorization (ILU) method [Saa94] is another widely used
algebraic preconditioner. It has been shown in [Saa95] that ILU with threshold
(ILUT) [Ste94, pag. 145] is generally a good choice for the solution of Markov
chains. ILU factorizes matrix A as A = L̃LŨU−E, where E contains the remainder
of the incomplete factorization. The preconditioner is then computed as:

M = ILU(A) = L̃LŨU, M−1 = ŨU−1L̃L−1 (4.16)

This equation results in a non-singular matrix M when ‖E‖ 6= 0. The
choice of M = L̃LŨU allows to evaluate efficiently M−1x, since both L̃L and ŨU are
triangular matrices: Therefore y = L̃L−1x and M−1x = ŨU−1y can be computed
by forward and backward substitution [Auz11, p. 113].

The criteria for choosing the approximation L̃LŨU ≈ LU depend on the vari-
ant [CV94] of ILU factorization, and is usually one of the following:

• ILU(0): keep only the entries L̃L(i, j) and ŨU(i, j) if the entry A(i, j) is
non-zero.

• ILUT(σ, ε): discard all entries in L̃L and in ŨU whose absolute value is
below the threshold ε. Of the remaining entries, keep at most the σ
largest entries per each row of L̃L and ŨU.

Other class of preconditioners include approximate inverses, which try to
construct directly a sparse approximate M−1 of A−1. A special class of pre-
conditioners for MRPs will be shown later in section 4.3, and is part of the
contribution of this thesis.

4.2.2 Numerical solution of linear systems

This section gives a brief description of the classes of numerical methods that
can be used to compute the solution of (4.5), employing a preconditioner matrix
when it is useful. We may classify numerical solution methods into three classes:

1. Direct methods, which manipulates directly the coefficient matrix A and
produces the exact solution x;

4.2. STEADY-STATE SOLUTION METHODS 63

2. Stationary iterative methods, which construct a sequence of increasingly
better approximates {x0,x1, . . .} of the solution vector x, such that each
xk does not depend on the previous approximates in the sequence. Jacobi,
Power method and Gauss-Seidel are example of methods in this class.

3. Non-stationary iterative methods, which are similar to stationary iterative
methods, but where each xk depends on the sequence of approximates
{x0, . . . ,xk−1}. Krylov-subspace methods belong to this class.

Other more advanced classes of solution methods could be added, like multilevel
methods. We now describe in more details these three classes.

Direct methods.
A direct method works by factorizing the coefficient matrix A into a form that
is easily invertible. Almost every direct method is a variation of the Gaussian
elimination. These methods are usually very stable and robust, and have the
advantage of knowing in advance the total amount of time and space needed to
compute the solution of (4.5).

Unfortunately, Gaussian elimination has a space occupation that is O(N2)
for a N×N matrix, which makes the method impractical for large matrices.
Markov chain matrices may have very large state spaces, making these methods
impractical.

Since Gaussian elimination works directly on the coefficients of A, the matrix
should be available. Therefore, preconditioning is rarely used, because it would
require the explicit construction of the system M−1A.

Stationary iterative methods.
Iterative methods work by constructing a sequence of vectors {x0,x1, . . . } which
gradually approximates the solution x. Usually, the iteration stops when the
residual of the k-th vector in the sequence:

rk = A xk − b (4.17)

has a magnitude that is less than a small ε. Iterative methods are the most com-
mon methods for large sparse systems, since they tend to require fewer storage
then direct methods, in the order of O(N) for a N×N matrix. Unfortunately,
iterative methods are far less reliable than direct methods, since they are very
dependent from the conditioning of the system matrix, which determines the
number of iterations needed to achieve the accuracy ε. Preconditioning is usu-
ally used in iterative methods since they are easy to integrate and because they
improve the convergence rate and accuracy.

One of the most important iterative methods is the Richardson method,
whose non-preconditioned iterative relation is:

xk+1 = xk + ω(b−A xk) (4.18)

with ω > 0 the relaxation factor. The preconditioned Richardson method is:

yk+1 = yk + ωM−1
L (b−AM−1

R yk), x = M−1
R y (4.19)

with and ML and MR the preconditioner matrices. The choice of a large enough
ω value ensures the convergence of the sequence. It can be shown that, for

64 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Markov chains, any value of ω in the range (0, 1) can be used as relaxation
coefficient. It is possible to show that an optimal ω value exists for each matrix
A; the computation of the optimum value is studied in [Rei66]. Equation (4.18)
is also known as the Power method. The power method construct the sequence
of xk without any preconditioning.

The classical method of Jacobi, of Gauss-Seidel and SSOR are derived from
the Richardson method using the appropriate preconditioner matrices (4.13),
(4.14) or (4.15). Note that a specialized implementation of Gauss-Seidel (as
in [Ste94]) produces the same sequence of the Richardson method, but is more
efficient.

The pseudo-code of the Richardson method is given in Algorithm 4.1.

Algorithm 4.1 Preconditioned Richardson iterative method.

Given the linear system A x = b, an initial guess y0 and the preconditioner
M = ML MR, do:

1. y0 := an initial guess.

2. x0 := M−1
R y0 // solve: MR x0 = y0

3. r0 := b−A x0

4. while ||rk|| > ε do:

5. wk := M−1
L rk // solve: ML wk = rk

6. yk+1 := yk + ωwk

7. xk+1 := M−1
R yk+1 // solve: MR xk+1 = yk+1

8. rk+1 := b−A xk+1

9. return the last xk

Remark 1: The classical methods of Jacobi, Gauss-Seidel and SSOR are in-
stances of the Richardson method with M defined as in (4.13), (4.14) and (4.15),
respectively.

Algorithm 4.1 computes the sequence of yk using the vectors xk, rk and wk

to label the following parts of (4.19):

yk+1 = yk + ωM−1
L

rk︷ ︸︸ ︷
(b−A M−1

R yk︸ ︷︷ ︸
xk

)

︸ ︷︷ ︸
wk

, xk+1 = M−1
R yk+1

The method proceeds until the magnitude of rk is less than ε. Note that if
the right preconditioner MR is the identity matrix, then the sequence of yk
coincides with the sequence of xk. Analogously, the sequence of wk coincides
with the sequence of residuals rk when the left preconditioner ML is I.

Non-stationary iterative methods (Krylov-subspace methods).
Non stationary iterative methods construct the solution x from the whole se-
quence of residual vectors {r0, . . . , rm}, instead of using only the last residual.
The Generalized Minimum RESidual (GMRES) method is one of these itera-
tive methods. GMRES [SS86] was proposed by Saad and Schultz in 1986, and

4.2. STEADY-STATE SOLUTION METHODS 65

works with large non-symmetric matrices. Other non-stationary methods for
non-symmetric matrices exists, like BiCG-Stab [Vor92] or CGS [Son89], but are
not a subject of this thesis.

A detailed description of the GMRES method is found in [SS86], and its
rate of convergence is studied in [VV93]. In few words, the convergence rate of
GMRES strictly depends on the spectrum of eigenvalues of the system matrix.
The more the eigenvalues are clustered together and have a small norm, the
more the system is well conditioned. On the opposite, a spectrum of eigenvalues
that spreads over the perimeter of the unit disk characterizes an ill-conditioned
system where GMRES will behave poorly. Thankfully, preconditioning is used
to improve the clustering of eigenvalues around the zero.

GMRES supports left, right and split preconditioning. Unlike the Richard-
son method, if a preconditioner M is used, it cannot be changed during the
iterative method. However, there exists a variant of GMRES, known as Flexible
GMRES (FGMRES), that allows to change the right preconditioner at every
iteration, with an additional memory cost. The variant of GMRES reported in
this thesis is FGMRES with split preconditioning. Hereafter, with GMRES (or
FGMRES) we mean the specific variant of the method reported in this thesis.

The pseudo-code of the preconditioned FGMRES(m) method is given in
Algorithm 4.2. GMRES uses the Arnoldi method to constructs the p–th order
Krylov-subspace Kp(A, r0):

Kp(A, r0)
def
=
{

r0, (M−1
L AM−1

R)r0, . . . , (M−1
L AM−1

R)p−1r0

}
(4.20)

with r0 = M−1
L (b −AM−1

R x0) and p≤m. The parameter m of FGMRES(m)
is the maximum number of dimensions of Kp(A, r0). If the method does not
reach the desired accuracy in m steps, it is restarted (line 17) using the last
xm as initial guess x0. The vector space Kp(A, r0) is then orthonormalized
using the modified Gram-Schmidt method to build a basis V = [vj] of unit
vectors that are orthogonal to each other. The solution vector xm is taken
as a linear combination in the V basis as: xm = V q, where q is chosen to
minimize the residual rm of xm. In addition, the Arnoldi process produces an
(m+ 1)×m matrix H̄m that has the property: AVm = Vm+1H̄m. Because Vm
is orthogonal, it is possible to derive the relation:

‖b−A xm‖2 =
∥∥βe1 − H̄mq

∥∥
2

where e1 = 〈1, 0, 0, 0, . . . , 0〉 and β is the norm of the first residual r0. Finding a
vector xm in the vector space Vm that minimizes the above norm is an instance
of the linear least square problem of size m. In the FGMRES variant, the basis is
Zm = M−1

R Vm instead of Vm, because each zj vector may have been multiplied
with a different MR preconditioner at step 6.

The FGMRES method works as follows:

• Lines 1–4: Initialization.

• Lines 5–13: One step of the Arnoldi method that adds a new dimension
to the basis Zm (or Vm for basic GMRES).

• Lines 14–16: Compute the linear least square problem to find xm as the
best linear combination of Zm (or Vm) that minimizes the residual rm.

• Line 17: Restart if xm is not sufficiently accurate.

66 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Algorithm 4.2 Preconditioned FGMRES(m) iterative method

Given the linear system A x = b, an initial guess y0, the dimension of the
Krylov subspace m and the preconditioner M = ML MR, do:

1. H̄m := empty matrix of size (m+ 1)×m
2. r0 := M−1

L (b−A x0)

3. β = ‖r0‖2
4. v1 := r0/β

5. for j = 1 . . .m do:

6. zj := M−1
R vj

7. w := M−1
L (A zj)

8. for i = 1 . . . j do:

9. H̄m(i, j) := w · vi
10. w := w − H̄m(i, j) vi

11. H̄m(j+1, j) := ‖w‖2
12. if H̄m(j+1, j) = 0 then m = j and goto step 14

13. vj+1 := w/H̄m(j+1, j)

14. Zm := matrix of [z1, . . . , zm]

15. Find ym := argmin
∥∥βe1 − H̄mq

∥∥
2

16. xm := x0 + Zm ym

17. Return if accuracy is < ε, otherwise restart with x0 = xm

Remark 1: GMRES is obtained by changing these lines:

14. Vm := matrix of [v1, . . . ,vm]

16. xm := x0 + M−1
R (Vm ym)

Remark 2: left preconditioning minimizes the residual norm:
∥∥M−1

L b−A x
∥∥

2
,

while right preconditioning minimizes the original norm: ‖b−A x‖2.

Remark 3: the right preconditioner matrix MR of step 6 can change at any
iteration, but this requires to store the zj vectors to form the matrix Zm. If MR

does not change, then Zm is not needed at step 16, and xm can be computed
with: xm := x0 + M−1

R (Vm ym).

Every iteration requires one matrix product with A (line 2 and 7) plus the
products with the preconditioners (line 6 and 7), plus an additional product with
the left preconditioner at the beginning. The space occupation of FGMRES is
O(m2 +N). Usually the parameter m is a small number, in the order of tens.

The ability of having a variable right preconditioner will be used in section
4.3, where a special class of preconditioners for MRP processes is described.

4.2.3 Matrix-free solution of MRPs

In section 4.2 the problem of computing the forward/backward steady-state
distribution of both CTMCs and DTMCs has been reduced to the solution of
a linear equation system. In theory, the same technique can be applied to the

4.2. STEADY-STATE SOLUTION METHODS 67

solution of the EMC matrix (2.45) of an MRP, since the EMC is a DTMC.
This powerful reuse of concepts hides, however, a severe problem. The for-

mula (2.45) of P contains two matrix exponentials (2.40) and (2.41) for Ω and
Ψ, respectively. A matrix exponential breaks the sparsity of its parameter:
therefore, even if Q, Q̄, ∆ are sparse (space occupation O(N)), the resulting
EMC matrix will be almost dense (space occupation O(N2)). Indeed the i-th
row of P contains a non-zero entry for every state that is reachable from i fol-
lowing paths of exponential transitions; following these paths is like computing
the transitive closure of the graph of the matrix that describes the exponential
transitions. A similar situation holds for C, since its formula (2.46) contains
Ψ. For large MRPs, the explicit construction of the EMC matrix may become
unfeasible due to the large space requirement and the long time needed to com-
pute the exponentials. The problem is illustrated in Figure 4.3, which shows
the non-zero plots of the matrices of a small MRP. Figure 4.3 illustrates that
the sparse generator matrixes may give rise to a dense EMC P and a dense
conversion matrix C.

Figure 4.3 Sample non-zero plots of Q, Q̄, ∆ and of the resulting P and C.

Q =

P =

Q̄ = ∆ =

C =

252 states.
nnz(Q) = 994
nnz(Q̄) = 182
nnz(∆) = 112
nnz(P) = 4934
nnz(C) = 1836

1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252
1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252
1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252

1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252
1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252

This is known as the fill-in problem of MRPs. Based on this problem, the
MRP solution strategies present in the literature can be classified as:

• Explicit methods: the P and C matrices are computed once using the
corresponding formulas, and stored in memory, as in [Lin98] and [AC87].

• Implicit methods: (also called matrix-free) the P and C matrices are never
computed and stored in memory. In this thesis we use the terms implicit
and matrix-free interchangeably.

An implicit method has been proposed in 2001 in [Ger01] (called “two-level
iterative” by the author), that is based on the idea that, given a row vector u, the
uP and uC product operators can be rewritten in a way that does not require
the computation and storage of P and C. This leads to a matrix-free method
that avoids the fill-in, with a space occupation that scales almost linearly with
the model size and the sparsity of the generators. Note that the method is
matrix-free for P and C, but not for the three generator matrices, which are
kept in memory.

68 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Definition 31 (Implicit products). Let u be a generic vector over S. The
product of u with P can be rewritten by expanding the Eq. (2.45), resulting in:

uP = u
(
IE − diag−1(QE)QE + Ω∆ + ΨQ̄

)
=

= u
(
IE − diag−1(QE)QE

)
+
(
uΩ
)
∆ +

(
uΨ
)
Q̄

(4.21)

The uΩ and uΨ parts of Eq. (4.21) are vector by matrix products that can be
written by expanding the vector product into the Taylor series expansions of
(2.40) and (2.41), resulting in:

uΩ =
∑

g∈G

uΩg, uΨ =
∑

g∈G

uΨg
(4.22)

where the uΩg and uΨg vector×matrix products are:

uΩg = uIgeQgδg =

R∑

k=0

uIg
(
Ug
)k
β(k, qgδg) (4.23)

uΨg = uIg
∫ δg

0

eQgt dt =

R∑

k=0

uIg
(
Ug
)k
β̂(n, qgδg) (4.24)

with Ug, q, β(k, qt) and β̂(k, qt) defined as in Eq. (4.3) for matrix Qg.
The product of u with C can be derived analogously from (2.46) as:

uC = u
(
−diag−1(QE) + Ψ

)
=

= −u · diag−1(QE) + uΨ
(4.25)

where the uΨ can be expanded as in (4.24).
The transposed products Pu and Cu are derived analogously.

The asymptotical time cost of a vector×matrix product uP (or the trans-
posed Pu) is:

O

(
η(QE) +

∑

g∈G

(
η(Qg) ·Rg︸ ︷︷ ︸

cost of uΩ and uΨ

+ η(∆g) + η(Q̄g)︸ ︷︷ ︸
products with ∆ and Q̄

))
(4.26)

which is dominated by the cost of the products uΩ and uΨ. The space occu-
pation is that of the uniformisation procedure, which is in the order of O(N).

The advantage of the implicit method over the explicit one is that P does
not need to be stored, but only the vectors resulting from the products with Q,
Q̄ and ∆. From a computational point of view, the computation of the product
with P, for each iteration of the chosen fixed-point solution method, requires at
least a uniformisation step (for uΩ and uΨ), plus few additional products with
the (sparse) matrices Q, Q̄ and ∆.

Similarly, the product with C has a cost:

O

(
η(QE) +

∑

g∈G

η(Qg) ·Rg︸ ︷︷ ︸
cost of uΨ

)
(4.27)

4.3. PRECONDITIONING MRP SOLUTIONS 69

that is dominated by the computation of uΨ. These costs should be compared
with the much higher costs of building P and C, which requires the cost of
computing and storing two matrix exponentials.

In addition to consuming less memory, the implicit method may also be
faster, depending on the ratio between the number of iterations required to reach
the fixed point and the number of regenerative states. The work in [Ger01] has
studied the advantage of the implicit method over the explicit one, in terms of
both memory and time.

The implicit method can be used to compute both the transient and the
steady-state solutions of the EMC, since equations (2.3), (2.6), (4.6), (4.6),
(2.49) and (2.50) only require vector×matrix products with P or C.

4.3 Preconditioning MRP solutions

The steady-state solution of the embedded DTMC P can be computed with
the implicit method (Def. 31) with both the Richardson iterative method and
a Krylov-subspace method, since both require only the ability of computing
residual vectors with (4.17). However, an important limitation of the implicit
strategy is that the single entries of P and C are not available. Unfortunately,
almost any preconditioner requires some algebraic manipulation of the system
matrix P, which is not available.

We now present a problem-specific preconditioner for MRP that is sparse
and does not require the explicit knowledge of P. This preconditioner has been
introduced in [AD11] and is a variant of ILUT, described before at page 62.

The idea is to build the ILU preconditioner from a sparse estimate ÃA of A,
which in turn is derived from a sparse approximate P̃P of the EMC P, chosen so
to be fast to compute and sparse. This technique is based on the assumption
that a preconditioner M−1 built from a sparse approximate matrix ÃA is still
an effective preconditioner for the original matrix A. We provide an empirical
evaluation of this assumption in section 4.3.3. In what follows we consider the
problem of generating P̃P and ÃA for a given MRP, and then we describe two
ways of building the preconditioner M from ÃA.

4.3.1 Construction of the approximate P̃ of the EMC P.

Let drop be a matrix function that modifies a matrix by deleting certain entries
according to a specified dropping criteria.

We consider two methods for building P̃P:

1. Compute each row of the EMC P explicitly with equations (2.45), and
then erase some entries to build an approximate P̃P = drop(P).

2. Generate an approximate P̃Psim of P through a row-by-row simulation: for
each state i, the runs are performed, starting from i itself. A run ends when
a regenerative state j is reached. The mean frequency of each reached state
j gives the entries of P̃Psim. P̃P is then constructed as drop(P̃Psim), to make
P̃P a sparse matrix according to the dropping criteria.

In both cases, space occupation is not so problematic since eliminations can take
place as soon as a row is computed. The first method is very slow to compute,
for the reasons explained in section 4.2.3.

70 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

As dropping criteria, we use the same dual threshold strategy of ILUT(σ, ε):
drop is defined so as to keep at most the σ largest entries of each row, while
erasing all entries below a given tolerance value ε. Note that, due to eliminations,
P̃P is substochastic: each row sum is in the [0, 1] range.

In both methods, an approximate row i of PE is built directly with (2.42),
since it is already a sparse, explicitly available matrix. In the simulation method,
an approximate row i of PG is built by taking the relative frequencies of each
regenerative state j reachable from i with some random simulations. The sim-
ulated matrix is the subordinated Markov chain of i. A pseudo-code of the
simulation procedure for a given general state i ∈ SG is given in Algorithm 4.3:

Algorithm 4.3 Simulation of a path from state i ∈ Sg

1. i← initial state of the simulation

2. t← 0 // elapsed time counter

3. ft← generate the firing time from Fg randomly

4. loop:

5. t← t + (random exp. duration with rate −qi,i)
6. if t ≥ ft :

7. i← choose next state randomly from ∆i

8. return i // firing of g

9. i← choose next state randomly from (Qi + Q̄i)

10. if i has been chosen from Q̄i :

11. return i // preemption of g

Algorithm 4.3 simulates a run inside the subordinated chain of PG, starting
from state i. First, the firing time of the general transition g ∈ G is randomly
selected at line 2, according to the cumulative distribution function Fg of the
transition g. Then the simulation “explores” the Markov chain until either
the general transition fires (lines 6–8), or a preemptive exponential transition
fires (lines 10–11). The simulation is repeated si times for each initial state
i ∈ SG, where si can either be a fixed constant or dynamically chosen according
to a stopping criteria based on accuracy and confidence level. Let si be the
total number of simulations run for state i, and fi,j be the number of times a

simulation has hit state j starting from i. An approximate entry P̃Psim(i, j) is
given by:

P̃Psim(i, j) =





pE
i,j i ∈ SE

fi,j
si

i ∈ SG
(4.28)

The sparse approximate P̃P is derived as drop(P̃Psim). The estimated matrix
ÃA of A is then (P̃P− I)T . Observe that rows of ÃA may not sum up to zero, since
P̃P is substochastic. If there is at least a row of P̃P that does not sum to 1, then
ÃA is non-singular.

4.3. PRECONDITIONING MRP SOLUTIONS 71

4.3.2 Preconditioning strategies

Once the approximate matrix ÃA has been constructed, a preconditioner M−1

can be derived. We consider two different approaches for building the precon-
ditioner from ÃA. In both approaches M is constructed as a non-singular sparse
irreducible matrix. Its inverse M−1 is never built up explicitly, since it is known
that inverses of sparse matrices do not preserve the sparsity. The effectiveness
of the proposed preconditioning method (balance between the additional com-
putational cost of building the preconditioner and its effectiveness) is assessed
experimentally in section 4.3.3.

The two approaches are:

[Single preconditioning]: Ms is taken as the ILU factorization of ÃA, so
that ÃA = L̃LŨU − ẼEs and Ms = ILU(ÃA) = L̃LŨU. An evaluation of the
preconditioner M−1

s y requires only a forward and a backward substitution,
which have a linear time cost.

[Inner-outer preconditioning]: This is a two-level preconditioning ap-
proach. The preconditioner is chosen exactly as Mout = ÃA. Observe that
Mout is not easily invertible. Therefore, each evaluation of the precon-
ditioner x = M−1

outy is computed as the solution of the linear equation
system Moutx = y. In practice, the preconditioner is an iterative solution
of ÃA, repeated for every outer iteration. This solution can also be pre-
conditioned using a second internal preconditioner Min, built as the ILU
factorization of Mout.

Hereafter we use Ms and Mout when writing about the two specific strate-
gies, and we use M to refer to the general preconditioning method that applies
to both the single and inner-outer preconditioning.

In the inner-outer preconditioner case, the inner solution of Mout precondi-
tioned with M−1

in follows this schema:

ri = b−Mout(M
−1
in vi) ⇒ ri = b−Moutzi, zi = M−1

in vi (4.29)

and since Min = ILU(Mout), then the vector zi is computed from M−1
in vi with

a forward and a backward substitution.
The inner iteration can be carried out with any algorithm, like GMRES.

The inner method could also be less accurate than the outer method [ESG05],
and stop when a fixed tolerance is reached or after a fixed number of inner
iterations. Since the outer preconditioner is the result of an iterative solution,
the product with M−1

out is not a constant operation, a condition which is required
for preconditioned GMRES to converge. Therefore, the outer iteration has to
be carried out with a flexible method, like FGMRES (given in Algorithm 4.2).
Remember that flexible methods allow the outer preconditioner to vary at every
iteration. The two proposed preconditioners have both a space occupation of
O(pN), which is linear in the model size. Inner-outer preconditioning strategy
uses approximately twice the memory as the single preconditioning strategy,
due to the memory occupation of FGMRES and the need of two matrices Mout

and Min.

In the literature a relatively similar idea of using matrix estimation to build
a preconditioner for matrix-free problems has been pursued in [CT04]. In that
article, however, the estimation is based on the assumption that the graph

72 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

structure of A is known a priori and the estimated matrix is computed with
numerous matrix-free products. We have not followed this approach since the
graph structure is not known and, more importantly, matrix-free products for
MRPs can be very time-consuming.

4.3.3 Experimental assessment of the MRP preconditioner

We summarize the results in [AD11] of the efficiency of the implicit MRP so-
lution with the problem-specific preconditioner of section 4.3. The results are
computed with DSPN-Tool, described in section 5.2. The implementation sup-
ports deterministic and exponential distributions for MRP transitions.

The experiments are organized into three sets. The first set shows the results
of 6 benchmark models. The second set shows some additional insights on the
behavior of the preconditioners w.r.t. an ill-conditioned (stiff) problem. The
last set investigates the behavior of the methods for larger models.

Table 4.1 shows the results with six benchmark DSPN models: a Kanban sys-
tem with 4 cards, a Simultaneous Generalized Kanban Control System (SGKCS,
see [CD97]) with 15 cards, a CSMA/CD ethernet network with 120 connected
clients (see [Ger00, pag. 327]), a Polling server with 12 clients (see [AD10d, sec.
4.1]), a stiff MRP of a semaphore model with n=4 jobs running in 2 cpus, and
a Gambler’s ruin(GR) model with 22 players, whose MRP is non-ergodic with
44 recurrence classes. All the model files are available in GreatSPN format at
http://www.di.unito.it/∼amparore/NSMC/TestModels.zip, for the inter-
ested readers, together with the solver sources. Solutions are computed on a
2.3Ghz x86/64 machine.

Table 4.1 Results of 6 MRP benchmarks.

 Kanban SGKCS CSMA/CD Polling Semaphore GR

Petri Net params
States
Transitions
Regenerative states
P entries
C entries
P + C build time
Psim build time
Recurrence classes

n = 4
12 985
86 220

9 859
12 051 964
12 021 959

1 538s
6.72s

irreducible

n = 15
38 976

174 755
34 880

88 663 327
88 652 528

2 491s
3.69s

irreducible

n = 120
14 641
43 320

7 382
422 943

9 374 110
24 879s

9.94s
irreducible

n = 12
106 496
798 720
106496

7 334 717
6 961 981

2 445s
3.19s

irreducible

n = 4
252

1 036
252

4 918
1 836
0.07s
0.02s

irreducible

n = 22
63 250

394 680
63 250

254 653 278
127 288 183

10 113s
8.52s

44
 xP time xP time xP time xP time xP time xP time

1 Power
method

!=0.90
!=0.95
!=0.99

528
500
614

187.3
190.8
247.2

878
832
798

126.7
120.1
115.2

106
223

1155

1 070.0
2 461.5
7 873.2

95
89
85

59.0
56.5
53.9

160 488
152 041
145 898

165.8
156.0
150.3

195
184
175

174.6
165.4
193.5

2
GMRES(30)
Bi-CG Stabilized
CGS

122
91

106

48.6
29.6
33.9

306
127
132

40.9
12.2
12.6

21
33
28

223.5
342.6
277.6

53
55

-

35.2
35.6

-

762
251
180

0.82
0.33
0.25

286
103
106

244.2
118.1

95.0
3 Ms=ILUT(A) 20 1 830 48 5 582 10 251 305 31 7 848 27 0.13 23 149 225

4 Ms=ILUT(Ã)
!=4
!=7
!=10

20
17
14

14.5
14.1
14.8

53
45
34

13.6
12.6
10.9

11
11
11

130.4
131.6
126.4

29
25
22

25.5
23.9
23.1

26
23
20

0.06
0.06
0.06

24
21
20

39.9
32.8
33.9

5 Mout=Ã
Min=ILUT(Ã)

!=4
!=7
!=10

11 (17)
11 (14)
11 (12)

12.5
11.4
11.5

50 (7)
44 (7)
31 (6)

13.8
18.9
15.5

10 (7)
9 (7)
9 (7)

120.5
110.6
107.8

19 (15)
15 (16)
13 (16)

31.3
29.7
24.7

19 (15)
17 (14)
16 (12)

0.07
0.07
0.06

21 (16)
19 (13)
18 (11)

36.3
36.0
37.5

The first lines of Table 4.1 report the model parameters, the number of
tangible states and transitions of the MRP, the number of regenerative states,
the number of entries in the embedded DTMC P and in the conversion factors

4.3. PRECONDITIONING MRP SOLUTIONS 73

matrix C, the total time needed to build P and C explicitly, the time needed to
build the approximate matrix P̃Psim through simulations (with s=200 simulations
per state), and the recurrence structure. The problem of fill-in is evident from
these examples: the number of entries in P and C grows almost quadratically in
many cases, requiring a large storage space. For instance, in the GR model, the
storage space of P and C is almost a thousand times bigger than the generator
matrices. The time required to build the simulated EMC Psim for the given
value of s is small, compared to the time needed to build P and C. Note that
the matrices of Figure 4.3 are the one of the Semaphore model.

Remaining lines of Table 4.1 list the performance of iterative algorithms,
expressed as the number of implicit xP products and the total solution time. A
minus sign is used when the method does not converge. Accuracy is set to 10−10.
For the construction of ÃA the drop tolerance is ε = 10−4, and the maximum
number of elements per row is σ (chosen between 4, 7 and 10). The ILU method
used for the experiments is ILUT [Ste94; CV94] with drop threshold 10−4 and
a maximum of 4 entries per row.

Five combinations of methods and preconditioners have been evaluated:

¬ Unpreconditioned Richardson method (i.e. Power method) with three under-
relaxation coefficients ω, as described in [Ger01, sec. 3].

­ Unpreconditioned Krylov methods: GMRES with m=30, Bi-CG Stabi-
lized and CGS.

® Single-preconditioned GMRES with the ILUT factorization of the exact
dense matrix A. It is shown only for comparative purposes.

¯ Single-preconditioned GMRES with the ILUT factorization of the sparse
approximate matrix ÃA, for three values of σ (maximum number of entries
per row in ÃA).

° FGMRES with inner-outer preconditioner Mout, for three values of σ. Ta-
ble 4.1 reports the iteration count as “i1(i2)”, where i1 is the number of
outer FGMRES iterations, and i2 is the mean number of inner GMRES
iterations done to solve the system of equations (4.29) in Mout precondi-
tioned with Min = ILUT(Mout). Inner accuracy is set to 10−6.

The worst case in time is always ®. Indeed this was expected as the exact
matrix A (dense and slow to compute) is used for the ILUT preconditioner Ms.
This case is reported as a reference for cases ¯ and °.

Apart from ®, power method is the most expensive in terms of both uP
products and solution times. The methods in ­ show the advantage of using
implicit Krylov methods instead of power method, with the exception of CGS
over the polling model which does not converge. Preconditioned methods (®, ¯
and °) consistently reduce the number of iterations w.r.t. the unpreconditioned
ones (¬, ­). Among preconditioned methods, we cannot observe significant
differences in the iteration counts.

The impact of the preconditioner clearly depends on the model. Comparing
the two methods based on matrix estimation (¯ and °), we observe that inner-
outer preconditioning with ÃA (°) is the most effective in reducing the iteration
count, and it is slightly better than the single preconditioning (¯) with ILUT
factorization. However, this does not always result in a speed up, due to the
additional cost of solving Mout. The difference between single and inner-outer
preconditioning could be due to the fact that ILUT adds another approximation
to an already approximated matrix ÃA, as observed in the semaphore model.

74 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Figure 4.4 shows the matrix plots of A and of ÃA with σ = 7 of the semaphore
model. The reader can observe how the sparse approximate matrix ÃA generated
from P̃Psim still “resembles” the dense matrix A (at least for what concerns the
most significant entries). This is not surprising, since it is the expected behavior
of simulations.

Figure 4.4 Matrix plots of A (left) and Ã (right), with σ = 7.

1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252
1 100 200 252

1

100

200

252

1 100 200 252
1

100

200

252

The effect of the preconditioner is more evident when viewing the spectra of
the matrix before and after the preconditioning. Figure 4.5 shows the eigenvalue
distribution of I + A, the spectra of I + M−1A for the ILUT factorization of
A, the spectra of I + M−1

s A for the single preconditioner Ms = ILUT(ÃA), and
the spectra of I + M−1

outA for the inner-outer preconditioner Mout = ÃA.

Figure 4.5 Spectra of the “semaphore” model.

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

No preconditioner

⑤: Mout = �AA

③: Ms = ILUT(A)

④: Ms = ILUT(�AA)

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 75

Even if the model is small (252 states), it requires an unreasonably large
number of power method iterations to achieve convergence. The spectral analy-
sis of I + A reveals that almost one fifth of the eigenvalues are clustered around
0, while the others are spread away. The subdominant eigenvalue λ2 is 0.999926,
which explains the extremely slow convergence rate of the power method, since
this rate is approximatively

∣∣λ2

λ1

∣∣. As expected, preconditioning clusters together

the eigenvalues of (I + M−1A) around zero [Ste94, pag. 150]. However, since
various approximations take place (eliminations of some estimated values of ÃA
due to drop, eliminations in the ILUT factorization), the quality of the resulting
preconditioner may vary. In the semaphore model inner-outer preconditioner
produces a more compact cluster than the ILUT factorization, which could ex-
plain the slightly better behavior of GMRES. In practice, fast convergence of
GMRES is often observed in the case of clustered spectra.

The last set of experiments is reported in Table 4.2. It was defined to in-
vestigates the preconditioner effect on the six DSPN models for increasing state
space sizes. For this test we consider methods ­, ¯ and °. The approximated
ÃA is built with σ=10 maximum entries per row. In the table we list the number
of states, the number of transitions, the uP product counts and the solution
times. In the GR model we also report the number of recurrence classes. Unpre-
conditioned GMRES (method ­) does not converge for the SGKCS model, and
was the slowest to converge among the three. The inner-outer preconditioning
strategy (method °) shows a marginal advantage over method ¯ in 4 out of
6 models. Note that for some of the larger models the solution time can be
quite high, but this is not surprising considering that each matrix-free product
requires the uniformization steps of equations (4.23) and (4.24).

4.4 Reducible MRPs: the component method

The matrix-free method for MRPs given in section 4.2.3 works under the restric-
tion of irreducibility. Of course, it is possible to extend the matrix-free method
as-is for reducible processes, using equations (2.14) to compute in isolation each
recurrent class, as done in [AD11, ch. 5].

A different approach, known as the component-based method for MRPs, is
provided in [AD10a] and [AD12a]. The component-based method computes the
steady-state solution πD(α) of the EMC. Instead of computing a single iterative
solution of transient set J ·F in (2.14), the transient set is divided into smaller
pieces, called components, that can be solved in a sequence. Components taken
in isolation can be further classified by their structure, which allows to select
the proper solution method (which can span from a single vector-by-matrix
multiplication to the implicit solution of a full MRP). Overall, the solution cost
is at most that of the implicit method, but in many cases it was found to be
much better.

Let’s say that the EMC matrix P is reducible with the structure of (2.11),
such that the set of states S is partitioned into the set of transient states ST

and m sets of recurrent states SRi , with 1 ≤ i ≤ m. Only recurrent states have
a non-null probability. Each recurrent class SRi can be solved in isolation as
the solution of πRi

= πRi
Ri.

Let’s denote with µ(T) the outgoing probability vector from the transient

76 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Table 4.2 Benchmark of the implicit methods ­, ¯ and °.

SGKCS

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

4

5

6

7

8

9

10

12 985

45 472

134 064

347 034

811 305

1 747 240

3 517 228

86 220

330 897

1 042 720

2 839 536

6 908 760

15 367 605

31 772 664

11 (12)

12 (14)

15 (13)

14 (17)

15 (18)

17 (19)

18 (20)

12

116

377

1 336

4 589

11 193

27 727

14

16

16

20

23

25

27

14

137

438

2 311

4 909

13 507

33 539

122

172

150

171

268

304

48

1 004

2 026

8 722

33 659

104 908

 Kanban

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"!time

20

25

30

35

40

99 666

211 081

394 971

676 836

1 085 926

456 955

981 755

1 855 655

3 203 905

5 170 505

45 (7)

55 (8)

63 (8)

90 (8)

194 (8)

56

157

552

971

3 043

49

60

85

125

182

43

104

264

889

1 460

-

-

-

-

-

-

-

-

-

-

 SGKCS

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

140

160

180

200

220

19 881

25 921

32 761

40 401

48 841

58 940

76 960

97 380

120 200

145 420

9 (8)

9 (8)

9 (8)

9 (8)

9 (8)

221

479

866

1 043

1 234

11

12

12

12

12

267

495

847

1 431

2 077

21

21

21

21

21

473

1 013

1 581

2 336

2 882

 CSMA/CD

CSMA/CD

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

4

5

6

7

8

9

10

12 985

45 472

134 064

347 034

811 305

1 747 240

3 517 228

86 220

330 897

1 042 720

2 839 536

6 908 760

15 367 605

31 772 664

11 (12)

12 (14)

15 (13)

14 (17)

15 (18)

17 (19)

18 (20)

12

116

377

1 336

4 589

11 193

27 727

14

16

16

20

23

25

27

14

137

438

2 311

4 909

13 507

33 539

122

172

150

171

268

304

48

1 004

2 026

8 722

33 659

104 908

 Kanban

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"!time

20

25

30

35

40

99 666

211 081

394 971

676 836

1 085 926

456 955

981 755

1 855 655

3 203 905

5 170 505

45 (7)

55 (8)

63 (8)

90 (8)

194 (8)

56

157

552

971

3 043

49

60

85

125

182

43

104

264

889

1 460

-

-

-

-

-

-

-

-

-

-

 SGKCS

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

140

160

180

200

220

19 881

25 921

32 761

40 401

48 841

58 940

76 960

97 380

120 200

145 420

9 (8)

9 (8)

9 (8)

9 (8)

9 (8)

221

479

866

1 043

1 234

11

12

12

12

12

267

495

847

1 431

2 077

21

21

21

21

21

473

1 013

1 581

2 336

2 882

 CSMA/CD

polling

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

14

16

18

491 520

2 228 224

9 961 472

4 177 920

21 168 128

104 595 456

14 (17)

15 (19)

16 (20)

232

1 197

5 252

25

27

29

245

1 156

4 919

56

60

66

413

1 609

8 992

 polling

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

5

10

15

20

25

30

504

6 006

31 008

106 260

285 012

649 264

2 268

34 034

193 800

701 316

1 947 582

4 544 848

19 (15)

31 (14)

58 (16)

61 (20)

74 (21)

90 (22)

0.2

6

193

888

5 491

14 085

25

93

94

107

98

125

0.2

10

220

1 296

4 481

25 009

854

578

492

587

692

811

2

43

977

6 431

32 123

107 924

 Semaphore

N States Trns. R.C.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

20

25

30

35

40

44 275

102 375

204 600

369 075

617 050

272 580

649 350

1 324 320

2 424 240

4 098 360

40

50

60

70

80

18 (11)

19 (20)

20 (13)

20 (14)

21 (15)

26

100

252

392

758

19

21

21

22

23

32

106

113

525

1 004

222

216

338

460

507

144

643

2 342

6 789

11 964

 GR

Semaphore

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

14

16

18

491 520

2 228 224

9 961 472

4 177 920

21 168 128

104 595 456

14 (17)

15 (19)

16 (20)

232

1 197

5 252

25

27

29

245

1 156

4 919

56

60

66

413

1 609

8 992

 polling

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

5

10

15

20

25

30

504

6 006

31 008

106 260

285 012

649 264

2 268

34 034

193 800

701 316

1 947 582

4 544 848

19 (15)

31 (14)

58 (16)

61 (20)

74 (21)

90 (22)

0.2

6

193

888

5 491

14 085

25

93

94

107

98

125

0.2

10

220

1 296

4 481

25 009

854

578

492

587

692

811

2

43

977

6 431

32 123

107 924

 Semaphore

N States Trns. R.C.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

20

25

30

35

40

44 275

102 375

204 600

369 075

617 050

272 580

649 350

1 324 320

2 424 240

4 098 360

40

50

60

70

80

18 (11)

19 (20)

20 (13)

20 (14)

21 (15)

26

100

252

392

758

19

21

21

22

23

32

106

113

525

1 004

222

216

338

460

507

144

643

2 342

6 789

11 964

 GR GR

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

14

16

18

491 520

2 228 224

9 961 472

4 177 920

21 168 128

104 595 456

14 (17)

15 (19)

16 (20)

232

1 197

5 252

25

27

29

245

1 156

4 919

56

60

66

413

1 609

8 992

 polling

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

5

10

15

20

25

30

504

6 006

31 008

106 260

285 012

649 264

2 268

34 034

193 800

701 316

1 947 582

4 544 848

19 (15)

31 (14)

58 (16)

61 (20)

74 (21)

90 (22)

0.2

6

193

888

5 491

14 085

25

93

94

107

98

125

0.2

10

220

1 296

4 481

25 009

854

578

492

587

692

811

2

43

977

6 431

32 123

107 924

 Semaphore

N States Trns.
R.

C.

!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

20

25

30

35

40

44 275

102 375

204 600

369 075

617 050

272 580

649 350

1 324 320

2 424 240

4 098 360

40

50

60

70

80

18 (11)

19 (20)

20 (13)

20 (14)

21 (15)

26

100

252

392

758

19

21

21

22

23

32

106

113

525

1 004

222

216

338

460

507

144

643

2 342

6 789

11 964

 GR

kanban

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

4

5

6

7

8

9

10

12 985

45 472

134 064

347 034

811 305

1 747 240

3 517 228

86 220

330 897

1 042 720

2 839 536

6 908 760

15 367 605

31 772 664

11 (12)

12 (14)

15 (13)

14 (17)

15 (18)

17 (19)

18 (20)

12

116

377

1 336

4 589

11 193

27 727

14

16

16

20

23

25

27

14

137

438

2 311

4 909

13 507

33 539

122

172

150

171

268

304

369

48

1 004

2 026

8 722

33 659

104 908

282 423

 Kanban

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"!time

20

25

30

35

40

99 666

211 081

394 971

676 836

1 085 926

456 955

981 755

1 855 655

3 203 905

5 170 505

45 (7)

55 (8)

63 (8)

90 (8)

194 (8)

56

157

552

971

3 043

49

60

85

125

182

43

104

264

889

1 460

-

-

-

-

-

-

-

-

-

-

 SGKCS

N States Trns.
!: ! = 10 ": ! = 10 #$

!"# time !"! time !"! time

140

160

180

200

19 881

25 921

32 761

40 401

58 940

76 960

97 380

120 200

9 (8)

9 (8)

9 (8)

9 (8)

221

479

866

1 043

11

12

12

12

267

495

847

1 431

21

21

21

21

473

1 013

1 581

2 336

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 77

states, defined as:

µD(T)
def
= αT ·

∞∑

k=0

Tk · F = αT · (I−T)−1 · F, (4.30)

and let’s denote with µDRi
(T) the probability of entering the i-th recurrent class

in the long run from the transient states, defined as:

µDRi
(T)

def
= IRi · µD(T) (4.31)

The filtered quantity µDRi
(T) is the probability mass that, in the long run, leaves

transient states and goes into the i-th recurrent class.
The steady-state probability distribution in the i-th recurrent class can be

rewritten using (4.31) as:

πDRi
(α)

def
=
(
µDRi

(T) + αRi

)
· lim
n→∞

Rn
i , (4.32)

This section proceeds by describing the component-based method step-by-
step, by considering first the explicit and implicit approach for computing (4.32)
in a case in which the transient states are treated as a single component. The
section then proceeds to the more general case in which the transient set is
divided into multiple, strongly connected, subsets. It is the exploitation of
the structure of the transient set that leads to the definition of the component
method. Finally, a heuristic improvement is described, that exploits a limited
form of aggregation of these strongly connected subsets.

4.4.1 Explicit with single transient set

Let’s assume for the moment that P is explicitly built with (2.45). Then the
identification of the transient component matrix T and of the recurrent compo-
nent matrices Ri of the EMC needed for the steady-state solution of the MRP
can easily be identified from the structure of P using well-established methods
like [Tar71]. Once the structure is known, the vector µD(T) can be computed
using Eq. (4.30) for DTMCs, and the probability of recurrent states can then
be derived using Eq. (4.32).

4.4.2 Implicit with single transient set

The implicit solution raises two additional problems: the recurrence structure
of P is not known, and the splitting of a matrix-free product uP into the sub-
products uT, uF and uRi used in Eq. (4.30) requires some caution. For the time
being, we shall assume that the recurrence structure of P is given (this matter
will be addressed later). For the second problem, we would like to proceed as in
the matrix-free case of (4.21): all products with the (implicit) matrices should
be rewritten by expanding the matrix expressions. However Eq. (4.30) has the
additional problem that it includes a product with (I−T)−1, which is not easily
derivable in implicit form, but it can be rewritten to use only products with F
and T as follows:

µD(T) = σT · F, σT = αT · (I−T)−1 ⇒ σT · (I−T) = αT

78 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

where σT is the solution of a linear equation system in (I − T) with column
vector αT, which requires an iteration over uT products. A similar schema
can be derived for πDRi

(α) of Eq. (4.32), which requires just products with Ri.
With the above formulation, only vector×matrix product with T, F and Ri are
needed.

The above implicit products should be done with a little care, since they
may involve a state space based on an augmented set. The problem is well
illustrated in Fig. 4.6(a), that shows a portion of MRTS in which there are two
SCCs, namely {s1} and {s2, s3}. When the regenerative process enters state
s1, it may reach state s2 with a q transition before the next regeneration event
takes place (that is, before the firing of the δ transition from s1), so the state
s2 has to be considered in the computation of the subordinated behaviour.

This implies that implicit products with a subset of states SA ⊆ S should
consider an augmented set of states SÂ which includes all the states of SA, plus
all other states that the process can reach from SA before a new regeneration
point is entered (firing/preemption of the general event). The added states
are therefore those states reachable from SA with a sequence of one or more q
transitions: j ∈ SÂ iff j ∈ SA or j ∈ SG and there exists i ∈ SA such that there
is a path of q transitions from i to j. For instance, the augmented set of {s1}
in Fig. 4.6(a) is {s1, s2}.

Given the augmented sets ST̂ and S
R̂i

of ST and SRi
and a generic vector

u, the products uT, uF and uRi in implicit form are:

uT = IT ·
[
u
(
IE
T − diag−1(QE

T) QE
T

)
+ u ΩT̂ ∆T̂ + u ΨT̂ Q̄T̂

]

uF = IR ·
[
u
(
IE
T − diag−1(QE

T) QE
T

)
+ u ΩT̂ ∆T̂ + u ΨT̂ Q̄T̂

]

uRi = IRi
·
[
u
(
IE
Ri
− diag−1(QE

Ri
) QE

Ri

)
+ u Ω

R̂i
∆

R̂i
+ u Ψ

R̂i
Q̄

R̂i

]
(4.33)

where ΩT̂, ΨT̂, Ω
R̂i

and Ψ
R̂i

are computed with the exponentials of QG
T̂

and QG
R̂i

.

Recall that the exponential of QG gives the reachability among regenerative
states based on the subordinated Markov chains and should be based on the
augmented set, for the reasons explained above. Clearly no augmented set is
needed for components which are in SE, since the firing of each exponential
event corresponds to entering a new regeneration point.

4.4.3 Explicit and component-based

If the transient set ST does not constitute a single strongly connected compo-
nent, we can devise an alternative solution that exploits the component structure
of ST in a directed acyclic graph (DAG) of k SCCs, resulting in a partitioning
ST1
· · · STk

of the transient states. Without loss of generality we assume that
the index of the transient classes gives a total order compatible with the partial
order induced by the DAG. In this case, the stochastic matrix can be written

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 79

as:

P =




T1 F1
. . .

...

Tk Fk

R1
. . .

Rm




(4.34)

The idea of the component method is then to compute the probability of
reaching each recurrent set by moving forward the probability from the tran-
sient sets taken for increasing value of their index, an order which respects the
ordering of the STi sets.

Let µD(Ti) be the probability vector outgoing the states of STi
, and let

µDTi
(Tj) = ITi

· µD(Tj) be the outgoing probability that reaches the set STi

from the set STj
. Given the initial probability vector α and an SCC STi

, we
can compute µD(Ti) with:

µD(Ti) =
(
αTi

+
∑
j<i µ

D
Ti

(Tj)
)
· (I−Ti)

−1 · Fi (4.35)

Given a recurrent set SRi , its stationary distribution conditioned to α is:

πDRi
=
(
αRi

+
∑k
j=1 µ

D
Ri

(Tj)
)
· lim
n→∞

(
Ri

)n
(4.36)

The outgoing probability µD(Ti) for set STi
depends on all the previous µD(Tj),

in topological order of the SCCs. Stationary recurrent probabilities depend on
all the µD(Ti) vectors.

Observe that (4.35) is additive over the union operator for a target set of
states C, so µDC (A ∪ B) = µDC (A) + µDC (B). The relation holds when A, B

and C are mutually disjoint. Therefore µDRi
(T) =

∑k
j=1 µ

D
Ri

(Tj). It follows
that (4.36) is just a reformulation of (4.32), so the equation correctly computes
the steady-state probability of recurrent states. The whole method can then be
described in Algorithm 4.4:

Algorithm 4.4 Component-based solution with explicit knowledge of P

1. Compute with (4.35) the outgoing probability vector µD(Tj) of every
component STi

following the total order.

2. The total outgoing probability µDRi
(T) from the transient set into each

class Ri is given by: IRi
·∑k

j=1 µ
D(Tj).

3. Compute the probability of every recurrent class with (4.36), weighted by
the entering probability |µDRi

(T) |.

4.4.4 Implicit and component-based

Assume now that we do not want to incur the time and storage cost of building
the matrix P. The computation of each µD(Ti) can be done entirely in implicit
form, assuming that we can do a vector×matrix product with Ti and Fi. As

80 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

before, the implicit product formulas (4.34) can be adapted to compute the uTi

and uFi products, using the augmented set ST̂i
of STi

, resulting in:

uTi = ITi ·
[
u
(
IE
Ti
− diag−1(QE

Ti
) QE

Ti

)
+ u ΩT̂i

∆T̂i
+ u ΨT̂i

Q̄T̂i

]

uFi = (I− ITi
) ·
[
u
(
IE
Ti
− diag−1(QE

Ti
) QE

Ti

)
+ u ΩT̂i

∆T̂i
+ u ΨT̂i

Q̄T̂i

]

(4.37)

The only remaining problem is that without the explicit knowledge of P,
the component structure is not available. The work in [AD10a] uses instead the
structure of the process Xt, which can be computed simply on the graph of the
MRTS. This structure is different from that of the renewal sequence Yn (and
thus of the EMC P). It is therefore important to understand if the structure
of the MRTS can be used in place of the structure of the embedded process Yn
identified by P.

A first, general, observation is that this choice is adequate for the states in
the exponential partition SE, since these states have the same connectivity in
the MRTS and in P, i.e. each state in SE corresponds to a regeneration point.
Instead a path s0

q−→ · · · q−→ sn−1
δ or q−−−−→ sn in the general state partition SG of

the MRTS becomes a single state transition s0
δ or q−−−−→ sn in the embedded pro-

cess, so that the intermediate (non-regenerative) states reached by q transitions
are not visible. This is a sort of transitive closure over the q transitions.

For a deeper understanding let’s indicate with prime variables the sets com-
puted on the MRTS, and with unprimed variables those computed on P, and
let ST′1 . . .ST′

k′
and SR′1 . . .SR′

m′
be the k′ transient and m′ recurrent SCCs of

the structure of the MRTS. What are the relationships between primed and
unprimed sets? Remember that the following considerations only apply to com-
ponents in SG.

Figure 4.6 Difference in the component structure of an MRP and of its em-
bedded process.

s1

s2

δ

δ

δ

δ

m

δ
m

s3 δ

(a) Augmented set example.

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

m

m
_

δ

m
δ δ

δ

δ δ
δ

m
_

m
_

(b) MRSA Embedded process

ST�
i

STi(1)

STi(2)

s1

s2

s3

s4

δ

m
δ

δ

δ
s1

s2

s3

s4

δ

δ
δ

δ

(c) MRSA Embedded process

SR�
i

SRi

STl

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 81

Figs. 4.6(b) and (c) show on the left an MRTS and on the right the structure
of the embedded process P and depict the differences of the two structures,
which can be summarized as:

1. Reachability in the MRTS is richer than in P. For the definition of em-
bedded process, if a state j is reachable (in one or more steps) from a
state i in the embedded process, described by P, then it is reachable from
i also in the MRTS. If instead a state j is reachable from a state i in the
MRTS, then it may be the case that j is not reachable by i in P. This is
because the embedded process only observes transitions among regenera-
tive states, and for general states these transitions are of q and δ type.
Indeed in the MRP of Fig. 4.6(b) state s4 is reachable from state s3 in the
MRTS but not in the embedded process.

2. Recurrent components in P are subsets of those in the MRTS. The number
of recurrent classes in P and in the MRTS is the same (m = m′), but it
holds that SRi

⊆ SR′i
, and the inclusion may be strict. The case is well-

illustrated by the example of Fig. 4.6(c): the state s4 is recurrent in the
MRTS, but it is visited only once by the embedded process, and therefore
it is not part of a recurrent component, so the bottom SCC {s3, s4} of
the MRTS reduces to the single state s3 in the embedded process, and the
(sub)path s3

q−→ s4
δ−→ s3 reduces to a self-loop on s3

3. Inclusion of transient components. Each STi
is contained either into a

single ST′j
(as in Fig. 4.6(b)), or in a single SR′k

(as in Fig. 4.6(c)), and
each ST′i

is a union of SCCs of P, indicated by STi(1)
. . .STi(h)

.The number
of transient classes in P and in the MRTS differs (k′ 6= k). These inclusion
relationships derive from the fact that the reachability relation of P is a
subset of the reachability relation of the MRTS.

To use the SCCs {ST′i
} and {SR′j

} of an MRTS as the basis of the component
method, we need to prove that they lead to the same steady-state probability
of the states in each SRj . Equation (4.36), computed by Algorithm 4.4 using
the MRTS structure, results in:

πDR′i =
(
αRi

+αR′i\Ri
+
∑k′

j=1 µ
D
R′i

(T′j)
)
· lim
n→∞

(
R′i
)n

(4.38)

and we need to prove that, for every state s ∈ SRi it holds that πDR′i(s) = πDRi
(s).

Note that this equivalence is only for the regenerative states of the MRP, since
this is what is computed by the component method. To show the equivalence
we consider three different cases: 1) s is classified as transient in P and in the
MRTS; 2) s is classified as transient in P and as recurrent in the MRTS; 3) s is
classified as recurrent in both.

For the first case, the steady-state probability is obviously zero in both cases,
and the issue is whether the probability of entering a transient state s of ST′j
from the components that precede ST′j

is the DAG. But this is indeed the case,

due to the additivity of the µD(STi) vectors, as discussed before. For example
in Fig. 4.6(b), the probability of entering s5 from component ST′i

is the sum of
the probabilities of entering s5 respectively from STi(1)

and STi(2)
.

For the second case, if s is classified as transient in P, then it means that
it is not a recurrent regenerative state also in the MRP, and its steady-state
probability is zero. However, if the state is not recurrent regenerative, even the
implicit computation based on the recurrent component of the MRTS will assign

82 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

to it a zero probability. With reference to the example of Fig. 4.6(c), this is
the case for state s4, which, in the recurrent component SR′i

, is always entered
by a non-preemptive q arc, so s4 is not regenerative recurrent. The issue is
then whether the initial probability αR′i

(s) assigned to s is correctly taken into
account. The value of αR′i

(s) is considered by Eq. (4.35) when using the SCCs
of P, while it is taken into account in the term αR′i\Ri

by Eq. (4.38) when using
the SCCs of the MRTS.

For the last case, if s is in a recurrent component SRi
of P then s belongs

to the SR′i
of the MRTS. As explained before, any state in SR′i

\ SRi
is not

regenerative recurrent, and its initial probability is correctly taken into account
in the steady-state solution equations, so the computation of the probability of
s can be based on SR′i

.

In summary, the component-based, implicit, solution for πDRi
(α) can be done

by exploiting the structure of the MRTS, without the need of having P entries.

Component classification But what are the advantages of solving a set
of MRPs (one per SCC) instead of taking all the SCCs together? The main
advantage is that the computation of the vector µD(Ti), for some component i
may require a simpler solution technique than a full MRP implicit (or explicit)
technique. For example, we can observe that when Ti=0 then the computation
of Eq. (4.35) for µD(Ti) does not require a matrix inversion. This condition is
particularly convenient when the matrix product is implicit. Another favorable
condition is when the internal behavior of the component is fully Markovian,
since the computation of the vector reduces to a CTMC solution.

Following the above criteria five types of components are identified: they are
illustrated in Fig. 4.7, and defined in Table 4.3. The table lists the component
type, the conditions on its state space STi

and on the matrices Q, Q̄, and ∆,
the translation of the matrix requirements into conditions that can be checked
on the MRTS structure, and what the Ti matrix would be for a component
of that type. Note that we are still considering an implicit approach, so Ti is
actually never built, and the computation of µD(Ti) is based on Eq. (4.37).

A component i of type ¬ has no internal behavior, and therefore will result
in a Ti matrix made of zeroes. Indeed each transition from an STi

state takes
the MRP out of the component, so the computation of µD(Ti) is just a vector
matrix multiplication with Fi:

¬: µD(Ti) = βTi
·
(
IE
Ti
− diag−1(QE

Ti
) QE

Ti

)

with cost: O
(
η(QE

Ti
)
) (4.39)

where βTi
=
(
αTi

+ ITi
·∑j<i µ

D(Tj)
)

is the entering probability vector for
STi .

In case ­ there are transitions inside the component, but they are all
Markovian, as are Markovian the transitions out of STi , so the computation
of µD(Ti) requires the steady-state solution of a CTMC, with the usual cost of
O
(
MTi

· η(QE
Ti

)
)
, assuming that MTi

iterations are required to achieve conver-
gence to the steady-state solution.

As for type ¬, also components of type ® will result in a Ti matrix made of
zeroes, but now the component has also an internal behaviour, determined only
by non-preemptive Markovian transitions, while transitions that leave STi are

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 83

Figure 4.7 Examples of the five kinds of MRTS components.

� �� � � �� �SgSE

s1

s2

s3

s4

δ

δ

m
m

m
δ

Components of type ①(a) Component of type ②(b) Component of type ③(c)

Component of type ④(d) Component of type ⑤(e)

s1

s2

m

m

SE

� �� � � �� �SE

s1

s2

s3m

m
m

m

s1 δ

s2 δ

s3 m
_m

m
m

m

� �� �Sg

s1

s2

δ

δ δ

δ

m
_ m

� �� �Sg

Table 4.3 Component classification.

Conditions MRTS characteristics

¬ STi ⊆ SE and QE
Ti,Ti

= 0
The component is in SE and has no q
transitions between STi

states.
The sub-matrix Ti is empty.

­ STi ⊆ SE and QE
Ti,Ti

6= 0
The component is in SE with q transi-
tions between STi

states.
The sub-matrix Ti is not empty.

®
STi
⊆ Sg and Q̄Ti,Ti

= 0
and ∆Ti,Ti

= 0

The component is in Sg and has no q
and δ transitions between STi

states.
The sub-matrix Ti is empty.

¯
STi
⊆ Sg and (Q̄Ti,Ti

6= 0
or ∆Ti,Ti

6= 0)

The component is in Sg with q or δ
transitions between STi

states.
The sub-matrix Ti is not empty.

°
STi has multiple
state partitions.

The component has different general
transitions enabled in STi

.
The sub-matrix Ti is not empty.

either general or preemptive Markovian. The computation of µD(Ti) amounts
then to a transient analysis of Qg

Ti
at the time of firing of g:

®: µD(Ti) = βTi
·
(
Ωg

T̂i
∆g

T̂i
+ Ψg

T̂i
Q̄g

T̂i

)

with cost: O
(
η(Qg

T̂i
) ·Rg

T̂i
+ η(∆g

T̂i
) + η(Q̄g

T̂i
)
) (4.40)

In the other two cases (¯ and °) the component has the full behaviour of an
MRP, so the computation requires a fixed-point solution of the MRP based on

84 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

the following equations, illustrated before and rewritten here for convenience:

σTi = βTi
· (I−Ti)

−1 ⇒ σTi · (I−Ti) = βTi
(4.41)

The cost of ¯ is then that of a fixed-point , with a cost per iteration that is as
in (4.40), leading to:

Cost of ¯: O
(
MTi ·

(
η(Qg

T̂i
) ·Rg

T̂i
+ η(∆g

T̂i
) + η(Q̄g

T̂i
)
))

(4.42)

The cost of ° is again the cost of a fixed-point iterative method with a cost
per iteration which is that of ­ plus the cost of ¯ for each transient component
STi

, which results in:

Cost of °: O
(
MTi

·
(
η(QE

Ti
) +

∑
g∈G

(
η(Qg

T̂i
) ·Rg

T̂i
+ η(∆g

T̂i
) + η(Q̄g

T̂i
)
)))

(4.43)

A component STi
of the first three kinds is simple, complex otherwise.

Algorithm 4.4 can then be enriched to consider the above component classifica-
tion, leading to Algorithm 4.5:

Algorithm 4.5 Implicit component solution without explicit knowledge of P

Derive the recurrent structure of the MRTS from Q, Q̄ and ∆. Classify each
transient component STi according to the five component kinds. Then proceed
as Algorithm 4.4, using the appropriate implicit formula for the computation of
each µD(Tj) (step 1). Steps 2 and 3 of Algorithm 4.4 remain unchanged.

Aggregation of transient SCCs into larger components There are some
cases in which components can be aggregated together to improve the overall
efficiency of the method. For instance, there could be many small components
(as small as one state, as arising from type ¬). Another situation that may
lead to aggregation occurs for the components STi

which are in a general state
partition. In this case the solution is based on the augmented state space ST̂i

,
that could even be so large to cover other components: an aggregation could
then avoid repeating the computation over the same set of states.

The correctness of an aggregation technique is ensured by the additivity
of the computation of µD(Ti), given that the aggregations performed do not
violate the partial order of the SCCs. Indeed two components w and v of W can
be aggregated into the new component w+v given that there is no intermediate
component u ∈ W such that w ≤ u ≤ v, where two components v and v′ are
in relation v ≤ v′ iff it is possible to reach a state of Sv′ from a state of Sv .
The set of states of the aggregated component w+v is defined as the union
of the states of w and v. The set W of aggregated components can be built
through successive component aggregations, starting from an initial set W (0)

which contains the SCCs of the MRTS.
Equation (4.35) can then be rewritten for a generic aggregated component

wi ∈ W , assuming aggregated components are indexed with a total ordering
that respects the poset (W,≤), as:

µD(wi) =
(
αwi +

∑
j<i µ

D
wi(wj)

)
· (I−Twi)

−1 · Fwi (4.44)

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 85

where Twi is the square sub-stochastic matrix of the transitions between Swi
states, Fwi is the rectangular matrix of the outgoing transitions from Swi states
to every other state of S, and µDwi(wj) = Iwi ·µD(wj) is the outgoing probability
that reaches the set Swi from the set Swj . The correctness of (4.44) is ensured
by the additivity of µ over the union of components. The implicit product
formulas (4.37) can be modified: the uTwi and uFwi products are computed,
using the sets Swi and Sŵi , instead of STi

and ST̂i
.

Given that we can aggregate components, when is it convenient to do so?
There is no absolute winner here, since joining components may have a detrimen-
tal impact on the number of uniformisation steps Ri of the transient solutions,
and on the number of iterations Mi needed in fixed point computations. We
have therefore devised a heuristic approach, driven by a few simple indications.
The experimental evaluation of the heuristics is reported in Section 4.4.6.

A general indication is that, since simple components are less expensive to
compute than complex ones, then aggregation should preserve simplicity. Ac-
cording to this principle, any aggregation of a simple component with a complex
one should be avoided, since this will result in a larger complex component.
Moreover, considering that the three types of simple components have different
computational cost, it may be convenient to avoid aggregation among compo-
nents of different kinds.

The heuristic can then be expressed as follows: given two components w, v ∈
W , for which it does not exist an intermediate component:

1. If w, v are complex components, then they are aggregated. This is justified
by the fact that the complexity of type ¯ and ° components is very
similar, and their aggregation could benefit from the sharing of the states
in the augmented sets, since

∣∣Sŵ
∣∣+
∣∣S v̂

∣∣ ≥
∣∣S
ŵ+v

∣∣.
2. If w, v are simple, of the same type, then they are aggregated only if (w+v)

is of the same type. We observe that:

(a) If w, v are of type ­, then (w+v) has type ­.

(b) If w, v are of type ¬, the aggregation (w+v) is of type ¬ only if
there does not exist a q arc between the states of w and v, otherwise,
(w+v) becomes of type ­ and no aggregation should be done.

(c) If w, v are of type ®, the aggregation (w+v) is of type ® only if
there does not exist a q or a δ arc between the states of w and v,
otherwise, (w+v) becomes of type ¯, and no aggregation should be
done.

The above heuristic is implemented in the following algorithm:
The cost of construction of W (0) is O(K logK), where K is the number of

SCCs. The heuristic of algorithm 4.6 has also some disadvantages: the union of
components with a large difference in the exponential transition rates increases
the number of steps of the uniformization R and may also increase the number
of fixed point iterations M .

Fig. 4.8 shows an example of aggregation: starting from an MRTS (a), the
digraph of the SCC is built (b), which constitutes the poset W (0) which is
the basis for the recurrence of Algorithm 4.6 that computes the digraph of the
aggregated components shown in (c). For each node STi

in (b) and Swi in (c),
the figure reports the set of states, the state subset and the component type.

86 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Algorithm 4.6 Heuristic for the choice of the poset W

The set of components W is the fixed-point of the following iteration:

W (0) = recurrence structure of the MRTS, from Q + Q̄ + ∆

W (i+1) = W (i) \ {w, v} ∪ {w+v} iff: @u ∈W (i) : w ≤ u ≤ v and(
w and v are simple, of the same type AND

w+v has the same type of w and v,
OR w and v are complex components

)

Note thatW is not necessarily unique, since it depends on the order of evaluation
of the w, v pairs. Typically, this depends on the choice of a topological sort of
the elements in W (i+1).

Figure 4.8 An MRTS with its recurrence structure digraph.

ST1 = {s0}
��� SD1

��� ③

ST2 = {s1}
��� SD1

��� ③

ST3 = {s2}
��� SD2

��� ④

ST4 = {s3}
��� SD2

��� ④ ST5 = {s4}
��� SE

��� ①

ST6 = {s5, s6}
��� SE

��� ②

SR1 = {s7}
��� BSCC SR2 = {s8}

��� BSCC

SD1 SD2 SE

s0

s1

s2

s3

s4

s5 s7

s8

s6

δ

δ

δ

δ

m
_

m
_

m
_

m
_m m m

m

m

mm

Sw1 = {s0, s1}
��� SD1

��� ③

Sw2 = {s2, s3}
��� SD2

��� ④

SR1 = {s7}
��� BSCC

SR2 = {s8}
��� BSCC

Sw3 = {s4}
��� SE

��� ①

Sw4 = {s5, s6}
��� SE

��� ②

(a) MRSA. (b) Digraph of the SCCs.

(c) Digraph of aggregated SCCs.

The initial poset W (0) and the aggregated poset W are:

W (0) =
{
{ST1}, {ST2}, {ST3}, {ST4}, {ST5}, {ST6}

}
,

W =
{
{ST1 ,ST2}︸ ︷︷ ︸

w1

, {ST3 ,ST4}︸ ︷︷ ︸
w2

, {ST5}︸ ︷︷ ︸
w3

, {ST6}︸ ︷︷ ︸
w4

}

and the aggregated components have the following types: w1 is of type ® and
the outgoing probability vector µD(w1) does not require the inversion of Tw1 ,
moreover the augmented set of ST1 is {s0, s1}, so it is really convenient to
aggregate ST1

and ST2
. Component w2 is of type ¯, due to the self-loop of q

transitions over s2 and s3. The computation of µD(w2) requires the solution
of an MRP with the implicit method (which is iterative). Component w3 is of

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 87

type ¬ since there is no internal q transition, so the solution cost is that of a
matrix-vector multiplication. Component w4 is of type ­, which leads to the
iterative solution of a CTMC. The two bottom SCCs SR1

and SR2
are composed

of a single state, so no additional computation is required.

4.4.5 Backward component method

Section 4.4 has shown how to compute the forward steady state probability
of the EMC P in implicit form with the component method, by computing
a sequence of outgoing probability vectors µD(w). It remains to show that
the same foundation can be used to compute the backward solution ξD(ρ) for
transient and recurrent states. The key variation is that the component sequence
W computed with algorithm 4.6 has to be followed in reverse order, from the
recurrent classes up the initial transient sets.

Given a target measure vector ρ, and all the stationary backward vectors
ξDRi

(ρ) of all the recurrent classes, and the ordered sequence of components W ,
let νD(wj) be the measure vector ingoing the states of the component Swj , back
from the recurrent classes, defined as:

νD(wj)
def
= (I−Twj)

−1 · Fwj ·
(∑

i>j ν
D
wj (wi) + ξDR(ρ)

)
(4.45)

Let νDwj (wi) = Iwj · νD(wi) be the ingoing quantity that reaches the com-

ponent Swj from the component Swi , with i > j. The backward vector ξDR(ρ)
can be computed, in isolation, with (2.14).

Each vector νD(wj) obtained with (4.45) depends on all the successive
νDwj (wi), in topological order W. Therefore, the backward vector of the first

transient component νD(w1) requires the ingoing backward measure of all the
components of the Markov process. As before, each component can be clas-
sified into one of the five kinds listed in Table 4.3. The class is a structural
property of each component, and can be exploited for computing both the
forward and the backward solution. The measure (4.45) has the property:
νDC (A ∪B) = νDC (A) + νDC (B), for mutually disjoint sets A,B and C.

The backward solution vector ξDT can then be obtained from the backward
component method as:

ξDT =
∑

w∈W

(
Iw · νD(w)

)
(4.46)

The backward solution with the implicit component method is then a vari-
ation of Algorithm 4.5 which is summarized in Algorithm 4.7.

4.4.6 Experimental assessment of the component method

In this section the costs of the component method and of the matrix-free MRP
methods are compared. Firstly, the asymptotical costs are provided, to show
what are the expected costs. Secondly, the actual cost of solving a set of re-
ducible DSPNs is reported.

88 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Algorithm 4.7 Backward component-based solution of P

1. Derive the recurrent structure of P from Q, Q̄ and ∆.

2. With algorithm 4.6 obtain the component sequence W .

3. Compute the backward solution ξDRi
(ρ) of each recurrent component SRi

with (2.14).

4. Compute each ingoing measure νD(w) with (4.45) in reverse order of W .
Each component can be classified with the taxonomy of Table 4.3 and
computed with the appropriate optimized method.

5. Compute the backward solution vector of the transient set with (4.46).

Asymptotical costs

Let us assume that the MRP being solved has K components, and that W(1) to
W(5) are the sets of the five different types of simple and complex components.
As before, let N and η be the number of states and transitions of the MRTS
(Ni, ηi for a component i), R (Ri) the truncation point used in the uniformisa-
tion procedure, and M (Mi) the number of iterations required for convergence
when an iteration method is used (for example for steady-state analysis of the
recurrent components). All methods share the cost for storing the MRTS, which
is in the order of the non-null entries of Q + Q̄ + ∆ = O(η), and (at least) one
probability vector (of size N). Similarly, all methods require an SCC decom-
position which can be done with Tarjan’s algorithm [Tar71] at the time cost
of a traversal of the matrix digraph of the MRTS, which is O(η + N), with an
additional space cost of K (the number of SCCs). The aggregation heuristic
required by the component-based method costs O(K · logK).

Table 4.4 lists the time and space complexities of the explicit, implicit
and component-based methods, all for the non-ergodic case. For “component
method” we mean both the forward and the backward variant, which have the
same asymptotical complexity. Let us consider them one by one.

The explicit method requires the computation of the EMC matrix P, which is
a (possibly) dense matrix with a space occupation of O(N2). The construction
of P is dominated by the computation of the matrix exponentials Ω and Ψ,
which have a cost of O(NηR). If we indicate with a subscript T and Ri the
quantities that refer to the transient and to the recurrent sets, we can state that
the explicit solution of P has the cost of a non-ergodic DTMC solution, based
on an iterative method, leading to O(MTN

2
T +

∑
Ri
MRi

N2
Ri

), where the vector
by matrix multiplication cost is equal to the number of non-null elements in
P (in the order of N2), and the Mi may vary significantly depending on the
numerical solution used (Richardson 4.1, FGMRES 4.2), on the preconditioning
and on the conditioning of the coefficient matrix P.

The time complexity of the implicit method is described in [Ger01] and has
been reported in this thesis in (4.26); for what concerns the non-ergodic case
the method computes separately the uΩ and uΨ products for the transient
and the recurrent parts, the cost of which is dominated by the cost of the
uniformization on the SG state subset. The total solution cost is therefore
O(MTηTRT +

∑
Ri
MRi

ηRi
RRi

), and the space cost is that of the u vector.
The component-based method has a cost that is highly dependent on the

number of simple or complex components of the five different types. The cost

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 89

of the solution of each component has been defined in the previous section, and
it differs greatly depending on the component type.

Table 4.4 Time and space complexity of the three steady-state MRP methods.

Algorithm Time complexity Space

SCC for W (0) O(η +N) O(N+K)
Aggreg. heuristic W O(K logK) O(K)
Uniformization O(ηR) O(N)
Explicit MRP solution O(NηR+MTN

2
T +

∑
Ri
MRi

N2
Ri

) O(N2)
Implicit MRP solution O(MTηTRT +

∑
Ri
MRiηRiRRi) O(N)

Component method

O
(∑
i∈W(1)

ηTi
+
∑

i∈W(2)

MTi
ηTi

+
∑

i∈W(3)

ηTi
RTi

+

+
∑

i∈W(4,5)

MTi
ηTi

RTi
+
∑

Ri
MRi

ηRi
RRi

) O(N+K)

A comparison of the time costs of the three methods shows very clearly the
high cost of the explicit method (a quadratic cost N2 induced by the explicit
construction of P). It also shows that all methods depends (although in different
ways) on the number of iterations Mi. Since this value cannot be determined
a priori, any solution cost that depends on Mi cannot be anticipated. A sec-
ond observation is the distinction between the implicit method and the implicit
component-based method: the difference in cost is clearly on the transient por-
tion (the recurrent components are solved in the same way). If only simple
¬ and ® components are present then the method does not need an iterative
solution for the transient portion of the process, which may significantly de-
crease the solution cost. On the opposite side, if all components are complex
(type ¯ and °) then the two methods collapse to the same one (if all complex
components are aggregated into a single, large component equivalent to ST).

Empirical assessment

We report the empirical test of [AD12a]. The tests concerns three DSPN models:
the first two are application-oriented (a robotic grid world and a manufacturing
system), and the third one is built artificially to experiment the impact of rates
on component aggregation.

All solutions have been computed using the DSPN-Tool [AD10b], running
on an Intel 2Ghz Core Duo machine. The tool implements the implicit, the
explicit and the component-based methods in a fairly optimized way.

Grid World model

This first example aims at assessing the impact of simple and complex compo-
nents. The two types of MRTSs considered are generated from a DSPN model
of a robot that moves in a N × N grid. The robot starts from the bottom-
left corner of the grid and has to reach the opposite corner. The robot moves
one cell at a time, only to the right or upward, hence, the goal cell is reached
in (2N −1) steps. Inside the grid world there is also a chaser, which moves
randomly in each direction. The system evolution ends when either the chaser

90 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

reaches the robot, or the robot arrives at its goal cell. Two different settings
are considered: the delay of a robot move is deterministic and the delay of a
chaser move is exponentially distributed (results in Table 4.5), and the opposite
case (Table 4.6). Figure 4.9 shows the DSPN of this test for the first setting.
Places RX,RY and CX,CY contains the discrete coordinates of the robot and
of the chaser. The two transitions R-move and C-move trigger one step of the
robot and of the chaser, respectively, while the two places “ok” and “crash” get
a token when either the robot reaches the final cell or when the chaser reaches
the robot.

Figure 4.9 The GridWorld DSPN.

R-move

RX

RY

C-move

N/2

N/2

CX

CY

ok

crash

#CX

#CX

#CY

#CY

#RX

#RY

N

N

N

N

#RX=#CX
#RY=#CY

N

N

Results are reported for a variable size N of the grid. In the first setting
the generated MRTSs have no complex components, while in the second one all
components but one (the unique BSCC) are complex.

Table 4.5 Explicit, implicit and component methods for the reducible Grid-
World model with deterministic robot moves.GridWorld benchmark:

MRSA Explicit Implicit
(Power Method)

Implicit
(GMRES)

Implicit
(preconditioned)

Comp. based
(aggregate S)

Comp. based
(no aggregate)

N states trns EMC Time Iter. Time Iter. Time Iter. Time Iter. Time S C Time S C
4 227 1 036 7 440 0.10 7 0.03 12 0.02 7 0.06 8 0.007 7 0 0.009 17 0
5 578 2 804 33 333 0.70 8 0.09 16 0.06 9 0.18 9 0.02 9 0 0.02 26 0
6 1 227 6 184 108 772 3.00 8 0.22 18 0.15 11 0.40 9 0.04 11 0 0.05 37 0
7 2 306 11 932 287 323 10.74 9 0.47 21 0.33 13 0.81 10 0.07 13 0 0.11 50 0
8 3 971 20 948 646 856 31.31 9 0.89 23 0.64 15 1.50 10 0.13 15 0 0.23 65 0
9 6 402 34 276 1 286 586 80.45 10 1.55 25 1.16 17 2.58 11 0.21 17 0 0.43 82 0

10 9 803 53 104 2 319 724 187.02 10 2.68 28 1.95 19 4.03 11 0.35 19 0 0.76 101 0
11 14 402 78 764 3 864 764 402.06 10 4.23 30 3.15 21 6.06 11 0.53 21 0 1.28 122 0
12 20 451 112 732 6 051 704 809.76 11 6.37 32 4.86 23 9.03 12 0.79 23 0 2.07 145 0
15 82 946 468 932 50.01 62 3.47 33 0 14.85 290 0
20 233 291 1 337 032 210.50 94 9.65 43 0 66.01 485 0
25 529 986 3 063 532 808.49 161 25.00 53 0 219.51 730 0

Table 4.5 reports the cost for the computation in terms of: size N of the grid,
size of the MRTS (number of states and transitions), performance of the explicit
method (size of the EMC, total execution time and number of iterations of the
numerical solver), performance of the implicit method in three variations (Power
method, GMRES and preconditioned GMRES) in terms of total execution time
and number of iterations, performance of the component method (Algorithm
4.5) in terms of total execution time and number of simple/complex component,

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 91

Table 4.6 Explicit, implicit and component methods for the reducible Grid-
World model with deterministic chaser moves.

!"#$%$!"#$$&%'()'*$%"&'$($*$

$

!"#$%$!"#$$&+")'$%"&'$($*$

$

$

$

$

$

$

$

,-./01-2/$3456789-:;$

MRSA Explicit Implicit
(Power Method)

Implicit
(GMRES)

Implicit
(preconditioned)

Comp. based

N states trns EMC Time Iter. Time Iter. Time Iter. Time Iter. Time S C

4 227 1 036 7 440 0.10 7 0.03 12 0.02 7 0.06 8 0.007 7 0

5 578 2 804 33 333 0.70 8 0.09 16 0.06 9 0.18 9 0.02 9 0

6 1 227 6 184 108 772 3.00 8 0.22 18 0.15 11 0.40 9 0.04 11 0

7 2 306 11 932 287 323 10.74 9 0.47 21 0.33 13 0.81 10 0.07 13 0

8 3 971 20 948 646 856 31.31 9 0.89 23 0.64 15 1.50 10 0.13 15 0

9 6 402 34 276 1 286 586 80.45 10 1.55 25 1.16 17 2.58 11 0.21 17 0

10 9 803 53 104 2 319 724 187.02 10 2.68 28 1.95 19 4.03 11 0.35 19 0

11 14 402 78 764 3 864 764 402.06 10 4.23 30 3.15 21 6.06 11 0.53 21 0

12 20 451 112 732 6 051 704 809.76 11 6.37 32 4.86 23 9.03 12 0.79 23 0

15 82 946 468 932 50.01 62 3.47 33 0

20 233 291 1 337 032 210.50 94 9.65 43 0

25 529 986 3 063 532 808.49 161 25.00 53 0

,<=>0?<@>A$

MRSA Explicit Implicit
(Power Method)

Implicit
(GMRES)

Implicit
(preconditioned)

Comp. based
(aggregate C)

Comp. based
(no aggregate)

N states trns EMC Time Iter. Time Iter. Time Iter. Time Iter. Time S C Time S C

4 227 1 036 4 760 0.09 12 0.05 27 0.03 16 0.08 9 0.04 1 1 0.15 1 15

5 578 2 804 19 278 0.58 13 0.15 31 0.09 18 0.22 10 0.11 1 1 0.62 1 24

6 1 227 6 184 59 317 2.45 12 0.34 34 0.22 20 0.50 10 0.25 1 1 1.95 1 35

7 2 306 11 932 151 501 8.64 15 0.72 38 0.45 22 1.00 11 0.50 1 1 5.18 1 48

8 3 971 20 948 334 189 25.43 16 1.33 41 0.85 24 1.84 12 0.93 1 1 12.18 1 63

9 6 402 34 276 656 665 65.03 17 2.30 44 1.42 25 3.02 12 1.55 1 1 25.59 1 80

10 9 803 53 104 1 176 807 150.17 17 3.85 47 2.33 27 4.89 13 2.54 1 1 49.90 1 99

11 14 402 78 764 1 957 237 322.65 18 5.99 50 3.69 29 7.31 13 3.98 1 1 99.83 1 120

12 20 451 112 732 3 061 005 648.06 19 8.98 53 5.42 30 10.88 14 5.84 1 1 156.65 1 143

15 82 946 468 932 32.40 45 32.69 1 1

20 233 291 1 337 032 138.35 70 138.45 1 1

25 529 986 3 063 532 523.31 119 523.63 1 1

,<=>0?<@>$

$

B18C24DE967.54$

MRSA
(Spares = 4)

Implicit Component based

(GMRES) (precond.) (GMRES) (precond.)

M/K states trns Time It Time It Time It S C Time It

5 336 973 0.44 50 0.12 7 0.07 23 4 4 0.07 7

10 1 221 3 808 3.66 115 0.59 8 0.55 63 4 4 0.30 7

15 2 656 8 493 14.03 203 1.46 8 2.78 149 4 4 0.76 7

20 4 641 15 028 30.94 256 2.71 8 5.66 155 4 4 1.48 8

25 7 176 23 413 53.47 286 4.35 8 10.90 245 4 4 2.64 8

30 10 261 33 648 72.23 270 6.39 8 16.94 243 4 4 4.18 8

35 13 896 45 733 127.85 353 9.34 9 25.12 249 4 4 6.23 8

40 18 081 59 668 190.42 404 12.34 9 38.29 278 4 4 8.79 8

45 22 816 75 453 240.41 404 15.83 9 48.28 261 4 4 12.32 9

50 28 101 93 088 338.65 462 19.72 9 69.52 299 4 4 16.59 9

D$

MRSA
(Spares = 8)

Implicit Component based

(GMRES) (precond.) (GMRES) (precond.)

M/K states trns Time It Time It Time It S C Time It

5 696 2 021 1.05 57 0.26 7 0.15 23 8 8 0.13 7

10 2 541 7 916 7.35 110 1.30 8 1.15 63 8 8 0.62 7

15 5 536 17 661 30.24 208 3.17 8 6.25 172 8 8 1.57 7

20 9 681 31 256 64.38 253 5.90 8 12.01 171 8 8 3.06 7

25 14 976 48 701 122.25 309 9.54 8 22.53 245 8 8 5.47 8

30 21 421 69 996 161.03 285 14.19 8 35.77 278 8 8 8.78 8

35 29 016 95 141 260.68 341 19.45 8 52.37 340 8 8 13.18 8

40 37 761 124 136 401.44 403 27.11 9 74.92 297 8 8 18.85 8

45 47 656 156 981 500.52 397 34.91 9 97.74 261 8 8 26.38 8

50 58 701 193 676 676.09 434 43.55 9 132.46 299 8 8 35.51 8

D$

$

$

$

! "#$%&! '()(*+,-! (./0'.(!

N

CTMC

states

CTMC

trns

Total

time

Solut.

time

!!"#

states
F M

Q+Q+! !"

Explicit

method M
SOR

Implicit

method M
PM

Comp.

method "S
Prod.

states

Solut.

time

250 252 753 1.78 0.010 756 2 758 40 592 1.51 7 0.36 9 0.03 3 504 4.72

500 502 1 503 1.88 0.012 1 506 5 508 90 592 5.69 7 0.72 9 0.07 3 1 004 17.52

1000 1 002 3 003 1.92 0.020 3 006 11 008 190 592 22.38 7 1.45 9 0.13 3 2 004 69.14

2500 2 502 7 503 4.33 0.057 7 506 27 508 490 592 144.44 7 3.61 9 0.33 3 5 004 461.50

5000 5 002 15 003 11.88 0.086 15 006 55 008 990 592 545.16 7 7.22 9 0.67 3 10 004 1 894.18

10000 10 002 30 003 42.21 0.170 30 006 110 008 - - - 14.46 9 1.37 3 - -

15000 15 002 45 003 92.16 0.260 45 006 165 008 - - - 21.70 9 2.07 3 - -

! "#$%&! '()(*+,-! (./0'.(!

N

CTMC

states

CTMC

trns

Total

time

Solut.

time

!!"#

states
F M

Q+Q+! !"

Explicit

method M
SOR

Implicit

method M
PM

Comp.

method "S
Prod.

states

Solut.

time

250 252 753 0.59 0.006 504 1 753 606 0.02 7 0.22 8 0.02 2 504 0.03

500 502 1 503 0.75 0.010 1 004 3 503 1 106 0.04 7 0.44 8 0.04 2 1 004 0.05

1 000 1 002 3 003 1.15 0.016 2 004 7 003 2 106 0.08 7 0.88 8 0.07 2 2 004 0.10

2 500 2 502 7 503 4.18 0.037 5 004 17 503 5 106 0.19 7 2.21 8 0.20 2 5 004 0.25

5 000 5 002 15 003 11.26 0.071 10 004 35 003 10 106 0.40 7 4.43 8 0.39 2 10 004 0.53

10 000 10 002 30 003 42.56 0.138 20 004 70 003 20 106 0.81 7 8.88 8 0.83 2 20 004 0.98

15 000 15 002 45 003 93.35 0.206 30 004 105 003 30 106 1.23 7 13.33 8 1.28 2 30 004 1.47

with and without the aggregation of components of Algorithm 4.6. The iterative
solution required by components of type ­, ¯ and ° is based on GMRES.

Since the robot moves are deterministic, the number of components is equal
to the length (2N − 1) of the paths in the grid from the initial to the goal cell.
All components are simple since the firing of a deterministic event (robot move)
always lead to the next component (robot one step closer to the goal, or robot
chased). It is clear from the results reported in the table that in this case (but
also in all other cases that we have experimented), the explicit construction and
solution of the embedded Markov chain has a very detrimental impact on the
performance, both in terms of space and time, making impractical experiments
for N ≥ 13. The three variations of the implicit solution show a quite consistent
behavior. The preconditioner M used is the problem-specific preconditioner for
MRPs described in section 4.3. While preconditioning reduces the number of
iterations, the overall cost of building the preconditioner matrix makes this
method unattractive for this specific case.

The last three lines of the table show the direct comparison of the two fastest
methods for values of N larger than 13, showing the different growing rates of
both, which indicates a clear advantage of the component method in this setting.
It is important to remember that the implicit method goes through a fixed point
iteration (around Eq. 4.21), while the component method, in this specific case in
which all components are simple of type ®, executes a fixed number of transient
solutions with the uniformisation technique (which is not fixed point).

Table 4.6 shows the results of the GridWorld model when the chaser moves
are deterministic, and the robot moves are exponential: in this case there are
(N2 − 1) complex components. Implicit and explicit methods behave roughly
as in the first setting. The last two columns show the advantage of aggregating
complex components: in this case there are (N2 − 1) complex components and
without aggregation the method performs much worse than the implicit one.
This happens because the augmented sets include all states until an absorbing
state is reached: indeed from each state there is a path made only of q transitions
(the robot moves) that ends into either the goal state or the failure state. As
a consequence, the augmented state space of the first component includes the
states of the remaining (N2 − 2) components: this is the worst setting for the

92 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

component method without aggregation, since the cost for the solution of a
single component is equal to the cost of the whole transient set.

Production machine model

The second example experiments with a model characterized by simple and
complex components, structured in such a way that Algorithm 4.6 performs no
aggregation. The system is a production line with a single machine that may
occasionally break down, modelled by the DSPN of Fig. 4.10. The goal is to
compute the probability of completing M pieces, without having to interrupt
the production, knowing that the factory has at most S spare parts of the
machine and that pieces completed by the machine may be randomly removed.
A piece is generated by transition arrival into the K-limited buffer modeled by
place queue, the piece is then moved into a working area by the deterministic
transition start, given that the machine is ready. The piece is worked by the
machine while in the working place, and it is then moved to an output buffer,
modeled by place completed. Pieces may be randomly removed from the output
buffer by transition removed, while as soon as there are M pieces in the buffer
(success condition), the place ok is marked, and a reset procedure (place reset
marked) is activated, as the firing of transition end takes the net to a state in
which no transition is enabled, and therefore no evolution is possible. Note that
each arc entering transition end is marked with a ∗ to mean that all tokens in
the input places should be removed when the transition fires. The machine may
break down while working (exponential transition break) and can be repaired
in within a deterministic delay (transition repair), by using a spare part. If all
spares have been consumed (place spares empty) a token is put in place reset,
and the reset procedure of transition end is activated.

Figure 4.10 Petri Net of the Production Machine model.

K

S

stop

spares reset

completed

broken

working

machine-ready

queue

arrival start finished

break
repair

removed

end

M

K

end

end end

end

ok

end

end

* *

* *

Since we have at most S spare parts, the number of repair actions is limited.
However, an unbounded number of firings of the start transition is still possible.
The component structure of this MRTS follows that of the consumption of the
spare parts. Each repair activity moves the Petri Net in a new component of the
state space with s spares, where any state with s+1, or more, spares will never be
reachable again. These components are complex, since the deterministic start
transition may fire several times before the number of parts decreases. Note
that each pair of complex components (for s and s+1 spares) is separated by a

4.4. REDUCIBLE MRPS: THE COMPONENT METHOD 93

simple component, delimited by the firing of transition repair, so no aggregation
is possible.

The experiments were conducted for S= 4 and S= 8, for varying values of
M and K, with M = K. Results are reported in Table 4.7. The overall system
happens to be slightly ill-conditioned, resulting in a large number of GMRES
iterations needed to achieve the requested accuracy of 10−7. The table reports
also the mean number of iterations for the convergence of the solution of each
complex component. To investigate the behavior of convergence rates, both
methods are tested with and without the preconditioner.

Table 4.7 Tests with 4 and 8 spare parts and various production goals M .

ComplexMachine

System
(Spares = 4)

Implicit Component based
(GMRES) (precond.) (GMRES) (precond.)

M/K states trns Time It Time It Time It S C Time It
5 336 973 0.44 50 0.12 7 0.07 23 4 4 0.07 7

10 1 221 3 808 3.66 115 0.59 8 0.55 63 4 4 0.30 7
15 2 656 8 493 14.03 203 1.46 8 2.78 149 4 4 0.76 7
20 4 641 15 028 30.94 256 2.71 8 5.66 155 4 4 1.48 8
25 7 176 23 413 53.47 286 4.35 8 10.90 245 4 4 2.64 8
30 10 261 33 648 72.23 270 6.39 8 16.94 243 4 4 4.18 8
35 13 896 45 733 127.85 353 9.34 9 25.12 249 4 4 6.23 8
40 18 081 59 668 190.42 404 12.34 9 38.29 278 4 4 8.79 8
45 22 816 75 453 240.41 404 15.83 9 48.28 261 4 4 12.32 9
50 28 101 93 088 338.65 462 19.72 9 69.52 299 4 4 16.59 9

System

(Spares = 8)
Implicit Component based

(GMRES) (precond.) (GMRES) (precond.)
M/K states trns Time It Time It Time It S C Time It

5 696 2 021 1.05 57 0.26 7 0.15 23 8 8 0.13 7
10 2 541 7 916 7.35 110 1.30 8 1.15 63 8 8 0.62 7
15 5 536 17 661 30.24 208 3.17 8 6.25 172 8 8 1.57 7
20 9 681 31 256 64.38 253 5.90 8 12.01 171 8 8 3.06 7
25 14 976 48 701 122.25 309 9.54 8 22.53 245 8 8 5.47 8
30 21 421 69 996 161.03 285 14.19 8 35.77 278 8 8 8.78 8
35 29 016 95 141 260.68 341 19.45 8 52.37 340 8 8 13.18 8
40 37 761 124 136 401.44 403 27.11 9 74.92 297 8 8 18.85 8
45 47 656 156 981 500.52 397 34.91 9 97.74 261 8 8 26.38 8
50 58 701 193 676 676.09 434 43.55 9 132.46 299 8 8 35.51 8

In this model, each component-based solution requires S simple and S com-
plex components. Note that also in this case the component method performs
better than the implicit one, but the advantage is less significant than in the
Grid case, since the cost is dominated by the solution of the S complex compo-
nents, which cannot be aggregated into a single larger one.

94 CHAPTER 4. NUMERICAL COMPUTATION OF MEASURES

Alternating timed model

To investigate whether there is any disadvantage in the aggregation, we have
built a very simple DSPN (Fig. 4.8, left) where N tokens flow from place P2 to
place P1. A cyclic set of 3 phases enables or disables the transition that moves
back, from P1 to P2, all tokens except one, which is lost in the process, leaving
a token in an intermediate place.

Table 4.8 A simple alternating timed model, with 3 time phases.

N

int-1 int-2

int-3

δ=10δ=0.1

λ=0.1

δ=100

λ=100

λ=0.1

#P1

P1P2

#P1-1

CSLTA: AllServicesBeforeT

 CTMC MRSA Explicit Implicit Component

K states trns states trns P Time It Time It Time S C
2 12 22 26 56 80 0.002 7 0.003 9 0.002 4 0

3 36 84 74 204 292 0.004 7 0.009 11 0.004 6 0

4 96 272 194 640 1 012 0.014 8 0.02 12 0.009 8 0

5 240 800 482 1 840 3 444 0.06 8 0.06 13 0.022 10 0

6 576 2 208 1 154 4 992 11 636 0.31 8 0.16 14 0.055 12 0

7 1 344 5 824 2 690 12 992 39 140 1.64 8 0.43 16 0.16 14 0

8 3 072 14 848 6 146 32 768 121 076 8.52 9 1.07 17 0.34 16 0

9 6 912 36 864 13 826 80 640 436 056 43.83 9 2.59 18 0.85 18 0

10 15 360 89 600 30 722 194 560 1 447 252 221.54 9 6.22 19 2.12 20 0

11 33 792 214 016 67 586 461 824 4 768 068 1 142.32 9 14.85 20 5.42 22 0

12 73 728 503 808 147 458 1 081 344 - - - 35.18 21 14.57 24 0

CSLTA: do3TimesActive

 CTMC MRSA Explicit Implicit Component

K states trns states trns P Time It Time It Time It S C
2 12 22 38 78 126 0.01 6 0.04 8 0.02 8 3 1

3 36 84 128 327 509 0.06 11 0.23 13 0.12 12 5 1

4 96 272 362 1 116 1 762 0.42 12 0.66 13 0.36 13 9 1

5 240 800 932 3 365 5 702 2.76 13 1.88 14 1.00 14 13 1

6 576 2 208 2 270 9 378 17 906 16.64 16 5.01 15 2.73 16 17 1

7 1 344 5 824 5 336 24 787 55 554 92.35 18 13.59 17 6.70 17 21 1

8 3 072 14 848 12 242 63 096 171 842 494.60 19 31.86 17 15.89 18 25 1

9 6 912 36 864 27 596 156 177 532 370 2 556.02 20 77.51 18 36.98 19 29 1

10 15 360 89 600 61 382 378 270 - - - 186.61 19 84.67 20 33 1

11 33 792 214 016 135 104 900 383 - - - 443.63 20 192.71 21 37 1

12 73 728 503 808 294 842 2 112 660 - - - 1 039.55 21 424.35 21 41 1

Stiff-3

MRSA Comp. based
(aggregate C)

Comp. based
(no aggregate)

N states trns Time S C Time S C

2 18 36 1.44 0 1 0.98 0 7

4 45 97 10.18 0 1 3.98 0 15

6 84 186 32.55 0 1 9.91 0 28

8 135 303 77.64 0 1 19.73 0 45

10 198 448 156.80 0 1 34.46 0 66

0.0

0.2

0.4

0.6

0.8

1.0

0 0.01 0.02 0.03

P
ro

b
a
b

il
it

y

Time for completing each services

K=2

K=3

K=4

K=5

K=6

K=7

K=8

0

0.2

0.4

0.6

0.8

1

0 2 4

P
ro

b
a
b

il
it

y

Max. time for 3 consecutive services

K=2

K=3

K=4

K=5

K=6

K=7

K=8

This net has a significant difference of time scales between its transitions
(four orders of magnitude), and indeed the results of the table in Fig. 4.8 suggest
that in this case it is better not to aggregate components, to avoid the creation of
components with very different transition rates, which may increase significantly
the number of uniformisation steps R at each iteration, leading to a degradation
of the performance. This could lead to the inclusion in Algorithm 4.6 of a
more sophisticated criteria (based, for example, on the min/max rates of the
components and on the covering of the augmented sets) to prevent aggregation
from taking place.

Chapter 5

Improving the Model
Checking of CSLTA

The previous chapters provide the foundations of path-based rewards, described
with temporal logics, and the numerical methods used to evaluate these logics.
We now describe some of the problems that affect the model checking procedure
of CSLTA, described in section 3.4.2. In particular, the focus will be on the
efficiency of CSLTA when the path formulas modeled with DTAs are that of CSL
(Until and Next). Since CSLTA constructs an MRP as a solution process, there
is an additional complexity in the model checking procedure, in contrast with
the much more optimized solution method of CSL (see section 3.3.2). We show
that this problem can be tackled efficiently with the component method. Section
5.1.1 illustrates this solution. Finally, some thoughts on the space occupation
of CSLTA are presented in section 5.1.3, along with a possible solution.

These two improvements represent the main contribution of this thesis for
CSLTA. The usage of the component method has been also published in [AD10a]
and revised in [AD12a].

5.1 Performance mismatch of CSL and CSLTA

This section describes why CSLTA and CSL have a discrepancy in the way they
model check the same formula, and what can be done to improve the former.
Recall that in CSLTA a path formula is expressed using a Timed Automaton
with a single clock [DHS09], described in Def. 19, and that the model checking
of CSLTA formulas requires the steady-state solution of a reducible MRP. CSL
instead has only predefined path operators (Until and NeXt), and the model
checking of these formulae can be done with a predefined sequence of CTMC
functions. We shall consider only the Until formula, which is the most expensive
CSL formula to check. Until formula requires the transient/stationary solution
of two CTMCs [Bai+03], given in (3.10) and (3.11), in which the solution of
the first one is used as initial distribution for the second one. This results in a
substantial difference in the model checking times for the two cases.

Consider the CMTS M given in Figure 5.1, and the CSL Until formula:

Θ ::= P./λ
(
Φ1 U [t,t′] Φ2

)

95

96 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

Figure 5.1 Example of CMTS model for a CSL/CSLTA comparison.

s0

s1 s2

s3

Φ1

Φ2

Φ1,Φ2∅ .3

.7.3

.4

.3

The computation of Θ can be done with forward and backward formulas.
Figure 5.2 illustrates the various phases of the formulas (3.10) and (3.11) when
applied to the model M.

Figure 5.2 Forward and backward computations of the CSL formula Θ.

s0

s1 s2

s3

.3

.7.3

.4

.3

s0

s1 s2

s3

.3

.7×
×

πt�

M[¬Φ1] M[¬Φ1 ∨ Φ2]
(Phase I) (Phase II)

α0 = is

0

0

1

1

= Prob(s, ϕ)

iΨ

1

0

0

0

πt = πM[¬φ](α0, t)

πt� = πM[¬Φ∨Ψ](αt, t�−t)

with:

αt = IΦ · πt

Probability
for state s.

s0

s1 s2

s3

.3

.7

.3

.4
.3

s0

s1 s2

s3

.3

.7 ×
×

M[¬Φ1]M[¬Φ1 ∨ Φ2]

Probability
for each

initial state.

0

0

1

1

ξ0ξt





ρt�= iΨ

ξt = ξM[¬Φ∨Ψ](ρt� , t�−t)

ξ0 = ξM[¬φ](ρt, t)

with:

ρt = IΦ · ξt�

= Prob(ϕ)

(Phase I) (Phase II)

πt

(a) Forward computation of the Until:

(b) Backward computation of the Until:

The boxes on the right of Figure 5.2 are the fragments of the forward and
backward versions of: ProbM(s,Φ1 U [t,t′] Φ2). Note that each phase computes
a transient measure on a modified CTMC which is shown by making gray and
absorbing the states that do not satisfy the specified state proposition expres-
sion. In the backward case, the transition arrows are drawn reversed, since the
computation is done with the transpose of Q.

For instance, the forward case (a) requires the transient solution of two
modified CTMCs: at time t for the chain πM[¬Φ1], assuming we start in s at
time 0, and at time t′ − t for the chain πM[¬Φ1∨Φ2], assuming we start with
a probability vector resulting from the previous computation. Note that the
result of the first computation is filtered out using the IΦ1 vector, to put to
zero the probability of all states which are not Sat(Φ1) states at time t: as a

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 97

consequence the second transient analysis starts from an initial vector that does
not sum up to one. The elements of the second transient solution vector, πt′

that satisfy Φ2 are then summed-up to obtain Prob(s, ϕ).
The CSL query Θ can be formulated using the temporal logic CSLTA:

Θ′ ::= P./λ
(
Until [Φ1,Φ2, t, t

′]
)

where Until is the name of the DTA given in Figure 3.1(d), and Φ1, Φ2, t and
t′ are the DTA parameters.

Figure 5.3 State space construction of the CSLTA formula Θ′.

l0→ l1 l1→ l2

Sg0 Sg1 SE

Sw1

Sat(Φ∧¬Ψ)×l1×c1

�

⊥l1→ l1l0→ l2

Sw0

Sat(Φ)×l0×c0

l0→ l0

Sg1Sg0 SE

s0, l1, c1 �

⊥

s0, l0, c0

s2, l0, c0

(s
2 ,l0)

(s
0 ,l0)

(s
1 ,−

)

(s
3 ,−

) (s1,−)

(s3,−)

(s1,−)

l0→ l1
(s2, l2)

(s3, l2)
l0→ l2

(c) General structure of the MRP generated by Φ1 U [t,t�] Φ2.

(b) MRP generated by the Φ1 U [t,t�] Φ2 DTA.

x = tl0

l1

l2
Φ1 Φ2

Φ1∧¬Φ2

0<x<t

t<x<t�

x
=

t

t<
x
<

t�

(a) The Until DTA.

Figure 5.3 shows the Until DTA and the resulting MRTS processM×A with
the model of Figure 5.1. It also shows the general structure of the M×A Until
process for any CMTS model. The clock zones of the DTA are identified as:
δc0 = [0, t), δc1 = [t, t′), δc2 = [t′,∞). The MRP construction then associates to
each finite zone (δc0 and δc1 in this case) a deterministic event in the MRP, called
g0 and g1, of duration (t − 0) and (t′ − t) respectively. The forward/backward
computation of the probability of the set of accepted paths is then reduced to
the computation of the probability of reaching the absorbing state > from the
initial states with (3.13) or (3.14).

Comparing the CSL model checking process for the Until summarized by
Fig. 5.2 and that for CSLTA on the same formula summarized in Fig. 5.3, iden-
tifies very clearly why model checking an Until with CSLTA is different from
that of CSL. Despite the fact that the paths that satisfy the two formulas are
the same, the computational cost in CSL is lower than in CSLTA, since CSLTA

builds a (real) MRP process, which is slow to solve in steady-state. CSL instead
just require one or two forward/backward solution, which are usually transient
solutions. Of course, CSL model checkers have only a few types of path oper-
ators to verify, and can therefore build a specialized solution schema for each
of them. A CSLTA model checker has to deal with any type of DTA and it
applies a single general procedure, which computes the steady-state solution of

98 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

an MRP of a size which is of the order of the size of a cross-product. This
size is upper bounded by the number of states of the CMTS M being checked,
multiplied by the number of clock zones (three for the Until DTA), multiplied
by the number of locations of the DTA A (three). Moreover an MRP solution in
general requires many transient CTMC solutions (one per subordinated chain
if an explicit method is used, and two per iteration if an implicit method is
preferred).

5.1.1 CSLTA with the component method

The MRP of the cross-product M×A has many interesting properties. It is
reducible, with a small number of zones, and with a regular structure. This is
exactly the class of MRP for which the component method described in section
4.4 is convenient. To assess the applicability of the component method, we can
observe that q and δ arcs always provoke a change of partition, since in the
DTA there is no clock reset nor self loops with condition x= t. Therefore the
SCCs contained in Sg0 (Sg1) are all of type ® and the Algorithm 4.6 aggregates
them into the single component Sw0 (Sw1) of type ®. Sw0 and Sw1 are not
aggregated any further since they would result in a component of type °.

To understand the relationships between the component matrices and the
matrices used by the CSL solution approach, we can also reason on the structure
of the embedded Markov chain P and the generator matrices Q, Q̄ and ∆ of
the MRSA in Fig. 5.3, which have the block structure reported in Fig. 5.4, after
an appropriate renumbering of the states. Different portions of Q, Q̄ and ∆

Figure 5.4 Structure of the MRP matrices for a CSLTA Until

(a) Generator matrices of the MRP:

Q =




Ql0,l0 0 0 0
0 Ql1,l1 0 0
0 0 0 0
0 0 0 0


 , Q̄ =




0 0 0 Q̄l0,⊥
0 0 Q̄l1,> Q̄l1,⊥
0 0 0 0
0 0 0 0




∆ =




0 ∆l0,l1 ∆l0,> 0
0 0 0 ∆l1,⊥
0 0 0 0
0 0 0 0




(b) Digraph of W :
Sw0

∣∣∣ Sg0
∣∣∣ !

Sw1

∣∣∣ Sg1
∣∣∣ !

S⊥

∣∣∣ BSCCS!

∣∣∣ BSCC

(c) Embedded Markov Chain P of the MRP:

P =




0 (Ωl0,l0 ·∆l0,l1) (Ωl0,l0 ·∆l0,>) (Ψl0,l0 ·∆l0,⊥)
0 0 (Ωl1,l1 ·∆l1,>) (Ψl1,l1 ·∆l1,⊥)
0 0 1 0
0 0 0 1




← Sg0
← Sg1
← >
← ⊥

}
SE

(and thus of P) are generated by different edges of the DTA, which are written
as subscript. For instance, the Ql0,l0 block is generated by the DTA edge l0→ l0
with the CTMC M in the first clock zone δc0 . The bottom-right image of
Fig. 5.4 shows the component digraph W after the aggregation. Note that the

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 99

block diagonal matrices in P for Sg0 and Sg1 are made of zeros, which confirm
the observation that the two components w0 and w1 are simple and of type ®.

With this structure, the MRP is well suitable for an efficient solution with
the component-based method, since the entering probability is entirely in the
> or ⊥ state after one single firing of g0 and one of g1. This intuitive idea is
formalized in the following theorem:

Theorem 4 (Component-based analysis of CSLTA is almost as efficient
as CSL). Let M be a CMTS, let Θ = P./λ(Φ1 UI Φ2) be a CSL query, and let
Θ′ be the same query in CSLTA. The computations of the Prob(s,Θ) (with the
πM and ξM operators) for CSL and (with the πM×A and ξM×A operators) for
CSLTA using the component-based analysis, have the same asymptotical costs.

Proof. We prove this result for the Until path formula with time bound I =
[t, t′], with t′ finite, and for the forward case. The numerical analysis for CSL
involves the three steps listed below, where πM

(
t, is
)

is the solution at time t
for the CTMCM, assuming the CTMC starts in s. Let NIa, η(QIa) and RIa be
the number of states, transitions and uniformisation steps of the CTMCM[Φ1].
The quantity NIIa, η(QIIa) and RIIa are the same for CTMCM[¬Φ1∨Φ2], and
NIIIa is the number of Sat(Φ2)-states.

Step Time Space

Ia
Transient analysis at time t:

p1 = πM[¬Φ1]
(
t, is
) O(η(QIa) ·RIa) O(NIa)

Filtering Sat(¬Φ1)-states:
p′1 = IΦ1 · p1

O(NIa) O(1)

IIa Transient analysis at time t′ − t:
p2 = πM[¬Φ1∨Φ2]

(
t′−t,p′1

) O(η(QIIa) ·RIIa) O(NIIa)

IIIa
Summing up success probabilities:

Prob(s, ϕ) = iΦ2
· p2

O(NIIIa) O(1)

The overall time cost for a CSL Until [t,t′] is then:

O
(
η(QIa) ·RIa +NIa + η(QIIa) ·RIIa +NIIIa

)

The component-based solution of CSLTA computes the outgoing probability
vectors µD(w0) and µD(w1) from the two simple components Sw0 and Sw1 of
type ®. The steps are the following:

Time of the step Space

0b
SCC decomposition:

Cost: O(ηM×A+NM×A+K logK)
O(NM×A+K)

Ib
Outgoing probability µD(w0) with Eq. (4.40):

Cost: O
(
η(Ql0,l0) ·Rl0 + η(Q̄l0) + η(∆l0)

) O(Nl0)

IIb
Outgoing probability µD(w1) with Eq. (4.40):

Cost: O
(
η(Ql1,l1) ·Rl1 + η(Q̄l1) + η(∆l1)

) O(Nl1)

IIIb
Prob(s, ϕ) = i> ·

(
µD>(w0) + µD>(w1)

)
:

Cost: O(1)
O(1)

100 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

where the quantities η, N and R are defined as before but for the matrices
of the two components w0 and w1 of the MRSA. Steps Ib and IIb rewrites
to the computation of µD(w0) = is ·

(
Ωg0

ŵ0
∆g0

ŵ0
+ Ψg0

ŵ0
Q̄g0

ŵ0

)
and µD(w1) =

µDw1
(w0) ·

(
Ωg1

ŵ1
∆g1

ŵ1
+ Ψg1

ŵ1
Q̄g1

ŵ1

)
.

From the construction of M×A shown in Fig. 5.3 we can derive:

Nl0 =
∣∣S × l0 × c0

∣∣ =
∣∣Sat(Φ1)

∣∣ = NIa

Nl1 =
∣∣S × l1 × c1

∣∣ =
∣∣Sat(¬Φ1∨Φ2)

∣∣ = NIIa

η(QIa) = η(Ql0,l0) + η(Q̄l0)

η(QIIa) = η(Ql1,l1) + η(Q̄l1)

η(∆l0) = Nl0 = NIa

η(∆l1) = Nl1 = NIIa

The R values are the same, since the exponential transitions involved in the
uniformisations of Ia and Ib (IIa and IIb) are the same, so the computational
costs for CSL and CSLTA are the same. Nevertheless, the space occupation is
different, due to the necessity of step 0b of the entire product state space for
the SCC analysis. More precisely, the CSL state space is S, the set of CTMC
states, while for CSLTA the state space S is that of the MRSA of M×A, and∣∣S
∣∣ ≤

∣∣S × L × C
∣∣. In the until case |L × C| = 3, so S could be up to 3 times

larger than S.

The proofs for the time intervals [0, t], [t, t], and for the backward formulas, are
similar.

5.1.2 Experimental comparison of CSL and CSLTA

In this section we shall test numerically the statement of theorem 4 with some
examples to compare the performance of existing CSL and CSLTA model check-
ers on Until formulas. For CSL we have used the model checker Prism [KNP09],
in its simpler form (sparse matrix representation, without decision diagrams).
For CSLTA we have used CoDeMoC [Bar+10] and MC4CSLTA [AD10c]. All re-
sults are computed on a 2Ghz Intel Dual-core machine with 1GB of system
memory. No multi-core parallelism is exploited.

The experiments are performed on a simple M/M/1/N queue with fail-
ure. The model has been written in the Prism process algebra language; the
CTMC built by Prism have then been exported to the different input formats of
CoDeMoC and MC4CSLTA. The comparison is made on the CSL Until query:
true UI failure, with two time intervals, I1 = [0, 75] and I2 = [5, 75], appropri-
ately translated into a CSLTA DTA.

To make the comparison more focused on the topic of the paper we only
consider the time devoted to the numerical solution, once the CTMC is available
(for CSL) or the MRP is available (for CSLTA). Indeed the overall behavior of
the three tools is somewhat different and not easily comparable. For instance,
Prism builds the model from the process algebra description, and this requires
a computational time that in the reported experiments is much larger than the
actual solution time, while MC4CSLTA uses an intermediate conversion schema
to a DSPN format that adds another cost to the overall solution time: this is a
mere implementation choice to implement at low cost the cross productM×A.

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 101

Table 5.1 Tool comparison for a CSL Until [0,75] query.

P=? [true U[5.75] broken]

P=? [true U<=75 broken]

CTMC Prism MC4CSLTA CoDeMoC

N states trns
Total
time

Solut.
time

M!A
states

Q+Q
+! P Expl It Impl It Cmp S

Prod.
states

Solut.
time

250 252 753 1.78 0.010 756 2 758 40 592 1.51 7 0.36 9 0.03 3 504 4.72
500 502 1 503 1.88 0.012 1 506 5 508 90 592 5.69 7 0.72 9 0.07 3 1 004 17.52

1000 1 002 3 003 1.92 0.020 3 006 11 008 190 592 22.38 7 1.45 9 0.13 3 2 004 69.14
2500 2 502 7 503 4.33 0.057 7 506 27 508 490 592 144.44 7 3.61 9 0.33 3 5 004 461.50
5000 5 002 15 003 11.88 0.086 15 006 55 008 990 592 545.16 7 7.22 9 0.67 3 10 004 1 894.18

10000 10 002 30 003 42.21 0.170 30 006 110 008 - - - 14.46 9 1.37 3 - -
15000 15 002 45 003 92.16 0.260 45 006 165 008 - - - 21.70 9 2.07 3 - -

CTMC Prism MC4CSLTA CoDeMoC

N states trns
Total
time

Solut.
time

M!A
states

Q+Q
+! P Expl It Impl It Cmp S

Prod.
states

Solut.
time

250 252 753 0.59 0.006 504 1 753 606 0.02 7 0.22 8 0.02 2 504 0.03
500 502 1 503 0.75 0.010 1 004 3 503 1 106 0.04 7 0.44 8 0.04 2 1 004 0.05

1 000 1 002 3 003 1.15 0.016 2 004 7 003 2 106 0.08 7 0.88 8 0.07 2 2 004 0.10
2 500 2 502 7 503 4.18 0.037 5 004 17 503 5 106 0.19 7 2.21 8 0.20 2 5 004 0.25
5 000 5 002 15 003 11.26 0.071 10 004 35 003 10 106 0.40 7 4.43 8 0.39 2 10 004 0.53

10 000 10 002 30 003 42.56 0.138 20 004 70 003 20 106 0.81 7 8.88 8 0.83 2 20 004 0.98
15 000 15 002 45 003 93.35 0.206 30 004 105 003 30 106 1.23 7 13.33 8 1.28 2 30 004 1.47

_

_

Results are reported in Table 5.1 for an increasing queue sizeN . The columns
list the number of states and transitions of the CTMC being checked, followed by
Prism results (total time and solution time), by MC4CSLTA results (states of the
M×A MRP, transitions in the MRSA, size of the embedded DTMC P, solution
cost using explicit, implicit, and component methods) and by CoDeMoC results
(state space size and solution time).

The first striking difference is in the size of the state spaces generated by
the three tools (the one of Prism is not listed, but it is never larger than the
CTMC being checked). A second observation is that Prism always performs
better, which is not surprising since Prism is dedicated to CSL, but it shows
an increasing slope that is similar to that of the two CSLTA tools. Since the
time-bounded Until is computed with a single transient analysis, there are no
significant differences from a finely-tuned CSL method and an automata based
solution method. For the same reason there is no striking difference between
explicit, implicit and component based methods, since, in this specific case, P
is very sparse.

Table 5.2 Tool comparison for a CSL Until [5,75] query.P=? [true U[5.75] broken]

P=? [true U<=75 broken]

CTMC Prism MC4CSLTA CoDeMoC

N states trns
Total
time

Solut.
time

M!A
states

Q+Q
+! P Expl It Impl It Cmp S

Prod.
states

Solut.
time

250 252 753 1.78 0.010 756 2 758 40 592 1.51 7 0.36 9 0.03 3 504 4.72
500 502 1 503 1.88 0.012 1 506 5 508 90 592 5.69 7 0.72 9 0.07 3 1 004 17.52

1000 1 002 3 003 1.92 0.020 3 006 11 008 190 592 22.38 7 1.45 9 0.13 3 2 004 69.14
2500 2 502 7 503 4.33 0.057 7 506 27 508 490 592 144.44 7 3.61 9 0.33 3 5 004 461.50
5000 5 002 15 003 11.88 0.086 15 006 55 008 990 592 545.16 7 7.22 9 0.67 3 10 004 1 894.18

10000 10 002 30 003 42.21 0.170 30 006 110 008 - - - 14.46 9 1.37 3 - -
15000 15 002 45 003 92.16 0.260 45 006 165 008 - - - 21.70 9 2.07 3 - -

CTMC Prism MC4CSLTA CoDeMoC

N states trns
Total
time

Solut.
time

M!A
states

Q+Q
+! P Expl It Impl It Cmp S

Prod.
states

Solut.
time

250 252 753 0.59 0.006 504 1 753 606 0.02 7 0.22 8 0.02 2 504 0.03
500 502 1 503 0.75 0.010 1 004 3 503 1 106 0.04 7 0.44 8 0.04 2 1 004 0.05

1 000 1 002 3 003 1.15 0.016 2 004 7 003 2 106 0.08 7 0.88 8 0.07 2 2 004 0.10
2 500 2 502 7 503 4.18 0.037 5 004 17 503 5 106 0.19 7 2.21 8 0.20 2 5 004 0.25
5 000 5 002 15 003 11.26 0.071 10 004 35 003 10 106 0.40 7 4.43 8 0.39 2 10 004 0.53

10 000 10 002 30 003 42.56 0.138 20 004 70 003 20 106 0.81 7 8.88 8 0.83 2 20 004 0.98
15 000 15 002 45 003 93.35 0.206 30 004 105 003 30 106 1.23 7 13.33 8 1.28 2 30 004 1.47

_

_ Table 5.2 illustrates the results with interval [t, t′]. In this case, the CSL solu-
tion requires two concatenated transient analysis. Prism is still the fastest tool.
While slower, the cost of the component method of MC4CSLTA shows a similar
growth as Prism. This type of Until shows a very different behaviour between
explicit and implicit methods in MC4CSLTA, but also between MC4CSLTA and
CoDeMoC.

Indeed for single clock DTAs, CoDeMoC implements the solution schema
described in [Che+11a, sec. 4.2]. This schema is a zone-based analysis, where for

102 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

each zone the embedded Markov chain is constructed explicitly. The solution
is always a global, iterative solution of all the zone EMCs: no component-
based analysis is used. Therefore, it is not surprising that the performance of
CoDeMoC is comparable to that of MC4CSLTA with the explicit method. In
fact we can observe the quadratic behaviour typical of the explicit methods due
to the increasing size of the embedded matrix P.

In our tests, Prism always outperforms MC4CSLTA by a constant factor.
This difference requires additional investigations, but could be due to a less
optimized implementation of MC4CSLTA, or could be due to the fact that the
state space of the M×A process is larger than the CTMC state space, since
the state space of M×A used by MC4CSLTA is three times larger than that of
M used by Prism, even if in the component method each component has a size
similar to M.

5.1.3 On-the-fly state space construction

The result of section 5.1.1 has the limitation that the state space of the cross
productM×A still has to be constructed before doing any numerical computa-
tion. Therefore, the CSLTA solution with the component method still consumes
more space than the solution done by a CSL model checker.

In some cases, theM×A process contains more states than it is needed. For
instance, the Until [t, t′] of Table 5.2 clearly shows that the number of states in
M×A is roughly three times the state space S of the CTMC. This happens
because the S × L× C process has three L× C configuration:

〈l0, (0,t)〉, 〈l1, (t,t′)〉, 〈l1, (t′,∞)〉

The last configuration 〈l1, (t′,∞)〉 underlines a problem of the Until DTA. When
the CTMC in location l1 after t′ does a Markovian move, it will be rejected and
the process goes to ⊥. Yet the state exists and is reachable from the (t,t′) zone,
since there is no way for the CSLTA model checker for understanding that this
state will inexorably lead to a reject.

A possible solution consists in expanding the DTA automaton into its zoned
transition system, where each state has form 〈l, c〉. In this way, the reachability
analysis can be anticipated. For brevity, we call it the zoned DTA Z(A) of A.

Zoned Transition system of a DTA A

Let A = 〈Σ,Act , L, L0, LF ,Λ,→〉 be a DTA, as defined in Def. 19, and let
K = {c0, c1, . . . , cm} be its set of clock constants, with c0 = 0 and ci+1 >
ci ∀i ∈ [0,m) and cm 6=∞. Let:

Ċ
def
=
{

[c] | c ∈ K
}

and C
def
=
{(
c, next(c)

)
| c ∈ K

}

be the set of immediate zones Ċ and the set of timed zones C.

We want to derive a zoned DTA, where the clock zone information is paired
with the DTA location. Let Z(A) be the zoned DTA of A. The state space Z
of Z(A) is made of pairs 〈l, c〉, where every location l ∈ L is paired with either
an immediate or a timed clock zone c.

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 103

Definition 32 (Zoned DTA Z(A) of A). The zoned DTA Z(A) of a DTA A
is a tuple Z(A) = 〈A, C, Z, Ż0, ZF , ↪→〉 where:

• A = 〈Σ,Act , L, L0, LF ,Λ,→〉 is the DTA;

• C = Ċ ∪ C is the set of immediate and timed clock zones of A;

• Z ⊆ L×C is the finite set of locations, partitioned into the set of immediate
locations Ż ⊆ L× Ċ and the set of timed locations Z ⊆ L× C;

• Ż0 = L0 × {ċ0} is the set of initial locations;

• ZF = Z ∩ (LF × C) is the set of final locations;

• ↪→⊆
(
Z ∪

((
2Act × {x}

)
∪ {δ}

)
× L

)
∪
(
Ż ∪

((
]× {x}

)
∪ {χ}

)
× L

)

is the finite edge relation.

The edge relation of Def. 32 has four kinds of arcs between Z locations:

1. z̄ A, r↪−−−→ z′: an Inner edge of the DTA that reads the CMTS actions in A
with reset set r;

2. z̄ δ↪−→ ż′: time elapse move from a timed zone into a boundary zone;

3. ż], r↪−−→ ż′: a Boundary edge of the DTA that may trigger with urgency,
with reset set r;

4. ż
χ
↪−→ z̄′: end of a boundary zone;

The edge relation does not contain the clock zone of the destination location,
which is deduced by the edge itself and its reset set. An arc of type 1 remains
in the same timed clock zone, unless the clock is reset, in which case it goes
directly to the immediate zone [0]. An arc of type 2 goes from a clock zone
c̄ = (k, k′) into the immediate zone ċ = [k′]. An arc of type 3 remains in the
same immediate zone ċ of the source location ż, unless the reset set is {x}, in
which case it goes to the [0] zone. Finally, an arc of type 4 exits the immediate
zone ċ = [k] going into the timed zone c̄ = (k, next(k)). The two special symbols
δ and χ label those edges that enter and exit a boundary zone.

The production rules for these four kind of Z(A) edges may be written in
inductive form. Locations from timed zones follow the two rules:

c̄ ∈ C, ∃ l γ,A, r−−−−→ l′, s.t. c̄ |= γ

〈l, c̄〉 A, r↪−−−→ 〈l′, c̄[r := 0]〉
ZM–INNER

c̄ ∈ C, c̄ 6= (cm,∞)

〈l, c̄〉 δ↪−→ 〈l, upper(c̄)〉
ZM–ENTER–BOUNDARY

Locations from immediate zones follow the two rules:

ċ ∈ Ċ, ∃ l γ,], r−−−−→ l′, s.t. ċ |= γ

〈l, ċ〉], r↪−−−→ 〈l′, ċ[r := 0]〉
ZM–BOUNDARY

ċ ∈ Ċ, @ l γ,], r−−−−→ l′, s.t. ċ |= γ

〈l, ċ〉 χ
↪−→ 〈l, (ċ, next(ċ))〉 ZM–EXIT–BOUNDARY

The upper(c̄) of a timed zone c̄ and the next(ċ) of an immediate zone ċ
are the upper time instant and the next clock constant in K, respectively.
The next of the last clock constant cm is ∞. The two rules ZM–INNER and
ZM–BOUNDARY obey the Inner and Boundary edge semantics of the DTA A.

104 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

Figure 5.5 Two sample DTAs with their associated zoned DTAs.

l0 l1Φ ¬Φ

x>0 x<α

l2

Φ

x<αx>0; {x}
x>α; {x}

①
②

③
⑤

④
l0

l1

l2
Φ1

Φ2

Φ1∧¬Φ2

0<x<α

α<x<β

α<x<β

x=α

x=α①

②

③

⑤

④

(a) Example DTA with loops of resets.

(c) Zoned DTA of the DTA (a).

(b) The Until[α,β] DTA.

(d) Zoned DTA of the DTA (b).

Act ③

Act
①

Act
①

z0 : Φ
�l0, [0]�

z1 : Φ
�l0, (0, α)�

z2 : Φ
�l0, [α]�

z3 : Φ
�l0, (α,∞)�

z4 : ¬Φ
�l1, [0]�

z5 : ¬Φ
�l1, (0, α)�

z6 : ¬Φ
�l1, [α]�

z7 : ¬Φ
�l1, (α,∞)�

z8 : Φ
�l2, (0, α)�

Ċ = {[0], [α]}
C̄ = {(0,α), (α,∞)}

Act
⑤

④ Act , {x}
Act , {x}②

Act , {x}②

χ δ

χ

χ

δ χ

δ χ

Act

χ

δ χ

Act
①

χ

δ χ
z3 : Φ1

�l0, (α, β)�
z2 : Φ1

�l0, [α]�

z1 : Φ1

�l0, (0, α)�
z0 : Φ1

�l0, [0]�

z4 : Φ1

�l0, [β]�
z5 : Φ1

�l0, (β,∞)�

z6 : Φ1∧¬Φ2

�l1, [α]�
z7 : Φ1∧¬Φ2

�l1, (α, β)�
z8 : Φ1∧¬Φ2

�l1, [β]�
z9 : Φ1∧¬Φ2

�l1, (β,∞)�

z10 : Φ2

�l2, [α]�
z11 : Φ2

�l2, (α, β)�

④

Act⑤③

②

�

�

Ċ = {[0], [α], [β]}
C̄ = {(0,α), (α,β), (β,∞)}

The other two rules realize the time sequence from timed to immediate zones,
and back.

Figure 5.5 illustrates the zoned DTAs of two sample DTAs. Each location
in (c) and (d) report the location z ∈ Z, the state proposition Λ(l) that holds
in z = 〈l, c〉, and on the second line the DTA location and the clock zone. The
set of immediate and timed clock zones Ċ and C are also drawn. Immediate
and timed locations are drawn with a dotted and a solid border, respectively.
Final locations have a double border. The set of locations that cannot reach a

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 105

final location are grayed out.
The timed reachability of some locations (for instance z8 and z9 in (d))

represents an information that was not directly available in the DTA A. These
locations are irrelevant for the computation of the path probability, and can
be discarded, since they will never reach a final location. Observe also that the
correct construction of (d) does not build the edge z2

δ↪−→ z3, since the Boundary
edges ­ and ® in the DTA have priority and the process will take for sure one
of the two edges, since the logic condition of remaining in l0 in [α] is:

Φ1 ∧ ¬
(
Φ2 ∨ (Φ1 ∧ ¬Φ2)

)
= Φ1 ∧ Φ2 ∧ ¬(Φ1 ∧ ¬Φ2) =

= Φ1 ∧ Φ2 ∧ (¬Φ1 ∨ Φ2) =

= (Φ1 ∧ Φ2 ∧ ¬Φ1) ∨ (Φ1 ∧ Φ2 ∧ Φ2) =

= false ∨ false

which is never satisfied, for any given CTMC. Therefore, z3 is unreachable, and
also z4 and z5, which can be removed. This condition can be evaluated for any
χ edge that is the result of a Boundary edge, which removes those locations
that are logically unreachable.

Each location 〈l, c〉 of Fig. 5.5(c,d) is labeled with the state proposition ex-
pressions Λ(l). Since these expressions are taken directly from the DTA labeling
function Λ, they are are not part of the Z(A) definition.

Since Boundary edges may fire multiple times in boundary zones, it is more
easy to define the concept of tangible zoned DTA, where only timed locations are
kept, and boundary locations are collapsed with a transitive closure. The firing
of a sequence of DTA Boundary edges l0

γ1,], r1−−−−−→ l1
γ2,], r2−−−−−→ . . . γn,], rn−−−−−→ ln may

happen only if all the state proposition expressions Λ(l0),Λ(l1), . . . ,Λ(ln) are
satisfied by the destination CTMC state s′. A transitive closure of Boundary
firings is more easily expressed by moving the state proposition onto the edge.

Definition 33 (Tangible Zoned DTA T (A) of A). The tangible zoned DTA
T (A) of a DTA A is a tuple T (A) = 〈A, C, Z, Z0, ZF , init , x→〉 where:

• A = 〈Σ,Act , L, L0, LF ,Λ,→〉 is the DTA;

• C is the set of timed clock zones of A with form (α, β), α < β;

• Z ⊆ L× C is the finite set of timed locations;

• Z0 = L0 × {c̄0} is the set of initial locations;

• ZF = Z ∩ (LF × C) is the set of final locations;

• init : Z0 → B(Σ) is the initial location expression;

• x→ ⊆ (Z \ ZF) ×
(
2Act ∪]

)
× B(Σ) × {x} × Z is the finite edge relation,

where z xA, λ, r→ z′ means that 〈z, A, λ, r, z′〉 ∈ x→.

Let](ż) be the set of locations ż′ that can be reached from the immediate
location ż of the ZDTA Z(A) with a boundary edge ż],r↪−−→ ż′. The tangible
closure of the boundary edge relation from the tangible location z̄ ∈ Z is then
given with the rule:

z̄ ∈ Z, ∃ z̄ δ, r0↪−−−→ ż1
],r1↪−−→ . . .],rn↪−−−→ żn

χ↪−→ z̄′, n ≥ 0

λ = Λ(z̄′) ∧
(∧n

i=1 Λ(żi)
)
∧
(∧

ż′′∈](żn) ¬Λ(ż′′)
)
, z̄ x

], λ,∪n
i=0ri→ z̄′

TZ–CLOSURE-IMM

Similarly, a Markovian action of the CTMC triggers an Inner DTA edge that
may be followed by zero or more Boundary edges (when the clock x is reset to

106 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

zero), leading to:

z̄ ∈ Z, ∃ z̄ A, r0↪−−−→ ż1
],r1↪−−→ . . .],rn↪−−−→ żn

χ↪−→ z̄′, n ≥ 0

λ = Λ(z̄′) ∧
(∧n

i=1 Λ(żi)
)
∧
(∧

ż′′∈](żn) ¬Λ(ż′′)
)
, z̄ x

A, λ,∪n
i=0ri→ z̄′

TZ–CLOSURE-TM

A TZDTA edge z xA,λ, r→ z′ has a logical condition λ which is the logical
and of satisfying the destination location condition Λ(z′), all the intermediate
location conditions Λ(żi), 1 ≤ i ≤ n, and in the last immediate location every
other Boundary edge must not be satisfied. Given Z(A), the corresponding
T (A) is constructed by taking all the timed locations and Inner edges, and by
applying the closure rule on all Boundary edges. Also, there are neither δ nor χ
transitions in T (A), which has only moves from tangible to tangible locations.

Figure 5.6 Tangible zoned DTA of the two DTAs of Fig. 5.5.

init
z0 : �l0, (0, α)�

z2 : �l1, (α, β)�

z3 : �l2, (α, β)�

z4 : �l1, (β,∞)�

Act,Φ1

Act,Φ1∧¬Φ2

Φ1

δ(α) : Φ1∧
�
Φ2

�

δ(α) : Φ1∧
�
Φ1∧¬Φ2

�

δ(α) : Φ1∧¬
�
Φ2∨(Φ1∧¬Φ2)

�
z1 : �l0, (α, β)�

Act,Φ2

δ(β) : True

①

③

②
⑤

④

/②+③

cannot reach a
final location

not satisfiable

(b) Tangible zoned DTA of the Until[α,β] DTA.

Act
¬Φ
RESET

z1 : �l1, (0, α)�z2 : �l2, (0, α)� z4 : �l1, (α,∞)�

z3 : �l0, (α,∞)�z0 : �l0, (0, α)�

Act,Φ

Φ

Act,Φ

Act , ¬Φ
Act
Φ

Act , ¬Φ, RESET

Act ,Φ, RESET

δ(α) : True

δ(α) : True

① ①

③

⑤

②

④
init

(a) Tangible zoned DTA of the DTA with reset loop.

Figure 5.6 shows the tangible closure of the two Z(A) of Fig. 5.5. Boundary
edges are all collapsed into δ edges, which are labeled with a state proposition
expression that is the transitive closure of all the s.p.e. that must be satisfied to
follow that edge. The tangible ZDTA of the Until [t, t′] DTA is the most inter-
esting. Location z1 is unreachable because the δ edge has an empty condition.
Location z4 is irrelevant, since any path that reaches this location is always
rejected. The advantage of collapsing the state proposition expression of the
closure of Boundary edges is that it becomes clear wether an edge has an un-
satisfiable condition. Each edge is also labelled with the sequence of DTA edges
that represents (with circled numbers), and which DTA edges are not satified
by the transitive closure (written after a ’/’). The structure of Fig. 5.6(b) shows
that there are at most three tangible zones for an Until [α, β], while the other
two zones can be discarded. This allows to optimize the M×A cross product,
by removing irrelevant states in advance.

Figure 5.7 shows another DTA A with its tangible zoned DTA T (A). This
DTA shows many characteristics of the tangible closure. Initial edges may be
duplicated in T (A) with a complex conditions, due to Boundary edges enabled

5.1. PERFORMANCE MISMATCH OF CSL AND CSLTA 107

Figure 5.7 Another sample DTA with its tangible zoned DTA.

①
②

③
⑤

④

Φ Ψ

Φ∧¬Ψ

l0

l1

l2 l3
Φ∧Ψ

x<α; {a}
RESET

x=α; �
RESET

x=0; �

x>α; Act

x>0; {b}

x<α;
Act

⑥

z1 : �l1, (0, α)�

z2 : �l2, (0, α)�

z3 : �l3, (0, α)�

z5 : �l1, (α,∞)�

z4 : �l0, (α,∞)�

z6 : �l2, (α,∞)�

z7 : �l3, (α,∞)�

z0 : �l0, (0, α)�Φ∧¬Ψ

Φ∧Ψ

{b};Ψ {b};Ψ

Act ;Φ∧Ψ

{a};Φ∧Ψ
RESET

Act ;
Φ∧¬Ψ

δ(α) : Φ

δ(α) : Φ∧¬Ψ
RESET

δ(α) : False
RESET

δ(α) : False
RESET

δ(α) : Φ∧Ψ

{a}
Φ∧Ψ
RESET

init/②

init+②

①/②

①;② ④

⑤ ⑤

③

⑥/②

⑥;②

/⑥

cannot reach a
final location

not satisfiable

at x=0. Location z4 is discarded since it cannot reach a final location. Location
z5 is unreachable, since the closure condition on z1

], λ, r↪−−−−→ z5 is always false.

Component construction of the tangible state space

The structure of these tangible zoned DTAs shows how the path probability
flows from the initial locations to the final locations. This structure can be used
to improve the CSLTA model checking:

• The component structure can be identified directly on the L×C automa-
ton, instead of using the M×A process.

• The construction of the M×A process and its numerical solution (the
µD(wi) function of (4.44)) can be done one component at a time, instead
of keeping the entire M×A process in memory.

In fact, a DTA-based component method can be defined, where components
are sets of tangible locations in Z. Implicitly, each component contains all the
CTMC states that may reach that component in the cross product S × L× C.
How to define these set of states will be described afterwards. For now, we
assume that each location z ∈ Z has its entire CTMC state space S.

108 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

Let w ⊆ Z be a component. The minimal unit of computation is the aug-
mented set ŵ of w, which is:

ŵ
def
= w ∪

{
z ∈ Z | z reachable from w

with one or more z′ xA,∅→ z edges
} (5.1)

Similarly to the component method for MRPs, a sequence W of components
can be derived for T (A). Since each location z is tangible, it is possible to
derive:

• Qz the matrix of Markovian actions without resets that go from z = 〈l, c〉
into all the other locations z′ = 〈l′, c′〉 with c = c′.

• Q̄z the matrix of Markovian actions with the reset of the clock that go
from z = 〈l, c〉 into all the other locations z′ = 〈l′, c0〉 in the first clock
zone.

• ∆z the matrix of branching probabilities at the clock boundary.

Future works

A complete analysis and implementation of an on-the-fly CSLTA model checker
guided by a structural analysis of the DTA is ongoing, at the time of writ-
ing. This methodology allows for a set of optimizations that are not possible
if the model checker builds the M×A process directly. It becomes possible to
construct only portions of the state space, since some zone are unneeded, for
instance because the process will always be rejected once it enters a certain
zone. Also, an optimized allocation of the state vectors for each zone allows to
reduce the memory footprint of the model checker.

5.2 Tool support

The various experiments shown in this thesis has been computed with various
existing tools, like Prism [KNP09] or MRMC [Kat+11]. However, some limita-
tions of the implementations in these tools have created the necessity of building
two additional tools, that will be presented briefly in this section.

5.2.1 The MC4CSLTA tool

The work in [AD10d] shows that the forward model checking of CSLTA can also
be reduced to the solution of a DSPN in steady-state. Such DSPN is generated
as the parallel combination of the Petri net of the model, a Petri net for the
DTA and a DSPN of the clock. The resulting system is a DSPN with at most
one deterministic enabled at any time.

The tool MC4CSLTA is a CSLTA model checker. CTMCs and DTAs are
read as files, and are evaluated in memory. The P./λ(A) is implemented by
translating the model M and the DTA A into a single DSPN. The DSPN is
then evaluated numerically with an external DSPN tool. The tools DSPNex-
pressNG [Lin98] [CL93], TimeNet [Zim+00], SPNica [Ger00] and DSPN-Tool
[AD10b] are used as backends, to do the actual numerical computation.

Figure 5.8 shows a sample CTMC and DTA. The CTMC represents a classi-
cal working-degraded-failure system with three states. The system may go back

5.2. TOOL SUPPORT 109

Figure 5.8 A sample CTMC and DTA as input for the MC4CSLTA tool.

s0 s1 s2

w d f

a

a

b

b

c

1 < x < 3; Act; x

x < 1
{a}

x = 3; #
x > 3;{a}; x

x > 0
{b,c}

x < 1;{b}

x > 1
{a,c}

x < 1;{c}

l2

l1l0 l3w

w

d f

(a) The CTMC M. (b) The DTA A.

and forth from the working state to the degraded state. The system may also
break accidentally, going into a state of failure where it cannot recover. The
DTA reads a complex path of the modeled system.

When given as input at the MC4CSLTA tool, it generates the DSPN shown in
Figure 5.9 and computes the steady-state solution of reaching the ⊥ place. The
DSPN is made by different parts that are synchronized together. synchroniza-
tion arcs are drawn in grey. State proposition expressions and action sets are
also represented as subnets, to simplify the translation into a Petri net model.
The detailed description of the working structure of the tool is given in [AD10d].

5.2.2 The DSPN-Tool tool

The DSPN-Tool is a Petri net solver for DSPN (Deterministic Stochastic Petri
Nets). In a search for the best DSPN solver for solving the class of DSPN
generated by MC4CSLTA we tested many solvers and we found some complex
limitations which were difficult to resolve. The particular DSPN produced re-
quire certain characteristics of the solvers, that for certain tools lead to different,
and sometimes inappropriate, behaviors (described in [AD10d]). These charac-
teristics include: (1) Large number of immediate transitions; (2) Large number
of places and transitions (hundreds); (3) Multiple arcs: the Tangible Reacha-
bility Graph (TRG) can have more than one arc between any two states (4)
Self-loop preemption: firing of an exponential transition that disables and re-
enables a deterministic, coming back to the same state; (5) steady-state solver
for non-ergodic MRPs.

Table 5.3 DSPN tools features overview

SPNica TimeNET
DSPN

ExpressNG
DSPN
Tool

1) Hundreds of immediate transitions very slow - -
√

2) Hundreds of places very slow - -
√

3) TRG with multiple arcs
√

- -
√

4) TRG with preemptive self-loops
√

- -
√

5) Steady-state for non ergodic - - -
√

6) Fill-in avoidance
√ √

-
√

7) Exploitation of isomorphism - -
√ √

8) Data structures full sparse sparse sparse
9) Transient solution

√ √ √
-

Table 5.3 summarizes the results of the suitability analysis of SPNica, DSP-
NExpress and TimeNET for the problem at hand. The first 5 rows in the table

110 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

Figure 5.9 The DSPN constructed by the MC4CSLTA tool.

correspond to the characteristics listed above, row 6, 7, and 8 discriminate effi-
ciency of the tools: “fill-in avoidance” refers to the use of the so-called “iterative
solution” by German [Ger01], while “isomorphism” refers to the exploitation of
subordinated Markov chains which are isomorphic [Lin98]. The last row ac-
counts for the presence of a transient analysis solver: this is not required for our
model-checking purposes, but we have added it for completeness.

The main features implemented in DSPN-Tool are:

• Supports exponential, immediate and deterministic transitions (but not

5.2. TOOL SUPPORT 111

general transitions), with marking-dependent delays and guards.

• Supports an almost unlimited number of places and transitions, and is
explicitly optimized for huge nets (with sparse markings and various op-
timizations on the transition enabling detection).

• Implements steady-state and transient solution of CTMC, and steady state
solution of Markov Regenerative Processes (MRP).

• It supports non-ergodic MRPs, with preemption arcs, preemption loops
and branching probabilities.

• May write the (T)RG in Dot/Prism/Asmc formats.

• It may be used to convert GreatSPN net files into other Petri net file
formats (SPNica, Cosmos).

The numerical analysis has the implementation of the matrix-free steady-state
solution of MRP, the component method and the MRP preconditioner, described
in chapter 4. The tool also supports transient and steady-state solutions of
DTMCs and CTMCs. Steady state solutions are computed with a variety of
methods: Jacobi, Gauss-Seidei, GMRES, BiCG-Stab, CGS. Preconditioning can
be done with ILUTK, or with the input/output preconditioner,

Acknowledgements

DSPN-Tool and MC4CSLTA are the result of a work done under the National
Inter-University Consortium for Telecommunications (CNIT) research grant
#022825/2009, as a part of a CSLTA Stochastic Model Checker implementa-
tion under the CRUTIAL Research Project.

112 CHAPTER 5. IMPROVING THE MODEL CHECKING OF CSLTA

List of Publications

[AD10a] Elvio Gilberto Amparore and Susanna Donatelli. “A Component-
based Solution Method for Non-Ergodic Markov Regenerative Pro-
cesses”. In: EPEW. Vol. 6342. Lecture Notes in Computer Science.
Bertinoro, Italy: Springer, 2010, pp. 236–251.

[AD10b] Elvio Gilberto Amparore and Susanna Donatelli. “DSPN-Tool: a
new DSPN and GSPN solver for GreatSPN”. In: International
Conference on Quantitative Evaluation of Systems. Los Alamitos,
CA, USA: IEEE Computer Society, 2010, pp. 79–80.

[AD10c] Elvio Gilberto Amparore and Susanna Donatelli. “MC4CSLTA: an
efficient model checking tool for CSLTA”. In: International Con-
ference on Quantitative Evaluation of Systems. Los Alamitos, CA,
USA: IEEE Computer Society, 2010, pp. 153–154.

[AD10d] Elvio Gilberto Amparore and Susanna Donatelli. “Model Checking
CSLTA with Deterministic and Stochastic Petri Nets”. In: Proceed-
ings of the 2010 IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). DSN-PDS 2010. Chicago, USA:
IEEE Computer Society Press, 2010.

[AD11] Elvio Gilberto Amparore and Susanna Donatelli. “Revisiting the
Iterative Solution of Markov Regenerative Processes”. In: Numer-
ical Linear Algebra with Applications, Special Issue on Numerical
Solutions of Markov Chains 18 (2011), pp. 1067–1083.

[AD12a] Elvio Gilberto Amparore and Susanna Donatelli. “A component-
based solution for reducible Markov regenerative processes”. Paper
submitted at Performance Evaluation, Elsevier. 2012.

[AD12b] Elvio Gilberto Amparore and Susanna Donatelli. “Backward solu-
tion of Markov chains and Markov Renewal Processes: formaliza-
tion and applications”. In: Sixth International Workshop on Prac-
tical Applications of Stochastic Modelling (PASM12). 2012.

[Amp+11] Elvio Gilberto Amparore, Marco Beccuti, Susanna Donatelli, and
Giuliana Franceschinis. “Probe Automata for Passage Time Speci-
fication”. In: Proceedings of the 2011 Eighth International Confer-
ence on Quantitative Evaluation of SysTems. QEST 2011. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 101–110.

113

114 LIST OF PUBLICATIONS

Bibliography

[AC87] M. Ajmone Marsan and G. Chiola. “On Petri nets with deter-
ministic and exponentially distributed firing times”. In: Advances
in Petri Nets. Vol. 266/1987. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 1987, pp. 132–145.

[Auz11] Dr. Winfried Auzinger. General remarks on Preconditioning. http:
//http://www.asc.tuwien.ac.at/˜winfried/teaching/
106.079/SS2011/downloads/script-p-106-122.pdf.
[Online; accessed 28-Oct-2012]. 2011.

[Azi+00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Bray-
ton. “Model-checking continuous-time Markov chains”. In: ACM
Transactions on Computational Logic 1.1 (2000), pp. 162–170.

[Baa+09] Souheib Baarir, Marco Beccuti, Davide Cerotti, Massimiliano De
Pierro, Susanna Donatelli, and Giuliana Franceschinis. “The Great-
SPN tool: recent enhancements”. In: SIGMETRICS Performance
Evaluation Review 36.4 (2009), pp. 4–9.

[Bai+03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. “Model-Checking Algorithms for Continuous-Time
Markov Chains”. In: IEEE Transactions on Software Engineering
29.6 (2003), pp. 524–541.

[Bal+11] Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and Ni-
hal Pekergin. “HASL: An Expressive Language for Statistical Ver-
ification of Stochastic Models”. In: Proceedings of the 5th Interna-
tional Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS’11). Cachan, France, May 2011, pp. 306–
315.

[Bar+10] Benoit Barbot, Taolue Chen, Tingting Han, Joost-Pieter Katoen,
and Alexandru Mereacre. Efficient CTMC Model Checking of Lin-
ear Real-Time Objectives. Tech. rep. RWTH Aachen University,
2010.

[Ben02] Michele Benzi. “Preconditioning techniques for large linear sys-
tems: a survey”. In: Journal of Computational Physics 182.2 (2002),
pp. 418–477.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT Press, 2008, pp. I–XVII, 1–975.

115

http://http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-p-106-122.pdf
http://http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-p-106-122.pdf
http://http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-p-106-122.pdf

116 BIBLIOGRAPHY

[BM10] Junaid Babar and Andrew Miner. “Meddly: Multi-terminal and
Edge-Valued Decision Diagram LibrarY”. In: Quantitative Evalu-
ation of Systems, International Conference on. Los Alamitos, CA,
USA: IEEE Computer Society, 2010, pp. 195–196.

[Brá+11] Tomás Brázdil, Jan Krcál, Jan Kret́ınský, Antońın Kucera, and Vo-
jtech Rehák. “Measuring Performance of Continuous-Time Stochas-
tic Processes using Timed Automata”. In: CoRR abs/1101.4204
(2011).

[CD97] C. Chaouiya and Y. Dallery. “Petri Net Models of Pull Control
Systems for Assembly Manufacturing Systems”. In: the XVIII In-
ternational Conference on Applications and Theory of Petri Nets.
1997, p. 23.

[CG08] Allan Clark and Stephen Gilmore. “State-Aware Performance Anal-
ysis with eXtended Stochastic Probes”. In: Proceedings of the 5th
European Performance Engineering Workshop. EPEW ’08. Palma
de Mallorca, Spain: Springer-Verlag, 2008, pp. 125–140.

[Che+11a] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru
Mereacre. “Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications”. In: Logical Methods in
Computer Science (2011) 7.1 (2011).

[Che+11b] Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru
Mereacre. “Time-bounded verification of CTMCs against real-time
specifications”. In: Proceedings of the 9th international conference
on Formal modeling and analysis of timed systems. FORMATS’11.
Aalborg, Denmark: Springer-Verlag, 2011, pp. 26–42.

[CL06] Christos G. Cassandras and Stephane Lafortune. Introduction to
Discrete Event Systems. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.

[CL93] Gianfranco Ciardo and Christoph Lindemann. “Analysis of Deter-
ministic and Stochastic Petri Nets”. In: Performance Evaluation.
IEEE Computer Society, 1993, pp. 160–169.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. “Sat-
uration: An Efficient Iteration Strategy for Symbolic State-Space
Generation.” In: TACAS’01. 2001, pp. 328–342.

[Cox55] D. R. Cox. “The analysis of non-Markovian stochastic processes
by the inclusion of supplementary variables”. In: Proceedings of
the Cambridge Philosophical Society. Vol. 51. Proceedings of the
Cambridge Philosophical Society. July 1955, pp. 433–441.

[CT04] J. K. Cullum and M. Tuma. Matrix-free preconditioning using par-
tial matrix estimation. Tech. rep. Los Alamos National Laboratory,
2004.

[CV94] Tony F. Chan and Henk A. van der Vorst. “Approximate And In-
complete Factorizations”. In: ICASE/LARC interdisciplinary se-
ries in science and engineering. 1994, pp. 167–202.

BIBLIOGRAPHY 117

[DHK03] Nicholas J. Dingle, Peter G. Harrison, and William J. Knottenbelt.
“HYDRA: HYpergraph-based Distributed Response-time Analyser”.
In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2003). 2003, pp. 215–219.

[DHS09] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. “Model
Checking Timed and Stochastic Properties with CSLTA”. In: IEEE
Transactions on Software Engineering 35.2 (2009), pp. 224–240.

[EC82] E.Allen Emerson and Edmund M. Clarke. “Using branching time
temporal logic to synthesize synchronization skeletons”. In: Science
of Computer Programming 2.3 (1982), pp. 241 –266.

[EH86] E. Allen Emerson and Joseph Y. Halpern. ““Sometimes” and “Not
Never” revisited: on branching versus linear time temporal logic”.
In: J. ACM 33.1 (1986), pp. 151–178.

[ESG05] Jasper van den Eshof, Gerard L. G. Sleijpen, and Martin B. van Gi-
jzen. “Relaxation strategies for nested Krylov methods”. In: Jour-
nal of Computational and Applied Mathematics 177 (2 2005), pp. 347–
365.

[FG88] Bennett L. Fox and Peter W. Glynn. “Computing Poisson prob-
abilities”. In: Communications of the ACM 31.4 (1988), pp. 440–
445.

[Ger00] Reinhard German. Performance Analysis of Communication Sys-
tems with Non-Markovian Stochastic Petri Nets. New York, NY,
USA: John Wiley & Sons, Inc., 2000.

[Ger01] Reinhard German. “Iterative analysis of Markov regenerative mod-
els”. In: Performance Evaluation 44 (1-4 2001), pp. 51–72.

[Han91] Hans A. Hansson. “Time and probability in formal design of dis-
tributed systems”. Available as report DoCS 91/27. PhD thesis.
docs, 1991.

[HBA11] Richard A. Hayden, Jeremy T. Bradley, and Clark Allan. “Perfor-
mance specification and evaluation with Unified Stochastic Probes
and fluid analysis”. In: IEEE Transactions on Software Engineer-
ing (2011).

[Hor+11] Andras Horvath, Marco Paolieri, Lorenzo Ridi, and Enrico Vi-
cario. “Bounded model checking of generalized semi-Markov pro-
cesses using stochastic state classes”. In: International Conference
on Quantitative Evaluation of Systems. Los Alamitos, CA, USA:
IEEE Computer Society, 2011.

[Kat+01] Joost-Pieter Katoen, Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. “Faster and Symbolic CTMC Model Checking”. In:
Proceedings of the Joint International Workshop on Process Alge-
bra and Probabilistic Methods, Performance Modeling and Verifica-
tion. PAPM-PROBMIV ’01. London, UK: Springer-Verlag, 2001,
pp. 23–38.

[Kat+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger
Hermanns, and David N. Jansen. “The ins and outs of the proba-
bilistic model checker MRMC”. In: Performance Evaluation 68 (2
2011), pp. 90–104.

118 BIBLIOGRAPHY

[KNP09] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM: Probabilis-
tic Model Checking for Performance and Reliability Analysis”. In:
ACM SIGMETRICS Performance Evaluation Review 36.4 (2009),
pp. 40–45.

[Kul95] Vidyadhar G. Kulkarni. Modeling and analysis of stochastic sys-
tems. London, UK: Chapman & Hall Ltd., 1995.

[Kun06] Matthias Kuntz. “Symbolic semantics and verification of stochastic
process algebras”. PhD thesis. 2006, pp. 1–241.

[Lin98] Christoph Lindemann. Performance Modelling with Deterministic
and Stochastic Petri Nets. New York, NY, USA: John Wiley &
Sons, Inc., 1998.

[MH06] Jose M. Martinez and Boudewijn R. Haverkort. “CSL Model Check-
ing of Deterministic and Stochastic Petri Nets”. In: Measuring,
Modelling and Evaluation of Computer and Communication Sys-
tems (MMB), 2006 13th GI/ITG Conference (2006), pp. 1 –18.

[ML78] Cleve Moler and Charles Van Loan. “Nineteen Dubious Ways to
Compute the Exponential of a Matrix”. In: SIAM Review 20 (1978),
pp. 801–836.

[OIS98] W. Douglas Obal, II, and William H. Sanders. State-Space Support
for Path-Based Reward Variables. 1998.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: FOCS. IEEE
Computer Society, 1977, pp. 46–57.

[Pyk59] Ronald Pyke. Markov Renewal Processes with Finitely Many States.
New York: Columbia University, 1959.

[Rei66] J. K. Reid. “A Method for Finding the Optimum Successive Over-
Relaxation Parameter”. In: (1966).

[Saa94] Yousef Saad. “ILUT: A dual threshold incomplete LU factoriza-
tion”. In: Numerical Linear Algebra with Applications 1.4 (1994),
pp. 387–402.

[Saa95] Yousef Saad. “Preconditioned Krylov subspace methods for the nu-
merical solution of Markov chains”. In: Computations with Markov
chains. Kluwer Academic Publishers, 1995, pp. 49–64.

[Son89] Peter Sonneveld. “CGS, a fast Lanczos-type solver for nonsymmet-
ric linear systems”. In: SIAM Journal on Scientific and Statistical
Computing 10.1 (1989), pp. 36–52.

[SS86] Youcef Saad and Martin H Schultz. “GMRES: a generalized min-
imal residual algorithm for solving nonsymmetric linear systems”.
In: SIAM Journal on Scientific and Statistical Computing 7.3 (1986),
pp. 856–869.

[Ste94] William J. Stewart. Introduction to the numerical solution of Markov
chains. Princeton University Press, 1994.

[Tar71] Robert Tarjan. “Depth-first search and linear graph algorithms”.
In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory (SWAT 1971). Washington, DC, USA: IEEE
Computer Society, 1971, pp. 114–121.

BIBLIOGRAPHY 119

[Tri02] Kishor S. Trivedi. Probability and Statistics with Reliability, Queu-
ing, and Computer Science Applications. 605 Third Avenue, New
York, USA: John Wiley and Sons, Ltd., 2002.

[TRS87] Kishor S. Trivedi, Andrew L. Reibman, and Roger Smith. “Tran-
sient Analysis of Markov and Markov Reward Models”. In: Com-
puter Performance and Reliability ’87. 1987, pp. 535–545.

[Var85] Moshe Y. Vardi. “Automatic verification of probabilistic concurrent
finite state programs”. In: Proceedings of the 26th Annual Sympo-
sium on Foundations of Computer Science. SFCS ’85. Washington,
DC, USA: IEEE Computer Society, 1985, pp. 327–338.

[Vor92] H. A. van der Vorst. “BI-CGSTAB: a fast and smoothly converg-
ing variant of BI-CG for the solution of nonsymmetric linear sys-
tems”. In: SIAM Journal on Scientific and Statistical Computing
13.2 (1992), pp. 631–644.

[VV93] H. A. Van der Vorst and C. Vuik. “The superlinear convergence
behaviour of GMRES”. In: J. Comput. Appl. Math. 48.3 (1993),
pp. 327–341.

[Zha+12] Lijun Zhang, David N. Jansen, Flemming Nielson, and Holger Her-
manns. “Efficient CSL Model Checking Using Stratification”. In:
Logical Methods in Computer Science (2012) 8 (2 2012). eprint:
arXiv/1104.4983.

[Zim+00] Armin Zimmermann, Jörn Freiheit, Reinhard German, and Günter
Hommel. “Petri Net Modelling and Performability Evaluation with
TimeNET 3.0”. In: TOOLS ’00: Proceedings of the 11th Inter-
national Conference on Computer Performance Evaluation: Mod-
elling Techniques and Tools. London, UK: Springer-Verlag, 2000,
pp. 188–202.

arXiv/1104.4983

	Introduction and motivations
	Subject of the thesis
	Contribution of the thesis
	Outline of the thesis

	Measuring properties of Markov chains
	Stochastic processes
	Discrete time Markov chains
	Discrete-time Markov Transition System
	Forward DTMC probabilities
	Backward DTMC probabilities
	Stationary behavior of DTMCs
	Reducible DTMCs

	Continuous-time Markov chains
	Continuous-time Markov Transition System
	Forward CTMC probabilities
	Backward CTMC probabilities
	Stationary behavior of CTMCs
	Reducible CTMCs

	Markov Regenerative Processes
	Linear representation of a MRP
	Markov Regenerative Transition System
	The embedded DTMC
	Stationary behavior of MRPs

	Measuring indexes on Markov Chains
	Reward-based measure definitions

	Measuring path-based properties
	Path probabilities on the measurable space
	Path probabilities in discrete-time
	Probabilistic Computation Tree Logic

	Path probabilities in continuous-time
	Continuous Stochastic Logic
	Computation of CSL formulas

	Specifying path properties with automata
	CSL with Timed Automata
	Computation of CSLTA formulas

	Specifying properties with Probes
	Probe Automata
	Computation of the passage time

	Numerical computation of measures
	Transient solution methods
	Steady-state solution methods
	Preconditioning linear systems
	Numerical solution of linear systems
	Matrix-free solution of MRPs

	Preconditioning MRP solutions
	Construction of the approximate P"0365P of the EMC P.
	Preconditioning strategies
	Experimental assessment of the MRP preconditioner

	Reducible MRPs: the component method
	Explicit with single transient set
	Implicit with single transient set
	Explicit and component-based
	Implicit and component-based
	Backward component method
	Experimental assessment of the component method

	Improving the Model Checking of CSLTA
	Performance mismatch of CSL and CSLTA
	CSLTA with the component method
	Experimental comparison of CSL and CSLTA
	On-the-fly state space construction

	Tool support
	The MC4CSLTA tool
	The DSPN-Tool tool

	List of Publications
	Bibliography

