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Chapter 1

Introduction

The implementation of agents with a high degree of autonomy is of a paramount
importance in the modern society. Autonomy is indeed desirable in many fields
as service robotics, gaming, web applications, space missions, virtual assistants
and so forth. In particular, the capability of automated planning is key and
even mandatory when the agent is in charge to perform goal-directed tasks.

The automated planning is a traditional branch of the Artificial Intelligence
and has been studied since the introduction of STRIPS ([41]) where the propo-
sitional (nowadays called classical) planning has been introduced. Planning
concerns the reasoning ability of finding a course of actions to achieve a set of
goal conditions starting from a particular description of the state.

However, while for deterministic and predictable environments (e.g. mainly
puzzle and toy problems) high levels of autonomy are achievable still with the
classical setting, acting in the real world may be a difficult task for an agent
either software or robotic. Real-world scenarios, in fact, are in general weakly
predictable and highly dynamic, and the agent may have just a partial knowledge
of the environment where it is operating. For instance, a planetary rover has
to operate in a hazardous and not fully known environment where a number of
unpredictable events may occur.

This means that unexpected contingencies may arise at any step of the exe-
cution and some assumption made at planning time may turn out to be wrong.
It is not thus surprising that the planning community has recently focused on
the problem of robust execution in real-world domains.

A first methodology to cope with the problem consists in anticipating, at
planning time, all the possible contingencies that might occur during the actual
execution of the plan. The result of the planning phase is therefore a conditional
plan [26], i.e. a plan where alternative courses of actions are possible depending
on certain conditions of the environment. During the execution phase, the agent
guided by its sensing actions is able to select a feasible branch of its plan that

13



14 CHAPTER 1. INTRODUCTION

leads to the goal. A similar methodology has been proposed in [27]; in this
case, conditional plans are built to guarantee that the agent satisfies temporal
constraints on the achievement of its goals.

These approaches are successful when it is possible to anticipate all the con-
tingencies at planning time (i.e., off-line). When contingencies are not fully
predictable or the agent is prevented to have complete knowledge of the envi-
ronment, a continual revision of the plan is necessary. For this reason it is going
to become more and more widespread the adoption of the continual planning
paradigm. Initially introduced in [34], and adopted (de facto) by most of the
architecture for autonomy that have been developed (e.g. Alami’s architecture
[5], GOAC [19], CLARATY [76], STANLEY [96]) a continual planning agent can
interleave planning and execution all along the task assigned. Instead of antici-
pating the contingencies at planning time, the agent can exploit the knowledge
acquired during the execution and face the contingencies once they are actually
detected1.

Many works [97, 60, 2, 44] have recently proposed to enhance robust plan
execution via a continual revision of the plan. Basically, these works suggest
to stop the plan execution as soon as some unexpected situation is encountered
attempting then to repair the broken plan either via replanning from scratch or
via plan adaptation. Note that, plan adaptation mechanisms usually substitute
a portion of the original plan with a new plan segment synthesized on-the-
fly to overcome erroneous situations. The idea is that the new plan segment
overcomes the wrong conditions that have stopped the previous execution, so
that the agent can resume the execution of what remains of the original plan.

The detection of the inconsistency is managed by simulating the impact of
the plan on the state of the system, while the repair step assumes that reusing
part of the old solution is more convenient than replanning from scratch. Even
if the adaptation process is considered hard as much as planning from first
principle ([75]), these approaches demonstrated that the repair can work very
well in practice.

In this thesis we address the robust plan execution from a different perspec-
tive: to improve as much as possible the robustness of the execution we propose
a multi-level strategy which extends the replanning with a reconfiguration mech-
anism. The result is a system that keeps efficiency and reactivity in a unified
architecture.

We start from the observation that real-world scenarios include both reusable
and consumable resources. Thus, a plan has not only to achieve a set of goals,
but it has also to conform to strict constraints on the amount of resources to
be used by the agent. For this reason, it is necessary to explicitly model the

1The problem of robust plan execution is still harder when the observability is not complete.
In those contexts a step of plan diagnosis is mandatory for the effectiveness of the agent. For
details see [29],[87],[62],[54],[55]
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(expected) profile of resource consumption during the execution of any action.
We thus model consumable resources as numeric fluents, which are explicitly
mentioned in the preconditions and effects of the action templates, and in the
requirements of the task.

We also observe that in many real-world domains it is possible to identify
actions performing the same task (i.e., obtaining the same effects), but requiring
different configurations of the agent. These actions share the same qualitative
objectives, while they differ in the way they are performed. Typically, different
configurations have different resource profiles. We therefore propose to group
these subsets of similar actions by introducing the notion of multi-modality ac-
tion (MMA). An MMA represents in a compact form alternative ways, or alter-
native execution modalities to accomplish a task. In planning terms we would
say that all the execution modalities of a given MMA reach the same set of
propositional effects. However, since they are characterized by specific resource
consumption profiles, they differ in their numeric preconditions and effects.

MMA are organized and instantiated in Multi Modality Plans (MMP) and
as we will see such plans can be computed as a result of a generic Multi Modal-
ity Planning Problem. An MMP in the context of the plan execution can be
managed by the Dynamic Modality Allocation Problem (DMAP), which in turn
can have a computational representation in the Constraint Satisfaction Problem
formalism (CSP). The CSP mechanism reached a high degree of maturity and
has been recently applied in the context of planning. Nevertheless the current
conversion are deeply investigated in the propositional fragment ([36],[59]). In
this thesis we aim at specializing the translation for the numeric context without
making any assumption on the particular solver to be used.

Relying on the notion of the MMPP and DMAP the thesis presents FLEX-
RR (FLexible EXecution via Reconfiguration and Replanning), which is an ex-
tension of the on-line approaches based on replanning. The approach is inspired
to the continual planning paradigm [15, 34] since it allows the agent to interleave
(re)planning and execution.

The idea is that, while replanning is in some cases unavoidable, it may
be an “excessive” reaction in many situations. FLEX-RR tries to limit the
replanner’s intervention by singling out those situations which could efficiently
be resolved via (a simpler) reconfiguration phase. On the other hand, when plan
reconfiguration fails or is not sufficient, FLEX-RR is able to start a replanning
task.

FLEX-RR has many advantages. First of all, the reconfiguration is beneficial
from the computational point of view, since reconfiguring action modalities is
not as expensive as synthesizing a new plan from scratch. Secondly, since FLEX-
RR encompasses both reconfiguration and replanning, it can deal with those
situations solvable via replanning but not via reconfiguration. Finally, via the
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reconfiguration of action modalities we are able to keep the repaired plan highly
stable. This is important when the agent is situated in a multi-agent setting.

Based on the notion of the MMA, the thesis proposes a further level of
control, namely the Active Supervisor (ActS). The main objective of ActS is
to avoid (at least in some cases) the occurrence of action failures during the
same action execution, improving as a consequence the robustness of the whole
plan execution. More precisely, to avoid failures ActS aims at assuring that
(i) the action execution does not prevent the safety of the system, (ii) the
action achieves the expected effects (including the way in which resources are
employed). For these reasons, ACTS plays the role of a short term supervisor,
while FLEX-RR a long term one.

In order to improve the reasoning about the numeric fluents the plan has
to deal with, the thesis proposes the notion of Numeric Kernel, which is a
generalization of the propositional kernel presented for the STRIPS language
[41]. Analogously to the propositional case, the Numeric Kernel provides a way
for focusing the agent attention only on those information which are actually
relevant for the planning problem at hand.

The Numeric Kernel will be exploited to provide an heuristic guidance for
ActS by means of the safe execution modalities notion. The introduction of
such a notion allows to guide the reactive mechanism of ActS to prefer only
configurations of action parameters that do not compromise the feasibility of the
plan. As a consequence the cooperation between ActS and FLEX-RR becomes
more effective.

The Numeric Kernel has been adopted also for two other enhancements of
FLEX-RR: (i) the monitoring task for the detection of inconsistencies, (ii) the
replanning mechanism with a more focused strategy.

The effectiveness and the innovations of the system will be made evident via
a number of experiments that will be performed on three planning domains: the
Planetary Rover domain, the ZenoTravel domain and the DriverLog domain.
The experiments are aimed at evaluating:

• The competence of (various configuration of) FLEX-RR in handling un-
expected contingencies.

• The competence of ActS in anticipating action failures.

• The efficiency in the tasks assigned to FLEX-RR. Particular emphasis will
be given to the reconfiguration mechanism.

• The efficiency and the quality of plans produced by FLEX-RR with the
replanning enhanchement provided by the numeric kernel.

The thesis has been partially developed within STEPS (Sistemi e TEcnologie
Per lo Spazio), which was a three years long R&D project aimed at investigating



1.1. OUTLINE OF THE THESIS 17

methodologies for the next Space Missions. The project involved a number of
Industrial and Academic organizations and was leaded by Thales Alenia Space.
The space exploration scenario allowed us to see concretely some of the issues
regarding the robust execution and the autonomy in general.

1.1 Outline of the Thesis

The thesis is organized as follows:

• Chapter 2 reports the state of the art in the context of Robust Execution.
The discussion reports three different perspective on the topic: Architec-
ture for Autonomous Systems and the Continual Planning Agent, Robust
Plan Execution, and Robust Schedule Execution.

• Chapter 3 introduces the basic formal framework of reference for the the-
sis. It proposes the model of Multi Modality Actions (MMA) as a means of
describing actions which may be executed with different execution modal-
ities.

• Chapter 4 formally introduces the Multi Modality Plans as the result of the
Multi Modality Planning Problem and the Dynamic Modality Allocation
Problem. Moreover it reports some interesting properties of the given
formulations and a new notion of stability adapted for the Multi Modality
Plans.

• Chapter 5 reports the Constraint Satisfaction Problem translation mecha-
nism adopted for a computational representation of the Dynamic Modality
Allocation Problem.

• Chapter 6 describes the FLEX-RR architecture and the algorithms used
to supervise the Multi Modality Action Plans presented in Chapter 4.

• Chapter 7 reports and discusses the experimental results obtained by using
different configurations of FLEX-RR.

• Chapter 8 introduces the Numeric Kernel notion as a tool for reasoning
about plans involving numeric fluents. Moreover it discusses the benefit
of the Numeric Kernel within the overall FLEX-RR-ACTS architecture.

• Chapter 9 describes the Action Supervision method employed for recon-
figuring durative action on the fly, meaning while the action is still in
execution.
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Chapter 2

State of the Art on Robust
Execution

Our approach proposes a methodology for the robust execution of a plan in
real-world-like domains. In particular, the plan execution has to deal with the
presence of consumable and continuous resources as time, space, energy and so
forth.

In general, the actual plan execution may be threatened by the occurrence
of unexpected contingencies and anomalies which may both prevent the agent
to achieve the goals and violate the constraints on the resources. The thesis
focuses hence on the study of techniques and strategies to be provided to an
agent for the purpose of making the execution of its plan of actions as tolerant
as possible.

In literature, the robust execution of tasks has been tackled by different
perspectives. There is a variety of school of thought and a unified point of
view explaining how the issue should be dealt did not arise yet. It is quite
common to measure the effectiveness of an agent in performing a task as her
ability in making predictions about the environment in which she is operating.
Nevertheless, describing the evolution of environment is difficult to be modeled
and even if a high degree of accuracy is achieved these models become easily
intractable from the computation point of view. Therefore achieving robustness
is a very tricky task. This Chapter aims at providing an interpretation of
the different approaches to the problem of robust execution by breaking the
discussion into three macro research areas.

Architectures for Autonomous Systems and Continual Planning.
As a first point, we will look at the problem from a high level perspective. There
is indeed a quite big amount of research in designing architectures and agents
that are supposed to accomplish complex tasks in real world environments.
The main purpose is to clarify the interdependences among the planning, the
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execution and the sensing phases. The prevailing approach that will arise from
this field is crucial for the comprehension of the spirit behind our proposal, and
in particular in the multi-layered strategy of FLEX-RR and ACTS (see Chapter
6 and 9).

Robust Plan Execution. The second area deals with the problem of ro-
bust execution from a perspective close to the automated planning field. The
robust execution of such plans has to guarantee that the causal structure is pre-
served and that the goals continue to be achievable all along the plan execution,
that is, the plan has to be valid till the end of its execution.

Robust Schedule Execution. The third area of research sees the plan as
a set of temporized durative events. Events can be in temporal relations among
each other therefore the robustness is guaranteed once such relations remain
valid during the plan execution. The temporal reasoning and hence Simple
Temporal Network (STN) and/or Disjunctive Temporal Network (DTN) are
the more widespread models at the basis of this class of approaches.

2.1 Architectures for Autonomous Systems and
Continual Planning

The use of the agent paradigm (as for instance the BDI architectures [83])
is a widespread approach for the implementation and the development of au-
tonomous systems.

In this perspective, among researchers of AI it is common that in order
to develop an intelligent behavior, one of the key element in an agent is the
ability of deliberation. That is, the agent should have the inference capability
to reason on a situation and achieve a set of decisions that can be used to satisfy
its wishes (or goals). Moreover, since the environment where the agent carries
on its activities can be dynamic, some sort of reactive capabilities are necessary
in order to not compromise the agent safety.

It is quite common that deliberation at an adequate level of abstraction can
be performed by symbolic reasoning. However, the implementation of agents
embodying real world applications (robotics, web-agents, autonomonic comput-
ing and so forth) requires a deeper attention since the process interconnecting
the representation/reasoning level and the actual real world representation is
quite complex. As indeed discussed in [100], on one hand the reasoning phase
has to be able to efficiently produce decisions before they become useless; on the
other hand, the process of transduction of the actual world in symbolic struc-
tures has to be as fast as necessary to be useful for the successive reasoning
phase.

In a nutshell, in order to exhibit a real competence in solving tasks (and
hence in order to being effectively intelligent), an agent based system should be
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able to close the sense and reasoning loop in a reasonable amount of time and
in the meanwhile reacting when necessary.

Due to skepticism on the efficiency of pure deliberative systems based on
symbolic reasoning (e.g. STRIPS[41]), the problem of combining the delibera-
tion and reaction has been initially solved by simply ignoring the deliberation
capability and shifting towards pragmatic and simplistic solutions ([100]).

The main idea is that a purely reactive agent could be sufficient (or anyway
necessary) to develop autonomous application. A reactive agent has a set of
compiled rules encoding the complete and sufficient knowledge for acting. That
is, the action selection is just a triggering process which relates the perception
and the execution. In this perspective the agent is not requested to perform any
form of complex reasoning for understanding which action should be selected,
rather its behavior is a direct consequence of the surrounding environment. The
intelligence of the agent in this case comes directly from the interaction with the
environment. Example of such approaches are summarized by the subsumption
architecture ([17]) and by [4].

To overcome the quite evident limitations of a purely reactive system (e.g.
the lack of goal directed behaviors), one of the most influential and recent trend
is the adoption of hybrid architectures involving both high level reasoning (de-
liberation) and fast reactive behaviors. Despite this perspective increases the
difficulty in the implementation of the system mainly because of many different
levels (and kinds) of representation, it turned out to be a promising approach;
in fact many hybrid architectures have been employed for successful agent based
applications, recently ([96], [76], [35] and [69] ).

For this reason, in the next Section we will look at an example of a three
tiered architecture. This model of agent well summarizes the basic schema of
an hybrid approach; moreover it is becoming a standard de facto in a number
of real world agent based applications.

Finally in Section 2.1.2, we report a Continual Planning approach developed
for an agent acting in a context with limited knowledge of the environment. The
Continual Planning is a quite young research area of the AI planning community
which is gaining attention in the recent years. Since the main objective is to
study the integration of the planning and the execution in a unified vision, it
presents many analogies with the philosophy behind agent architectures.

2.1.1 Multi-layered Architectures

Most of hybrid architecture can be summarized by the architecture proposed
by Alami ([5]) and the 3T architecture ([12]). The underlying idea is to encode
the capabilities of the agent in a hierarchical way. Each layer reasons to a
specific level of abstraction providing actions and receiving outcomes from the
level below it, until actions and sensing in the real world are reached.
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Figure 2.1: The Architecture for Autonomy presented by Alami et al. in [5]
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More precisely (as reported by Figure 2.1), the most of the approaches sum-
marizes these levels into three main macro layers, i.e.:

• Decisional level (Top of the Figure)

• Executive level (Middle of the Figure)

• Functional level (Bottom of the Figure)

The first one deals with deliberative and reactive abilities the agent should
have producing plans and overseeing their execution. It may encompass more
levels of abstractions for the same problem, each one consisting of a Planner
and a Supervisor where the first provides the latter with the plan of actions
to be executed. The Supervisor handles the execution capturing events and
then allows the agent to exhibit reactive behaviors. Each couple of Planner
and Supervisor produces a sequence of actions that becomes the sequence of
problems handled by another couple assigned to an immediate lower abstraction
of the problem. In other words the Supervisor sends its actions to the level
immediately below, which in turns plans activities to achieve such actions. The
delegation mechanism terminates when the action to be accomplished can be
managed by the Functional Level.

The Functional Level (FL) consists of a certain number of modules and each
of them is assigned to the resolution of a given task (e.g., Path Following, Vision,
Manipulation and so forth). The FL interacts with the physical hardware (both
for sensing and for acting) of the agent affording tasks (more or less complex)
that are the basic actions taken into account by the Decisional level. Each
task performed by the FL is pre-programmed and it may exploit one or more
interacting modules. The FL is supposed to not have symbolic decision-making
capabilities, rather it works at a lower level by interpreting signals and assuring
competence in performing specific actions.

The Executive Level (EL) is defined as the pivot interface assigned to ful-
fill the gap between the symbolical/declarative and the numerical/procedural
representation of the DL and FL respectively. Decisional level leads plans that
manage high abstraction of the problem, for this reason it requires lower sensing
commands frequency, differently by the Functional level, which has to constantly
update information in order to handle strict control of low level-commands. Is-
sues arising from difference in data flow rate between DL and FL are up to the
Executive level, which is responsible of allowing, on one hand, the DL to obtain
services from the FL and on the other hand, the FL to report results to the DL.

There are a number of works inspired to the organization reported above.
For example in the space application the CLARATY architecture ([76]) has
been used as framework for the implementation of the control mechanisms of
the NASA mobile robots, which have been sent on Mars, i.e. Spirit and Oppor-
tunity. In CLARATY the functional layer encompasses the low level locomotion
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control and the main perception capabilities; the executive layer is implemented
by using the PLEXIL environment ([98]), whereas the decisional capability relies
on the EUROPA system ([11]). Another example of successful applications of
the multi tiered schema is the navigation control system developed by Thrun et
al. ([96]), which won the 2005 edition of the DARPA competition (http://
archive.darpa.mil/grandchallenge05/gcorg/index.html). In particular,
in such a system the lower level is in charge of interpreting the information pro-
vided by the variety of cameras and sensors which equips a car (sensor interface
layer); immediately on the top, the Perception layer transforms the information
into a set of data representing the state of the system (position, trim, velocity
and so forth). Such information are used by the planning and control layer
which is in charge of computing and following a path. The architecture ends
with user interfaces which allow the interaction between the human and the
system.

It is worth noting that the proposal of such an architecture largely con-
tributed in identifying the different roles played by agents that have to be as
independent as possible. No concern however is highlighted regarding agents
that may interact each other and it seems very hard to disassemble this archi-
tecture to allow cooperative tasks. Some solutions are reported in InterRRaP
([68]) and in [91]. In particular, Sellner et al. ([91]) presents an approach for
a multi robot system where each robot is modeled as a common three tiered
architecture; the cooperation is allowed among the different layers of the ar-
chitecture. For instance the deliberative control of a robot A can provide the
decisional capability for the functional layer of a robot B, which in turn supplies
the necessary information about its vision of the environment to A. The idea
is to optimize the overall computational power and share the knowledge of the
environment by merging the pieces of information coming from robots different
points of view.

2.1.2 A Continual Planning Agent

Multi tiered architectures for autonomy seem the most viable solution in the
implementation of real world agents. However, from a theoretical point of view
it is difficult to establish a clear semantic for the operations and the tasks
to be executed. The problem arises from the difficulty to figure out an unified
reasoning mechanism behind the multiplicity of modules involved in such layered
structures. As a demonstration of this, most of the works reported above focuses
on ad-hoc (and mainly robotic) solutions.

For the purpose of identifying a domain independent methodology, the con-
tinual planning paradigm has been proposed ([34]). This is an approach for the
implementation of agents devoted to perform tasks in the real world environ-
ments, where a continual revision of the plan is necessary in order to account the

http://archive.darpa.mil/grandchallenge05/gcorg/index.html
http://archive.darpa.mil/grandchallenge05/gcorg/index.html
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multiple and unpredictable contingencies that may occur. To this end, a contin-
ual planning agent is allowed to interleave planning and execution all along the
task assigned. Precisely, the agent is supposed to have two main capabilities1.
That is:

• the agent should be able to understand when interrupt or revise the exe-
cution (for example because the plan is not valid anymore);

• the agent should be able to decide how to recover from the impasse.

Of course, both steps have to be executed in a timely fashion to be useful.
Instead of relying on a pre-packaged plan, a naive approach could be to

continuously plan the next action to be executed based on the upcoming obser-
vations.

However planning is hard; indeed the only classical fragment of the planning
is PSPACE-complete [18]; thus some kind of approximation is desirable and
even mandatory when the methodology applies for real world agents.

The first improvement is to re-plan only when the plan actually becomes
invalid (the cautious agent). Even if the world in which the plan is going to
be executed is rather dynamic, only certain facts are actually essential for the
validity of the plan. The idea is to keep trace of the action models belonging
to the plan in order to obtain the necessary conditions to infer whether a given
state reaches the goal through the plan at hand. The first approach in this
perspective has been proposed by [40], where the concept of kernel has been
introduced.

The construction of the kernel relies on the causal link structure of the plan.
A causal link is a particular relation within a plan, which connects two actions A
and B whenever A has been inserted in the plan to provide a service for satisfying
a precondition of B. That is eff(A) contains an atom q which is involved in the
pre(B). The kernel set can be built by following the causal links of the plan
in a backward fashion. A kernel will contain not only the precondition of the
next action to execute, but also those propositions involved in the causal links
starting from previous actions and that still are required for the execution of
future actions (even after the next action).

The task does not present decisional point so it can be performed by a simple
polynomial function2.

In Section 2.2 we will see how the kernel can be employed in the context of
repair, too.

As a recent work and example of continual planning system, [15] introduces
an agent based system for dealing with incomplete information.

1When the agent operates under partial observability, also some form of diagnosis is re-
quested; for details see [29],[87],[62],[54],[55]

2In Chapter 8 we will show how this kernel can be computed, even in presence of continuous
and consumable resources
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The approach proposes an agent which controls and executes a partially
specified plan of actions. Beyond the traditional actions, such a plan involves
also assertion actions. More precisely, assertion actions are specific rules added
to the action model. Their contribution is twofold: on one hand they allow
the planning phase by asserting facts not known in advance, and on the other
hand they allow the execution phase to switch in planning modality when such
important information (described in their preconditions) become available. The
switching back to the planning phase allows to substitute such action with a
concrete piece of the plan.

The absence of information is dealt explicitly in the model but instead of
constructing conditional or conformant plans, the agent assumes that such in-
formation will be available at some time. So it plans with a limited amount
of knowledge and re-plans once this necessary pieces of information becomes
available.

2.2 Robust Plan Execution

In this Section we report the state of the art in the field of the robust execution
of plans. We firstly introduce what a plan actually is; afterwards, we describe
some relevant works that have been proposed to address the issues arising from
the plan execution.

2.2.1 Introduction

Traditionally in the Artificial Intelligence community (see [89]), a plan is a
(partially) ordered set of actions, given as result of a decision making activity
performed by a planner (which may be a human or an artificial agent or a mix
of both). In the classical (and generative3) setting, given a planning problem P
that defines an initial status and a goal, a solution for P is a plan leading the
initial state into a state where a set of goal conditions is satisfied. The planner
can take actions from a universe of available actions (the domain). There, each
action is defined by a set of preconditions and a set of effects. The former asserts
under which conditions the action can be considered applicable in a given state;
whereas the latter defines the transition in the state once the action is executed.

To make feasible the planning phase (in the classical setting), a given a
number of assumptions is done, which typically impose the actions to be atomic,
the agent to be the only actor in the world and the action to have a deterministic
set of effects.

For example, a classical planner does not take into account that during
the plan execution the agent could be in the position of facing undesired action

3In opposition to the generative planning there are actually planning based on hierarchical
task network (HTN) representation. For an example of that see [74]
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effects (she takes the wrong road) or exogenous events (the road may be actually
interrupted). Such contingencies may indeed threat the plan consistency. For
this reason, to make the execution robust in facing such situations, two strategies
are possible:

1. Anticipate the multiplicity of contingencies at planning time by equip-
ping the agent with an explicit representation of the uncertainty within
both the model of the actions and the initial state (Proactive behavior ::
Off-line reasoning).

2. React and Replan at execution time when necessary by allowing the
agent to observe and monitor the environment (Reactive behavior :: On-
line reasoning).

While the former is applicable when the number of contingencies to consider
is limited and enumerable (bounded undeterminacy), the latter can be exploited
also in context where the agent has no chance to anticipate all the possible con-
tingencies, as it has no sufficient prior knowledge (unbounded undeterminacy).

It is thus evident that in domains where both approaches can be applied
there is an intrinsic trade-off between the two strategies. Indeed, under the
assumption that one can effectively have a reliable and consistent prediction, an
agent employing the former strategy will exhibit a very conservative behavior
that in some situation may bring it to not find any possible course of actions.
On the other hand, an agent ignoring potential failure situations from the very
beginning could be trapped in dead-end situations which could arise when the
unexpected situation is actually unrecoverable.

For this reason, there is no best solution and the trade-off often depends
both on the domain and on the problem at hand. In the next two subsections
we will review both points of view.

2.2.2 Off-line: Generating Robust Plans

In this Section we analyze how an agent can generate robust plans at planning
time.

In the off-line phase the aim of the planner is to find robust plans by releasing
part of the assumptions that typically are made in a classical setting. More
precisely the assumptions refers to the deterministic action effects and complete
observability of the world. The absence of such assumptions is supposed to
guarantee that the execution is intrinsically tolerant to the several situations
that can be encountered all along the course of actions.

We can distinguish two types of approach, which deal with uncertainty at
planning time. The first deals with uncertainty in the more explicit sense; firstly
the world state is represented as a set of possible worlds and secondly action
effects are allowed to appear in a disjunctive way.
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The second approach handles uncertainty in a probabilistic way. Here both
the state and the action effects are expressed by particular probability distribu-
tions over the domain of the variables involved.

As far as it is concerned by the first family of approaches a plan is searched
through the belief states, since at each step of the execution the agent could be
situated in several possible world states. The resulting plan is a conformant
plan in case the agent is not allowed to perceive the surrounding environment4,
otherwise, the resulting solution is a contingent plan where the behavior of
the agent branches according to the output of a given set of sensing activities.

(Non) Deterministic Conformant Planning

A conformant planning problem differs from the classical one in that the initial
state could not be completely known, and the actions (in the non deterministic
setting) may have non deterministic effects.

In the classical planning paradigm the agent has a non ambiguous repre-
sentation of the state of the world. In the propositional setting this is indeed
achieved by expressing the state as a set of true propositions, assuming false the
non mentioned ones (Closed World Assumption). Conversely in the conformant
setting the state does not have a unique interpretation rather it is represented
by a logical formula whose interpretation may entail many possible worlds. For
example given two locations, namely A0 and A1 one can express ambiguity on
the current status of the robot by (explicitly) asserting the formula:
(OR (AND (AT ROBOT A0) ( NOT (AT ROBOT A1)))
(AND (AT ROBOT A1) ( NOT (AT ROBOT A0)))).
In particular the formula captures that ROBOT could be either in A0 (but not in
A1) or in A1 (but not in A0).

A conformant planning problem can be solved by forward search algorithms
in the belief states space ([13],[51]), through proper heuristic functions extracted
by analyzing modified version of the planning graph5. The characterization of
the belief state space is crucial for the performance of the search to be carried
out. To this end, there are two main approaches. The first encodes the belief
in on Ordered Binary Decision Diagram (OBDD) while the other is based on
SAT6. The OBDD allows a compact and at same time explicit representation of
the state. Differently, a SAT based representation requires a non trivial compu-
tational step for the assessment of propositions inside the belief representation.
In a nutshell, SAT based representation trades space for time by forcing the

4Due to lack of sensors, conformant planning is also called sensor-less planning
5The planning graph is a structure introduced with the graphplan planning system ([1]) in

the context of classical planning. We will introduce the structure in the next Section, i.e. in
the context of replanning, once the description will be strictly necessary for the comprehension
of the approach

6The formulas are represented in a Conjunctive Normal Form (CNF) and are handled by
a general purpose SAT solver, as for instance the one reported in [67]
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planner to verify on the fly the satisfaction of the action preconditions against
the intersection of the possible worlds encoded in the state.

In the last few years also translation based techniques have been presented.
For details see [78].

The conformant planning assures that an agent will execute and will reach
the goal, despite uncertainty in the action effects and the initial status. However,
the approach usually yields too conservative behaviors. Let us imagine a task
in which an agent has to reach its work location. The weather is not known in
advance and the agent is not allowed to go outside if it is raining. A conformant
plan for this problem then requires that the agent has to take the umbrella
in every case; of course the umbrella is odd in case the weather is actually
good. One could simply provide the agent with the capability of sensing the
environment surrounding her to produce a plan for each contingency of the
problem. This is what is done in the contingent planning.

(Non) Deterministic Contingent Planning

In the model of contingent planning, the agent in charge of executing the plan
has available a set of actions which allows her to discern among (some) char-
acteristics of the world state. Such actions are usually called sensing actions
and as traditional actions they are equipped with a set of preconditions but,
differently from the traditional effects, they provide information on a particular
state of a subset of the propositions characterizing the world.

As long as sensing actions are applied the set of possible world interpretations
shrinks making the search simpler.

However, when the contingent planning setting allows the presence of non-
deterministic action effects, the application of these actions during the search
injects new uncertainty that must be newly handled within the belief state.

As for the conformant case, a contingent planning problem can be solved by
searching in the belief states. One of the main approaches consists in converting
the problem in an AND/OR tree, where AND nodes represents actions and OR
the belief status. Given a contingent planning problem, a solution is a sub-tree
of AND/OR where each path starting from the root ends in a leaf where the set
of goal conditions is satisfied. Moreover, analogously to the technique adopted
for the conformant setting, the choice of the belief representation plays a key
role in the performance of the system. For further details see [52].

Probabilistic Planning

Another way to achieve robustness is to produce plans that considers uncertainty
in form of probability distributions. In this context, the probability can be
expressed both in the initial state and as outcome of the action execution.
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The model of probabilistic planning has been initially introduced from [57].
Here the problem is defined in terms of:

• an initial ambiguous status where each variable value is associated with a
probability distribution;

• a goal which defines a desired configuration of facts to reach at the end of
the execution;

• a set of (probabilistic) actions;

• a threshold value ranging from 0 to 1 which defines a desired probability
degree for the successful plan execution.

A plan for this problem is a sequence of actions that, starting from the
initial belief state, takes the agent into a state where the goals are satisfied with
a probability equal or greater than the given threshold.

In solving a probabilistic planning problem, various techniques based on a
fixed length planning problem transformation have been applied; here the rep-
resentation typically relies on the relative SAT and/or CSP solver extended to
deal with probabilities. As for the previous approaches, one of the key aspects
is the belief representation. However, while for the logical case one can immedi-
ately imagine an OBDD representation, in the context of probabilities models
as SAT combined with Bayesian Network seems more appropriate.

Recently, the model of probabilistic planning has been extended and has
been used for handling resources and time explicitly. That is, the state is no
more represented just in a qualitative manner, but also in terms of a set of
continuous numeric variable modeling resources as energy, time and so forth.
For details see [10].

Towards Probabilistic and Contingent Planning

The necessity of dealing with continuous variables (representing for instance
resources) has been clearly noticed since the adoption of numeric fluents in
PDDL 2.1 ([42]). However the most of the work done refers to the deterministic
setting. An exception is the work reported in [26] where a proposal to combine
the model of probabilistic planning with the contingent one has been introduced.

The key idea is to enrich a starting valid solution with additional branches
that during the execution may be activated once a set of conditions becomes
hold.

For instance let us imagine a scenario where a mobile robot has the task
of visiting a certain number M of interesting sites. Let us further assume that
the quality of the task increases as the number of visited sites at the end of
the mission grows up. Given uncertainty on the value of the energy assumed,
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one can imagine that the plan computed only achieves N<M sites because the
energy may be not sufficient to visit all the M sites. However, if for some drive
action the actual consumption is less than expected, it may be the case that the
mobile robot can actually achieve the mission with a greater reward, namely
by reaching a higher number of sites of interest. It is of course quite natural to
imagine to add further branches to the starting solution in order to encompass
also other sites to be visited once some conditions occur (e.g. the power has 10
unit instead of 6).

Of course this kind of approach is slightly different than the ones given in
this section. Indeed, the problem addressed by the authors requires that the
resulting solution handles both hard and soft constraints. For further details
on over-subscription planning see [92].

In the next Section we discuss how to manage the robustness of the plan
on-line, that is, once exceptions and deviations from a set of nominal (assumed)
conditions are actually intercepted. This approach overcomes the limitation of
the previous solutions as it does not require the prediction capabilities foreseen
in a pure off-line approach.

2.2.3 On-line: Robust Execution via Replanning

In this Section we describe how the continual planning agent reported previously
repairs its course of actions when the unexpected situation has been actually
recognized. In particular, as noticed in [70], each advance obtained in the con-
text of off-line plan generation corresponded in literature to a new method for
the repair process, which indeed is typically based on a plan-adaptation step and
hence on re-using the effort computed at planning time. Despite theoretical re-
sults, [75], it has been showed that adapting the solution rather than computing
a new solution completely from scratch is indeed more convenient in practice.

The plan adaptation has its root in the case based reasoning ([3]), which
studies how to obtain a solution for the current (unsolved) problem from a set
of past (solved) problems. The aim is to exploit as much past experience as
possible to facilitate the resolution of the current task. The hope is that solving
the current problem from scratch is more difficult than adapting an old solution
for the new problem. A survey and an analysis of different dimensions of the
plan adaptation problem is reported in [70].

In the next we will give an overview on the most recent works on repair
by assuming that such a repair is actually involved online, when the continual
planner intercepted that the plan is not valid anymore.
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Repair via Planning Graph

A quite recent approach presented in the context of the plan repair is the work
proposed in [45]. The main and novel idea is to combine the old plan structure
with the graphplan representation of the new problem.

The graphplan is a very powerful structure introduced by [1] for the purpose
of making efficient the propositional planning. The structure represents a given
planning problem into a directed layered graph. More precisely, the resulting
graph consists of a set of levels where each level encompasses a set of actions
and a set of facts. The facts describe what could be true in that level, whereas
the actions describe the transition operations that could be applied in such level
(i.e. the action whose precondition are satisfied in that level). Each level l is
linked to the next level l+1 due to the union of the positive effects of the actions
in level l and the facts that are true in l. The first level represents the initial
status whereas the last is a status in which the goals are satisfied.

For the plan generation problem, such a structure is incrementally built for
finding a (potentially parallel) course of actions through the levels. The number
of the levels are indeed equal to the time steps of the plan and actions are
selected by taking care of the conflict relations, arising by the mixing of the
actions and the facts for each level (mutexes, interferences).

In the repair context, and more precisely in the work of Gerevini et al.
the graphplan structure G is built for the new problem Πnew

7 but instead of
searching for a plan (as usually has been done in the planning context) the
structure is exploited for reasoning on the plan πold provided for the previous
problem Πold. In such a perspective only a set of conflicts are considered.

More precisely, the algorithm developed, namely ADJ-PLAN, focuses its
attention on the inconsistencies in analyzing πold w.r.t. G. As a first step, the
algorithm removes the actions in πold that do not belong to G (such actions are
considered useless) and for each inconsistency found in πold (an action whose
preconditions are not satisfied in that level) establishes a repairing window.

Having established which are the portion of the plan to be repaired, it consid-
ers each window as a separate sub planning problem, respectively. The window
has a left and a right bound that correspond to an initial status and a goal status
of the new sub-planning problem. These bounds are determined by the level in
which the action causing the inconsistency appears. That is, given k the level
of the action presenting the inconsistency, the initial status is extrapolated by
the level k− 1 of G ; whereas the goal is asserted by combining the information
of the actions of level k and some additional facts (computed heuristically for
speeding up the process, see below). As long as the solution is not found in such
a window, the algorithm moves the right bound of the window ahead in G.

7We will use the Π symbol to identify planning problems; whereas we will use the lowercase
version for its solution, i.e. a plan π
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As anticipated, the approach builds the right bound of the window heuristi-
cally, using two main methods based respectively on a persistence assumption
and on the causal link structure of the plan. The ratio is that the replanning
window goal set should also include those effects which may be exploited as a
support of future actions in the plan. Conversely indeed it may be the case
that the replanning window will propagate an inconsistency for the rest of the
plan, meaning that new repairing windows could appear. Of course finding
an exact estimation could be difficult as much as replanning completely from
scratch. This is the reason why an heuristic estimation is preferred. Despite this
approximation, the process does not affect the completeness of the approach,
in the worst case a bad heuristic may degrade the efficiency but it will never
compromise the space of the solutions.

It is worth noting that such an approach can in principle degenerate into
a replanning from scratch when the length of the window becomes the length
of the whole plan of actions. In such a case the approach will perform worse
than replanning from scratch due to the overhead for building the replanning
windows.

One of the shortcomings of the approach refers to the building of the plan-
ning graph. As a matter of fact, planning graph works on factored action
representations instead of schemata representation (e.g. PDDL actions). For
this reason, when dealing with action schema, the planning graph requires a
(potentially expensive) phase for grounding the actions at hand, which causes
a non negligible blow-up of the planning graph structure. However this is not
only a repair problem but also a problem for the first planning phase, thus the
proposed solution still represents an elegant approach for a plan computation,
being also capable to deal with problems that differ in their set of goals.

An alternative way of looking into the replanning topic is related to the
refinement planning.

Repair via Refinement Planning

Another approach investigated in the context of the classical planning is the
refinement planning, which has been introduced in [56]. In this case the search
for a valid plan is computed by trying to improve a starting (flawed) solution
until a valid one is found. Therefore, it is evident that the approach is quite
appropriate in the context of repair.

Given the planning problem, the strategy starts immediately by formulating
a first (flawed) solution which is composed by just two pseudo actions repre-
senting the initial state and the goals. The first one has empty preconditions
and effects equal to the initial state, while the second one has empty effects
and preconditions equal to the goal statement. A refinement planner iteratively
adds actions until a plan with no inconsistency (i.e., there are no action with
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open preconditions) is found. Each action must solve at least a part of the open
precondition. When no action can be applied, but the solution is still consistent,
a backtracking is invoked.

In the work [97], the authors propose to see the repair as a direct extension
of the refinement strategy, in which the actual process for the actions insertion
is anticipated by a further step, namely an unrefinement step. The key idea is
that an unexpected contingency invalidating the plan may actually require to
delete actions rather than adding new ones.

Similarly to the refinement phase, the unrefinement step generates a new set
of candidate plans. Indeed for each plan a number of actions can be deleted. Of
course an exhaustive search would cause a combinatorial explosion of cases to
consider, thus the unrefinement relies on two filter steps. The first is a mech-
anism that privileges the deletion of actions which are in the start and in the
end of the old plan; whereas the second chooses the action to delete accord-
ing to an heuristic estimation of the distance between the resulting candidate
plan and the valid solution. The heuristic measures the effort for solving the
inconsistencies caused by the open preconditions of the new candidate plan.

Once the actions to delete have been selected the algorithm starts its refine-
ment process till a valid plan is not found. From this point to the end of the
process, the unrefinement step is not repeated again.

The heuristic function employed in the process is inherited by the recent
advances on heuristics based on the distance among state, which have been
successfully employed in the context of partial order planning (POP) (the field
where the refinement planning takes inspirations). The first work in combining
the search for Partial Order Plan and this kind of heuristic functions is reported
in [103].

The work turns out to be a clever general template for repairing plan. One
of the drawback here is the lack of a management for an explicit online frame-
work. As a matter of fact, the plan execution phase has not received the proper
attention as well as there is a lack in handling time bounds within which the
repair has to be performed. The question indeed is, if there is no bound on the
amount of time to be spent by the replanner, is it really so important to repair
instead of replanning from scratch?

Repair via Regressed Goal States

Planning via heuristic search in the state space is probably the most successful
approach to the (classical) automated planning. In the last decade we assisted
to an intensive use of such a paradigm in the planning community, probably
due to the facility in combining the search through the state space with the
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use of the delete relaxation heuristic8 ([14]). This kind of operation has been
become a central part of many planners (with some differences on how these
were developed) and it is one of the main reasons for the success of the winners
in the recent planning competitions.

The idea in the work of Garrido et al. ([44]) is to combine the distance
based heuristic with the continuous planning agent (see [89]). The intuition
relies on an important consideration of what may typically happen during the
action execution. More precisely, given a plan of actions, one can imagine the
execution of such a plan as a sequence of states, where the starting state is the
initial state and the final state satisfies the goal conditions. One of the reasons
which may cause the invalidation of the plan is that, because of unpredictable
exogenous events and/or undesired effects, the actual observed state may do not
match (or better may be not compatible) with the expected state. Substantially,
there is a deviation of the starting trajectory such that the remaining part of
the plan is not able to take the agent in a status in which the goal is satisfied.

In this perspective one can effectively think of the repairing process as the
process of searching for the closer point of the trajectory. While the contin-
uous planning agent does not specify how actually estimate such a distance,
it is possible, by exploiting the distance among states achieved by the heuris-
tic described above, to define in an effective way a strategy in measuring such
distances.

The Garrido approach, starting from this idea, developed an anytime algo-
rithm that incrementally searches for the best bridge to build from the current
(unexpected) state and the plan that has to be performed. As a first step the
algorithm rebuilds the trajectory of states to be covered by identifying only
those set of atoms which are effectively needed for the plan at hand. Since
the approach also support durative actions, the concept is a light extension of
the kernels developed by [40]. Each kernel is here called subgoal. Whenever an
exception is identified, that is a situation that does not support the current sub-
goal, the online monitoring triggers the decision module that has to promptly
responds whether it is the case of repairing or replanning from scratch. The
reasoning here is performed by estimating the distance to the subgoal and the
final goal. This estimates the effort of repair against replanning.

Whether the decisional module selects the repair, the algorithm generates a
new planning problem whose solution (if any) will be combined to the remaining
part of the plan. Moreover, the approach will continue to analyze the next
subgoals to understand if there is a better bridge (in terms of cost of the plan).
The algorithm terminates when either the search is exhaustively performed (also
the final goal is tested) or a time threshold is reached.

The advantage of this approach is an effective strategy for an on-line context.
8The delete relaxation heuristic consists in estimating the distance by two states by solving

the relaxed planning task in which actions are considered only in their positive effects
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Of course the way in which the first decision is taken may be to risky. Indeed
it is possible that the first subgoal would be actually unreachable whereas the
subgoal immediately after it would be (and even with very few actions). This
careless behavior may in fact produce an immediate chose for replanning from
scratch.

As argued by the same authors, the approach typically yields stable plans
since the agent tends to come back to the choice made at planning time without
completely unsettle its intentions. The stability is a quite relevant property, as
we will see in the next paragraph.

Repair to Achieve Stability

As multi-agent domains have been more and more investigated in the field of
automated planning, also the repair context has received an increasing amount
of interest.

In these domains, especially those where each agent has the possibility of
applying local repairing techniques in an independent way, the impact of the
decision taken for facing unexpected situations may become a critical issue.
Indeed, as long as decisions diverge from the choices taken at planning time,
the behavior of the agent turns out to be very difficult to predict from an external
observer, if either she is a human or it is an artificial agent. Moreover, it could
be the case that the agents involved in the process have provided expectations
and agreements on the choice at planning time. For instance the preconditions
of other agents may depend on the actions of other agent’s plans.

Therefore the repair has to preserve as much as possible the old structure
for the purpose of minimizing the impact on the rest of the system (intended
as other agents). In few words the plan has to be as much stable as possible.
As studied in [101], the repair mechanism could cause a rapid combinatorial
explosion of cases to consider.

The stability requirement can be imposed from the very beginning by iden-
tifying in the model of the actions those mandatory constraints for an effective
agent cooperation. This could be achieved by specifying further constraints to
be taken into account during the repair process. Another option would be to
agree for a safe state to be reached in case the mission is not achievable anymore.
This idea is reported in [63].

A different solution proposed in literature is to measure quantitatively the
similarity between the plans. In particular, [60] introduced a new stability met-
ric, defined as a function of the distance between two plans. That is, assuming
to have a distance between the plan A and the plan B, we will say that as the
D(A,B) increases, the Stab(A,B) decreases and vice versa.

Concretely, given two plans π and π′, Fox’s stability measure is achieved by
summing the number of actions belonging to π that do not belong to π′, with
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the number of actions in π′ not belonging to π. As stated by the same authors,
the introduced metric is a preliminary definition. As a matter of fact, the metric
suffers of some limitations: firstly it does not take into account the order of the
actions, and secondly it is not aware of similar actions.

For the purpose of producing repair mechanisms being able to achieve sta-
ble plans, the work of [44] proposes to account of the stability when deciding
between repair and replanning. As a limitation however the approach does not
account the stability when the anytime search starts.

Instead, the work of Fox et al. ( [60]) explains how to steer the anytime
behavior of the Lpg-Td planning system ([45]) to (heuristically) privilege only
stable solutions.

2.3 Robust Schedule Execution

In this Section we consider a plan of activities given in form of a schedule, that
is, the agent is now more interested in understanding precisely when actions
have to be executed; here each action is indeed represented by a pair of events
representing respectively its start and end time. In addition to the causal aspect
managed by traditional planning system, the temporal dimension of a plan is
another valuable characteristic to be considered in the context of planning and
execution.

After a brief introduction which will recall the background notions in the field
of scheduling plan of actions, we will report two recent works that addressed
the problem of robust execution of a schedule.

2.3.1 Introduction

In Section 2.2, we analyze plans of actions where each action describes, in a
logical way, its applicability conditions on the world and the effects caused by its
execution. The main limit within this model is that it has a very action centric
nature; the modeler has no chance of expressing relations involving set of actions.
In particular, the classical model does not allow to express (potentially complex)
temporal constraints among actions as well as a way for stating quantitatively
when these have to be executed (e.g., action a has to start at seven o clock)
and what their duration is. Instead, the classical setting sees the order of the
action as an implicit consequence of the plan generation. That is, the order is
the actual output of the planning process.

The STP Model. A classical scheduling problem focuses its attention on
the temporal dimension. Initially introduced by Allen et al. in [6], scheduling
actions problems are in the recent years seen as an instance of quantitative tem-
poral reasoning tasks, and are generally handled by Simple Temporal Problems



38 CHAPTER 2. STATE OF THE ART ON ROBUST EXECUTION

([33]) or its extensions (for instance see [94]). The Simple Temporal Problem
(STP) is a special kind of a Constraint Satisfaction Problem where:

• Variables represent temporal events; the domain of a variable is R+

• Constraints encode temporal distance among events; each constraint is
represented by a binary inequality relation, e.g., given two events X0 and
X1 we may say that X1 −X2 ≤ r0 where r0 is a real constant

Similarly to a Constraint Satisfaction Problem, an STP can have a graph
formulation. Precisely an STP can be formulated as a weighted directed graph
where nodes are the variables involved, arcs express the order relation among
the events, while the weight of such arcs represents their temporal distance.

The consistency checking task for a STP is efficiently solved by verifying
the absence of negative cycles within the graph network associated to the STP
([33]). Whereas making explicit all the relations and the minimum temporal
distance on the network can be performed by the well known Floyd Warshall’s
algorithm in O(n3). Recently, the All-Pairs Shortest Paths problem arising from
the STP has been attacked in [80].

From an ontological point of view, the temporal reasoning behind the schedul-
ing considers time as an unbounded, dense and linear set of points.

Encoding Actions in STP. A scheduling task starts by encoding the set
of actions and their relations as an STP. In particular, each action is subdivided
into two events: the former defines the action start time and the second the
action end time. By solving the associated STP, the scheduling task generates
a set of pairs for each action which specifies the domain of its (the action) start
time and end time. Such domains, by definition of the STP, are consistent w.r.t.
the constraint imposed on the network.

It is worth noting that, while the classical planning is interested to find such
an order, here the ordering is actually a part of the problem specification. The
integration of the both aspects in a unified vision makes the problem very hard
([84]).

After this little preamble which introduces ourselves in the scheduling con-
text, we can roll back to the main objective of this section; that is to explain
how to assure that the execution of a given scheduling of actions can be made
robust to unexpected (temporal) events. Intuitively, the objective of the agent
in handling schedule of actions is in preserving the temporal relation given a cer-
tain network of constraints among actions of the plan. That is, the underlying
STP is required to be consistent throughout the plan execution.

In this field the STP can be checked and revised by seeing the same STP as
a dynamic structure ([24],[22]). The real issue nevertheless arises in real world
scenarios where the agent is required to deal with limited amount of resources.
For this reason, the next Section shows an approach to robust schedule which
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considers both temporal and resource constraints. Afterwards, we observe how
an STP model can be extended to support flexible execution of plans with choice.

2.3.2 Combining Simple Temporal Problem and Resource
Problems

In real world applications, the plan execution often relies on a given number of
resources which in turn are typically finite; therefore, given a temporal interval,
only a limited number of actions needing such resources can be executed at
the same time. The user modeling the task is supposed to insert temporal
constraints (for instance in form of Simple Temporal Problem) in order to assure
a correct use of these resources. However, it is desirable that some constraints
can be intercepted autonomously by giving a declarative representation of the
problem.

In the scheduling community, combining resources and temporal constrained
tasks in a unified point of view has been defined as a variant of the job shop
scheduling, namely RPCSP-max.

An RPCSP-max is the problem of finding the starting time for a set of
activities given that:

• each action ai has a duration durai

• each action ai requires a given amount of resource rk till the end of the
execution

• resources are limited, i.e. each resource rk has an integer capacitymaxrk ≥
1

• there are further ordering temporal constraints among actions in the form
of cmini,j ≤ sai − saj ≤ cmaxi,j

A solution for the RPCSP-max is optimal whenever the resulting makespan
is minimum, which is the total amount of the time spent to accomplish all the
activities involved in the task.

In the work of Cesta et al. ([82]) the problem has been reformulated in
the context of robust plan execution. More precisely, the authors defined the
concept of Partial Order Schedule. A Partial Order Schedule is a collection
of actions which are consistent with respect to both temporal and resource
constraints. The resolution of the RPCPS-max is done by reducing the problem
in an STP, enriched with further constraints given the requirements of actions
on the resources.

Instead of focusing on a particular allocation of the action in the time, the
POS preserves the STP starting structure also for the execution phase. The
main idea is to leave the agent executor as much freedom as possible in choosing
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the final ordering of the actions. For this reason, the agent has to be aware of
only the precedence constraints, which are mandatory for the consistency of the
starting temporal requirements and the resource at disposal.

The robustness here is intended in that schedules have to be as flexible as
possible. The flexibility in turns depends on the structure of the obtained POS,
and in particular a POS flexibility increases as the number of constraints among
actions decreases.

The process takes in input an initial STP and a number of limited resources
accompanied with a description asserting the relation among actions and re-
sources. The output is an STP, namely a POS which is supposed to be consistent
w.r.t. the resources and the initial constraints.

To compute such a solution, the work proposes two main strategies. Both
share a general greedy algorithm while differ in the way in which the resource
profile is computed.

As a first step the general greedy algorithm is invoked with the starting
STP; then the STP model is checked against the resource constraints. Whether
the checking reveals an inconsistent STP at least a precedence constraint has
to be imposed within the STP. If for instance two actions compete for the same
resource, one of them has to precede the other one. The approach heuristically
selects such a constraint by looking into the whole set of pair of activities which
conflict with each other.

After the pair selection, the algorithm is recursively called with a modified
STP model (the one with the new precedence constraint) until a consistent
solution (in the STP and resource sense) is detected.

As anticipated before, the approach can follow two different strategies. The
first strategy is based on the concept of resource envelope proposed by [72]; it
proceeds by refining all the possible schedules until only the set of valid ones
is found. The resource envelope is built by considering all the maximum and
minimum resource usage within the POS at hand.

The second strategy takes the problem from the opposite direction. It starts
from a well defined solution (the one in which actions are considered to start
at the earliest valid time), and compute the resource profile for that specific
solution.

Note that while the former strategy finds Partial Order Schedule by def-
inition, the second strategy does not. For this reason, the second strategy
is followed by a post-processing step which substitutes all the computed con-
straints with the necessary ones given that particular assignment (the earliest
start time). The idea is to extend a particular solution within a new POS
to include a greater set of solution which are still consistent with the starting
formulation of the problem. The strategy inherits the chaining procedure re-
ported in [21]. Recently, the problem has been attacked by [8], where a complete
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resolution approach has been presented.
Speaking of robust execution, this is one of the most effective approach in

trading off expressiveness and efficiency. Indeed, the Simple Temporal Prob-
lem represents a big class of tractable problems and there are many efficient
algorithms based on its graph representation.

As a shortcoming, however, it must be noted that such an efficiency is paid
in terms of a lack in the chance of adding further actions. That is, as well as
flexibility is guaranteed from a temporal perspective, there is no flexibility in
terms of different course of actions. The STN model does not capture different
set of events, and hence of actions, but only different ordering of such events.
In many real world scenarios this can be a strong limitation. For this reasons
some works have dealt with the problem by extending the STP model.

2.3.3 Towards Powerful Schedule Representation

The STP model has some drawbacks. Indeed it is just a special kind of Temporal
Constraint Satisfaction Problem, and its limits have been identified since in the
work of [33]. For this reason in the planning and scheduling community more
expressive formalisms have been investigated and a number of extensions has
been proposed ([99],[94]); among them the Disjunction Temporal Problem model
received the most attention in the last years, above all in the context of robust
execution.

A DTP extends the STP model by allowing to combine the constraints set
by means of disjunctions. For instance in the STP model the user is not allowed
to express constraints of the form X0 − X1 ≤ r0 ∪ X3 − X2 ≤ r0, because of
the language is limited to handle only conjunctive set of constraints.

Albeit the DTP seems just a little extension, the class of the scenarios that
the DTP is able to capture is much larger. This is of course paid by a step
ahead in the complexity for the worst case; indeed the adoption of a formalism
allowing for disjunctively representing constraints makes the temporal reasoning
task intractable ([94]).

In the context of robust schedule execution, [27] proposes a model based
framework where plans are represented as a reformulation of Disjunctive Tem-
poral Network. To comply with the STP formulation, they called such a model
Labeled Simple Temporal Network (LSTN). Similarly to the Disjunctive Tem-
poral Problems, the disjunctive nature of the LSTN allows the agent to select
and adapt the execution with the more proper sequence of actions. One of the
limitations indeed of the Simple Temporal Problem is due to the fact that the
model assumes that the events always happen; for this reason a behavior of a
system described by this model can have the flexibility of just changing the or-
der of the events (and hence of the actions). The LSTN includes the possibility
of disjunctive set of events. As a matter of fact, two given solutions within the



42 CHAPTER 2. STATE OF THE ART ON ROBUST EXECUTION

LSTN may differ in the set of events considered. This increases the flexibility
of an agent to perform different set of actions.

The DTP resolution task has to be carefully managed since in a context
where efficiency is a major constraint, the DTP resolution cannot be delegated
to the online phase. In this perspective, [27], by taking inspiration from the
Assumption Truth Management System (ATMS) developed by de Kleer in [30],
proposes a system called DRAKE which performs a thorough investigation of
the problem from the very beginning.

The idea is to anticipate all the action selections that can be performed by
the agent during the execution. Each decision indeed has a set of implications
on the remaining part of the task to be executed. The selection of a particular
event within the DTP may cause the selection of new set of constraints for the
allocation of other events.

This can be retrieved by analyzing the way in which a reasoner deals with
the consistency checking of the underlying DTP. We can indeed see that a DTP
is consistent if at least a disjunct for each disjunction is satisfied.

Intuitively in the context of plan represented as DTP, each action is actually
a disjunct of the temporal net. When an action is selected, the DTP propagates
the implication of that particular decision throughout the constraints of the
graph. The result is that only consistent future disjuncts are preserved. Thus,
instead of focusing on a particular assignment of disjunct, the final structure
(the LSTN) is supposed to store all the possible trajectories of events which are
consistent with the DTP at hand.

The DRAKE aims at achieving a cheap (in the size) dispatchable Labeled-
STN which can be used as a scheduled plan of actions with choice. Here dis-
patchable means that the agent, relying on the labeled STN can select effectively
in real time only the actions consistent with the DTP, without performing any
kind of reasoning.

One of the shortcomings of the approach is a complete lack in the resources
management. However, even if in principle it may be possible to consider all
the impacts of the actions selection on the amount of resources, it may be the
case that the size of memory for representing these further implications would
become a critical issue.

2.4 Conclusions

This Chapter reported the state of the art on the robust execution by breaking
the discussion in three main topics; that is, the architecture for autonomous
systems and continual agent paradigm which looked at the problem from an
higher point of view, the robust plan execution and the robust schedule execution,
which instead are focused on the way in which a task can be represented and
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managed.
In particular Section 2.1 focused on the three tiered architecture proposed

by Alami’s and on the continual planning paradigm. The continual planning
is supposed to provide a solid domain independent framework for the develop-
ment of real world agent. However, to the best of our knowledge, most of the
challenges of the continual planning are still unsolved and the real-world appli-
cations often opt for domain based customized approaches. The most of these
works inherit the multi-level approach of the Alami’s architecture.

In the latter sections we discussed a number of approaches which differ (i)
on the model adopted for representing task, (ii) on the methods applied for
making its execution as robust as possible. We noticed that in principle it is
possible to build robust solutions since the very beginning, but while it turns
out to be feasible for the management of the schedule (e.g. [27]), we have seen
that it can be very hard when the task to be managed is a traditional plan.
As we have argued in 2.1, an agent to be effective has to close the reasoning
and perception loop in an acceptable amount of time. However the complexity
results in planning under partial observability imposes very hard barrier for the
efficiency of such systems ([18], [85], [84]).

In the context of on-line repair, as also stated by [70], we observed that
each progress obtained in the area of automated planning has been followed
by a new repair strategy. It is in fact quite evident that the way in which the
search is performed in what is called the first-principle planning ([31]) are often
extensible for more efficient repair mechanisms. For instance, the work [2] where
the graphplan structure is deeply employed and the proposal of [97] where the
authors extended the refinement planning in the context of repair.

A similar phenomena is observed in the context of the robust schedule exe-
cution, where the most recent works have a strong characterization in what the
underlying temporal model employed is ([81],[27]).

As well as these works describes concretes methods for performing the repair
they often ignores the continual planning framework they are supposed to belong
to. In particular the works in the plan repair seems most suitable for the off-
line phase (in a case based planning style). Differently, the works on the robust
schedule execution seems very focused on the problem of the execution even if
their flexibility (which is supposed to be the main way to achieve robustness) is
mainly handled from a temporal point of view.

As each categorization, the discussion reported makes some approximation.
There are contributions in literature crossing these macro areas in different ways;
for instance there are approaches dealing with both scheduling and planning
where the continual planning (even if not specified) is the underlying spirit. For
details see ([88],[95],[71],[73], [20], [19], [93]).
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Chapter 3

Robust Plan Execution via
Multi Modality Actions

This Chapter introduces the main approach adopted in this thesis by present-
ing the formalism of reference. In particular the Chapter proposes the notion of
Multi Modality Action (MMA). An MMA allows to model actions at two differ-
ent levels of abstraction. The first one aims at capturing the high level behavior
of an action while the lower describes the impact (and the requirement) of the
action with respect to a given set of resources modeled as numeric fluents. The
MMA represents the basic block of an MMA plan which is in turn key in the
mechanisms developed by FLEX-RR (Chapter 6) and ACTS (Chapter 9). This
notion is crucial in addressing the robust plan execution in a more efficient way.

3.1 Introduction

In the state of the art we revised different techniques that have been employed
in the last years to allow agents to execute task in a robust way. We observed
that the first main difference among the investigated approaches is the model
adopted for representing the action behavior. In particular we identified two
main approaches. The first set of works models the execution by means of
traditional plans where actions are expressed in terms of preconditions and
effects (robust plan execution). The second family of approaches focuses on the
temporal relations among actions (robust schedule execution).

This thesis fits in the robust plan execution field and in particular in the
family of approaches which tackles the robust execution via online replanning.
The main open problem pursued by this first part of the thesis (till Chapter
7) is to extend the continual planning framework for dealing with continuous
and consumable resources, by making attention in keeping plans quite stable.

45
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Effectively, the framework should guarantee:

• an efficient strategy for the repair of the current plan when some unpre-
dictable contingency arises (e.g., the resource consumption is greater than
expected). Only via an efficient repair mechanism we can be sure that the
decisions are provided in time to be useful.

• a limited impact on the plan when the contingency is handled, meaning
that the plan must be preserved as much as possible. Intuitively in fact,
the less impact on the plan, the more stability will be achieved.

The objectives of this thesis stem from two main considerations. Firstly, we
start from the observation that real-world scenarios include both reusable and
consumable resources; thus a plan has not only to achieve a set of goals, but
it has also to conform to strict constraints on the amount of resources to be
used by the agent. Secondly, we observed that in many domains it is important
that the online decisions do not prominently diverge from the commitments
and expectations provided at planning time ([28]), e.g. with other agents. In
fact, the behavior of the agent can become difficult to predict in case the repair
completely unsettles the previous plan.

As we have seen in literature, however, while there are a lot of works in
dealing with the problem of plan execution and replanning in the classical set-
ting ([2],[28],[44],[97]), just few works consider resources constrained tasks. In
those works, furthermore, resources are mainly modeled as just reusable and
the interactions with the causal aspects have been dealt just with reference to
the temporal point of view ([82],[8],[27]).

The difficulty to find an efficient way to reuse the old plan is made evident
since the theoretical point of view. As stated in [75], approaches based on a plan
adaptation step are at least difficult as replanning from scratch (especially in
those contexts where the conservatism, i.e. the minimal perturbation planning
([28]) is quite relevant)1. Replanning from scratch, in turn, corresponds to
create on the fly a new instance of a planning problem whose resolution may
be very hard from a computational point of view - the only classical planning
is a PSPACE-complete problem, [18]; therefore a more radical approach seems
inevitable to achieve some theoretical guarantees.

In this thesis, and especially in this Chapter, we start to approach the prob-
lem from a different perspective by reconsidering the issues from the very be-
ginning, i.e. from the model of the actions.

In particular we observed that (similarly to [42]), it is necessary to explicitly
model the (expected) profile of resource consumption during the execution of

1It is worth noting that the results just apply for the classical setting. The choice to deal
with consumable resources imposes further challenges in understanding under which conditions
the adaptation could be feasible.
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any action. We thus model consumable resources as numeric fluents, which are
explicitly mentioned in the preconditions and effects of the action templates2.

We also observe that, in many real-world domains it is possible to identify
actions performing the same task (i.e. obtaining the same effects), but requiring
different configurations of the agent. These actions share the same qualitative
objectives, while they differ in the way they are performed. Typically, different
configurations have different resource profiles. We therefore propose to group
these similar actions by introducing the notion of multi-modality action (MMA).
An MMA represents in a compact form alternative ways, or alternative execution
modalities, to accomplish a task. In planning terms, we would say that all the
execution modalities of a given MMA reach the same set of propositional effects.
However, since they are characterized by specific resource consumption profiles,
they differ in their numeric preconditions and effects.

As we will see in Chapter 4, the notion of MMAs will allow to see a significant
class of repair problems as reconfiguration problems; thus the agent will have
an explicit way of controlling just a portion of the action behavior resulting
in a (hopefully) saving of computational time and in a limited impact on the
structure of the plan. Afterwards Chapter 5 explains how transforming the
reconfiguration problem in a standard CSP formulation, which is one of the
main innovative blocks for the FLEX-RR architecture presented in Chapter 6.

In the design of the MMA formalism, one of the main criterion adopted is the
compatibility with PDDL formalism. This has several advantages. Firstly the
MMA formulation can inherit (a part of) the well defined syntax and semantic
established in many years of work by the planning community. Secondly, the
MMA management can take advantage from the many tools at disposal for
reasoning about PDDL actions (e.g. automated planner, knowledge engineering
tools and so forth).

The Chapter starts describing formally how we represent a state of the world.
Then Section 3.3 introduces and formalizes the notion of Multi Modality Action,
while Sections 3.4 and 3.5 report concrete example of MMA action.

3.2 Modeling the world state

As a first point we have to establish, how the state of the system can be char-
acterized in our framework. More precisely, by taking inspiration from the
PDDL formalism [42], we agree to a world representation where entities can be
represented by a finite set U of physical objects. Moreover, starting from the
consideration that objects (e.g. a site of interest) are characterized by a number
of properties (e.g. the name, the number of samples to collect) and may be also

2Numeric Fluents have been introduced since the 2.1 version of PDDL (see [42]). PDDL
stands for Planning Domain Definition Language, which is the standard de facto formalism
for representing planning problems
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in relation among each other (e.g. there is a road connecting the site A to the
site B), we allow to explicit such relations and properties in two ways.

The first kind of relation is qualitative. For instance we allow to say in our
language that, given two objects identifying two sites A and B, the relation
road(A,B) allows to express the existence of a road between such two locations.
The second kind of relation is a quantitative relation stating numeric properties
of the objects. For instance we allow to model the power of a robot R by means
of the predicate (= (power R) 10) as well as we allow to model the distance
among the two interesting sites by means of (=(distance A,B) 100).

More formally we can hence define a particular World State Domain as
follows:

Definition 1 (World State Domain). The domain of a world state is a triple
< U,F,X >, where U is the set of physical objects, F is the set of qualitative
(i.e., propositional fluents) relations involving objects in U , and X is the set
of quantitative relations over U (i.e., numeric fluents). While the propositional
fluents are the traditional STRIPS relation, the numeric fluents are n-ary func-
tion symbols mapping n objects of a domain (or variables when used in action
schema, see Chapter 4) to a real number.

It is easy to see that in particular F and X define the domain in which
qualitative and quantitative properties can be stated. This means that the
domains of F and X consist of all the possible instantiations of relations w.r.t.
the objects in U .

Each numeric fluent may also have 0-arity. Such a special case includes the
possibility to model quantities that are independent from the physical objects
of the domain (e.g. time, costs and so forth).

Given the domain defined above, a particular instance of the qualitative and
the quantitative properties of the objects in U represents a world state S of the
system; formally we can hence define the world state as:

Definition 2 (World State). A state S is a pair < propF luents, numFluents >,
where: propF luents ⊆ F is the subset of propositional fluents that are true in
this state, and numFluents is an assignment of real values to all the numeric
fluents in X.

The fluents in F not mentioned in propF luents for a given state S are
considered false (Closed World Assumption) in S. Whereas numFluents is a
total function which maps each numeric fluent to a specific real value; for this
reason, |X| = |numFluents|. Given F and X, it is quite clear that the states
space of our system is 2F x <|X|.

To simplify the notation, in the following we will denote the propositional
and the numeric part of a state S by Sprop and Snum, respectively. Analogously
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to other planning systems, both propF luents and numFluents could have the
special value undefined.

In order to comply with several logical based frameworks, as for instance the
same PDDL, we refer to relations and predicates over these objects by means
of a Polish Prefix Notation. That is, propositional and numeric fluents have the
following form:

• propositional : (prop_relation_name(object1,object2,..objectN))

• numeric: (= (num_relation_name(object1,object2,..objectN)) r)

• where:

– the i-th object is a concrete object in U

– prop_relation_name and num_relation_name are symbols/alias for
the name of the relations/properties

– r is a number in <

In particular, apart from some exceptions we will indicate, the rest of the thesis
agrees to the PDDL 2.1 grammar defined in [42].

An example of initial state S involving a planetary rover (i.e. r1 )3 and a
number of sites of interest (i.e. A,B,C,D) is reported in Figure 3.1.

/*qualitative information*/
(in (r1,A))
(road (A,B))
(road (B,C))
(road (C,D))
(road (A,D))
/*numeric/quantitative information*/
(= (distance(A,B)) 15)
(= (distance(B,C)) 35)
(= (distance(C,D)) 45)
(= (distance(A,D)) 10)
(= (power r1) 1000)
(= (memory r1) 4)
(= (time) 0)

Figure 3.1: Initial Status for the Planetary Rover

By observing the Figure, let us note that, while the propositional fluents
in Sprop give information about the relations existing between a domain object
with other objects, the numeric fluents in Snum refine the description of the
objects with some further properties. In particular, in our thesis we will see that

3The domain of the Planetary Rover will be introduced in Section 3.4
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numeric fluents are the tools for modeling the amounts of objects’ resources by
means of real numbers.

3.3 The Multi-Modality Action Model

Taking into account the notion of system state introduced above, we now discuss
how the system state evolves as an effect of the action application; in particular,
this Section introduces the Multi-Modality Action model (MMA).

As anticipated in the introduction, one of the contribution of this thesis is
the notion of execution modalities. Execution modalities are intended to point
out the different ways in which the same action can be performed, e.g., using
different devices and/or parameter configurations. The intuition is that the
expected results of an action can actually be obtained in many different ways
by setting how the action is configured. Obviously, different configurations have,
in general, various resources and time profiles. Therefore, it may be possible
that the execution of an action in a given configuration leads to failure, whereas
the same action performed in another configuration does not.

The MMA model extends the PDDL action model by allowing to express,
within a single action, the different alternative modalities in which that action
can be performed. To keep the explanation simple we consider grounded action
instead of action template. The extension towards the schema is straightfor-
ward.

Formally, we define an MMA as follows.

Definition 3 (Multi-Modality Action). Given the problem domain < U,F,X >,
a Multi-Modality Action (MMA) a is the tuple < propPre, propEff,mods >

where:

• propPre is a conjunction of positive propositions defined over F ; it de-
scribes the applicability conditions, in propositional terms, for a.

• propEff is a conjunction of propositions defined over F , expressing the
effect of the application of a. This set is partitioned into positive and
negative propositions, typically called the add list and delete list of a, re-
spectively.

• mods is a collection of modalities. Each modality m defines a specific way
of performing a and is modeled as a pair < numPre, numEff > where:

– numPre: is a conjunction of conditions that must be satisfied for
applying action a to a state S with modality m. Each condition
in numPre is a triple < exp1, comp, exp2 > where exp1 and exp2
are linear expressions defined over real constants and over X, and
comp ∈ {<,≤,=,≥, >}
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– numEff : is a conjunction of assigners which specifies how numeric
variables change by applying action a in modality m. Each assigner
is a triple < op, f, exp > where op ∈ {increase, decrease, assign},
f ∈ X and exp is a linear expression involving real numbers and
fluents in X.

As many other representation formalisms handling numeric expressions, also in
our framework we limit ourselves to linear expressions (see for instance [50] and
[45]). Thus, the numeric expressions we deal with are recursively defined as:

• a real number in < is an expression;

• a numeric fluent in X is an expression;

• given two expressions exp1 and exp2, then also {exp1 op′ exp2} is an
expression, where op′ belongs to {+,*,/,-}.

The limitation to linear numeric expression concerns the way in which ex-
pressions are constrainted to be combined among each other. More formally an
expression as defined above is linear iff for each {exp1 op′ exp2}, if op′ is either
∗ or / then one between exp1 and exp2 has to be a constant, i.e. a real number.

The limitation to just linear expressions is due to two main reasons. Firstly,
this form of expression allows us to generate normalized constraints in the CSP
encoding (see Chapter 5)4. Secondly, we comply with the assumption of the
most of the numeric planning system ([50],[45],[46]). In fact, as deeply studied in
[50], the restriction proposed permits the operation involved in the action effects
to be monotonic. Only under this kind of assumption, even computationally still
hard, the planning with numeric fluents seems feasible. The monotonic property
is one of the block to achieve decidability in the numeric planning setting (for
details see [47]).

Observing the model of the MMA introduced above it is quite interesting to
note that the action model involves two levels of representation. The former,
more abstract, represents the high level preconditions and effects. Whereas, the
latter refines the action behavior by modeling how the selection of a specific
modality causes variations in numeric/metric terms in the state of the system,
for example for consumable resources.

We generated the abstracted action of an MMA as follows:

Definition 4 (Action Abstraction). Let a to be an MMA, its abstracted action
is an MMA b with the same set of propositional preconditions and effects of a,
but with just one modality at disposal whose numeric preconditions and effects
are set to be empty.

4It is worth noting that expressions will be evaluated after an invariant analysis. For this
reason, actually, some of non linear expressions can be simplified to be linear, see Chapter 5
for further details.
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The abstracted version of an MMA just defines the qualitative high level
behavior. It is worth noting that the abstraction of an MMA action is a STRIPS
action.

The MMA can be also seen as multiple PDDL actions. Figure 3.2 reports
the relation among an MMA and a traditional PDDL 2.1 action.
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Depending on the necessity, one can convert an MMA in a set of PDDL
actions (flattening) and group a set of PDDL actions in a MMA as well (com-
pacting).

In particular, given an MMA, the flattening will produce a set of PDDL
actions am1, .., amn, where each ami (i : 1..|a.mods|) models the behavior of
a when the modality mi ∈ a.mods is selected. Analogously, for the opposite
conversion it is sufficient to create, for each PDDL action a, a corresponding
MMA action a′ such that the execution modality of a′ is set to meet the numeric
preconditions and effects of a. Then, we can apply the Definition 4 to group all
the MMAs A which has the equivalent abstraction.

This mechanism is employed for solving the numeric planning problem de-
scribed in Chapter 4.

3.3.1 Action Applicability

Similarly to the numeric planning setting we have that:

Definition 5 (Action Applicability in an Execution Modality). Given a state
S, an MMA a is said to be applicable in S with modality m ∈ a.mods iff:

• a.propPre is supported by Sprop, meaning that Sprop ` propPre, and

• the numeric conditions associated withm, i.e., a(m).numPre, are satisfied
in Snum.

where numeric and propositional conditions are supported according to the fol-
lowing:

Definition 6 (State and Conditions). Given a set of propositional conditions
and numeric comparisons C (e.g. a propositional precondition and a numeric
precondition), and a state S we have that:

• Sprop satisfies Cprop iff (i) Sprop ⊆ in C, and (ii) Sprop is not undefined;

• Snum satisfies Cnum iff (i) Snum is consistent (in the mathematical sense)
to each comparison present in Cnum, and (ii) Snum is not undefined;

• S satisfies C iff both Sprop satisfies Cprop and Snum satisfies Cnum.

Of course, given a state S and an MMA action a, it is possible that just a
subset of modalities in a.mods are applicable in S.

By reasoning on the multi level nature of the MMA action we can identify
different levels of applicability. The applicability condition previously defined
indeed requires that the action is applicable with respect to a specific modality.
By releasing such further constraint, we can more generally say that:
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Definition 7 (Action Applicability). Given a status S, an action a is applicable
iff:

• a.propPre is satisfied in Sprop, meaning that Sprop ` propPre, and

•
∨
m∈a.mods(a(m).numPre, are satisfied in Snum).

Meaning that, given an action which is propositionally applicable in a state
S, it is also numerically applicable iff at least one of its modalities is applicable
in S.

Of course it may be the case that more than one modality is satisfied in a
given state. Intuitively, this is an appealing property that, as we will see in
Chapter 9 may be used to perform reactive control over the rover parameters
configuration. In particular in Chapter 8 we will introduce the notion of safe
execution modalities through which the system can assure that only particular
modalities are actually safe to be executed.

3.3.2 Effects of the Action Application

Given a state of the system S and an MMA a as presented above, the application
of a in S with modality m, identified by S[a(m)], produces (deterministically)
a new state S′ in the following way:

• S′ is initialized to be S

• each atom presents in eff+(a) is added in S′ (whether it is not already
present)

• each atom presents in eff−(a) is removed from S′ (whether it is present)

• each numeric fluent f involved as a second term of one of the numeric
effects of m (i.e. (< op, f, exp >)), will be modified according to exp and
op, meaning that it can be increased, decreased or it could be set to be a
completely new value.

Above, eff+ and eff− indicate the add and the delete list of a.
Similarly to the semantics for actions defined in [42], the application of the

numeric effects of a modality into a state of the system depends on the state
of the system before the action application. The right value, exp, has a specific
evaluation in the state in which the action is applied. Thus, since the effects
only depends on the past values of numeric fluents, the order of the application
of such fluents does not matter.

Some propositional and numeric fluents, however, could be not involved in
the action application; we assume that the values of such numeric fluents persist
after the whole action execution (frame axiom).
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The state resulting from a non applicable action is undefined by definition.
However, considered that a state consists of two separate parts, i.e. the proposi-
tional and the numeric one, the result can be either undefined for both subparts
or undefined for just one of them. That is, if the action a in a given modality
m is propositional applicable in a state S the resulting propositional part of
the state S’ is defined. Otherwise it will be not. Analogously, for the numeric
precondition of m.

The next two sections introduce two small examples of how a multi modality
action can be encoded by using a pseudo PDDL code augmented with the use
of modalities, that is in the Planetary Rover Domain and in the ZenoTravel
Domain.

3.4 The Planetary Rover Domain and the role of
the MMA

This Section introduces a space exploration scenario, where a mobile robot (i.e.,
a planetary rover) is in charge of accomplishing exploration tasks.

The domain involves the presence of many resources that should be carefully
managed. Planetary rovers have limited amount of power and memory therefore
the plan being executed has a very large set of constraints to preserve all along
the mission.

A typical mission requires to cover a number of scientifically interesting sites:
the action domain includes navigation actions as well as exploratory actions that
the rover has to complete once a target has been reached; for instance the rover
can:
- drill the surface of rocks;
- collect soil samples and complete experiments in search for organic traces;
- take pictures of the environment.

All these actions produce a certain amount of data which are stored in an
on-board memory of the rover until a communication window towards Earth
becomes available. In that moment the data can be uploaded; see [53] for a
possible solution tackling the communication problem in a space scenario.

For example, a possible daily plan could involve: drive(A,B); drill(B);
drive(B,C); tp(C); drive(C,D); drill(D); tp(D); drive(D,E); com(F).
This plan is graphically represented in Figure 3.3 where a map of a portion of
the Martian soil is showed. 5

5In the picture, different altitudes are represented in a grey scale where white corresponds
to the highest altitude, and black to the lowest
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Capital letters A, B, C, D denote the

sites the rover has to visit. Each site is

tagged with the actions to be performed

when the site has been reached: DRILL

refers to the drill action, TP to take

picture, and COM to data transmis-

sion. More actions can be done at the

same site, see for instance target C.

The black line connecting two targets

is the route, predicted during a path

planning phase, the rover should fol-

low during a navigate action.

Figure 3.3: Planetary Rover :: An example of daily mission plan.

For the sake of the discussion, depending on the strategies we will explain
throughout the thesis, we can focus just on a subset of the actions defined above.
In the rest of the work we will denote this scenario as the PlanetaryRover do-
main.

(:action drive
:parameters (r1 l1 l2)
:modalities (safe, normal, agile)
:precondition (and (reachable l1 l2)(in r1 l1))

(safe: ((>= (power r1) (f_pwr_safe(l1, l2)))
(normal: ((>= (power r1) (f_pwr_normal(l1,l2)))
(agile: ((>= (power r1) (f_pwr_agile(l1, l2))) )

:effect (and
(in r1 l2)
(not(in r1 l1)))
(safe:

(decrease (power r1)(f_pwr_safe(l1, l2)))
(increase (time) (f_time_safe(l1, l2))) )

(normal:
(decrease (power r1)(f_pwr_normal(l1, l2)))
(increase (time) (f_time_normal(l1, l2))))

(agile:
(decrease (power r1)(f_pwr_agile(l1, l2)))
(increase (time) (f_time_agile(l1, l2))) )

))

Figure 3.4: The augmented model of a drive action.

Figure 3.4 shows how we express a drive action by using the MMA model.
The action drive (r1, l1, l2) requires rover r1 to move from location l1 to
location l26. :modalities introduces the set of modalities associated with a
drive; in particular, we express for this action, three alternative modalities:

6For clarity reason we report an example of fully instantiated action. However we can
adopt action schema as well



58CHAPTER 3. ROBUST PLAN EXECUTION VIA MULTI MODALITY ACTIONS

- safe: the rover moves slowly and far from obstacles;
- normal: the rover moves at its cruise speed and can go closer to obstacles;
- agile: the rover moves faster than normal.
The :precondition and :effect fields list as usual the applicability condi-
tions and the expected effects, respectively, and are structured as follows: first
a propositional formula encodes the precondition/effect of the action, then for
each modality listed in :modalities a numeric expression is specified; such a
numeric expression is used to model the amount of resources and time required
(precondition) or consumed (effect) by the action when performed under that
specific modality. The numeric part of the model (Mods) of the action is hence
distributed in the preconditions and in the effects. For instance, in the precondi-
tions (reachable l1, l2) and (in r1, l1) are two propositional atoms required as
preconditions of the action. These two atoms must be satisfied independently of
the modality actually used to perform the drive action. While the expression
(safe -> (>= (power r1) (f_pwr_safe(l1,l2)))) means that the modality safe can
be selected when the rover’s power is at least greater than a threshold given by
the function (f_pwr_safe(l1,l2)))), which estimates the power required to reach
l2 from l1 in safemodality. Analogously, (safe->(decrease(power r1)(f_pwr_safe(l1, l2)))

describes in the effects how the rover’s power is reduced after the execution of
the drive action. More precisely, we have modeled the power consumption as
a function depending on the duration of the drive action (computed consid-
ering distance and speed) and the average power consumption per time unit
given a specific modality. For instance, in safe modality, the amount of power
consumed is estimated by the function (f_pwr_safe(l1, l2)), corresponding to
(safe_cons * (dist(l1,l2)/safe_speed), where safe_cons and safe_speed are the av-
erage consumption and the average speed for the safe modality, respectively,
while dist(l1,l2) is the distance between the two locations l1 and l2.

Finally, note that in the numeric effects of each modality, the model updates
also the fluent time according to the selected modality. Also in this case, the
duration the action is estimated by a function associated with each possible
action modality.

Analogously to the drive action, we modeled modalities also for the Take
Picture (TP) and the Communication. For TP we have the low (LR) and high
(HR) resolution modalities, whereas for the Communication we assume to have
two different channels of communication: CH1 with low overall comm_cost and
low bandwidth, and CH2 with high overall comm_cost but high bandwidth.

For the Take Picture action we assume that the rover is equipped with a
photo camera which provides two configurations of parameters. The former
corresponds to the HR modality and allows a better resolution of the image
while consuming a greater amount of memory; we set the HR and the LR
modality to consume 2 and 1 unities of memory, respectively.
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As anticipated before, also the communication action involves two different
modalities; these mainly differ in the way they impact the duration of the action.
In particular, the time spent by the action depends on the bandwidth at disposal.
We assumed that the communication bandwidth is 1 and 2 units per seconds
respectively for CH1 and CH2. The complete model of the domain is reported
in Appendix C 7.

3.5 The ZenoTravel Domain in MMA

Another example of multi modality action can be done by considering the Zeno-
Travel domain. The ZenoTravel domain is a logistic scenario used in the auto-
mated planning competitions for testing the ability of planners in dealing with
numeric fluents 8.

The ZenoTravel domain involves a set of planes in charge of transporting
people among a set of different locations; action models make use of both propo-
sitional and numeric fluents.

From our point of view, the ZenoTravel domain is quite interesting since in
the original version of the model there are two actions (fly and zoom) that have
exactly the same propositional effects, but different numeric effects. Indeed,
the two actions have different impacts on the use of resources (in particular on
the numeric fluents fuel and total_fuel_used). These two actions have different
preconditions, but it is worth noting that the propositional preconditions are
exactly the same (the airplane must be in the source airport) and the only
differences in preconditions are the ones related to numeric fluents. It is hence
quite interesting to observe that these two actions can be perfectly captured in
our approach with a single action fly with two modalities cruise and zoom. In
particular, the multi-modality action schema of fly, in a pddl-like language, is
shown in Figure 3.5.

It is easy to see that the propositional preconditions and effects are shared
among all the modalities, while the preconditions and effects concerning numeric
fluents are specific for each modality.

To make the domain more challenging, in the experimental phase using this
scenario, we added to the original model further numeric fluents. We introduced
the time_spent fluent, whose increase, after the execution of action, depends
not only on the action but also on the modality (see Figure 3.5). We also added
two modalities for the board and debark actions, namely, normal and express
which take different amounts of time (shorter for express) and different costs
(lower for normal).

7To keep the explanation simple we omit some further fluents that have been used in the
actual domain. Particularly this further information have been added to make more interesting
the benchmark suite for our experimental analysis

8http://planning.cis.strath.ac.uk/competition/
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(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:modalities {cruise, zoom}
:precondition (located ?a ?c1)
:numPrecondition

(cruise:
(>= (fuel ?a) (* (distance ?c1 ?c2) (cruise-burn ?a)))

(zoom:
(>= (fuel ?a) (* (distance ?c1 ?c2) (zoom-burn ?a))))

:effect (and (not (located ?a ?c1))
(located ?a ?c2)))

:numEffect
(cruise:

(and(increase (total-fuel-used) (* (distance ?c1 ?c2) (cruise-burn ?a)))
(decrease (fuel ?a) (* (distance ?c1 ?c2) (cruise-burn ?a)))
(increase (time-spent) (/ (distance ?c1 ?c2) (cruise-speed ?a)))))

(zoom:
(and(increase (total-fuel-used) (* (distance ?c1 ?c2) (zoom-burn ?a)))
(decrease (fuel ?a) (* (distance ?c1 ?c2) (zoom-burn ?a)))
(increase (time-spent) (/ (distance ?c1 ?c2) (zoom-speed ?a)))))

Figure 3.5: Multi Modality Action template for the fly action in the ZenoTravel
domain.

3.6 Conclusion

In this Section we have introduced the notion of a MMA. The main idea is that
in many domains a same action can be actually performed in several execution
modalities. For this reason the MMA provides two different levels of abstraction.
The higher captures the main qualitative preconditions and effects of the action,
while the lower specifies, for each modality, which are the requirements and the
effects over a given set of resources.

The Section formalized the notion and reported some concrete example of
MMA in a PDDL-like language.

The MMA notion is fundamental for the comprehension of the next Chapter,
which introduces the multi modality plans.



Chapter 4

Multi Modality Plans: the
Dynamic Modality Allocation
Problem

This Chapter introduces the notion of a Multi Modality Plan (MMP) which is
a total ordered set of instantiated MMAs. The Chapter discusses how comput-
ing and handling an MMP by means of the Multi Modality Planning Problem
(MMPP) and the Dynamic Modality Allocation Problem (DMAP). Then the
Chapter reports some theoretical properties of the given formulations. At the
end, a practical way to compare two plans in terms of stability will be intro-
duced.

4.1 Introduction

In the previous Chapter we have seen how the agent encodes the world state,
under which conditions an MMA can be applied and how such an action trans-
forms the state of the system once it has been applied. This Chapter introduces
the notion of the multi-modality plan (MMP) as a result of a multi-modality
planning task. Intuitively, the multi modality plan is a sequence of MMAs and
is aimed at representing the task the agent is in charge to perform.

The Chapter analyzes two levels of consistency that can be detected by
monitoring the MMP during the execution. An MMP can be valid, meaning that
the execution can go on. Otherwise it can be either partially valid or invalid,
meaning that some kind of recovery mechanism is necessary. In particular,
when the plan is just partially valid the repair can be performed by solving the
Dynamic Modality Allocation Problem. The DMAP is key for the supervision
task of the FLEX-RR mechanism reported in Chapter 6.

61
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4.2 Multi Modality Planning Problem

This Section introduces the planning framework of reference for the MMAs in-
troduced in the previous Chapter. In particular, we introduce a Multi-Modality
Planning Task, i.e.:

Definition 8 (Multi Modality Planning Problem). Given the domain < U,F,X >,
a Multi-Modality Planning Problem (MMPP) Π is a tuple < A, I,Gprop, Gnum >

where:

• A is the set of possible MMA instances over < U,F,X >; 1

• I ∈ 2F x <|X| is the initial state of the problem;

• Gprop is the propositional goal; i.e., a partial state over the propositional
fluents in F ;

• Gnum is the numeric goal; i.e., a conjunction of numeric constraints over
X.

Note that our notion of MMPP is similar to the Numeric Planning Problem
(NPP) proposed by Gerevini et al. [45]; the main difference is that we make
explicit the adoption of actions with modalities rather than traditional PDDL
actions. It is easy to see, however, that an MMPP can be translated into
an NPP; it is sufficient to flatten each MMA a in A by generating a set of
corresponding PDDL actions as reported in Chapter 3. Analogously, we can
perform the opposite conversion: given a plan consisting of PDDL actions, we
can build an MMA plan2.

Let be S[π] the state produced as a result of the application of the actions of
the plan π starting from the state S, the multi modality plan is formally defined
as follows:

Definition 9 (MMPP Solution). Given a MMPP Π=< A, I,Gprop, Gnum >,
the plan π = a0(m0),a1(m1),..,an−1(mn−1) is a solution for Π iff:

i. I[π] ` Gprop and

ii. I[π] satisfies Gnum

In other words, a sequence π of MMA instances (specified with their modalities)
represents a solution for Π when the execution of π transforms the initial state
I into a final state I[π] such that: (1) the propositional atoms in Gprop holds in
I[π], and (2) the numeric constraints in Gnum are satisfied.

1Since we are interested in plan execution, we consider in this formulation instantiated
actions only. The extension for action schema is straightforward

2In Chapter 6 we will describe how practically one can invoke a PDDL planner starting
from MMAs



4.3. ON-LINE EXECUTION OF MULTI MODALITY PLANS 63

In the following definitions, we use the notation πi→j with i ≤ j to denote
the plan segment starting at the i-th action ai of the plan and ending at the
j-th action aj ; when the right bound is omitted (e.g. πi) the length of the plan
is assumed, that is πi is equal to πi→|π|. Moreover, since a plan segment is itself
a plan, the notation S[πi→j ] represents the (intermediate) state S′ reached after
the execution of the actions ai, .., aj from the state S.

The operation for the application of a plan π = a0(m0),a1(m1),..,an−1(mn−1)

in a state S is well defined only when each action of the plan is applicable in the
state produced by the action before, i.e. each action ai(mi) must be applicable in
the state S[π0→i]. Otherwise the state resulting from the operation is undefined
(either in the propositional or numeric sense, see Definition 6).

4.3 On-line execution of Multi Modality Plans

In this Section we will formalize the notion of an executable plan. Intuitively,
the notion is introduced to formalize the conditions under which a plan is still
consistent with respect to the upcoming situation. Moreover, we will discern
two levels of consistency for a given plan. Such a distinction is important in
order to understand when and how a Dynamic Modality Assignment Problem
arises.

4.3.1 Executable Plans

The actual execution of a plan π in the environment can be threatened by the
occurrence of unexpected events such as variations in the resource consump-
tions, or assumptions that, made at planning time, become invalid at execution
time. It is therefore essential to detect, while the plan is still in progress, any
unexpected deviation from the nominal expected behavior.

More formally we can say that:

Definition 10. Given an MMPP Π=< A, I,Gprop, Gnum >, and a plan π =
{a0(m0),a1(m1),..,an−1(mn−1)} solving Π, let Si be the observed system state
obtained after the execution of the first i actions in π, and let πi be the plan
segment {ai(mi), ..an−1(mn−1)} still to be performed; we say that:

• π is valid at execution step i iff Si[πi] satisfies both Gprop and Gnum;
namely, the final state predicted by applying the plan segment πi to Si

satisfies both the propositional and numeric terms of the plan goal;

• π is partially valid at step i iff Si[πi] satisfies Gprop but not Gnum;

• π is invalid, iff Si[πi] does not support Gprop.
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Thus, after the execution of each action in the plan, it is necessary to de-
termine the status (i.e., either valid, partially valid, or invalid) of the plan. For
this purpose, we do not consider just the effects of the last performed action,
but we also verify whether the propositional goals Gprop and the numeric ones
Gnum can be satisfied in the final state reached by π. We do this starting from
the observed state Si of the world in order to capture both the changes caused
by the agent, and the changes caused by the possible occurrence of exogenous
events.

The assessment of the actual environment state after the execution of an
action is, in general, a complex problem since the environment is, in most cases,
not fully accessible, and only partial observations about the world are available.
The problem of plan execution in partially observable environments has been
dealt in [66] [86]. In this paper, however, we assume that the observability
level is sufficient for measuring the effects of an action a(m) (i.e., applied with
modality m), and for assessing the information present in the precondition set
of the next action to execute.

For the sake of explanation let us show a small example of plan consistency
in the Planetary Rover domain.

An example of partially valid plan

Let us consider a simple problem for the Planetary Rover domain whose initial
state3 and the goals statement are reported by Figure 4.1 (left part); whereas
the MMA plan provided as solution is reported in the right part of Figure 4.1.

In particular, the goal conditions constrain, on one hand, the use of resources,
and on the other hand, specifies that the rover r1 has to acquire information in
sites B and C.

Figure 4.2 shows the final state (i.e. I[π]), predicting the evolution of the
environment according to the model of the actions of the Planetary Rover do-
main defined in Appendix C. Precisely, the rover will complete the plan in less
than 50 unities of time, consuming less than 666 unities of power.

At any step of the plan execution, the agent can refine the predictions made
by integrating the information coming from the real observations. In a nominal
condition, that is, when no exogenous event (or a anomalous action behavior)
occurs, it is quite obvious that the final status of the system will be consistent
with the prediction made at planning time; thus the current plan of actions still
represents a valid solution for the mission at hand, and in our example the rover
will arrive to the end of the mission achieving the pre-fixed objectives.

Let us consider a non nominal condition instead, supposing that the drive
action of step 1 actually consumed more power than expected. It is quite evident

3The initial status is the same defined in 3.1. Here we report the definition for convenience
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/*INITIAL STATE*/

/*propositional info*/
(at (r1,A))
(road (A,B))
(road (B,C))
(road (C,D))
(road (A,D))
/*numeric info*/
(= (distance(A,B)) 15)
(= (distance(B,C)) 35)
(= (distance(C,D)) 45)
(= (distance(A,D)) 10)
(= (power r1) 1000)
(= (memory r1) 4)
(= (time) 0)

/*GOAL CONDITIONS*/

/*proposition goal*/
(info_acquired(r1,B))
(info_acquired(r1,C))
/*numeric goal*/
(> (power r1) 300)
(< (time) 50)
(= (memory r1) 4)

/*MMA PLAN*/

1: Drive(A,B)(cruise)
2: TP(B)(HR)
3: Drive(B,C)(cruise)
4: TP(C)(HR)
5: Comm(C)(CH1)

Figure 4.1: Planetary Rover Domain :: Problem and MMP

PREDICTION

/*propositional information*/
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric information*/
(= (power r1) 334)
(= (time) 47)
(= (memory r1) 4)

Figure 4.2: Planetary Rover Domain :: Step 0 Prediction
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PREDICTION

/*proposition goal*/
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric goal*/
(= (power r1) 290)
(= (time) 47)

Figure 4.3: Planetary Rover Domain :: Step 2 Prediction

that as a consequence, the prediction made at the beginning of the execution is
not reliable anymore and hence has to be refined.

To this purpose, the agent can re-simulate the whole plan execution from the
new observed state. Thus, let us imagine that, at step 2 (before the execution
of TP(B)(HR)), the final status is predicted according to Figure 4.3.

According to definition 10, the plan turns out to be just partially valid as
the propositional goals continue to be verified while the numeric goals do not.
Indeed the power of the robot is predicted to be less than expected, and this
situation is not consistent with the numeric goal conditions.

In a different scenario, the impact of the current observations could be more
sweeping. Imagine that, at the same time step and differently to what the agent
has assumed at planning time, we notice that the road connecting the site B
with the site C is no more available (e.g. because of some obstacle prevents the
passage). Then, albeit the next action is still executable, the plan is assessed
to be invalid. Indeed the current state, namely S is such that S[π] does not
satisfies Gprop. In particular the propositional preconditions of DRIV E of step
3 would not be satisfied, because of the action instance requires the presence
of the road connecting B and C, and hence S[π] turns out to be undefined
(in the propositional sense), meaning that it does not satisfy any propositional
conditions.

4.4 The Dynamic Modality Allocation Problem

In principle, whenever the plan π is no longer valid, a replanning mechanism
should be invoked in order to find an alternative way to reach the desired goals.
As we have seen, however, the clear distinction between the propositional and
numeric aspects within an MMA allows us to distinguish between a completely
invalid plan (which is no longer executable because some of the required propo-
sitional fluents are missing), and a plan which is just propositionally consistent
but not numerically, i.e. partially valid. The idea is that, while an invalid plan
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can only be repaired by means of a (possibly expensive) replanning step, it may
be the case that a partially valid plan can be repaired more effectively by recon-
figuring its actions. That is, we try to reuse the effort made for the synthesis
of π by adjusting the way in which the actions in π will be performed. We
therefore propose to repair a partially valid plan not via a replanning step but
via a reconfiguration phase, and to do this, we introduces the notion of Dy-
namic Modality Allocation Problem (DMAP), and we study some interesting
properties.

According to Definition 10 and by reasoning on the MMPP, the Dynamic
Modality Allocation Problem can be formally defined as:

Definition 11 (The Dynamic Modality Allocation Problem (DMAP)). Let π =
a0(m0), .., ai(mi), .., an−1(mn−1) be a solution for the MMPP Π =< A, I,Gprop, Gnum >,
and let Si be the last observed state of the environment (i.e., we are at the i-th
execution step).

The Dynamic Allocation Problem Φ is a tuple < π, i, Si, Gnum > such that:

• π is an MMP whose first i actions have been already performed,

• π is partially valid at step i,

• Si is the observed state of the environment after the execution of action
ai−1,

• Gnum is the set of numeric constraints to be fulfilled.

Definition 12 (Solution of a DMAP). The solution (if any) of a DMAP is a
new plan
π′ = a0(m′0), .., ai(m

′
i), .., an−1(m′n−1) such that:

• for each action aj, 0 ≤ j < i, m′j = mj: the reconfiguration cannot change
the modality of an action that has already been performed;

• Si[π′i] ` Gnum: the new assignment of modalities satisfies the numeric
portion of the goal.

It is worth noting that the solution π′ of a DMAP has the same sequence of
actions as π. The two plans, π and π′, just differ each other in the modalities
associated with the actions not yet performed. Note also that, since the input
plan is partially valid, the solution of DMAP will differ from the original setting
of modalities at least for one of them; that is, for each action aj , i ≤ j < n,
m′j ∈ aj .mods can differ from mj ;

Moreover it is easy to see that if M is the average number of modalities
for the involved actions in π, the search space for a DMAP at step i is M |πi|.
As long as the execution proceeds, the number of actions to consider decreases;
thus the search space decreases too.
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The problem is ‘dynamic’, since it may arise at any step of the plan execution,
and assignments made at a given step could be reconsidered afterwards.

Having solved the DMAP problem we are sure that the new MMA plan is a
valid solution for the overall MMPP; that is:

Theorem 1. Let π′ be a solution for the DMAP Φ=< π, i, Si, Gnum >, where
π is partially valid at step i wrt the MMPP Π, then π′ is valid at step i.

Proof. To show that π′ is valid we have to prove that Si[π′i] satisfies both Gnum
and Gprop. The former comes directly from the definition of a solution for the
DMAP, whereas the latter follows by the fact that π′ inherits the causal structure
of π (i.e., the qualitative/propositional part of the plan does not change when
the solution is computed). For this reason π′ is computed from a partially valid
solution and hence Si[π′i] satisfies Gprop.

It is easy to see that the solutions space of a DMAP is a subset of the
solutions space defined by MMPP. Therefore a solution for the DMAP, if any,
is also a solution for the MMPP. However, the opposite does not hold, namely
when the DMAP has no solution, the MMPP might instead have a solution.
For the sake of clarity Figure 4.4 clarifies the situation.

Figure 4.4: The relation between the space of the solutions of MMPP and
DMAP

The relation between an MMPP and a DMAP is still more evident by study-
ing the worst case complexity. It is worth remembering for this purpose that
the automated planning is hard from a computational point of view. Indeed the
only classical fragment (i.e. STRIPS) has been showed to be PSPACE-complete
(see [18])) and, to the best of our knowledge, despite there are no complexity
results on the numeric extension of the classical paradigm, the numeric planning
and hence the MMPP is supposed to be at least complex as a STRIPS problem.

On the other hand, the characterization given in this Chapter, the DMAP,
is less complex. In fact:

Proposition 2. The Dynamic Modality Allocation Problem is an NP problem

The proof of the NP membership trivially comes from the polynomial con-
version mechanism reported in Chapter 5. There we will show that a DMAP
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can be transformed in a standard CSP. As well known, a CSP is a classical
NP-complete problem; so the resolution of the DMAP is not much harder of an
NP problem, i.e. the DMAP is in NP.

Given the proposition above we can also state that:

Observation 3. If PSPACE ⊃ NP and MMPP ⊇ STRIPS then DMAP ⊂
MMPP, meaning that solving an instance of the DMAP is simpler than solving
an MMPP.

It is easy to see here that, by hypothesis, we have that MMPP ⊇ PSPACE
⊃ NP ⊇ DMAP hence the thesis, MMPP ⊃ DMAP, is a direct consequence.
The first hypothesis of the observation (PSPACE ⊃ NP) is supported by the
fact that (i) we know that NP ⊆ PSPACE ([7]) and (ii) it is widely assumed
that the converse does not hold, i.e. PSPACE * NP .

These theoretical observations gives us a formal guarantee that, in the worst
case, reconfiguring is simpler than replanning from scratch and the result will
be still more evident in the experimental session reported in Chapter 7.

4.5 Comparing solutions found by DMAP and
MMPP

In many domains, the impact of the decisions taken by repair mechanisms for
restoring the plan execution represents a critical issue. Since new decisions
might diverge from the ones taken at planning time (e.g., different actions or
also just a change in the order of the actions execution), the behavior of the
agent might become difficult to predict for an external observer, as for instance
a human supervisor. In addition, when the agent has to cooperate with others,
repairing the plan with a minimum amount of changes is a desirable property
to make joint activities feasible, as pointed out by other authors too ([60],[44],
- see Chapter 2.2.3 for a detailed discussion). The problem is that agents could
have provided commitments and agreements on the initial decisions. For this
reason, the revision of the "local" choices could have a significant impact from
a global point of view (see for instance [102]).

By observing the plans space of the DMAP and the MMPP it is possible
to evaluate the difference of the kind of solutions that can be found by the two
approaches. The following theorem better characterizes such a difference. In
a nutshell, when the DMAP fails, the solutions to the new MMPP must differ
from the original plan for at least one action.

Theorem 4. Let πi be a partially valid plan at step i, and let us assume that
the DMAP Φ=< π, i, Si, Gnum > has no solution. Let π′ be a solution for the
new planning problem Π′=< A,Si, Gprop, Gnum >. Then π′ satisfies at least
one of the following statements:
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• there is at least an MMA in π′ which does not belong to πi.

• there is at least an MMA in πi which does not belong to π′.

• the order of MMAs in π′ differs from πi, i.e. there are at least two actions
a and b where both a,b ∈ π′ and a,b ∈ πi such that if a ≺ b in π′ then b
≺ a in πi.

Proof. The proof proceeds by contradiction. Let us assume that the solution
found for Π′ is such that none of the three statements hold. If this is the case
the solution π′ will have exactly the same structure of πi in terms of MMAs
contained as it has no different action (first and second statements) and the
order is the same (third statement). It is easy to see hence that the only way
in which π′ differs from πi is in the modality assigned to each action.

Moreover, by definition of Π′ we know that if π′ is a solution for Π′, then
Si[π′] satisfies both Gprop and Gnum. Of course, if π′ has the same structure of
πi it means that there will be an assignment of modality in πi such that Si[πi]
satisfies Gnum. On the other hand, by hypothesis, we know that the DMAP
did not found any assignment of actions modality for the piece of plan πi which
obviously is in contradiction with the fact that there is an assignment in πi such
that Si[πi] satisfies Gnum.

Theorem 4 shows that the DMAP actually complements the replanning from
scratch: when there is no solution for a DMAP, the original plan structure
cannot be preserved, and some actions have to be added, removed, or put in a
different order in the repaired plan. This satisfies our intuition that, in order to
keep the plan as stable as possible, it is helpful to try resolving a DMAP first,
and only when this has no solution then attempt to re-plan from scratch.

Relying on Theorem 4, our hypothesis is that the reconfiguration produces,
on average, more stable repaired plans than a replanning from scratch.

However there may be cases for which the reconfiguration needs many changes
in the set of re-configurable actions, while the simple adding of an action (achiev-
able via MMPP) may handle the unexpected contingency. For this reason, to
confirm, or negate such a hypothesis, we propose here a way to evaluate the
stability of a repaired plan, based on the notion of distance between two plans
(i.e., the original and the repaired plan). Doing so, we will have a metric to
evaluate the approach in the experimental sessions (Chapter 7).

4.5.1 Stability

Our stability measure relies on the distance D(π′, π) between the new (repaired)
plan π′ and the original plan π. Such a measure is inspired to the well-known
Levenshtein’s string distance [58].
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We compute such a distance as the minimum cost for transforming π′ into
π, where a transformation consists of a sequence of operations, each of which
has a positive cost. The operators we consider are:

• inserting (add) and removing (del) an action in π′, with cost α

• replacing (remod) the modality of an action in π′, with cost γ

• swap (swp) the order of two consecutive actions in π′, with cost θ

It is reasonable to assume that γ � α < θ < 2 ∗α; that is, changing a modality
is less expensive than inserting/removing an action, that in turns is cheaper
than swapping two actions. Of course, swapping two consecutive actions is less
expensive than adding and removing an action.

Thus, the transformation τ [π′, π], transforming π′ into π, involves a certain
number addsτ of insert operations, delsτ delete operations, remodsτ replace
modality operations, and swpsτ swap operations.

The cost of τ is therefore computed as:

cost(τ [π′, π]) = α ∗ addsτ + α ∗ delsτ + γ ∗ remodsτ + θ ∗ swpsτ

Let T be set of all the possible transformations of π′ into π, the distance
D[π′, π] between the two plans is the cost of the cheapest transformation in T :

D[π′, π] = minτ∈T cost(τ [π′, π])

The evaluation of the distance D[π′, π] can be done via a dynamic programming
procedure, similar to one proposed by Levenshtein, that allows us to find the
minimal distance without computing the set T first.

Having this notion of distance between plans, we can define the stability
of π′ w.r.t. π. Intuitively, the stability has to be maximum when no change
happens, i.e. π′ equals π, and minimum when the two plans are completely
different.

stability(π′, π) = cost(τtrv [π′,π])−D[π′,π]
cost(τtrv [π′,π])

where cost(τtrv[π′, π]) is used as a reference cost; it corresponds to the more
expensive transformation, τtrv4, which first removes all the actions in π′, and
then inserts all the actions in π to π′. The formula has its maximum/minimum
in 1/0. Thus, when D[π′, π] is close to the cost of τtrv, this suggests that the new
plan π′ is substantially different from the original one, and hence we compute
a low grade of stability (close to zero). On the other hand, when D[π′, π] is
significantly lower than the cost of τtrv, the two plans π and π′ are very similar,
and we compute a high grade of stability (close to one).

4τtrv is the most expensive transformation we can find with our dynamic programming
procedure
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Computing the plan stability: A simple example

Let us consider a plan from the ZenoTravel Domain (see Appendix C.2) and let
us measure the stability in case the plan is reconfigured (via DMAP), Figure
4.5, or it is re-generated from scratch (via MMPP), Figure 4.6.

ORIGINAL:
debark_P2_F1(normal)
board_P3_F1(normal)
fly_F1_A2_A3(zoom)
debark_P1_F1(normal)
debark_P3_F1(normal)

REPAIRED:
debark_P2_F1(normal)
board_P3_F1(normal)
fly_F1_A2_A3(cruise)
debark_P1_F1(express)
debark_P3_F1(express)

Figure 4.5: Reconfiguration via DMAP

ORIGINAL:
debark_P2_F1(normal)
board_P3_F1(normal)
fly_F1_A2_A3(zoom)
debark_P1_F1(normal)
debark_P3_F1(normal)

REPAIRED:
debark_P2_F1(express)
board_P3_F1(express)
refuel_F1_A2(default)
fly_F1_A2_A3(zoom)
debark_P1_F1(express)
debark_P3_F1(express)

Figure 4.6: Replanning via MMPP

Given that α (the insertion/deletion cost) equals to 5, γ (modality replace-
ment cost) to 1 while θ (the swap cost) is set to 6, we have that:

• DMAP: the trivial transformation costs 50 (the cost for 5 deletions and 5
insertions), the distance between the original and the repaired plan is 3,
and hence the stability grade is 0.94, meaning that the two plans are very
close to each other.

• MMPP: the trivial transformation costs 55, the distance between the orig-
inal and the repaired plan is 9 and hence the stability grade is 0.83.

This means that the plan repaired via replanning is slightly less stable than the
plan repaired by solving the DMAP.

In literature, as we have seen in Chapter 2, the stability metric has been
firstly introduced in [60]. In this work, however, they do not capture the concept
of an execution modalities. Instead the stability is computed has a measure
accounting only the presence, or the absence, of actions among the two plans
considered. For this reason their metric does not meet our purpose in that we
have no means to differentiate the impact caused by a change of modality and
the one by a change of an action.

Another metric for evaluating the distance between two plans has been in-
troduced recently in [77]. However, also in this work there is no distinction
among action and modalities; rather they establish the distance among the two
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plans by considering their causal structure. Intuitively, the more different the
causal structure of the two plans is, the larger the distance between these two
plans will be. The intuition could be useful for our purpose as well. However,
it should be studied how to combine the causal structure with the concept of
execution modality, above all considering the interdependence arising with the
numeric/resource counterpart.

4.6 Conclusions

In this Chapter we have presented the formal problems of reference for dealing
with and managing the concept of MMA. We have seen that an MMP, i.e. a
plan of MMAs, is the result of the general MMPP. Therefore an MMP can be
generated by using a general numeric planner system properly adapted to our
purposes.

More important, the Chapter individuates three different levels of validity
for a plan that can be detected online, during the plan execution. In particular,
when the plan is just partially valid, the revision can be performed via the
DMAP. The DMAP is a reformulation of the general MMPP; the reformulation
allows to state the problem of repair as a reconfiguration problem.

The DMAP characterization has several theoretical benefits which let us to
believe that the reconfiguration can be more efficient than a replanning from
scratch and, moreover, the plan structure can be preserved despite the adap-
tation. As we will see in Chapter 7, these properties will be positively verified
experimentally, too.

Finally the chapter introduces a new stability metric for the purpose of
evaluating the impact of the repair mechanism on the plan, in the context of
MMAs.
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Chapter 5

Modeling the DMAP within a
CSP

This Chapter introduces the CSP conversion exploited in order to represent
and solve the Dynamic Modality Allocation Problem (DMAP). The given CSP
formulation will be used also as a solid framework for handling the MMA plan
execution process in general. As we will see in Chapter 6, the CSP engine plays
an essential role in the FLEX-RR supervision task.

5.1 Introduction

So far, we have pointed out that a plan can be made partially valid or invalid by
unexpected contingencies occurring during the execution phase. We have also
suggested that, when the plan becomes just partially valid, the agent can try to
solve a DMAP to reconfigure action modalities. On the other hand, when the
plan becomes invalid, the space of modalities is not sufficient to accommodate
the contingency; therefore the agent has to find a new course of actions (i.e.
replanning from scratch). In particular, we have presented in a declarative way
the Dynamic Modality Allocation Problem (DMAP).

In order to handle the DMAP from a computational point of view, we trans-
late the given formulation in a Constraint Satisfaction Problem. Indeed, the
constraint satisfaction problems (CSP) and the solvers developed so far have
reached an high degree of maturity ([9]) and have been successfully applied in
a very large range of applications including planning and scheduling ([36] [59]).
For a thorough CSP description see [32].

The adopted CSP formulation is mandatory for the resolution of the DMAP.
In addition, since a DMAP could arise many times during the plan execution, we
have further developed a mechanism for translating the plan model into a CSP

75
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model just once, and reusing the same CSP model for the different occurrences
of DMAP. In this way we do not need to re-build the CSP model completely
from scratch having a solid overview on the plan execution process in general.
For details on this aspect see Chapter 6.

In the next two Sections we will describe the fundamental steps to build
the CSP model representing a specific instance of DMAP; more precisely the
discussion is organized to show firstly what are the variables involved within the
CSP and after which we will explain how such variables have to be constrained.
The constraints binding the variables of our model are mandatory to capture
only solutions that are consistent with the DMAP formulation.

The translation we will propose aims at generating a general CSP encoding
for the DMAP, so we can in principle use an CSP engine1. As we will see
in Chapter 7, even without the adoption of ad-hoc search strategies, we can
obtain very good performance. However, a careful translation is desirable. For
this reason, we have implemented some enhancement to speed up the resolution
process (see Section 5.4).

5.2 CSP Transformation: Encoding the DMAP

The schema guiding our CSP construction is similar to the translation proposed
for the classical planning setting in [36, 59].

In a classical planning setting the CSP model requires two sets of variables:
one to model the actions selection, and the other one to model the states gen-
erated by the action execution. Analogously, the encoding of a DMAP into a
CSP representation relies on two sets of variables. In particular:

i. MODs is the set of modality variables: the solution of a DMAP is in fact
an assignment of modalities to the plan actions, thus the model has to
focus its attention on modality variables, instead of action variables;

i.i. NUMs is a set of state variables just encoding the numeric fluents of the
original DMAP problem, while propositional fluents are not considered.

The former set of variables captures the modalities to choose. As reported
in Definition 3, each action encompasses a set of modalities of execution, and
only one of these shall be actually selected for the execution. By modeling
each modality with a single variable, we automatically support the previous
requirement. Indeed, a specific CSP solution will assign just a value for each
modeled variable.

As far as it is concerned by NUMs, similarly to CSP-based planning (based
on a graphplan-like structure [1]), we duplicate the state variables as many times

1In our system we adopted the Choco Solver. For details see http://www.emn.fr/z-info/
choco-solver/

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
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as there are “levels” in the plan π2.
One of the advantages of the DMAP is that it does not require to model the

propositional aspects of the planning problem. For this reason the CSP set of
state variables, i.e. NUMs, just maps the numeric fluents of the state of our
system, i.e. Snum.

Of course, the CSP representation also involves a number of constraints.
In particular in our context the constraints bind modality variables and state
variables among each other; each constraint depends on the model of the action
and the specific instance of the problem.

In other words, the CSP model binds the state variables at level l with:

• the (numeric) preconditions of the modality variable associated with action
al;

• the (numeric) effects of the modality variable associated with action al−1.

State variables at level 0 are set to represent the initial state of the world,
while variables at the last level are also constrained with the numeric part of
the plan goal.

In our formulation the only decisional variables are the modality variables
as the state variables are computed as side effects of modality selections.

For the sake of clarity, Figure 5.1 summarizes the variables and the con-
straints involved in a generic plan of length n; in particular the figure describes:

• State Variables NUMs in the snapshot-layers. For each numeric fluent
Ni in X, a variable V ji (with j from 0 to |π|) is added in NUMs.

• Modality Variables MODs in the action layers. For each MMA ak be-
longing to the plan, a modality variable modk, taking values in mods(ak),
is included in MODs.

Intuitively, the superscript j of a variable V ji in NUMs represents the ex-
ecution step the variable refers to. Thus, all the numeric variables labeled as
0 represent the initial state; whereas variables labeled as 0 < j ≤ |π| repre-
sent (the numeric portion of) the state after the execution of action aj−1 with
modality modj−1.

2Of course, since we are not solving a planning problem, but a DMAP, we do not need the
step of graph expansion as the sequence of actions is fixed and already known.
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5.3 CSP Constraints Formulation

Section 5.2 introduced the variables of the CSP formulation for the DMAP
problem, and some clues concerning the constraints that have to be built around
the variables of our problem. However, the formulation of the preconditions and
of the effects in the action model can be complex and may involve many numeric
fluents interacting among each other. For this reason, this Section describes how
the constraints binding the variables in MODs and NUMs are built. Let us
remember the reader that this step is mandatory for guaranteeing to obtain only
assignments of modalities that are consistent with the model of actions and the
problem at hand.

Init and Goal Status Constraints

First of all, let us see how the initial state and the goal conditions of a DMAP
can be represented in terms of variables and constraints within a CSP. Indeed,
the first and the last snapshot of our CSP representation must be constrained
in order to be consistent with the state in which the i-th action applies and the
goal conditions, respectively, of the DMAP formulation.

The initial setup of the CSP formulation translates a specific instance of the
DMAP, i.e. Π =< π, 0, In, Gnum >.

1. Initial State Constraints. For each numFluents in In of the form Ni = val,
the corresponding CSP variable V 0

i ∈ NUMs is constrained to assume the
value val 3:

∀ Ni = val ∈ In, CSP.addConstraint(V
0
i = val)

where val is a constant in <.

2. Goal Constraints. For each comparison of Gnum, which has the form C :<

exp, comp, exp′ >, where exp and exp′ are linear expressions mentioning
numeric fluents in X, and comp belongs to {<,≤,=,≥, >}, we create a
corresponding comparison mentioning the variables in NUMs at step n,
where n = |π|:

forall the C ∈ Gnum do
CSPExp ← Subst(C.exp,X, V n)
CSPExp’ ← Subst(C.exp′, X, V n)
CSP.addConstr(CSPExp,C.comp,CSPExp′)

3Note that, an in initial state is a complete state, meaning that there is no numeric fluent
with an undefined value
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In the transformation reported above, the procedure Subst substitutes the
variables in the goals definition with the variables of the last snapshot of the
CSP Model. The result is a CSP expression stating how the variables of the
CSP Model relates to each other4.

Precondition Constraints

As anticipated in the previous Section, an MMA a is said to be applicable in a
given state S with modality m only when the numeric preconditions associated
with m are satisfied (assuming that the propositional preconditions are satisfied
too) in S. To encode the applicability condition within the CSP model, we have
to bind each MMA ai with the CSP variables in V i; that is, state variables
encoding the state in which action ai has to be executed. Therefore, for each
MMA ai in the plan, we add these constraints as follows:

for i = 0→ |π − 1| do
forall the m in ai.Mods do

forall the C ∈ numPre(m) do
CSPExp := Subst(C.exp,X, V i)
CSPExp’ := Subst(C.exp′, X, V i)
CSP.addConstr((modi = m)→
(CSPExp,C.comp,CSPExp′))

Namely, for each modality m associated with ai, we consider every compar-
ison C in numPre(m), and translate it into a new expression in terms of CSP
variables in V i, similarly to what we have shown for the translation of the goal
constraints. The new expression is therefore added to the CSP model.

Effects and Frame Constraints

The execution of an action changes the system state according to its model. In
general, however, just a portion of the system state is actually modified by the
action; all the numeric fluents that are not directly mentioned in the effects of
an MMA are assumed to persist (Frame Axiom).

Therefore, within our CSP model we have to add constraints modeling the
transition of each numeric fluent from a snapshot i to a snapshot i+1, taking
into account whether the numeric fluent is mentioned within the effects of the
i-th MMA action or not.

• Affected Numeric Fluents: for each i-th action in the plan, the selec-
tion of the modi variable binds the i-th snapshot with the i+ 1 one. More

4In the implementation setup, we noticed that the CSP Solver performance can be enhanced
when dealing with homogeneous kinds of numeric expression. For this reason Section 5.4
reports a technique for producing a normalized form of numeric expression
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precisely the constraints to be added are:

for i = 0→ |π − 1| do
forall the E ∈ numEff(modi) do

CSPExp := Subst(E.exp,X, V i)
CSP.addConstraint((modi = k)→ (V i+1

E.nfluent, E.op, CSPExp))

Here the function Subst creates a CSP representation of the arithmetical
expression causing the numeric transition.

• Not Affected Numeric Fluents:

for i = 0→ |π − 1| do
forall the fluent /∈ affected(modi) do

CSP.addConstraint(V ifluent = V i+1
fluent)

For the fluent not affected by the action, it suffices to constrain the i-th
snapshot with (i+ 1)-th one.

Small Example

To facilitate the comprehension we will introduce a small example. Let us
imagine to be in the position of building the constraints binding the effects of
the fly action of the ZenoTravel5 in the modality cruise.

The CSP representation will contain 4 numeric variables, i.e.
{Vt_f_u, Vfuel, Vt_s, Vcapacity}, moreover let us assume that distance, consump-
tion and the speed are modeled as constant6.

By recalling the model of the action reported in Figure 3.5, we know that
the action affects total-fuel-used (t_f_u), fuel and time-spent (t_s) leaving per-
sistent the others numeric fluents of the domain.

Here the constraints resulting for the i-th fly(cruise) action which is the one
that models the plane moving from A to B:

(modfly = cruise) → (V i+1
fuel = V i

fuel - distance(A,B) * avg_cruise_cons)

(modfly = cruise) → (V i+1
t_f_u = V i

t_f_u + distance(A,B) * avg_cruise_cons)

(modfly = cruise) → (V i+1
t_s = V i

t_s + distance(A,B) * avg_cruise_speed)

(modfly = cruise) → (V i+1
capacity = V i

capacity)

It is important to observe that while the first three constraints involve exam-
ples of affected variables, the last constraint did not. Meaning that the capacity
will remain unchanged after the fly action.

5For the complete domain definition, see Appendix C.2
6In principle the constants are not explicit in our model. A technique to automatically

extract them by reasoning on the problem and the plan is reported in Section 5.4
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5.4 Improving the CSP Representation

In this Section we show some expedients used to generate a cheaper and opti-
mized version of the CSP model. The improvements are obtained by reasoning
on the structure characterizing the DMAP. The objectives are:

• restricting the set of numeric variables to consider

• standardizing the form of the constraints (in particular the involved nu-
meric expressions)

5.4.1 Invariant Analysis

The major impact in the number of variables involved is given by the numeric
part of the world state domain, i.e. |X|. In fact, the modeling of real world
domains could require a big amount of numeric information. 7

For instance, the Planetary Rover domain requires to model the distance
among cities by means of numeric fluents "distance(a -site,b -site)". This infor-
mation have to be translated within the CSP Model since each condition for the
applicability of the modality for the drive action depends on the value of the
distance between the two sites (see the action model for the Planetary Rover
domain in appendix). Morover, (i) the number of connections among sites de-
scribed in the state of the system may be quite big and (ii) the state variables
have to be replicated as many times as there are actions in the plan. Thus
the management of the CSP may become a big issue. For instance, a problem
involving 100 connections among sites and a length of the plan equal to 100
actions would require 10000 CSP variables.

Therefore, by observing the transformation described in the previous section,
it is quite evident that the number of the variables to handle within the CSP
could rapidly increase.

By analyzing in more depth the DMAP problem, it is however worth noting
that some of the numeric fluents are actually negligible. Indeed, not all the
numeric fluents are subjected to change in a given plan of actions.

More precisely, given a DMAP formulation Φ, it is possible to find a set of
numeric fluents which are actually constant according to Φ. More formally:

Definition 13 (Invariant Numeric Fluents). Given a DMAP Φ= < π, i, Si, Gnum >

in a domain < U,F,X >, the set of invariant numeric fluents for Φ is a subset
of X which contains only fluents not affected by action in πi. That is:
inv(DMAP,X) = {x|x ∈ X and x /∈ num_affected(aj)∀i ≤ j < |π|}

7The attentive reader can argue that the only variables actually involved in the decisional
process are the action modalities variables. It is certainly correct. However: (i) the numeric
information burdens the space of the information to be stored anyway, and (ii) there may be
many decisional variables that, depending on the numeric information of the domain, can be
actually removed if it is the case
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where:
num_affected(aj) = {y|y ∈ X and there is an assigner < op, f, exp >∈
numEff(m)∀m ∈ aj such that f ≡ y}

Since an invariant numeric fluent does not change throughout the predicted
plan execution, for each numeric expression involved in Φ, it is possible to
substitute each reference to x with its initial (and invariant) value.

As a consequence, some variables of our problem can be compiled away yield-
ing a new, simplified, version for the problem Φ, namely Φ′ =< π′, i, S′

i
, G′num >,

where:

• π′i is obtained from πi by simplifying the numeric expression involved in
the action model.

• S′
i is obtained from Si by removing the information relative to the invari-

ant numeric fluents

• G′num is obtained from Gnum by simplifying the numeric expression in-
volved in the comparisons.

It is worth observing that the space of the solutions of this new formulation
remains unchanged w.r.t. the original version. Indeed, no decision (the modality
selection) has an impact on such numeric fluents, and hence the region of the
states space which involves different assignments (w.r.t. their initial value) for
such variables is actually unreachable.

It follows that the CSP formulation may take an advantage of this since fewer
numeric information has to be taken into account. Indeed, given M and M’ the
models generated by Φ and Φ′, respectively, it follows that, if Φ′ is obtained as
described above, we have that the number of numeric information necessary for
M’ is less than the ones for M. More precisely, let K be the number of invariant
fluents discovered, we have that |NUMs(M ′)| = |NUMs(M)| + k(|π| + 1).
Finally, since the CSP size is (also) measured in terms of the number of variables
involved, it is evident that a CSP translation for Φ′ is more convenient than a
CSP translation for Φ.

5.4.2 Effects of the Invariant Analysis

Besides the quite evident improvement in the management of the resulting CSP
model, the invariant analysis produces two others major enhancements:

• some comparison can be evaluated immediately

• some non linear expression can be simplified to be linear
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The Comparison Case

Let us remember that a comparison in our system has the form
< exp, {<,≤,=,≥, >}, exp′ and that each comparison can appear in the numeric
precondition of a modality and in the numeric goal definition (see Definitions
3 and 19). To show that the invariant analysis may produce some "immediate
evaluations" of a comparison, it suffices to introduce just an example in which
both exp and exp’ become real constants. To this end, let us focus on the
Planetary Rover domain.

Let us imagine to express the level of roughness of the terrain between lo-
cation A and B by means of the numeric fluent "roughness". Moreover assume
that the numeric precondition of a modality (for example of a drive action)
states that the modality is executable iff the roughness of the terrain is at max-
imum "10.0"; then consider a plan where such a roughness is actually invariant
(according to Definition 13) and equals to 13.0 given the executing plan. There-
fore, the action with that modality will not ever be executable. Indeed, the
propagation of the invariant numeric fluents all along the numeric expressions
within DMAP will evaluate at a certain point that (roughness < 10) can be
actually converted in (13 < 10) which is a not satisfiable condition. As an ef-
fect the system can immediately infer that such specific modality is useless and
hence the domain of the action containing such a modality can be reduced.

This can happen also in comparisons mentioned in the goal definition. It
may be the case, in fact, that the immediate evaluation of an expression within
the goal definition may yield the (one step) proof that the DMAP is actually
unsolvable.

Expressions Simplification

As thoroughly discussed in [50], as studied in [47], and similarly as others plan-
ning systems ([45] [23]), the numeric expressions that can be handled by our
system are limited to the linear case. That is, a given expression cannot contain
(a.mong sub-expressions) arithmetical operations of the form {exp, {∗, \ }, exp′},
where both exp and exp′ involve at least a numeric fluent. Given a model of the
action containing non linear expression, it may be the case that, via invariant
analysis, some expression can be simplified to the linear case.

Similarly to the comparison case, to show the effectiveness of the invariant
analysis it is sufficient to have just an example of "linearization". Hence, let us
consider the Planetary Rover domain.

Let us recall the model of the drive action and let us focus on the numeric
effects on the time via a given modality. Namely:

increase(time,(\ (distance A B) (speed r1) ))
(distance A B) and (speed r1) are of course modeled as numeric fluents

in our model of action and for this reason the arithmetical expression is not
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linear. Indeed, in a linear expression, the two numeric fluents are not allowed
to be combined by means of either a multiplication or a division.

However, no action in such a domain includes effects which changes directly
the speed of the rover, neither the distance between two cities. For this reason
both distance and speed can be substituted with their specific initial values,
producing an effect which just depends on the previous value of the variable
time summed to a constant factor, namely the product of the initial value of
the distance(a,b) and the speed of the rover.

5.4.3 Normalizing Expressions

This subsection explains the process to translate the numeric expressions in-
volved in DMAP in a normalized form. The technique generates a compact and
flat representation for the numeric expressions in the CSP model too. Experi-
ments performed with this reformulation turns out in a (quite big) speeding up
of the CSP resolution task 8.

More precisely, a Normalized Numeric Expression is defined formally as:

Definition 14 (Normalized Numeric Expression, adapted from [50]). Given a
world state domain < U,F,X >, a normalized numeric expression on X has the
form of a summation

∑j=|X|
i=1 aifi + a0, where ak ∈ < ∀0 ≤ k ≤ |X| and fi ∈ X

The following algorithm shows the pseudo code for the generation of a nor-
malized expression starting from a numeric expression as the ones given in input
to our system.

For convenience, the reported code in algorithm 1 assumes that the normal-
ized expression is organized as a vector of real values representing the coefficients
of the summations. In position "0" there is the value assigned to the constant
a0, while in the rest there are the coefficients of each numeric fluent of the
problem. Of course we implemented the expression as a linked list for efficiency
reasons.

The algorithm distinguishes three cases. The first two cases represent the
base-case of our recursion, where the expression is identified as either a real
constant or a numeric fluent. So, the algorithm instantiates the real number (or
the numeric fluent coefficient) within the respective vector position. That is it
puts the real value in position "0" and 1.0 in the numeric fluent address.

In the third case, i.e. whenever the expression is actually a binary oper-
ation, the recursive step firstly normalizes both the left and the right part of

8In our experiments we employed the Choco solver (http://www.emn.fr/z-info/
choco-solver/) which implements the state of the art algorithms for the CSP resolution
and supports the recent standardization for the constraint programming in Java (http:
//www.jcp.org/en/jsr/detail?id=331). As stated in the documentation, it is desirable to
not over-stress the csp expressions mechanism due to the impossibility of using customized
propagation techniques. In particular by this reformulation of the expression we employ the
meta-variable "sum" which is a well supported kind of expression in Choco.

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://www.jcp.org/en/jsr/detail?id=331
http://www.jcp.org/en/jsr/detail?id=331
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Algorithm 1: Normalize Expression
Input: expr - expression
Output: norm_expression

1 norm_expression expr’ ;
2 if expr is a realconstant then
3 expr’[0] := expr ;
4 return expr’

5 else if expr is a numeric fluent then
6 norm_expression expr’ ;
7 expr’[position(expr)] := 1.0 ;

8 else
9 norm_expression left = Normalize(left(expr));

10 norm_expression right = Normalize(right(expr));
11 expr’ := combine (left,right,op(expr));

12 return expr’

the expression; then the combine procedure performs arithmetical operations to
merge the two normalized expressions in one according to the operator defined
in op(expr). Let us remember that since our numeric expressions are restricted
to be linear, the combine procedure does not cope with multiplication and di-
vision between two expressions which contains at least a numeric fluent. The
normalization task has to performed after the invariant analysis. This guaran-
tees to normalize also those expressions which are in principle non linear, but
that have been simplified to be linear (see previous Section).

It is important to note also that, to do not encounter non linear numeric
expressions, the normalization has to be performed just after the invariant anal-
ysis.

A similar normalization has been defined in [50]. However our purpose is
different as we do not exploit the normal form for solving a planning task.
Differently the normalized form provide us a means for an efficient translation
toward the CSP constraints.

In fact, following the definition reported in 3, a numeric expression is recur-
sively defined in terms of either a real constant, a numeric fluent or a binary
operation ({+,−, ∗, \}) between two expressions. Hence, the original form of
numeric expressions is a tree. A naive translation mechanism as the one pre-
sented in Section 5.3, will translate the CSP constraint as a tree too, and this
can become an issue from the CSP solver point of view.

5.5 Discussions and Further Improvements

This Chapter reports the mechanism for transforming a DMAP in a Constraint
Satisfaction Problem. In particular, we have introduced the fundamental blocks
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to transform a generic DMAP in a set of variables and constraints to be given
as input to a generic CSP solver. The solution of the corresponding CSP will
be a new allocation of modalities for the DMAP.

The mechanism inherits the fundamental steps performed by [59] and [36],
but extends the basic conversion for handling numeric expressions in the context
of MMAs.

In addition, the Chapter have introduced some improvement that can be
done for generating a cheaper CSP (in the size of variables to be considered),
and which (the CSP) encompasses only a homogeneous set of constraints (i.e.
involving normalized numeric expressions). This new formulation is key to scale
up the performance of our system as the DMAP can focus only on the numeric
information which are actually interesting for the problem at hand. Moreover,
thanks to a unified vision for the constraint, the CSP solver can employ specific
propagation techniques.

The invariant analysis is one of the most common features in recent auto-
mated planners and is used as a mechanism to efficiently focusing the planner
just on a portion of the state space. The process has been applied to both
the propositional and the numeric setting. In those contexts, many invariant
numeric fluents can be inferred by considering the domain and the problem, for
which they are "plan" independent.

In our approach, we can retrieve more invariant numeric fluents and, besides
those that are not interesting for the problem, we can also remove the ones that
are not relevant for the current plan of actions.

We see two main enhancements that can be applied to our approach. The
former refers on the reasoning that can be performed on the nature of the
numeric fluents involved when such fluents actually represent resources. Indeed,
while some resources can be renewable, other ones can be just consumable and
the CSP has to be informed about that, meaning that other constraints can be
added. It is well known also that as long as the number of constraints increases,
the domain for the variable tends to decrease as well, favoring, unquestionably,
the CSP resolution task.

The latter is a more powerful reachability analysis. Similarly to [50], [45]
and to the more general contribution of the graphplan structure ([1]), one can
reduce the search space by removing all the states which can be proved (via
graphplan relaxation) to be not reachable with the modalities at hand.
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Chapter 6

FLEX-RR :: Supervising
Multi Modality Plans

This Chapter presents the FLexible EXecution via Reconfiguration and Replan-
ning (FLEX-RR) system. FLEX-RR is a system for handling the execution
and recovery, if needed, of the multi modality plan at hand. The FLEX-RR
architecture relies on the notions and the tools introduced and described in
the previous Chapters. In particular the notion of the Multi Modality Plans
presented in Chapter 4 and the CSP mechanism developed in Chapter 5.

6.1 Introduction

In the previous Chapters we have formally defined the notion of a Dynamic
Modality Assignment Problem (DMAP), which grounds on the concept of Multi
Modality Actions (MMA), and we have studied the relation among the DMAP
and the more general Multi Modality Planning Problem (MMPP). We have
also seen a method for transforming the declarative approach of a DMAP into
a Constraint Satisfaction Problem, that gives us a computational model for
the actual management and resolution of the DMAP, while the MMPP can be
solved by a general purpose PDDL planner.

The methodology presented in this Chapter integrate the techniques for a
real system pursuing the main objective of this thesis, that is, the robust execu-
tion of plans for domains characterized by the presence of (continuous) numeric
information (e.g. consumable resources). To this end, in particular, the method-
ology we are going to describe deals with the supervision of Multi Modality Plans
for environments not completely predictable, where unexpected changes in the
state may threat the plan feasibility at any instant of time.

The proposed system, namely FLEX-RR, takes its name from its main objec-

89
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tive, namely "flexible execution". The flexible execution is intended as a means
for the robust execution of the plan in tolerating deviations from the nominal
expected behavior. The FLEX-RR suffix (i.e. RR) stands for Reconfiguration
and Replanning, which are the adopted mechanisms for achieving flexibility all
along the plan execution. In particular we have that:

1. the Reconfiguration is the feature offered by the system for the dynamic
adaptation of the actions modalities. Substantially, a Reconfiguration
problem is a particular instance of the DMAP which can be encountered
during the execution;

2. the Replanning is the feature allowing the system to replace the old (pre-
sumably unfeasible) plan with a new course of actions. It corresponds to
the resolution of a MMPP.

FLEX-RR aims at being an on-line tool for the intelligent supervision of the
plan. To this end, it shall act and decide as fast as possible, while maintain-
ing a certain degree of flexibility to unexpected contingencies. In few words,
the system to be effective has to show an high degree of competence, that is
FLEX-RR should guarantee flexibility with a limited computational effort. The
double level of control provided by the Reconfiguration and Replanning has been
designed with this objective in mind.

To be independent from the particular domain of application, FLEX-RR
employs the multi modality action formalism which, as we have seen in Chapter
3, is a slight extension of the PDDL action model. As PDDL, the adopted
language does not make any assumption on the specific scenario of interest,
rather it is possible to describe the agent behavior in a declarative way; for this
reason the FLEX-RR mechanism is supposed to be quite general in the context
of robust plan execution.

FLEX-RR is similar in some aspects to the continual planning paradigm as
the ones reported in [15, 34] but it specializes this general approach for agents
dealing with plans involving numeric information, e.g. consumable resources.

The Chapter firstly proposes the architecture of FLEX-RR (Section 6.2),
then an algorithmic formulation for the main control loop implemented by the
agent (Section 6.3). Section 6.4 explains how FLEX-RR manages the CSP
model, while Section 6.5 describes the reconfiguration mechanism. Finally, Sec-
tion 6.7 shows a run example of FLEX-RR.

6.2 Architecture of the system

As anticipated in the previous Section, FLEX-RR can be seen as a particular
instance of a continual planning agent.
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The continual planning is a paradigm for the implementation of agents de-
voted to perform tasks in the real world environments, where a continual revi-
sion of the plan is necessary in order to account the multiple and unpredictable
contingencies that may occur1. In order to successfully reach the objectives,
a continual planning agent is allowed to interleave planning and execution all
along the task assigned. Precisely, the agent is supposed to have two main ca-
pabilities. That is, on one hand, the agent should be able to understand when
interrupting or revising the execution (because for example, the plan is not
valid anymore). On the other hand, the agent should be able to recover from
the impasse. Of course, both steps have to be executed in a timely fashion to
be useful.

Analogously to continual planning techniques, FLEX-RR leads the execution
by assuring that the plan remains valid all along the task. FLEX-RR adopts a
conservative behavior, since each action is performed only if the whole plan is
consistent with the goal. Indeed, while in principle an action of the plan could
turn out to be executable in a given state of the system, FLEX-RR prefers to
interrupt the plan execution whenever the whole plan consistency is compro-
mised. In this case, differently from the standard continual planning approach,
but similarly to plan-adaptation based mechanism, FLEX-RR anticipates the
replanning from scratch with a more focused mechanism based on a reconfigu-
ration of modalities. The FLEX-RR task ends when either a plan is completed
with success or the set of objectives is considered unreachable.

FLEX-RR exploits several components for its supervision task. For this
reason, the next Section briefly introduces which are the fundamental blocks
and how they interacts among each other.

6.2.1 FLEX-RR Architecture

Figure 6.1 summarizes the architecture at the base of the strategy implemented
by FLEX-RR.

From the top and the bottom of the Figure it is possible to understand
how FLEX-RR interacts with the environment. In particular, from the top,
FLEX-RR receives the plan to be executed (in form of a MMAs) and the set
of goals to reach and produces an outcome which indicates whether the task
has been achieved or not. Depending on the particular domain of application,
the plan can be generated either by an automated or a mixed initiative planner
(e.g., [20],[16]). It is important to note that the initial plan is a solution for a
MMPP2.

1Let us remember that an alternative approach to the continual revision consists in an-
ticipating the contingencies at planning time. However, this kind of strategies only apply in
contexts where the number of contingencies is limited to few cases

2This assumption can be relaxed as well; indeed FLEX-RR has all the facilities of repairing
a plan which can be hence flawed from the very beginning of the task
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Figure 6.1: Internal FLEX-RR architecture

At the bottom of the Figure 6.1, there is the functioning of FLEX-RR for the
on-line phase. In particular, FLEX-RR submits actions to lower level of control
(e.g. Action Supervision, see Chapter 9) while updating the internal state upon
the information coming from the outside (e.g. the sensors or an abstraction of
them).

The main structures and modules necessary for an effective execution and
adaptation process are the following:

• the MMA plan, which is the total ordered set of actions to be executed.
As we have seen in Chapters 3 and 4, each action is equipped with a set
of execution modalities, according to the MMA Model; initially the MMA
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plan is the input of the FLEX-RR system;

• the CSPModel, namely the structure introduced in Chapter 5, which en-
codes the relation between the modalities and the numeric fluents of the
problem;

• the current state of the system, which handles both the numeric and the
propositional information representing the current situation;

• the Predictor, which assesses the plan feasibility according to the upcoming
situation;

• the Controller module, which decides the next action to execute. In par-
ticular it can repair the plan whether it is not valid or emit a failure when
the goal is not reachable anymore.

• on the top, next to the plan representation, the two possible recovery
mechanisms that can be applied: ReCon, which exploits a CSP solver,
and Replan, which exploits a numeric PDDL planner. The former interacts
with the CSP Model above, while the latter with the MMA model which
contains the actions available by the planner3.

In the current implemented architecture (as reported in Figure 6.1), the
employed planner is the Metric-FF planning system ([50]) whereas the Choco
library (http://www.emn.fr/z-info/choco-solver/) has been used as CSP
solver.

The main contribution of FLEX-RR is the way the unexpected contingencies
are handled. In this perspective, as a main difference w.r.t. a standard continual
planning system, FLEX-RR distinguishes between three different plan states;
that is, a plan can be recognized to be either valid or partially valid or invalid
(see Definition 10). As anticipated, the execution proceeds only when the plan
turns out to be valid, while both the invalid and the partially valid status impose
to FLEX-RR to suspend the actions submission until the the plan recovers from
the impasse.

In the architecture, the plan status is computed by the predictor, while the
Controller module is the one in charge of executing the action or deciding the
interruption of the plan execution. The two types of inconsistencies (partially
valid and invalid) allows the Controller module to employ two different levels
of recovery over the plan execution, respectively. The former, applied when
the plan is considered partially valid, and corresponds to the reconfiguration
mechanism; that is, an invocation of the CSP solver for the resolution of a
specific instance of DMAP. The latter corresponds to solving a new MMPP, i.e.
replanning.

3In this context the MMAs are represented by means of schema, similarly to PDDL.

http://www.emn.fr/z-info/choco-solver/
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In the next Section we show an algorithmic formulation of the overall control
loop, that is, from the point of view of the Controller module.

6.3 FLEX-RR: Main loop

This Section shows the main control loop of FLEX-RR, which is clear since the
organization of the components of the system (see Figure 6.1). The continual
planning process circularly follows the flow of the information which starts from
the plan, enters in the Controller module and returns on the top (and hence in
the plan) when the execution has been interrupted (because of inconsistencies
or the plan is terminated). The plan is the list of actions to perform and the
control over the plan constantly updates such a list for taking into account the
actual situation of the environment or simply for removing the action already
performed.

Algorithm 2: FLEX-RR
Input: I, G, π
Output: Success or Failure

1 CSPModel=build-CSPModel( I, G, π)
2 i=0
3 S=I
4 while i < |π| do
5 senseAndUpdate(i,S,CSPModel)
6 plan-status = propagate(S, G,π)
7 if plan-status is valid then
8 ai = getActionAt(π, i)
9 execute(ai)

10 i++

11 else if plan-status is invalid then
12 π = Replan(S,G)
13 CSPModel = buildCSPModel(S, G, π)
14 i = 0

15 else if plan-status is partially-valid then
16 π = ReCon(CSPModel, i, π)
17 if π = ∅ then
18 π = Replan(S,G)
19 CSPModel = buildCSPModel(S, G, π)
20 i = 0

21 if S ` G then
22 return Success

23 else
24 return Failure

The algorithm reported in 2 starts by initializing two important structures:
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the CSPModel and the state S. The state S corresponds to the initial state I
of the problem; this structure will be updated during the plan execution by the
acquisition of information from the environment. The CSPModel is initially
built by considering the MMPP Π at hand. In particular the CSPModel focuses
on the numeric aspects of the MMPP, thus the propositional information are
not managed (see Chapter 5 for further details).

As we will see, during the execution of the plan π, solving the problem
Π, the CSPModel will be modified by adding and deleting constraints, or by
asserting new information coming from the environment. This guarantees that
the CSPModel can be promptly employed by the CSPSolver whenever it is
necessary (i.e. for a reconfiguration).

The algorithm iterates over the plan actions as long as there is at least one
action to execute. The algorithm returns either Success or Failure depending on
whether the status S reached after the execution of π satisfies or not the goal
G. The iteration may be also interrupted when the replan mechanism is not
able to find a solution. In that case the replan returns a plan of size 0 and the
algorithm returns with a Failure4.

At each iteration, the algorithm observes and updates the world state S (the
senseAndUpdate function). Note that also the CSPModel structure is updated
at this step with new observed information; in this way, the CSP representation
includes all the relevant pieces of information for solving a new DMAP whenever
it arises. After the observations gathering, the algorithm assesses the state of
the plan π, i.e. it evaluates whether the plan is still valid or not. To accomplish
this step, the function propagate is invoked to estimate the impact of the up-
dated state S into the planning problem Π. Intuitively, the propagation verifies
whether the goal G can be achieved from state S by simulating the execution
of all the remaining actions in πi without any change in their modalities. In
particular the simulation returns a prediction of the final state S′ which can be
matched with the goal G to check if G is satisfied or not in S′. In the positive
case, the plan is valid and its next action ai is selected for the execution with the
modality it is currently associated with5. Otherwise, the plan is either invalid
or partially-valid. With reference to the architecture reported in Figure 6.1, the
propagation task is performed by the Predictor module6.

In case the plan is invalid, the Replan module is invoked to build a new
plan from the current state S to the goal state G7. Note that, when a new

4However, the algorithm does not exclude the case in which unexpectedly the agent is in
a state where the goal is actually satisfied. Also this case will be intercepted so that the
algorithm can return the correct outcome, i.e. Success

5Actually, the same CSP solver can be used to assess the validity of the plan. This can
be achieved by simply restricting the choice of the modalities to the previously instantiated
modalities.

6In Chapter 8 we will see an extension of such mechanism which allows to focus only on
thos information which are actually relevant for the problem at hand

7To allow the interaction between our software module with a generic PDDL numeric plan-
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Algorithm 3: SenseAndUpdate
Input: i, S, CSPModel
Output: updated S and CSPModel
Obs = <SenseWorld>
S = updateStatus(S,Obs)
if i = 0 then

addConstraint(CSPModel, V 0 = S)
else

addConstraint(CSPModel, modi=exec)
addConstraint(CSPModel, (modi = exec) → (V i+1 = S))

plan π is returned, this plan substitutes the old one, so the execution restarts
from the first action of the new π. For this reason, both the counter i and the
CSPModel need to be re-initialized.

In case the plan is partially valid, we have detected a DMAP problem, and
FLEX-RR tries to solve it by invoking the reconfiguration module (ReCon). Re-
Con finds (if exists) an alternative assignment of the modalities to the actions
still to be performed. Note that, since the DMAP problem might not have solu-
tions, ReCon could return an empty plan; thus, also in this case, the algorithm
will invoke a replanner to resolve the impasse.

The next two algorithms explain in detail: (i) how the CSP model is updated
along the plan execution, (ii) how the CSP solver is invoked, and (iii) how the
PDDL planner is invoked.

6.4 Updating the state and the CSP model

Algorithm 3, SenseAndUpdate, takes in input the index i of the last performed
action, the current state S of the world, and the CSP model to update.

First of all, new observations Obs, collected from the environment, are used
to update the state S; that is, both the propositional and the numeric state.
Then, the algorithm updates the CSP model depending on the fact that it is the
first step (i.e., i equals 0) or a subsequent one. At the first step of execution, the
CSP model is updated by imposing that each numeric variable in V 0 assumes
the value of the corresponding numeric fluent in S. Where V 0 is the subset of
numeric variables within the CSP model associated with the level 0. This allows
FLEX-RR to deal with an initial world state that is different from the assumed
one.

In any other execution step (i.e., i > 0), the CSP model is modified by

ning (Metric-FF, [50] in our case), we apply the conversion mechanisms sketched in Chapter
4 and reported in Section 6.6. When the planner is invoked, each MMA model is flattened to
the traditional PDDL model; these models are therefore used by the planner. Then, once the
plan is computed, the PDDL actions are newly transformed into MMAs.
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changing the modality of the last performed action, ai, to exec. This special
modality has two important roles. First, when an action has modality exec, it
cannot be considered during the resolution of a given DMAP as its modality
cannot be changed any more. Second, when action ai has modality exec, the
variables in V i+1 are no longer constrained. The constraints are in fact defined
according to the modalities specified in the MMA model of ai, and exec is
not among them. This allows us to assert within CSPModel any observations
coming from the real world even though they are completely unexpected (i.e.,
not foreseen by any modality associated with ai). Note that in this way we
do not need to re-build the CSP model from scratch, but simply adjust the
same model progressively at each execution step. When a new DMAP occurs,
the CSP model already encodes all the information required for the DMAP
resolution.

6.5 Reconfiguring the plan with ReCon

Algorithm 4 shows the high-level steps of the ReCon module. In particular,
ReCon has to solve a DMAP problem, and takes in input the plan π to be
repaired and the CSP model which, as said above, already encodes all the pieces
of information relevant for the solution of the DMAP. The CSP knows the
portion of the plan that has to be reconfigured, as this corresponds to the set
of actions not yet performed, which are the only decisional variables to be used
during the resolution. In fact the CSP encodes the modality-variables for the
executed action by exploiting the special modality exec. Moreover, the CSP is
provided with the earlier observation thanks to the constraint binding the exec
modality with the information acquired from the environment (see previous
Section).

ReCon tries to solve a DMAP by means of a CSP solver. If the CSP-solver
finds a solution, this is extracted and used to reconfigure the plan π which
is therefore returned to FLEX-RR. In other words, each action ai still to be
performed is assigned the modality selected by the CSP-solver (see function
reconfigurePlan in Algorithm 4). On the other hand, when the CSP-solver does
not find any solution, ReCon returns an empty plan.

The reconfigurePlan iterates over the (non-exec) modality variables of the
CSP and allocates the assignments generated by the solver to the actions of the
plan.

6.6 Replanning

This Section describes the task accomplished by the Replan module by means
of the algorithm 5. The main idea of the procedure grounds on the fact that
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Algorithm 4: ReCon
Input: π, CSPModel, Gnum
Output: reconfigured π or ∅
Solution = CSP-solver(CSPModel)
if Solution = null then

return ∅
else

reconfigurePlan(Solution, π)
return π

Algorithm 5: Replan
Input: S - state, G - goal
Output: π - MMAPlan or ∅

1 Map < PDDLAction, exec_modality > mod_of = {};
2 PDDLModel A = {};
3 foreach mma a ∈ MMAModel do
4 foreach exec_modality m ∈ mod(a) do
5 PDDLAction a’ = flatten(a,m);
6 mod_of = mod_of ∪ {a,m};
7 A = A ∪ {a’};

8 PDDLPlan ω = solve(A,S,G);
9 while ω 6= ∅ do

10 PDDLAction a”=head_remove(ω);
11 MMA a”’ = abstraction(a”);
12 inst_mod(a” ’) = mod_of(a”);
13 append(π,a” ’);

14 return π

each MMA a can be flattened in a set of PDDL 2.1 actions {a′0, a′1, ..., a′m−1}
where m is the number of modalities of a and the model of the i-th PDDL action
is created by means of:

• the propositional precondition of a

• the numeric precondition and the numeric effects of the i-th modality of
a, i.e. mod(a)i

The procedure takes in input a state of the system and the goal conditions,
and returns either the solution of the planning problem (MMPP) or an empty
plan. As a first step, the algorithm instantiates two structures: mod_of , which
is a mapping between a PDDLAction and an execution modality alias, and A,
which is the PDDLModel of the actions to be considered by the planner.

The algorithm iterates over all the modalities for each MMA present in the
MMAModel8. For each step of the iteration the process creates a PDDLAction

8Let us note that here we consider action templates
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which encompasses both the propositional information of the action and the
numeric information present in that modality. To keep trace of the relation
between the PDDLAction and the modality it represents, this first iteration
stores the mapping in the pair mod_of .

Having created the set of PDDLActions, the procedure can hence invoke the
PDDLPlanner (e.g. MetricFF ), see line 8, and wait for the computation. Once
the computation is finished the obtained solution (if any), will be reorganized in
an MMA plan. More precisely we iterate over the PDDL plan and we abstract
each action to obtain newly an MMA. To point out which is the instantiated
modality for the abstracted MMA, we exploit mod_of as anticipated before
(see line 12).

6.7 An example of how FLEX-RR intervenes

To exemplify how FLEX-RR is able to monitor the execution of a plan and to
repair it in case the plan is no longer valid, let us consider two examples in the
Planetary-Rover and in the ZenoTravel domain, respectively.

6.7.1 Planetary-Rover Example

Let us continue on the example reported in Chapter 4, where Figure 6.2 reports
both the initial problem and the resulting multi modality plan9.

As a first step FLEX-RR is up to build the CSPModel. To this end it
computes all the variables and the constraints requested for representing the 6
different time snapshots of the state transitions caused by each action of the
plan to be executed. As reported in Chapter 5, each snapshot will contain the
value of each numeric information of the domain (e.g. the power at time 0, the
time spent at time 1 and so forth).

Analogously to the example reported in Section 4, and moreover according
to (i) the model of the actions, (ii) the plan, and (iii) the initial state of the
system, FLEX-RR makes the prediction reported in Figure 6.3.

As reported in Algorithm 2, at each step of the execution, FLEX-RR sub-
stitutes the snapshot of the variables values for that step, with the current
observation.

Thus, the Predictor module can capture the possible discrepancies that can
be encounter all along the plan execution.

9For readability reasons, the problem reported simplifies a part of the numeric information
which instead are completely specified in Appendix C
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/*INITIAL STATE*/

/*propositional info*/
(at (r1,A))
(road (A,B))
(road (B,C))
(road (C,D))
(road (A,D))
/*numeric info*/
(= (distance(A,B)) 15)
(= (distance(B,C)) 35)
(= (distance(C,D)) 45)
(= (distance(A,D)) 10)
(= (power r1) 1000)
(= (memory r1) 4)
(= (time) 0)

/*GOAL CONDITIONS*/

/*proposition goal*/
(info_acquired(r1,B))
(info_acquired(r1,C))
/*numeric goal*/
(> (power r1) 300)
(< (time) 50)
(= (memory r1) 4)

/*MMA PLAN*/

1: Drive(A,B)(cruise)
2: TP(B)(HR)
3: Drive(B,C)(cruise)
4: TP(C)(HR)
5: Comm(C)(CH1)

Figure 6.2: Planetary Rover Domain :: Problem and MMA Plan

PREDICTION

/*propositional information*/
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric information*/
(= (power r1) 334)
(= (time) 47)
(= (memory r1) 4)

Figure 6.3: Planetary Rover Domain :: Step 0 Prediction
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PREDICTION

/*proposition goal*/
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric goal*/
(= (power r1) 290)
(= (time) 47)

Figure 6.4: Planetary Rover Domain :: Step 2 Prediction

Scenario 1

Let us assume that, at time 0 there are no discrepancies w.r.t. the assumed
initial state reported in Figure 6.2 and after the first drive action, the system
notices an unforeseen consumption of the power. The information is stored in
the current snapshot and, as a consequence, the predictor estimates the power
consumption at the end of the mission to be different w.r.t. what has been
predicted at time 0; see Figure 6.4 for the new computed prediction.

By matching the prediction and the goal conditions it is quite clear that the
plan turns out to be partially valid. Indeed, while the propositional conditions
continue to be satisfied, the numeric conditions do not (i.e., 290 > 300 does not
hold). Therefore the Controller module invokes the CSP solver to verify if it
is feasible to accommodate the current plan with a different configurations of
action modalities.

In particular, in the current situation, the actions which could reestablish
the validity conditions are the drive and the comm action, since they are the
only conditions where the power of the robot depends on the selection of the
modality (in our planetary domain we assumed that the take picture power
consumption is negligible).

The solution found by the CSPSolver is reported in Figure 6.5.
It is worth noting that another solution could be to change the modality

of the third drive action to be "safe" instead of "cruise". However, while the
power would be reestablished, the time would not.

With the new configuration, the final prediction of the state turns out to be
consistent with the goal and the execution can proceed. See Figure 6.5.

Scenario 2

Assume that in a new situation, till the second step there was no discrepancy
from the expected state so that the rover is not requested to perform any form
of repair of the current plan.

However, suppose that, at the third step of the execution, before performing
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/*MMA PLAN*/

1: Drive(A,B)(EXEC)
2: TP(B)(HR)
3: Drive(B,C)(cruise)
4: TP(C)(HR)
5: Comm(C)(CH2)

PREDICTION

/*propositional information*/
...
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric information*/
(= (power r1) 310)
(= (time) 45)
(= (memory r1) 4)

Figure 6.5: Planetary Rover Domain :: Situation 1, Reconfigured Plan and New
Prediction

the Drive(B,C) action, the rover estimates that the data produced and stored
within the memory is actually more than expected. Since the initial budget
is quite limited, the memory turns out to be completely insufficient for the
achievement of the next TP. The predictor indeed estimates that the final state
is actually unreachable (and hence undefined, see Definition 6) due at a missing
precondition for an action within the plan. Indeed the model of the TP imposes
that the action, to be applicable, requires that at least one unity of memory is
available (i.e., the LR modality).

Even if the plan turns out to be just partially invalid, the CSPSolver cannot
find an assignment of modalities, for this reason ReCon return with an empty
solution.

The only possibility is to find an alternative course of actions for the problem
at hand. To this end the replanning mechanism is invoked.

Figure 6.7.1 shows the result of the replanning and the new final state pre-
diction. It is worth noting that it has sufficed to add a further communication
action to be accomplished as soon as possible.

It should be also noticed that this has been possible thanks to the absence
of constraint on the overall cost for the communication. If the problem had
contained a constraint in this variable, also the replanner wouldn’t have found
a solution.

Two similar scenarios can be considered also for the ZenoTravel domain.

6.7.2 ZenoTravel Domain Example

Our problem P involves three people (P1,P2 and P3), four airports (A0, A1, A2,
A3) and one airplane F1. The configuration of the main information of the initial
state10, the goal statement and the plan for this problem is reported in Figure

10It is important to note that other propositional information are important to understand
the applicability of the action. For instance the connections among the airports
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/*MMA PLAN*/

1: Drive(A,B) (EXEC)
2: TP(B) (EXEC)
----replan----
1: Comm(C)(CH1)
2: Drive(B,C)(cruise)
3: TP(C)(HR)
4: Comm(C)(CH1)

/*propositional information*/
...
(info_acquired(r1,B))
(info_acquired(r1,C))

/*numeric information*/
(= (power r1) 334)
(= (time) 47)
(= (memory r1) 4)

Figure 6.6: Situation 2 :: Replan and New Prediction

6.7.
Let us suppose that the execution of the first two actions in the plan does not

raise any problem. However, after the execution of action fly_F1_A1_A2(cruise)
(index 2), the flight F1 has reached airport A2, but it has consumed a greater
amount of fuel and time than expected. As a consequence, the resulting execu-
tion state S3 is different from the predicted one.

ReCon has to solve a new DMAP by finding a new assignment of modalities
to the actions not yet executed. For instance, it finds the reconfigured plan of
Figure 6.8.

It is easy to see that the modality of fly_F1_A2_A3 has been changed from
zoom to cruise in order to reduce the fuel consumption, so that the constraint on
fuel is no more violated (see e.g., the MMA model in Figure 3.5). However, to
compensate the delay caused by such a change, also the modality of the actions
debark_P1_F1 and debark_P3_F1 have been changed from normal to express,
so that also the constraint on time is satisfied. The actions marked as exec are
not addressed by ReCon.

After these changes, the plan is again valid, and its execution can resume
from the current state S3.

It is worth noting that the new allocation of modalities produces a new plan
π′ which is very close to the original plan π. In Section 7, we will discuss the
importance of keeping a repaired plan as stable as possible (i.e., as close to the
original plan as possible), and how the stability can be measured.

In the previous example, FLEX-RR has been able to find a solution by means
of ReCon without the need of replanning. This is not always the case. Let us
suppose that the execution of fly_F1_A1_A2 (in zoom modality), is affected by
a very large deviation in the fuel consumption.

Also in this case the plan is partially valid, and therefore ReCon is invoked
for solving a DAP. However, since the deviation on the fuel is significant, it
is no possible to restore the validity of the plan via a simple reconfiguration.
Thus, ReCon fails and FLEX-RR invokes the replanner. The new planning task
consists in finding a plan that, starting from the current state S3, achieves the
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/*INITIAL STATE*/

/*propositional info*/
(in P1 A1)
(in F1 A1)
(in P3 A2)
...

/*numeric info*/
(= (time-spent) 0)
(= (fuel) 8000)
(= (total-fuel-used) 0)
...

/*GOAL CONDITIONS*/

/*proposition goal*/
(in P2 A2)
(in P1 A3)
(in P3 A3)

/*numeric goal*/
(< (time-spent) 21000)
(< (total-fuel-used) 10000)
(> (fuel) 0)

/*MMA PLAN*/

0: board_P1_F1(normal)
1: board_P2_F1(normal)
2: fly_F1_A1_A2(cruise)
3: debark_P2_F1(normal)
4: board_P3_F1(normal)
5: fly_F1_A2_A3(zoom)
6: debark_P1_F1(normal)
7: debark_P3_F1(normal)

Figure 6.7: ZenoTravel Domain :: Initial Problem and Plan

0: board_P1_F1(exec)
1: board_P2_F1(exec)
2: fly_F1_A1_A2(exec)
3: debark_P2_F1(normal)
4: board_P3_F1(normal)
5: fly_F1_A2_A3(cruise)
6: debark_P1_F1(express)
7: debark_P3_F1(express)

Figure 6.8: ZenoTravel Domain :: Reconfiguration
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0: board_P1_F1(exec)
1: board_P2_F1(exec)
2: fly_F1_A1_A2(exec)
--replan--
0: debark_P2_F1(express)
1: board_P3_F1(express)
2: refuel_F1_A2
3: fly_F1_A2_A3(zoom)
4: debark_P1_F1(express)
5: debark_P3_F1(express)

Figure 6.9: ZenoTravel Domain :: Replanning

same set of propositional and numeric goals. In this case the replanner finds
the solution reported in Figure 6.9.

Finally, it is also worth noting that the replanner may fail, since not all the
anomalous situations encountered during the execution are repairable. More
important, in many real-world scenarios, the agent must react to unexpected
situations in a short amount of time. That is, FLEX-RR has to find a solution
within a given threshold; otherwise, the plan goals must be revised and a new
plan must be synthesized.

6.8 Conclusions

This Chapter presented the FLEX-RR architecture. FLEX-RR introduces the
supervision task performed for handling multi modality plans and clarifies the
use of the tools presented in the previous Chapters.

FLEX-RR is practically a special instance of a continual planner. It spe-
cializes the continual planning approach for agents reasoning in tasks involving
numeric information as for instance consumable resources. The main contri-
bution of FLEX-RR is the ability of robustly performing task by adapting the
current plan of action in facing unexpected contingencies that may arise during
the execution. Indeed, FLEX-RR can take advantage of two different recovery
steps. The first one, the reconfiguration step focuses on the action modalities
of the plan. the second one, the replanner step can decide of both adding and
removing action by exploiting all the state space of MMA plans. The reconfig-
uration mechanism is hence less flexible but more efficient, while the replanning
has the maximum flexibility but less efficiency.

The FLEX-RR is designed to be modular. On one hand, we can employ
different configurations: FLEX-R, which is the system with only the Reconfig-
uration facility, FLEX-REPLAN which is a system with the only Replanning
facility, and FLEX-RR which contains all the functionalities presented. De-
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pending on the specific domains and/or requirements, the user can opt for the
desired configuration. On the other hand, since the methodology proposed does
not make any particular assumption about the replanner and the solver used,
FLEX-RR architecture can be upgraded without particular efforts. Therefore,
the system can easily benefit from advances in the planning and CSP commu-
nities, by exploiting more efficient CSP and/or PDDL numeric planning.

Section 7 will report a thorough experimental session in which the various
configuration of the system are compared in three different domains. Moreover,
since one of the main innovation with respect to the current literature is the
reconfiguration via CSP, the experimental session dedicates a Section to assess
how the reconfiguration technique scales when the number of the actions in the
plan increases.



Chapter 7

Experimental Session

This Chapter studies the performance of FLEX-RR through an extensive experi-
mental analysis on three different planning domains. The tests aim at evaluating
the competence, the efficiency and the stability of the approach by putting par-
ticular attention on the reconfiguration, which is the main innovation w.r.t. the
state of the art methodologies. Afterwards the Chapter will focus on the scala-
bility of FLEX-R (i.e. the system without the Replan facility). The purpose is
to understand the effectiveness and the limits of Recon when dealing with plans
involving a large number of actions. Finally we conclude with a preliminary
evaluation of the suitability of FLEX-R in handling optimization criteria.

7.1 Software and Hardware Setup

Figure 7.1 summarizes the environment implemented for the experiments. On
the top (left) FLEX-RR takes in input the plan and the problem to be tested.
On the bottom FLEX-RR interacts with an action simulator. This imple-
ments the execution of the action according to a modified version of its model
(MMAModel* ), mimicking the evolution of the environment and in particular of
the action execution. The modified version of the domain is obtained by noising
the numeric effects of the action modalities.
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FLEX-RR has been developed in Java 1.6, where the internal composition
and the interactions is reported in Chapter 6. As input FLEX-RR receives the
domain and the problem description written in an extended version of PDDL
2.1 level 2, which incorporates the notion of modalities. FLEX-RR exploits and
extends the PPMAjaL library1.

As a CSP solver we used Choco 2.1.4 2. the module is supposed to efficiently
handle complex constraints on very large set of variables. As a planner we used
Metric-FF ([50]) that supports the expressiveness of PDDL 2.1 level 2.

Experiments ran on a 2.53GHz Intel(R) Core(TM)2 Duo processor with 4
GB (OS: Ubuntu 10.04).

For the purpose of evaluating the system, we exploit three main FLEX-RR
configurations:

1. FLEX-RR: the system with all the main submodules activated, i.e. the
predictor module (for the detection of the plan validity), Recon and Re-
plan.

2. FLEX-R: the system with the Replan switched-off. The DMAP is solved
just by means of Recon

3. FLEX-REPLAN: the system with the Recon switched-off. The DMAP is
solved via Replan.

7.2 FLEX-RR vs Replanning From Scratch

For evaluating the performance of the system in addressing the problem of
the robust plan execution (see Chapter 3), we need to measure, on one hand,
the effectiveness in handling unexpected deviations from the nominal behavior
and, on the other hand the capability of the system in preserving, as much as
possible, the plan structure despite the exception detected. To assess the Recon
contribution, some test ran not only on FLEX-RR but also on FLEX-REPLAN
and FLEX-R used as reference points.

In particular, our experiments have been performed by taking into account
three main parameters:

• Competence: is the capability of a strategy of repairing a plan when the
plan under execution becomes partially valid. This corresponds to a reso-
lution of a DMAP. In particular, we measure the competence as the rate of
successes in repairing a plan. In our experiments we allotted 200s to both
FLEX-REPLAN and FLEX-RR as amount of time within which a solu-
tion must be provided; while FLEX-REPLAN can take the whole period

1See www.di.unito.it/~scala
2Choco is a java library for constraint satisfaction problems (CSP) and constraint pro-

gramming (CP). Visit http://choco.emn.fr for any further information

www.di.unito.it/~scala
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(200s) for the replanning from scratch, we have subdivided the amount of
CPU-time in FLEX-RR. More precisely, FLEX-RR gives just 30s to Re-
Con and 170s to the Replan. Thus, the competence of a strategy strongly
depends on its efficiency in finding a solution. It is important to remark
that FLEX-RR is supposed to work in an on-line context where typically
the computational and temporal resources are limited. For this reason the
actual competence of the system does not depend only on its theoretical
capability but also on the efficiency in solving the task in a given amount
of time.

Since we wanted to understand whether the reconfiguration performed by
ReCon does contribute to the performance of FLEX-RR, we computed the
competence also for the FLEX-R version (i.e. the system without the Re-
plan facility). It must be noticed that, from a theoretical point of view, the
FLEX-REPLAN competence is greater than the FLEX-R one; however,
we guess that the greater efficiency of the reconfiguration compensates
such a limit, since we will expect that while FLEX-REPLAN will be un-
able to find a repair plan given the time threshold, the reconfiguration will
not.

• Computational cost. In particular we will compare the CPU time taken
by the two strategies. This evaluation estimates with more accuracy the
effective time employed to solve the impasse, i.e. the resolution of the
DMAP. In principle, (as observed in Chapter 4) we will expect that the
computational effort will be lower when the case can be solved via recon-
figuration, since the reconfiguration task is theoretically simpler (in the
worst case) than a replanning task (Chapter 4). This parameter will assess
however what happens on the average.

• Stability. We will compare the plans produced by FLEX-RR with the ones
generated by the only FLEX-REPLAN according to the stability metric
defined in 4.5. We expect that FLEX-RR achieves, on the average, a better
stability, since it focuses the search firstly on the space of modalities and
just when this step fails it switches to replanning from scratch. Of course,
this two steps process is aimed at privileging the structure of the old plan.

Tests were conducted in three challenging domains:

• ZenoTravel

• DriverLog

• Planetary Rover
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The first two domains are from the Third International Planning Compe-
tition3. They have been introduced to challenge planners in handling numeric
fluents. The third domain has been introduced in our recent works on intelligent
supervision of space exploration missions [61, 53].

For each domain we generated a set of plans, each of which has been exe-
cuted by means of the action simulator presented in Section 7.1. Numeric fluents
modeling time and resources have been noised in order to reproduce unexpected
contingencies. For each case, the injected noise is sufficient to alter the resource
profile in such a way that each plan becomes partially valid at least once during
the execution. In this set of experiments we have not taken into account sit-
uations where the plan became invalid as we were interested in evaluating the
ability of FLEX-RR and FLEX-REPLAN in repairing partially valid plans.

7.2.1 Competence and Computational Cost

Experiments in the ZenoTravel domain

As introduced in 3.5 our version of the ZenoTravel domain extends the original
definition by providing different execution modalities for each action4. In this
domain we have collected 81 test cases, which vary not only for the different
number of passengers and locations (from 4 to 13 for passengers and from 4 to
10 for locations), but also for the strictness of the constraints involving numeric
fluents (i.e., total-fuel-used, the cost of boarding and disembarking, and the
total-time-spent).

For all the 81 test cases we generated a plan whose length ranges from 18
to 44. Figure 7.2 shows the competence of the two strategies FLEX-RR and
FLEX-REPLAN. As said above, to appreciate the contribution of ReCon, the
figure also shows the successful rate of the FLEX-R configuration.

Note that, while FLEX-RR takes advantage of both ReCon and Replan and
always finds a solution, FLEX-REPLAN has a lower success rate, this because
in about 25% of the cases, FLEX-REPLAN was unable to find a solution within
the threshold of 200 seconds of CPU time.

It is worth noting that the ability of FLEX-RR is mainly due to the perfor-
mance of the ReCon facility. In fact, Recon alone was able to repair 99% of the
cases.

In Figure 7.3 we compare the amount of CPU time used by FLEX-RR and
FLEX-REPLAN. To provide a clear overview on the performance of the two
strategies, we partitioned the allotted 200s of CPU time into 7 sub-intervals
and the Figure shows the number of cases that have been repaired in each of
these sub-intervals. It is easy to see that FLEX-RR solved most of the cases in

3http://planning.cis.strath.ac.uk/competition/
4For the complete domain definition see Appendix C.2
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Figure 7.2: ZenoTravel Domain: Competence

less than 50 msec. On the other hand, the majority of cases solved by FLEX-
REPLAN required less than 1 second of cpu-time; however, a significant number
of cases (20%) was not solved within 200s.

Experiments in the DriverLog domain

The second domain used as test-bed is the Hard-Numeric variant of the Driver-
Log domain. The reason that makes the problem hard is that, differently from
the easy version, the fuel consumption does not depends only on the trip length,
but also on how much the truck is loaded. We chose this version to stress ReCon
in handling complex dependencies among numeric fluents.

To make the domain more interesting to our experimental setting, we en-
riched the domain by defining two modalities for the drive action (fast and
cruise), which have an impact both on the fuel consumption and on the trip
duration.

In addition, we added two different modalities for the load-truck (safe and
normal), which differ each other in the amount of needed time5.

In this domain we generated 60 cases varying the number of trucks and
locations and the strictness of the constraints on the numeric fluents. The
length of the resulting plans varies from 17 to 64 actions.

5The complete domain definition is reported in Appendix C.3
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Figure 7.3: ZenoTravel Domain: Computational Cost

Figure 7.4 shows the competence of the two strategies FLEX-RR and FLEX-
REPLAN. Also in this case, the Figure shows the competence of ReCon alone.
It is easy to see that FLEX-REPLAN behaves quite inefficiently in this domain,
while FLEX-RR performs quite well. In particular, observing the Figure 7.4, it
is quite evident that a not negligible set of cases has been solved by FLEX-RR
via REPLAN (the difference of competence between FLEX-RR and Recon).
In these cases, we noticed that Recon has been always able to prove that the
assigned DMAP had actually no solution, and thus the only way to overcome
the impasse was via a Replanning mechanism. In few words, the Replanning
has never been invoked for a timeout of the Recon.

FLEX-RR outperforms FLEX-REPLAN also from the computational point
of view, see Figure 7.5. FLEX-RR solved most of the problems in less than 1s
of CPU time, while FLEX-REPLAN solved just few of cases in such a time.
Moreover, also in this case there is a significant number of cases that FLEX-
REPLAN was not able to solve given the time threshold.

Experiments in the Planetary rover domain

The third domain we used as a test-bed is the Planetary Rover introduced in
Chapter 36.

It is worth noting that this domain is very challenging for the CSP solver. On

6The complete domain definition is reported in Appendix C



114 CHAPTER 7. EXPERIMENTAL SESSION

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

FLEX-RR 

RECON 

REPLAN 

Figure 7.4: DriverLog Domain: Competence

Figure 7.5: DriverLog Domain: Cpu Time

the one side, the domain takes into account many numeric fluents (e.g., the total
duration of the mission, the power level available to the rover, the total power
consumption, the communication cost, etc.). Thus there are many variables to
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be taken into account. On the other hand, numeric fluents are strongly related
to one another via the action models. For example, the power spent by the
communication depends on the amount of information to be transmitted (i.e.,
used memory), which in turns depends on the resolution of the taken pictures.

In this domain we collected 81 cases with plans of 15-20 actions.
The 81 test cases were subdivided into two subsets: 36 hard cases and 45

medium cases. The classification depends on the degree of strictness we have
imposed on the numeric constraints. In the medium cases the constraints have
been imposed on time and power spent whereas for the hard cases the problem
combines the previous constraints with others on the communication cost (which
may limit the use of large bandwidth communication channel and therefore also
to download a large amount of data in a short time) and the information loss
(so that it is not possible to degrade too much the quality of the images and
therefore the amount of data produced is high). Such further constraints makes
the problem harder since they encodes opposite requirements, which strongly
constrain solutions into limited portions of the plans space.

Figure 7.6 reports the comparison of success rate for FLEX-RR, FLEX-
REPLAN and ReCon alone, for the medium and the hard cases, showing that
FLEX-RR has high competence in both of them.
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Figure 7.6: Planetary Rover Domain: Competence

The ability of ReCon alone to find a new plan decreases from medium to
hard case (from 0,914 to 0,806), but in this case FLEX-RR can still obtain a



116 CHAPTER 7. EXPERIMENTAL SESSION

good competence by invoking the replanner. In particular, we measured that
in the 50% of these cases (when the Replan is invoked), Recon has been able to
provide the answer that the DMAP had no solution. In the rest of the cases,
the Replanning has been invoked just after the detect of the timeout in the CSP
resolution process.

The ability of FLEX-RR to deal with hard cases is further confirmed by
analyzing the distribution of CPU time for solving the problem, see Figure
7.7. Despite the large number of modalities and numeric fluents defined in this
domain, FLEX-RR is not only able to find a solution in less than one second
for most of the medium cases, but also for many of the hard cases.

In conclusion, these results show that FLEX-RR, complementing a replan-
ning with reconfiguration, is a viable solution to plan repair, and thus to enhance
the robust execution of a plan.

Figure 7.7: Planetary Rover Domain: Cpu-Time

7.2.2 Assessing the Stability

We evaluated the stability of plans repaired by FLEX-REPLAN and FLEX-RR
in the same test set discussed in the previous Section. As reported in 4.5, the
stability evaluation requires to set a cost for each operation (insert, remove,
swap, and change of modality). We choose to weigh the insertion and deletion
of actions (α) with a cost equals to 5, the change of the modality (γ) with 1,
and the swap of two actions (θ) with 6.

Table 7.1 shows the results obtained in each domain, for the two configura-
tions (FLEX-RR and FLEX-REPLAN). The third row, moreover, summarizes
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the stability obtained for those cases where the REPLAN has been invoked in
FLEX-RR because of a failure of Recon (for either timeout or not).

Planetary Planetary DriverLog ZenoTravel
Rover (Medium) Rover (Hard)

FLEX-RR 0.907 0.807 0.971 0.97
REPLAN 0.709 0.646 0.791 0.50
FLEX-RR

VIA ## 0.40 0.85 0.62
REPLAN

Table 7.1: The Stability measured for each domain

In general, it is easy to see that FLEX-RR exhibits a higher stability grade
than FLEX-REPLAN. For the domains ZenoTravel and DriverLog, the repaired
plans produced by FLEX-RR (mostly by means of ReCon) exhibit a high stabil-
ity grade, whereas the solutions provided by FLEX-REPLAN are quite different
from the original plans. The hard cases in the Planetary Rover domain confirm
to be very difficult. In fact, in this domain the stability grade decreases also
for FLEX-RR. This happens because, in many cases, the solutions found by
FLEX-RR are provided by the replanner (ReCon alone fails in finding a modal-
ity reassignment). In these situations, the resolution of the impasse has been
possible only via a significant change of actions. By observing Table 7.1, the
average stability obtained for the cases solved by FLEX-RR via REPLAN is in
fact just 0.40. This proves in practice the validity of the Theorem 4, and hence
our initial hypothesis. That is, FLEX-RR is able to obtain more stable plans
than a replanner as FLEX-RR first tries to solve a DMAP, and only when the
DMAP has no solution, FLEX-RR activates a replanner.

7.3 FLEX-R - Scaling Up Analysis

Having measured the performance of FLEX-RR against a mechanism based on
a replanning from scratch step, this Section aims at evaluating whether and how
ReCon scales when the number of MMAs increases, that is when the length of
the plan to be reconfigured grows up. It is important to remember that in the
worst case the search space for the CSP solver is exponential in the number of
the actions to be reconfigured (see Section 4); in this Section we perform an
analysis for the average case to understand when the Recon mechanism is still
effective.

The configuration tested is FLEX-R (we switch off the replanning facility)
and the benchmark is performed on the Planetary Rover and the DriverLog
domain.

Differently from the previous setting, to observe the behavior of the system
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for several and increasing (in the number of the actions) instance of DMAP, we
start from a plan computed directly by Metric-FF through a series of random
instances of planning problems. The only information seeding the generation of
the problem has been the number of sites (for Planetary Rover) and of cities
(for DriverLog). The rationale is to try to control the size of the resulting
plan. Intuitively the greater the number of locations/sites is, the longest (on
the average) the plan would be7.

The number of cases collected amount to 405 for the Planetary Rover domain
(where the plans range from 1 to 50 actions) and 225 for the DriverLog domain
(1 to 75 actions). For both benchmarks we evaluate the cpu-time needed (with a
60 secs limit) to the solver to provide an answer. Differently from the evaluation
performed in the previous Section, we consider a success not only the fact that
the system has been able to solve the impasse (the competence), but also the
case where the system was able to provide a negative answer (there is no solution
for the given DMAP). The failure for the system is hence when the timeout is
reached.

Similarly to the previous Section, to obtain deviations on the use of resources,
we adopted a modified action model containing noised numeric effects.

Results have been organized categorizing the tests w.r.t. the length of the
DMAP - the only actions to take care of are those still to be executed - and the
percentage of cases belonging to a given time interval. More precisely, as far as
it is concerned by the length of the DMAP, we distinguish 5 classes of problems
(0-10,11-20,..,41-50) for the Planetary Rover and 5 classes of problems for the
DriverLog case (0-15,...,61-75). For each class of problems we discern 6 different
performance intervals:

1. Very Fast :: 0-100 ms

2. Fast :: 101-1000 ms

3. Normal :: 1001-5000 ms

4. Slow :: 5000-15000 ms

5. Very Slow :: 15000-59999 ms

6. Failure :: greater than 60000 ms

Planetary Rover Domain

Observing the histogram of the Planetary Rover domain reported in Figure 7.8
it is clear that the FLEX-R behaves quite well as the most of the cases are

7The length of the plan depends on many other factors which actually rely on the nature
of the problem and the domain of application (e.g. kinds of actions at disposal, number of
goals and so forth); in Appendix B and B.2 we show how the generation is performed for these
two domains.
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Figure 7.8: Scaling Up Tests for the Planetary Rover Domain. The y-axis refers
to the percentage of successful cases for each interval of interest (abscissa)

computed in the first time interval (0 < 100). In particular this holds for the
resolution applied for plans whose length is less or equal to 10 actions. For this
class of cases the mechanism provided an answer in less than 100 ms for all the
submitted cases.

The situation remains quite stable until 20 actions, getting worse only when
the plan contains more than 40 actions. Indeed, reported on the right part of
the histogram, the percentage of failing situation for the class "41-50" actions
is estimated almost in the 30 % of situations.

In general the results proved that until 20 actions FLEX-R is very efficient.
As a matter of fact, only few cases exceeds 1 seconds (the red stack on the third
interval). Whereas, on the average, the categories with more than 20 actions
fails some time (10% to 30 %). However, also for this classes, there are a non
negligible set of cases that were solved in less than 100 ms. (60-75%).

As a demonstration of the complexity of the domain, the CSP structure
generated by the Choco solver for this set of cases contains on the average 1500
variables and 1783 constraints.

DriverLog Domain

In the DriverLog domain, the results continues to be rather positive. In this
domain, the system has been stressed until plans involving 75 actions. The
motivation behind this is that, differently from the Planetary Rover, the Drivelog
domain includes actions with just one modality. Therefore, on an equal number
of actions, the search space of the DMAP for the DriverLog domain turns out
to be smaller than the one of the Planetary Rover domain.

By comparing Figure 7.9 and 7.8, it is quite evident that, as the length of
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Figure 7.9: Scaling Up Tests for the DriverLog Domain

the plan increases, the DMAP behavior for the DriverLog seems smoother than
the behavior of the DMAP for the Planetary Rover task.

Similarly to the Planetary Rover the first class of difficulty (from 0 to 15
actions) behaves with extreme efficiency (for this class of plans we solve the
DMAP in less than 100ms in the 100% of cases), while in the DriverLog instead
the performance of the system degrades more slowly. In particular only two
plans with actions included between 61 and 75 have not been solved within the
time threshold.

Also in this case, the structure of the CSP representation is significant. We
measured, in fact, on the average, 838 variables and 923 constraints for the
DMAPs considered.

7.4 Beyond FLEX-RR :: Handling Optimization
Criteria

In the previous Sections we have substantially analyzed the capability of ReCon
in providing a solution for the original version and purposes of the DMAP.
The objective is to provide a decision as soon as possible, for this reason the
DMAP only cares about the feasibility of such a solution. That is, FLEX-RR
via the CSP Solver picks just the first valid solution that encounters during the
search. However, in principle, a given MMA plan can contain many possible
valid modality allocations. For this reason this Section pursues a slight different
objective and evaluates the ReCon task when a certain criterion of optimization
is specified over the resources involved.

We start from the observation that, while the original DMAP is well suited in
an on-line context, in an off-line situation and hence before the plan execution,



7.4. BEYOND FLEX-RR :: HANDLING OPTIMIZATION CRITERIA 121

the user can be interested in evaluating a given plan of MMAs for understanding
the limit under which such a plan is requested to work (e.g. for example the
minimum time that could be spent). That is, it could be useful to analyze the
plan w.r.t. the maximum (or the minimum) cost specified on some particular
resource.

To perform the experiments, we oblige the CSP-solver to prove not only
that the solution is consistent w.r.t. the constraints defined in the problem, but
also that such a solution minimize (or maximize) a given numeric fluent (or a
combination of them). Such a criterion is expressed on a specific numeric fluent
of our problem, and in particular the solver optimizes the value that it takes at
the last snapshot of the CSP.

Tests ran on the same benchmark suite built for the scaling-up (previous
Section). For the Planetary Rover domain, we constrain the solver to find the
solution which minimizes the overall cost of the communication, for the Driver-
Log domain, we configured the solver to search for the solution that minimizes
the total fuel used. Moreover, we do not allow to express both the optimization
and the hard constraint of the DMAP on the same numeric fluent.

The organization of the data is equivalent to the schema used for the previous
Section. As a difference, here the system is evaluated w.r.t. the capability
of proving that the found solution (if any) is optimal. Therefore, the failure
situation does not necessary mean that the system did not find any solution.
Indeed, Choco employs an anytime search strategy; thus, in many cases, it was
able to provide a valid solution (the best one at the end of the computation),
even if this was not optimal.

As for the scaling up, we imposed a cpu-time limit of 60 seconds.

Planetary Rover Domain

Figure 7.10 points out the benchmark results for the Planetary Rover domain.
The experiments are quite interesting. As reported by the histogram, the

system behaves in a similar way to the scaling-up benchmarks. Of course noth-
ing comes for nothing, and the class of problems solved efficiently shrinks to
the class of plans whose is "0-10" actions. Differently, already for the class of
"11-20" actions the mechanism requires some extra time. This can be observed
by looking to the number of cases in the second and third intervals of time.

However the percentage of success is still quite high in all the cases tested.

DriverLog Domain

Figure 7.11 shows the results for the DriverLog Domain.
The benchmark presented for the DriverLog proves that until 15 actions

the mechanism is still very efficient. As a matter of fact, for the first class of
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Figure 7.10: Scaling Up Tests for the Planetary Rover Domain. Optimizing
communication cost

difficulty the solver was able to find the optimal solution in less than 100 ms in
all the cases.

The performance of the approach degrades only when the number of the
actions to consider is greater than 60. However, till the 45 actions just the 2%
of cases required 15 seconds of cpu-time while the most of cases have been solved
with a maximum of 5 seconds.

7.5 Conclusions

This Section reported an experimental session for measuring the effectiveness
and the performance of the FLEX-RR architecture.

The experiments have been performed on three domains: Planetary Rover,
ZenoTravel and DriverLog domain.

In a first phase we measured the competence, the performance and the sta-
bility of three configurations of FLEX-RR: (i) the system with all the facility
activated, (ii) FLEX-R which is the architecture with the only Reconfiguration
functionality activated, and (iii) FLEX-REPLAN which is the configuration pro-
vided with the Replanning but not with the Reconfiguration feature. This last
configuration corresponds to a traditional system without the main contribution
of this thesis.

Results showed that the FLEX-RR is more efficient than FLEX-REPLAN
(FLEX-RR outperformed FLEX-REPLAN in all benchmarks) and, since the
latter often could not provide a solution given the time threshold, FLEX-RR
turns out to be more competent too. This confirms the reconfiguration con-
tribution to the FLEX-RR architecture, and our hypothesis that re-configuring
MMA is more convenient that replanning from scratch. As refers the stabil-
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Figure 7.11: Scaling Up Tests for the DriverLog Domain. Optimizing fuel con-
sumption

ity, we have the confirmation that FLEX-RR keeps the plan more stable than
FLEX-REPLAN and, as anticipated by Theorem 4, the stability degrades only
when there is no alternative allocation of modalities (i.e., when the DMAP has
no solution).

In a second phase we studied the FLEX-R scalability. The results have
showed that in the Planetary Rover domain FLEX-R is very efficient till plan of
20 actions continuing to perform quite good also in longer plan (31-40 actions).
Similarly, in the DriverLog domain FLEX-R turns out to be quite efficient until
30 actions. The performance degrades only for plan with a number of actions
greater than 40.

Finally we measure FLEX-R in dealing with optimization criteria both on
the Planetary Rover and the DriverLog domain. Even beyond the original aims
of the FLEX-R, the results prove that the system can be useful in an off-line
phase, too; for instance as a decisional support tool for a user, who could be
interested in evaluating a given MMA plan in terms of maximum (minimum)
resources usage.
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Chapter 8

The Role of Numeric Kernel
for Plan Involving Numeric
Fluents

This Chapter introduces the notion of numeric kernel as a means for reasoning
about plans involving numeric state variables, i.e. numeric fluents. The numeric
kernel notion can be employed to improve the FLEX-RR mechanism. Moreover,
applied to the context of MMAs provides a way for integrating the plan super-
vision task offered by FLEX-RR with a more reactive control as ACTS (see
Chapter 9). We believe the notion is quite general in the context of the auto-
mated planning and an application of this concept has been already presented
in our recent work [90].

8.1 Introduction

As we have seen in Chapter 6, the on-line execution of a plan requires the
agent to be progressively aware whether the plan is still feasible given the state
conditions encountered/observed. Unfortunately, the applicability conditions
embodied in the preconditions set of the next action to be executed are in
general not sufficient to infer whether the current course of actions still leads
towards the goal. For this reason, and in particular in the FLEX-RR, we adopted
a standard technique based on a simulation step (the recursive plan execution
starting from the current state) to understand whether the final predicted state
is reacheable with the plan at hand.

In the context of propositional planning (in particular in the STRIPS frag-
ment [40], [43]), it has been however noticed that, by observing a given plan
of actions and the set of goals it is possible to precompute a set of sufficient
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and necessary conditions which allow to immediately assess the plan feasibil-
ity. Such conditions has been called kernel. The propositional kernel has been
indeed employed in the so called PLANEX system where a backward method,
based on Triangle Table has been defined.

In this Chapter, we generalize the notion of the kernel to the numeric set-
ting; that is, when the plan is requested to deal with numeric information as
resources, counters, costs and so forth. More precisely we introduce the notion
of numeric kernel, which is a set of comparisons involving numeric fluents from
the domain. Analogously to the propositional case, the numeric kernel formu-
lation aims at establishing the sufficient and necessary requirements that must
be guaranteed for the executability of a plan obeying to particular numeric pro-
files (e.g., resource constraints). More precisely, a numeric kernel is supposed
to capture the characteristics of a state of the system such that, whether the
plan is executed from such a state, then the (numeric) goals is achieved. While
a STRIPS kernel expresses exactly the minimal set of propositional atoms that
must hold during the plan execution, here, the numeric kernel does not specify
any particular state configuration. Instead, the numeric kernel expresses just
the intervals of numeric variables that are mandatory for the consistency of the
plan.

As we will see the numeric kernel can be computed by extrapolating knowl-
edge from the problem, the domain and the plan under consideration. The idea
of keeping trace of the action model combined with the specific planning problem
at hand (in particular with the goal), is not completely new, the propositional
kernel developed by [40] has a similar construction.

Even if the term has been in principle coined just for the STRIPS setting, we
will refer to the kernel as the combination of the propositional and the numeric
one 1. Indeed, a numeric planning task (as the one defined in our system, see
Definition 8) mixes propositional and numeric aspects. For this reason, in order
to evaluate the feasibility of a plan as a whole, both characteristics have to be
considered.

The utility of the only propositional kernels has been proved to be a viable
solution not only for the monitoring problem (in particular when the agent has
to assess the validity of the plan being executed), but also for repair strategies
(when some unexpected condition arises). Recently, the system developed by
Garrido et al. ([44]) has proposed a (propositional) kernel based repair tech-
nique.

Relying on the notion of numeric kernel, the Chapter will present three
possible enhancements for FLEX-RR:

• Improved Monitoring: a novel technique to infer in an efficient way

1In the rest of the discussion we will specify whether we will focus on the propositional or
the numeric counterpart.
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whether the plan is either valid or partially valid or invalid ;

• Safe Control Delegation: a method to individuate a set of safe execu-
tion modalities in the applicability conditions for an MMA2

• Kernel Replanning: a focused replanning mechanism to be applied for
invalid plans3

For the sake of the explanation, the Chapter mainly focuses on actions having
just one modality of execution. Indeed, both the monitoring and the replanning
via kernel do not require that actions are expressed in form of MMAs4. The
notion of safe execution applies only for multi modality plans, therefore, when
we introduce the concept, the kernel will be combined to the notion of the MMA.

The Chapter is organized as follows; firstly we formally define the notion of
the numeric kernel (Section 8.2), whereas in Section 8.3 we explain and show
how numeric kernels can be computed. Section 8.4 describes how and when the
numeric kernel can be employed to improve FLEX-RR. The Chapter ends with
an experimental Section which shows the adoption of the kernel in a suite of
test cases for the ZenoTravel domain (Section 8.5).

8.2 Numeric Kernel

Similarly to the propositional case, the main role of the numeric kernel is to
specify particular requirements to be used for inferring if a state supports the
achievement of the goal, through the execution of a given plan. In other words,
a kernel individuates the sufficient and necessary conditions for a plan such
that, given a state S obeying to such requirements, the plan can be successfully
performed starting from S.

Before of formally defining the Numeric Kernel, let us introduce the propo-
sitional kernel definition ([40]) adapted for our purpose. That is:

Definition 15 (Propositional Kernel). Given a plan π solving a Multi-Modality
Planning Problem (MMPP) Π = < A, I,Gprop, Gnum > for the domain <

U,F,X >, and K a set of propositional atoms such that K ⊆ F , K is said
to be a propositional kernel for π and Gprop if, given a state S, S[π] satisfies
Gprop iff Sprop satisfies K.

2As we will see this step is fundamental for combining the plan supervision task with a
more reactive control, i.e. Action Supervision. See Chapter 9.

3Let us remember that Recon can be applied just in case the plan is partially valid. When
the plan is not valid anymore or even there is no solution by Recon, a replanning mechanism
is mandatory

4It is quite interesting to see that an MMA with just one modality of execution can be
seen as a common PDDL 2.1 level 2 action ([42]). For this reason the numeric kernel can be
employed without modification for the numeric PDDL setting, too.
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Concretely, a propositional kernel is a set of atoms which corresponds to the
minimal conditions necessary for the validity of a plan.

The numeric kernel generalizes the propositional kernel formulation to sup-
port numeric information, expressed in form of numeric fluents. In our context,
the numeric fluents are elements from X, which are allowed to appear as terms
in the preconditions and effects of the actions, as well as in the problem state-
ment (see Definition 8). They constitute the basic elements of the arithmetical
expressions involved in the comparisons (used in the action precondition and
the goal statement) and in the assigners (numeric action effects).

To handle such a hybrid nature of the kernels we are going to propose,
we differentiate the numeric and the propositional part by subscripting the K
symbol. Specifically, Kprop will identify the propositional kernel while Knum

the numeric one.
Thus, a numeric kernel Knum can be formally defined as follows:

Definition 16 (Numeric Kernel). Given a plan π solving a Multi-Modality
Planning Problem (MMPP) Π = < A, I,Gprop, Gnum > for the domain <

U,F,X >, and Knum a set of inequalities of the form {exp, {<,<=,=, >=, >

}, exp′} built over X, Knum is said to be a numeric kernel of π iff it represents
a set of sufficient and necessary conditions for the achievement of the numeric
part of the goal G, i.e. Gnum, starting from S. That is, given a state S, S[π]

satisfies Gnum iff Snum satisfies Knum.

where a state S satisfies a set of inequalities Knum if the assignment of the
numeric fluents in S is consistent with each inequalities in Knum. In other
words, the assignment of the numeric fluents in S is one of the solutions for the
system of inequalities expressed by Knum.

These are comparisons among group of expressions involving numeric fluent
from X. Thus they have the same form of the numeric precondition expressed in
Definition 3. In the next we will prefer the use of the term comparison instead
of inequalities.

By considering the definition of state reported in 1 (Chapter 3), the numeric
part of the state can be represented as a vector in a multi-dimensional space
where each numeric fluent represents a specific dimension. An hypothetical
numeric kernel as defined above represents a region (potentially unbounded in
some dimensions) of the states space which is consistent with the numeric kernel
itself.

By considering each suffix of the plan π = {a0, ..., an−1}, i.e. π1 = {a1, ..., an−1}...π2
= {a2, ..., an−1}...πn−1 {an−1} till the empty plan πn = {}, it is possible to in-
dividuate an ordered set of numeric kernels in which the i-th element set is the
numeric kernel of πi. It is worth noting that, by definition, the goal is a special
kind of numeric kernel for the empty sub-plan.

Finally, given a plan of size n it is possible to identify n+ 1 kernels where:
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• S0[π0] satisfies Gnum iff S0
n satisfies K0

num

• S1[π1] satisfies Gnum iff S1
n satisfies K1

num

• ...

• Kn
num = Gnum corresponding to the kernel for an empty plan

In the definition above the superscript indicates the "time" index of interest.
As we will see in the next Section, the creation of the numeric kernels can

be done just once in a pre-processing phase before the real plan execution. Once
obtained the kernels set, one of the interesting property is that the verification
process becomes very easily; indeed it can be performed by simply substituting
the numeric values of the state in each comparison appearing in the kernel. For
this reason one can immediately infer whether the goal is still supported by the
current state. Of course in case the plan undergoes some adjustments the set of
kernels has to be recomputed.

Given a kernel K according to Definitions 16, 15 and the plan consistency
notion reported in Definition 10, it is possible to deduce that:

Proposition 5. A plan π is valid at step i for a goal G iff Si satisfies Ki,
where

• Si is the state observed before the execution of the subplan πi

• Ki is the i-th kernel of π

Proof. =⇒
Given Si and G, If the plan π is valid at step i we are sure that Si[πi] satisfies
both Gprop and Gnum. However, by definition of kernels, the only states sup-
porting the plan to achieve the goal are the ones satisfying Ki; for this reason it
follows that both Siprop satisfies Ki

prop and Sinum satisfies Ki
num. Meaning that

Si satisfies Ki.
⇐=

By definition of propositional and numeric kernel we know that if Si satisfies
Ki we are sure that: (i) Siprop will contain the necessary atoms - indeed Siprop
satisfies Ki

prop - for the achievement of the goal Gprop via πi, hence Si[πi] will
satisfies Gprop; (ii) Sinum satisfies the inequalities expressed in Ki

num, hence
Si[πi] will satisfies Gnum. Hence it follows that π is valid at step i as Si[πi]
satisfies both Gprop and Gnum

The proposition reported above, highlights the very strong interdependence
among the kernel and the plan consistency status. This proposition is indeed
exploited by FLEX-RR for evaluating the validity conditions of the plan. See
(Section 8.4).
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Before explaining the construction of the kernel, let us introduce a small
example which focuses on the numeric part of a possible planning task.

8.2.1 Example

Suppose a very simple version of our Planetary Rover domain in which there is
just one action "drive" that decreases the power at disposal, and let us imagine
to have the following situation:
X = {(power)}
π = {(drive)}
G = {((power) > 7)}

drive =


preprop = null

prenum = null

effprop = null

effnum = {((power)− = 5)}
Observing the setting it is easy to see that the sufficient and necessary con-

ditions for making applicable with success the plan π should constrain in some
way the value of the fluent (power). That is, the state which supports the
successful execution of this plan has to satisfy some particular condition on the
value of the power. In particular, the kernel 5 imposes the (power) to be greater
than 12. So K0 = (power) > 12). By applying the action indeed, it is easy to
see that it is possible to achieve the goal only in case (power) at the initial
state is greater than 12 . Otherwise, a value less or equal to 12 would have
compromised the feasibility of the plan, since the final state of (power) would
have been a number less or equal to 7. In this case the action preconditions are
empty, so the only necessary conditions to keep trace of, are the ones belonging
to the goal conditions. If it had not been the case, the kernel would have con-
sidered also the applicability condition of the action. For instance, if the action
requires that (power r1) is at least 7, the kernel has to contain also additional
constraints. That is K0 = {((power) > 7), ((power) > 12)}, which of course
can be simplified yielding K0 = {((power) > 12)}.

8.3 Kernel’s Construction

This Section explains the construction of the set of numeric kernels. Analo-
gously to the previous Section, for completeness, we firstly show the computa-
tion of the propositional kernel. It is worth noting that the two processes can
be performed independently as it is sufficient to combine the two results at the
end of the computation.

5In this case the propositional kernel would be empty as there are no propositional infor-
mation
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Even if the kernel’s definition focuses on just one specific kernel, that is the
one useful for assessing the validity of the plan, the construction we are going to
propose is intended to generate the entire ordered set of kernels useful for each
suffix of the plan. In a nutshell, the purpose is to build a structure that allows
the agent to be aware of the plan consistency for each step of the execution.

8.3.1 Propositional Kernel Construction

Analogously to the procedure reported in [40] via the Triangle Table, the propo-
sitional kernels are built by a backward propagation that keeps trace of the
action model information. The algorithm 6 explains the process in detail.

Algorithm 6: Propositional Kernels Computation (PKC)
Input: π = {a0,..,an−1} - plan;
G - goal
Output: K: an ordered set of propositional kernels

1 K
|π|
prop = Gprop

2 for i=|π|-1 to 0 do
3 Ki

prop = {Ki+1
prop \ eff+(ai)} ∪ pre(ai)

The procedure starts from the last (trivial) kernel corresponding to the set of
the goals (the atoms that must be achieved at the final state, line 1, and produces
each i-th kernel by (i) removing the atoms provided by ai (i.e. the add-list of
the i-th action), (ii) adding the atoms required by ai (i.e. the propositional
preconditions of the i-th action), line 3.

8.3.2 Numeric Kernel Construction

As we have seen in the Definition 16, differently from the propositional case, the
numeric kernels depend on the numeric part of action models (more precisely
the ones that are employed in the plan) and on the numeric part of the goal
conditions. As anticipated indeed, each numeric kernel Ki

num will define the
conditions for a state S to be a valid state for the achievement of the numeric
goal by applying a piece of the plan π, i.e., πi.

Analogously to the propositional case, the main idea behind the construction
process is to keep trace of the action effects (in particular the numeric ones),
while preserving its preconditions all along the plan, starting from the goal
conditions. The main steps are reported in the algorithm 7

The high level formulation of the algorithm is quite similar to the propo-
sitional one. In particular, the algorithm starts with the last numeric kernel,
i.e. the goal conditions. Then, the process constructs the (previous) numeric
kernel iteratively by combining the information involved in the numeric part
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Algorithm 7: Numeric Kernel Computation (NKC)
Input: π = {a0,..,an−1} - plan;
G - goal
Output: K: an ordered set of numeric Kernels

1 K
|π|
num = G

2 for i=|π|-1 to 0 do
3 Ki

num = {Ki+1
num ⊕ eff(ai,m)} ∪ pre(ai)

of the action model and in the next numeric kernel (line 3), which has been
previously computed. That is, the computation of Ki depends on ai and Ki+1.

The main difference w.r.t. the computation of the propositional case, and
hence the main contribution of this Chapter, refers to the ⊕ operator.

The operator ⊕ is a function that maps a set of comparisons (of the form
exp, {<,≤,=,≥, >}, exp′) and a set of assignments to a new set of comparisons6.
More formally, the operation ⊕ performs the steps reported in algorithm 8.

Algorithm 8: ⊕
Input: Eff : numeric effects of a
C: a set of comparisons
Output: C ′: a set of comparisons

1 C ′ = {}
2 foreach c ∈ C do
3 c′l = cl.sbt(x0...xn−1,effx0 ...effxn−1)
4 c′r = cr.sbt(x0...xn−1,effx0 ...effxn−1)
5 C ′ = C ′ ∪ {c′}

The algorithm takes in input the set of comparisons and the numeric effects
of the action a. cl identifies the left part of the comparison while cr the right
one. Thus both cl and cr are arithmetical expressions over the numeric fluents
of the problem.

For each comparison in C, the algorithm performs a substitution of the
numeric fluents involved in cl and cr, according to the assignments reported in
a. For instance, if the numeric effects of a affect a fluent x with increase(x, 5)

and the comparison asserts that x < 4 the outcome C ′ will be x + 5 < 4, i.e.
x < −1. Of course, the action can affect all the fluents involved in the previous
comparison; therefore the substitution must map each fluent involved in C with
the effect described in the action model.

Each effxi
is the numeric effect of an action, where xi is the numeric fluent

that changes by means of the action application. Let us remember (Definition
3) that a numeric effect is defined by means of the triple < op, f, exp > so xi is

6Note that every operation in the action model can be transformed in an assignment
operation.
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the f and represents the "future" while exp is an arithmetical expression over
the fluents representing the "past". This expression can be evaluated in the
state in which the action is applied.

By observing Definition 3 it is easy to see that comparisons and effects
can encompass potentially complex arithmetical operations among the numeric
fluents. Similarly to what has been defined in the action model, we restrict
the expression to be linear expressions ( i.e a linear combination prevents the
occurrence of operations such as f1 {*,/} f2).

For simplicity, let us introduce a small example. Let us imagine to have
an MMA, i.e a, where there is just a single modality of execution m, defined
numerically as follows:

pre(a,m) =

f1 > 5

f2 < 4
eff(a,m) =

f1 = f1 + 5

f2 = f2 + 8

and a set of comparisons C as follows:

C =

f1 > 10

f2 < 4

The operation ⊕ between a and the comparisons involved in C (i.e. a ⊕
C) will transform the assignments defined in eff(a,m) and the comparisons in C
producing a new set of comparisons. More precisely, in the example above we
will have:

C ⊕ eff(a,m) =

f1 + 5 > 10

f2 + 8 < 4

By continuing on this example, we can see a specific iteration of the algorithm
7 for the action a.

Let us imagine that the plan π consists of just an action, i.e. {a}, and that
the goal is represented by the same inequalities of C.

The numeric kernel for the plan π given C is obtained by joining the con-
straints defined by ⊕ with the constraints defined for pre(a,m) hence:

(C ⊕ eff(a,m)) ∪ pre(a,m) =


f1 + 5 > 10

f2 + 8 < 4

f1 > 5

f2 < 4

which can be simplified yielding:

(C ⊕ eff(a,m)) ∪ pre(a,m) =

f1 > 5

f2 < −4
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It is easy to see that if we take an arbitrary state with f1 and f2 under the
comparisons defined above (e.g. f1 = 6 and f2 = -6), and if we apply to such
a state the plan π we are sure that (i) the action is applicable, since 6 > 5 and
−6 < −4, and (ii) we will obtain a state S in which both f1 > 10 and f2 < 4
hold, namely the goal will be satisfied.

The example reported above describes a simple scenario where numeric flu-
ents do not depend on each other. But this is not always the case. Theoretically,
in fact, an effect for the action can express that f1 = f2. Also this kind of rep-
resentation is captured by the substitution performed by the algorithm 8. In
general the algorithm will substitute each variable of the comparison with the
way in which the variable is modified (line 3 and 4 of algorithm 8).

Let us conclude this Section with the proof of the correctness of the algorithm
7. For the sake of explanation, the correctness proof focuses on the numeric
aspect of the problem, so G, S, K and the plan π are analyzed as far as it is
concerned by just their numeric part.

Theorem 6. Correctness. Given a plan π and a goal G the algorithm 7 finds
a set of numeric kernels for π and G.

Proof. The proof proceeds by induction on the length of the plan.
The base case of our induction is when the plan is empty, i.e. |π| = 0; in

such a case the algorithm will compute just one set of comparisons, namely K0,
which is the one containing the same comparisons present in the goal. For this
reason, given a state S, it follows that S[π] satisfies G if and only if S satisfies
K0. In particular S[π] corresponds to S and the only way of satisfying the goal
is to be a state that already satisfies the goal conditions.

Inductive step. For inductive assumption we know that the i-1 steps of the
algorithm KC (the iteration) have computed a set of i numeric kernels for a
plan of length n; i.e. we have the set of kernels K = {Kn−(i−1),Kn−(i−2)...,Kn

} which is in relation with each suffix of the plan, i.e. with
πn−(i−1),πn−(i−2)...,πn−17. At the i-th step, Kn−i is computed by combining
the precondition of the first action in πn−i, i.e. {ai} and the comparisons
obtained in the previous step. For this reason, a state S satisfying Kn−i will
be such that (i) the action {ai} is applicable and (ii) the state resulting from
the action application, i.e. S[ai] turns out to satisfy the Kn−(i−1). This last in
fact follows directly from the definition of ⊕. Indeed the operation keeps the
conditions expressed in Kn−(i−1), while considering the effects of ai by means
of the substitution mechanism. Having both (i) and (ii) we are sure that if S
satisfies Kn−i , then S[πn−i] will satisfy the goal.

For the necessary conditions, that is if S[πn−i] satisfies G then S satisfies
Kn−i we can proceed by absurd. Indeed, if S does not satisfy the conditions

7Let us remember that the subscript used for the plan points out a portion of the plan
starting from the position indicated until the end
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expressed in Kn−i it means that either the first action of [πn−i] is not applicable
or S[ai] does not satisfy Kn−(i−1). The latter is not possible for inductive
assumption as Kn−(i−1) is assumed to be a kernel, while for the former it is
obviously impossible since if the action is not applicable then S[πn−i] will not
satisfy the goal. This proves the contradiction.

8.3.3 Time Complexity

This subsection analyzes the time complexity for the numeric kernel construc-
tion even if it is worth noting that the kernel’s computation can be done just
once, so that it can be seen as a form of off-line processing. By observing the
algorithm, it is quite evident that the main task to be performed is the iteration
all along the actions involved in the plan. However, each step consists of a num-
ber of substitutions, which in turns depends on the number of the comparisons
and assigners given as input to the substitution. That is, it depends on the
kernel previously computed.

Therefore let n be |π|, an upper bound on the total number of steps to be
performed corresponds to O(

∑n
i=0mi) where mi is the number of substitutions

involved at step i. Let us note that, as the iteration goes on, the number
of substitution monotonically increases. In particular at the last step of the
computation, the number of substitutions to perform is equal to the sum of the
comparisons previously encountered. Therefore,

∑n
i=0mi ≤

∑n
i=0(iM) where

M is the maximum number of comparisons among the numeric preconditions of
the actions and the goal G.

It follows that the number of steps of the algorithm is given by
∑n
i=0(iM) =

n(n+1)
2 M . Meaning that, asymptotically, the numeric kernel time complexity is

O(n2M).

As reported in the previous example, given two comparison sets, A and B,
the set resulting from their union is not always equal to the sum |A| + |B| of
their elements. Indeed it may be the case that at least a comparison is stronger
than another comparison and hence the latter is useless and can be removed.
The number of the elements to be analyzed during the substitution mechanism
can actually be less, thus improving the performance of the kernel construction.

8.4 Improving the FLEX-RR Supervision Task

As we have seen in Chapter 6, the execution of the plan in the real world could
fail because of the occurrence of exogenous events as well as unexpected action
behaviors; therefore a continuous monitoring is needed.
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8.4.1 Improved Monitoring

The FLEX-RR monitoring task consists in anticipating each action execution
with a phase aimed at assessing the feasibility of the plan as a whole. Indeed
in a plan execution monitoring context, the only checking of the action precon-
ditions may in general not be enough; even if the action can be applicable, the
executability of the remaining plan could be feasible only if certain conditions
hold. To capture such conditions, FLEX-RR individuates three levels of plan
consistency, where we have that a plan can be either invalid, partially valid or
valid.

In the FLEX-RR agent, such a verification requires a simulation step, which
is accomplished by the Predictor module. That is, given the plan of actions to
be executed, the agent can predict the final state of the system by simulating
the plan execution according to the model of actions and the observed current
state of the system. Once such a final state is computed, the agent evaluates the
prediction against the requirements expressed in the goal statement and infers
the executability status of its plan.

Of course by exploiting the kernel formulation8 the agent can avoid this
simulation step.

In particular, it suffices to combine the plan consistency notion with the
kernel’s definition as the following:

Definition 17. Given an MMPP Π=< A, I,Gprop, Gnum >, and a plan π =
{a0(m0),a1(m1),..,an−1(mn−1)} solving Π, let Si be the observed system state
obtained after the execution of the first i actions in π, and a set of kernels K =
{K0, K1,...,Kn},we say that:

• π is valid at execution step i iff Si satisfies both Ki
p and Ki

num

• π is partially valid at step i, iff Si satisfies Ki
prop but not Ki

num;

• π is invalid, iff Si does not satisfy Ki
prop.

In other words, the task of monitoring can be performed by matching the
state against Ki

prop and Ki
num. Indeed, the new formulation of the plan validity

does not depend on the action still to be performed and the agent can focus just
on the relevant numeric information.

The extension in the FLEX-RR architecture is straightforward; the Predic-
tor module does not require the information from the MMA plan, rather it can
combine the information of the state with the Kernel’s structure. Of course,
when the plan undergoes some adjustments, the kernel’s set has to be recom-
puted consequently. In case of a changing in the modalities (i.e. when just
Recon is applied) the only structure to be recomputed is the numeric kernel.

8It is important to remember that FLEX-RR has to be able to handle plans involving both
propositional and numeric aspects, for which both the propositional and the numeric kenrel
are necessaries.
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8.4.2 Safe Control Delegation

Section 3 defines that an action is applicable in a state S when both the propo-
sitional preconditions and at least a modality of execution is satisfied in S.

By exploiting the kernel for a given MMA plan, we can in principle have
multiple ways of applying an action without compromising the executability of
the same plan. Besides the action applicability we can indeed introduce the
concept of safe execution. That is:

Definition 18 (Safe execution). Given an MMPP Π=< A, I,Gprop, Gnum >,
a plan π = {a0(m0),a1(m1),..,an−1(mn−1)} solving Π and an ordered set of
numeric Kernels Knum for π and Gnum, a safe execution of a0 in a state S is
a subset of modalities M of a0, where each m ∈M is such that:

• the numeric precondition for m are satisfied in In

• S[{a0(m)}] satisfies the condition in K1

We can also extend the concept for the rest portion of the plan. That is,
let Si be the state observed, the safe execution for the i-th action is the set of
modalities that guarantees the rest of the plan to be valid starting from Si.

One of the most interesting positive effects of the safe execution notion is
that, during the execution and given the actual state observed, it is possible to
identify a set of modalities for the next action to be executed by matching a
single step of simulation with the upcoming kernel.

The algorithm 9 implements such an intuition. The procedure takes in input
the action a to execute, the state in which a has to be executed and the numeric
kernel of the next part of the plan. For each modality of a the algorithm verifies
that the numeric part of the state resulting from the action application (in that
modality) satisfies the kernel’s condition. If it is the case the modality is added
to set of the safe execution modalities.

It is worth noting that the output M is such that |M | ≥ 1. A different
scenario would mean that the plan to be executed is not valid anymore. To
avoid such a situation it is necessary that the function is called before the plan
has been declared consistent.

By combining the notion of safe execution modality with the plan consistency
Definition 10 reported in Chapter 4, it is possible to observe that:

Observation 7. Let Si be the current observed state of the system and let
π = {a0(m0), ..., ai(mi), ..., an−1(mn−1)} be valid at step i, if mi belongs to the
set of safe execution modality for ai, then π will be valid at step i+1 according
to Si[ai(mi)], too.

The observation above indicates that if a plan is valid at some point of the
execution and we apply an action with a safe execution modality then the plan
will be valid also in the next step.
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Algorithm 9: Safe Execution Modalities
Input: a - action;
S - state;
k - numeric kernel
Output: M - the safe execution modalities set

1 M = {};
2 foreach mod ∈ Mod(a) do
3 S’ = predict(S,a,mod);
4 if S′num satisfies k then
5 M = M ∪ {mod}

6 return M

The set of safe execution modalities includes those action modalities that not
compromise the feasibility of the plan. For this reason they give a further level
of flexibility to our system. In particular they establish the set of modalities that
can be delegated to a further control mechanism. In Chapter 9, we will show
an action supervision which guide the control over the action, by exploiting the
safe execution notion presented so far.

8.4.3 Kernel Replanning

In the previous Chapters, we have seen that a plan may be repaired in the space
of modalities by means of a reconfigurator; that is Recon adopted by FLEX-
RR. Moreover, another option refers to repair the plan directly via a replanning
from scratch. The reconfiguration mechanism allows the agent to focus only on
a portion of the problem, trading flexibility for efficiency. On the other hand,
the Replanning from scratch mechanism provides a further level of reasoning to
achieve an high degree of flexibility to be used just in case.

As we observed in the experimental session, however, the replanning from
scratch may be too costly from a computation point of view. For this reason
in this subsection we propose a very simple strategy which directly applies the
notion of the kernel.

Indeed, as well as the kernel allows the agent to understand when interrupt-
ing the execution, the same kernel, by definition, individuates the conditions to
(re)-establish the applicability of the current plan.

Therefore, the notion of the kernel seems quite appropriate in the context
of repair as it captures exactly the requirements for going back to the old
situation. That is, given the expected kernel k and the current state of the
system S, instead of searching for a solution satisfying the goal of the original
problem, it could be sufficient to steer the search towards the expected kernel.
Then, the "patch"9 produced (if any) will bring the agent into a new situation

9The "patch" is actually an MMA plan as the original one. We used the "patch" term just
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satisfying the kernel, meaning that, once the agent will execute the actions
involved in this "patch", the original plan will be newly executable. We call
this strategy Kernel Replanning.

The Kernel Replanning can be triggered by any continual planning agent
(e.g. FLEX-RR) whenever the plan is not valid. Let S be the current state, π
the plan to be executed, and K the kernel for π and a goal G, the main steps
to integrate are:

• compute a patch ω to achieve K from S;

• if ω exists then append π to ω ; /* KERNEL-REPLANNING*/

• else substitute π with a new plan from S to G /*REPLANNING*/

• if π is not empty continue the execution otherwise abort

From the point of view of FLEX-RR it is worth remembering that the strat-
egy invokes a replanner whether:

• the plan is invalid

• the plan is partially valid and the reconfiguration failed

Therefore the kernel re-planning can anticipate each replanning phase with the
step reported above. More precisely, for each step i of the execution which
requires the replan, it suffices to invoke the replanner tool as reported in Chapter
6 by replacing the goal conditions with the i-th kernel expected.

As experimental session we tested the mechanism for a particular domain,
which is the ZenoTravel Domain. The next Section reports some interesting
results, which proves the promise of the approach.

8.5 Experiments

This Section reports some experimental results aimed at verifying the validity of
the kernels and in particular the Kernel Replanning presented in Section 8.4.3.
We conducted the experiments in the ZenoTravel domain. For the purpose of
over-stressing the kernel based replanning mechanism, we considered action with
just one modality of execution. The resulting domain definition corresponds to
the original version of the domain proposed in the Third International Planning
Competition (see http://www.dur.ac.uk/d.p.long/competition.html).

One of the attractive characteristics of the ZenoTravel domain for our pur-
poses is that the fuel of the planes is a renewable and continuous resource,

to disambiguate the original solution from such an intermediate course of actions, whose only
aim is to re-establish the previous conditions

http://www.dur.ac.uk/d.p.long/competition.html
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indeed, a plane can refill its tank once there is no more fuel at disposal. How-
ever, the original problem definition does not impose where and when the refuel
is possible.

To make this domain more challenging, we defined an extended version in
which refuel is possible only in certain city. To this end, we modified the pre-
conditions of the refuel action for allowing its execution only in cities where it
is explicitly stated the presence of the refuel station. This means that a plane
should pay more attention in choosing the paths for moving people all around.
Moreover, this causes a new interdependence between the propositional aspects
(the presence of the refuel station can be modeled in a propositional way) and
the numeric ones (the fuel is modeled as a numeric fluent).

We performed experiments in both the original and the extended version of
the domain, which we will call the normal and hard domain. The generation of
the cases has been done starting from the suite of problems computed for the
planning competition. In particular, we focused on the 7 most difficult cases as
they are the most interesting for the repair problem. Vases differ among each
other on the number of people, cities and planes to be taken into account; our
tests suite involves problems with people ranging from 10 to 20, cities from 5 to
20 and at most 5 planes.

To validate the monitoring and the repair via kernel, the tests refer to the
execution of such plans in not nominal situations; we injected discrepancies in
the way in which the fuel is consumed throughout the plan execution. For each
case we injected 5 different amounts of noise, which consequently produced 5
different instances of repair problems. The total number of experiments is hence
35 cases for each domain. The experimental software architecture is the same
reported in Chapter 7.

Tests ran on two different configurations of FLEX-RR. The one with the
only replanning from scratch methodology (FLEX-REPLAN), while the other
one with the replanning replaced with the Kernel Replanning10. For each case
we measure (i) the performance of the system in terms of cpu-time spent for
solving the planning task, and (ii) the quality of the solution obtained, that is,
the number of actions in the new plan. For the replanning case, the new plan
is the set of actions from the current state towards the goal. For the Kernel
Replanning case, the new plan is the concatenation of the actions obtained for
reaching the expected kernel with the old plan.

10In the domain definition we used just a modality for each action. For this reason the re-
configuration mechanism is useless in this formulation. As a future work, it may be interesting
to assess the system in the context of many modalities of execution where a comparison with
the reconfiguration mechanism will be possible
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8.5.1 Performance::Cpu Time

The Figures 8.1 and 8.2 summarize the performance results for the two different
strategies; that is, they measure the cpu-time (in msec) spent for the resolution
of the planning task. The x-axis enumerates the 7 cases considered whereas the
y-axis the computational effort. The one (red line) is the Kenrnel replanning
strategy (we turned off the replanning from scratch), the other one (blue line) is
the replanning from scratch methodology (we turned off the repair mechanism).
Both strategies, as anticipated, have been experimented for the normal and hard
domain (8.1 and 8.2 respectively).

Figure 8.1: ZenoTravel Domain :: Normal Version :: Cpu-time

It is quite clear that for this class of problems, the repair mechanism out-
performs the replanning from scratch in all cases we tested, and it is true even
when dealing with hard cases. In this latter cases the replanning performs rather
bad since the performance degrades rapidly. For instance in case number 6, the
replanning from scratch found a solution only after 25 secs.

One of the interesting property showed by the proposed Kernel Replan-
ning mechanism, is that in all test cases the amount of the time spent for
re-establishing the condition is always under 1 sec.; as long as the replanning
mechanism becomes more and more time expensive, the repair remained stable.
This result is very surprising; in fact the planner employed (Metric-FF, [50])
turns out to be very good in dealing with the repair problem at hand.

In all test cases, the monitoring devoted to intercept the plan inconsistency
has been performed by checking the conditions in the kernels set (both for the
replanning and the kernel replanning strategies). The cpu-time spent turned
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Figure 8.2: ZenoTravel Domain :: Hard Version :: Cpu-time

out to be negligible as the number of comparisons for the checking problem has
been always less than 10-20 comparisons.

8.5.2 Quality::Plan Length

Figures 8.3 and 8.4 report the average length of the plans for each class of
difficulty tested. Thus, we measure the average length from the 5 different
solutions obtained.

As for the Cpu-time benchmark above, the x-axis figures out the case in-
stance, while the y-axis reports the number of actions, i.e. the length of the
plan computed to reach the goal11.

Surprisingly, the average length of the plan measured turns out very similar
for both architectures. In the hard domain we have noted that repair performed
even better that replanning from scratch. The result is very promising, even
unexpected, since the repair mechanism can just try to put a patch on the plan.
This means that it may be the case that it performs actions with the only scope
to repair the current flaw (e.g. the fuel is not sufficient for the current plan)
without an interleaved and optimized integration with the remaining part of
the plan. On the other hand instead, the replanning from scratch is allowed to
explore all the possible plans to reach the goals, which should have given it the
chance of producing more optimized plan. However, this was not the case.

11Let us remember that for the repair case this plan involves both the bridge and the old
plan
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Figure 8.3: ZenoTravel Domain :: Normal Version :: Length of the Plan

8.6 Conclusions

This Chapter proposed an extension of the propositional kernel ([40],[43]) called
numeric kernel, which is specifically designed for dealing with actions involv-
ing changes for continuous variables, i.e. numeric fluents. The numeric kernel
accompanied to the well known propositional kernel, allows to improve the mon-
itoring throughout the plan execution guaranteeing the agent to focus only on
the relevant part of the current state.

Concretely a numeric kernel is expressed as a set comparisons which must
be satisfied in order to make applicable a plan of actions. Therefore, given
a state of the system, the monitoring problem can be performed without any
propagation and any search in the plan to be performed.

Moreover, it is worth noting that complex plans may involve deep interac-
tions among numeric fluents. Understanding which are the relevant information
for the assessment of the plan validity may be an hard task. The numeric kernel
hides such a complexity, by allowing to focus only on a subset of such variables,
which are the ones actually relevant for the problem at hand.

Exploiting the numeric kernel notion, the Chapter reported three main en-
hancements for FLEX-RR:

1. Improved Monitoring, a focused way for performing the assessment of
the validity conditions for a plan;

2. Kernel Replanning, an alternative replanning strategy which is based
on reestablishing the nominal conditions without making a blind replan-
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Figure 8.4: ZenoTravel Domain :: Hard Version :: Length of the Plan

ning from scratch

3. Safe Control Delegation, a mechanism to identify safe execution modal-
ities, which is a set of modalities that can be applied in a given status
without compromising the feasibility of the plan. In particular in Chap-
ter 9, we will see an Action Supervision module (ACTS) that can exploit
such a notion to integrate its local control with the plan supervision task
performed by FLEX-RR.

To validate the notion, we applied the Kernel Replanning in the Zeno-
Travel Domain. Results showed that, when the repair faces unexpected re-
sources consumption, a focused repair works very well w.r.t. a replanning mech-
anism. Moreover the length of the resulting plan, surprisingly, turned out to be
on average better than the length of the plan produced by the replanning mech-
anism, even if the repair mechanism is not allowed to perform an exhaustive
search into the plans space.

In many scenarios the numeric fluents model resources and it may be the
case that a resource is consumable but not renewable (e.g. the time). For this
reason, if the external events cause a greater resource consumption (for example
a time delay), it is impossible to come back to the expected state (it is in fact
not possible to come back in the time). Therefore the mechanism can be useful
in some domain while it can be useless in other ones. Understanding under
which conditions it is suitable the kernel replanning mechanism is one of our
lines of research.

The notion of numeric kernel is quite general in the context of numeric
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planning and we believe it could be investigated in a larger perspective of case-
based-planning. However, as an immediate future work we would like to test
the repair strategy we developed on a larger set of domains, to understand the
generality of the repair approach. Moreover, we would like to study a more
sophisticated way in the selection of the kernels towards which perform the
patch; in this first version in fact we employ a conservative setting where the
repair is performed directly towards the state that was expected.
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Chapter 9

ActS:: Action Supervision
through Multi Modality
Actions

In this Chapter we propose a methodology for supervising durative actions while
they are still in execution. Such a level of control complements the role of FLEX-
RR in that the supervision is performed at the level of the action instead of the
plan. The approach is tested on a specific domain, which is the Planetary Rover
domain reported throughout the thesis.

9.1 Introduction

As we have seen in the previous chapters, the strategy of robust execution we
proposed is able to control the way in which actions have to be executed all
along the plan execution, but just before their actual execution.

As soon as some kind of plan inconsistency arises, FLEX-RR invokes a repair
strategy, which in extreme situations may become a re-planning step. These
methodologies, however, are unable to intervene during the execution of an
action, as the repair is invoked just after the detection of a plan inconsistency,
that is, when the plan execution has been interrupted.

Actually, FLEX-RR mitigates this problem by anticipating the configuration
of future actions in the plan. As a matter of fact, FLEX-RR behavior does not
depend directly on a failure of an action, rather it predicts the behavior of
the system for the whole execution. For this reason the repair strategy can
be invoked earlier, meaning before we assess that an action with a specific
modality cannot be executed anymore. Unfortunately, it is not always possible
to anticipate the detection of threatened actions, since the plan executor (i.e.,

147
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the agent) may have just a partial knowledge of the world where it is operating;
this imposes the granularity of the control to focus just at the plan level. That
is FLEX-RR has no control during the action execution.

In this Chapter we complement the repair mechanism proposed in Chapter
6, with a new module, namely Active Supervisor (ActS). The main objective of
ActS is to avoid (at least in some cases) the occurrence of action failures during
the same action execution improving as a consequence the robustness of the
whole plan execution. More precisely to avoid failures ActS aims at assuring
that (i) the action execution does not prevent the safety of the system, (ii) the
action achieves the expected effects (including the way in which resources are
employed). For these reasons, ACTS plays the role of a short term supervisor,
while FLEX-RR of a long term one.

To reach its purposes, ActS is up to adapt the way an action is carried on
to the current contextual conditions; that is, the mechanism exploits the fact
that each action in the plan is associated with a set of execution modalities that
embodies alternative ways to reach the action’s effects. Intuitively, an execution
modality in this context can be seen as a specific configuration of the rover’s
devices. When an action is submitted for the execution, the initial modality
can be adjusted on-line by ActS while the action is still in progress in order to
adjust the rover’s behavior without interrupting the execution phase.

ActS is a complex system involving a number of modules; in particular, it
exploits a temporal interpretation module for monitoring the execution of the
action and for detecting potential deviations from the nominal expected behav-
ior over a time window. When potentially hazardous situations are detected,
another module, called Active Controller, can decide to adjust the current exe-
cution modality by taking into account the suitability of alternative modalities
in alleviating the discrepancy between the actual behavior and the nominal one.

The combination of FLEX-RR and ActS results in an hybrid control archi-
tecture, that is, deliberation (FLEX-RR) and reaction (ACTS) are achieved in
a single framework. As shown in the variety of approaches reported in literature
(the Alami’s architecture, [5] , the CLARATY subsystem ,[76] and so forth),
the trade-off between deliberation and reaction still remains an open problem
when it comes to deal with real-world environments (e.g., mobile robot). Hybrid
approaches represent the most suitable compromise when it comes to deal with
real-world environment (e.g. mobile robots).

We have tested ActS in a specific domain, which is the Planetary Rover
domain introduced in Chapter 1. Since the synthesis of a mission plan is a
complex task, the rover is typically not allowed to significantly deviate from it;
thus, in case of action failures, the rover can just interrupt the execution and
wait for instructions (i.e., a new mission plan) from a Ground Control Station
(GCS) on Earth.
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To this end ActS re-configures the action without endangering the structure
of the plan, and it changes only one action modality per time whereas FLEX-
R trades part of the stability for flexibility. Indeed, once the reconfiguration
is called in FLEX-R, more action modalities can be substituted all along the
part of the plan still to be executed. Moreover, exploiting the notion of Safe
Execution Modalities reported in Definition 18, ACTS has a means to prefer
only the modalities which are supposed to not threat the whole plan consistency.
Thus the integration between ActS and FLEX-RR can be more effective.

The Chapter is organized as follows: Section 9.2 recalls the space exploration
scenario presented in Chapter 3; Section 9.3 presents the knowledge provided to
ActS to perform its job; Section; Section 9.4 explains how the ActS is combined
with FLEX-RR. Section 9.6 reports some experimental results that will evaluate
the ActS contribution.

9.2 An exemplifying scenario: The Planetary Rover
Domain - part 2

In Chapter 3, a space exploration scenario involving a planetary rover in charge
of moving all along the surface of the planet and collecting information of the
environment has been introduced. As we have seen, this scenario presents some
challenging characteristics that made it particularly interesting for the plan
execution problem. The rover, in fact, has to operate in a hazardous and not
fully observable environment where a number of unpredictable events may occur.

It is easy to see that some of these actions can be considered atomic (e.g.,
take picture), some others, instead, will take time to be completed. For instance,
a drive action will take several minutes (or hours), and during its execution the
rover moves over a rough terrain with holes, rocks, slopes. The safeness of
the rover could be threatened by too deep holes or too steep slopes since some
physical limits of the rover cannot be exceeded. In case such a situation occurs,
the rover will be unable to complete the action. Of course, the rover’s physical
limits are taken into account during the synthesis of the mission plan, and
regions presenting potential threats are excluded a priori.

However, the safeness of the rover could also be threatened by terrain charac-
teristics which can hardly be anticipated. For instance, a terrain full of shallow
holes may cause high-frequency vibrations on the rover, and if these vibrations
last for a while they may endanger some of the rover’s devices. This kind of
threat is difficult to anticipate from the planning point of view both because
satellite maps cannot capture all terrain details, and because this threat depends
on the rover’s contextual conditions, such as its speed.

Since many approximations in the action model are mandatory to make
the planning (and the reconfiguration) phase feasible, the anticipation of many
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situations are deliberately postponed to the execution phase. For this reason,
some actions should be supervised all along their execution. To this end, in the
scenario of the Planetary Rover we extend the drive action to be considered
as durative and hence controllable during its execution. The set of modalities
to be considered remains the same introduced in Chapter 3 and reported in
the Appendix C. That is, the drive action can be executed in one of three
different modalities, i.e. "safe", "cruise" and "agile", that are characterized
by three different speed configurations. Intuitively indeed, slowing down the
rover’s speed can mitigate the harmful effects of disconnected terrains. In such
a scenario it is hence desirable to have a system that is able to (1) detect
anomalous execution and (2) react by changing on the fly the action modality
for the purpose of preventing future failures.

Moreover, as we will see the solution we propose is sufficiently flexible to
change the execution modality not only when threats have been detected, but
also when threats terminate and nominal execution modalities can be restored.

9.3 Knowledge for the active control

As anticipated in the introduction, the aim of this level of control is to give
a reactive response in facing unpredicted contingencies while the action is still
under execution.

This kind of behavior is actually performed by a module, namely Acts. Be-
fore discussing the internal architecture of ActS and how it intervenes during
the plan execution phase, it is essential to introduce the pieces of knowledge
ActS requires to carry on its job. The control at such a level of abstraction
requires additional pieces of information which cannot be extrapolated directly
from the action model introduced in Definition 3.
The first issue to face is about the representation of the plan.
Plan. The plan that is managed by the system is an MMA plan where each
action is defined according to Definition 3. However, to make explicit the fact
that action in this approach cannot be considered atomic anymore, we extend
the MMA action model for directly expressing the invariant condition construct.
The extension is inspired by the durative actions provided by PDDL 2.1 [42]
which, besides preconditions and effects, allows the definition of invariant con-
ditions (by means of the over all construct) that the planner must guarantee to
maintain during the synthesis of the mission plan. These invariant conditions
are exploited in the context of planning to enhance planners in discovering mu-
tex relations for plans with concurrent actions. In our approach the invariant
conditions are exploited during the execution of an action to check whether the
rover’s safeness conditions are maintained. For instance, the “over-all” construct
of the drive action shown in Figure 9.1 specifies which conditions on the rover’s
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attitude (i.e., the combination of pitch and roll) are to be considered safe, and
hence must hold during the whole execution of the action.

In a nutshell, the condition clause encodes the physical limits within which
the rover’s behavior is kept cautious while a drive action is in progress. Let us
suppose that two parameters are essential for the safeness of a navigate action:
roll and pitch. When either the absolute, or the derivate value of one of
these two parameters exceeds a predefined threshold, the navigate action must
be considered failed. In that case, ActS aborts the action in order to prevent
further damages.

From the previous example it is apparent that an invariant condition is a
Boolean statement, encoding when a failure situation occurs. When it is violated
at some step of execution, it is too late for intervening: the plan execution phase
must be interrupted and a new plan must be requested. On the contrary, we
aim at preventing the occurrence of action failures by anticipating the violation
of invariant conditions during the action execution. To do so we need some
further pieces of knowledge associated with each action in the mission plan.

(:action drive
:parameters (r1 l1 l2)
:modalities (safe, normal, fast)
:precondition (and (reachable l1 l2)(in r1 l1))

(safe: ((>= (power r1) (f_pwr_safe(l1, l2)))
(normal: ((>= (power r1) (f_pwr_normal(l1,l2)))
(agile: ((>= (power r1) (f_pwr_agile(l1, l2))) )

:condition (over all (and (<= (pitch-derivative r1) 5)
(<= (roll-derivative r1) 5)
(<= (pitch r1) 30)
(<= (roll r1) 30)))

:effect (and
(in r1 l2)
(not(in r1 l1)))
(safe:

(decrease (power r1)(f_pwr_safe(l1, l2)))
(increase (time) (f_time_safe(l1, l2))) )

(normal:
(decrease (power r1)(f_pwr_normal(l1, l2)))
(increase (time) (f_time_normal(l1, l2))))

(agile:
(decrease (power r1)(f_pwr_agile(l1, l2)))
(increase (time) (f_time_agile(l1, l2))) )

))

Figure 9.1: An MMA drive equipped with over all conditions

Execution Modalities for Acts. The concept of execution modalities that is
defined in 3 is key in the ActS task. However, differently from the use made by
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Figure 9.2: The FLEX-RR-ACTS Architecture

FLEX-RR, the execution modality here are not exploited for prediction reasons;
instead they express in a discrete way those decisions that can be asynchronously
performed over the rover’s parameters. An execution modality can be seen as
a specific configuration of parameters or devices to be activated that has an
impact on the current behavior of the rover. In other words, given the set of
modalities mods(a) associated with a, each execution modality m ∈ mods(a)

represents a possible setting of the rover parameters (e.g. the rover speed during
the navigation can be set to 1 m/s as well as 2 m/s).

For instance, similarly to the model adopted for FLEX-RR, the drive action
can be associated with three alternative modalities: mods(drive)={cruise, safe,
agile}. In our experiments, we focus on the speed parameters1. In such a

1In general the safety of a drive action may depend on other parameters such as maxi-
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chronicle hazardous-terrain {
event(medium-hazard[pitch, roll], t1 )
event(medium-hazard[pitch, roll], t2 )
event(severe-hazard[pitch, roll], t3)
t1<t2<t3 ; t2-t1<W1 ; t3-t2<W1
when recognized { emit
event(hazardous-terrain[pitch,roll],t)} }

Figure 9.3: A chronicle recognizing a hazardous terrain.

chronicle plain-terrain {
occurs( (N, +oo), no-hazard[pitch, roll], (t, t+W) )
when recognized {
emit event(plain-terrain[pitch,roll],t);

} }

Figure 9.4: A chronicle recognizing a plain terrain.

perspective, the cruise sets the nominal speed of the rover, while safe and agile
are alternative modalities obtained by decreasing or increasing, respectively, the
nominal speed.

This means that, during the execution of a drive action, ActS can adjust the
rover’s velocity; this is important as the derivate values of roll and pitch will
strongly depend on the actual speed of the rover; by tuning the speed parameter,
ActS can therefore prevent a failure of a drive action. For expressing the relation
among particular trends of execution and action modalities we need to reason
over the time, i.e. we need to understand under which conditions a situation
harms the safeness of the rover’s equipment.
Temporal Patterns of Behavior. To prevent the occurrence of an action fail-
ure, it is essential to recognize anomalous trends of execution while the action
is still in progress. Each action is therefore associated with a set of temporal
patterns, each of which describes a sequence of events that should, or should
not, occur during the nominal execution of an action. While many other formal-
ism can be employed, in this work we adopted the chronicles formalism [39] to
encode these temporal patterns. Intuitively, a chronicle is a set of events linked
with each other by temporal constraints. Since they allow to model the behavior
of dynamic systems over time, chronicles have been successfully exploited for
real-time monitoring and diagnosis of Discrete Event Systems (DES), even of
large dimensions as telecommunication networks (see e.g., [79]).

In our case, the events that we want to capture within a chronicle correspond
to relevant changes in the status of the rover which indicate potentially anoma-
lous behaviors. These events may depend both on the activities carried on by
the rover itself, and on the contextual conditions of the environment where the

mum/minimum distance from the obstacles
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rover is operating. Thus, each durative action a ∈ P is also associated with a set
chrons(a) = {chr1, chr2, . . . , chrm} of chronicles, where each chri represents a
trend of execution, either nominal or anomalous, that is relevant for recognizing
what is happening during the execution of action a.

Figures 9.3 and 9.4 show two examples of chronicle associated with a navi-
gate action. The first chronicle identifies a potentially hazardous terrain. This
chronicle is recognized when at least N severe-hazard events have been detected
within an interval of W time instants. The basic idea is that the safeness of
the rover may be endangered when it moves at a high speed along a too rough
terrain; this kind of threat can be captured by detecting hazardous variations
of the roll and pitch parameters in a short time window. The second chronicle
recognizes a plain terrain when for a period of at least N time instants the rover
status remains nominal.

It is important to note that, to keep the definition of chronicles a simple task,
they mention high-level events such as medium-hazard and no-hazard; these
events result from an interpretation process over the rover’s status variables.
In particular, it is easy to see that, since the execution of a drive action is
aborted when the rover’s roll and pitch exceed predefined thresholds, these two
parameters play an important role during the process of generating the high-
level events mentioned within the chronicles in chrons(drive). We will describe
the interpretation process in the next section.

9.4 Action Supervision

As anticipated in the introduction the objective of ActS is to complement the
task performed by FLEX-RR by providing a further level of symbolic control
before the delivery of actions to the functional devices.

The architecture reported in Figure 9.2 highlights hence how ActS interacts
with the rest of the environment. In particular ActS interacts

• (on the top), with FLEX-RR for receiving the next action to execute
and providing (to FLEX-RR) the new system status once the action is
terminated.

• (on the bottom), with the functional level for receiving the raw-data from
the sensors (or a first abstraction of them) and for submitting the action
to execute, as well as to change on the fly the modality while the action
is still in execution.

The architecture makes clearly evidence of the two different levels of control.
The former focused on the Plan Supervision task (FLEX-RR) and the latter on
the Action Supervision task (ACTS).
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Besides the simple action start message and the modality submission, as
explained before, ActS can also send an abort message. The message allows the
system to interrupt the action execution in case particular safety conditions are
violated. It is worth remarking that, while the abort is sent to the functional
layer, a similar message is not sent to FLEX-RR. The reason why we prefer
this strategy is because FLEX-RR has no chance for the reestablishment of the
mission in such a situation. The abort message is in fact a very extreme decision,
which may requires a new planning phase or even an abandonment of certain
sets of goals. For this reason in our system we consider the abort as a failure
outcome that must be issued towards the planner2.

Let us start with the ActS’s internal architecture.

9.4.1 ActS’s Internal Architecture

Figure 9.5: The ActS internal Architecture

2In space exploration system, the planning activities are not performed automatically;
rather they are quite often a long process involving both humans and automated planners
([16])
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The internal architecture of ActS involves a number of modules:

- The Status Estimator (SE) gets, at each time t, the raw data provided
by the FL and produces an internal representation of the current rover’s
status. The result of the SE can be thought of as an array statust of status
variables representing a rover’s snapshot at time t. The SE can carry
out qualitative abstractions of the collected data, therefore each variable
v ∈ statust is set to a specific value which may be either a quantitative
or qualitative value. The internal status statust produced by the SE is
made available to the Status Interpreter of ActS. At the end of the action
execution, the module provides also the Plan Supervisor with the last
inferred status of the system.

- The Knowledge-Base (KB) maintains the pieces of knowledge exploited
by ActS for detecting anomalous trends and for compensating them by
tuning the execution modality of the current action. In particular, for
each action type type, the KB maintains the set of execution modalities
mods(type) and chronicles chrons(type) associated with it. The execution
modalities are the ones defined in Chapter 3, Definition 3, enriched with
specific parameter configurations (e.g., the devices to use). Moreover, the
KB includes a set of interpretative rules that helps the Status Interpreter
in its job.

- The Status Interpreter (SI) has to generate the (high-level) internal
events that are mentioned within the chronicles. It exploits a set of in-
terpretative rules associated with the current action. These interpretative
rules have the form Boolean condition → internal event. This condition is
built upon three basic types of atoms: status variables xi, status variable
derivates δ(xi), and abstraction operators qAbs(xi, [tl, tu])→ qV als which
map the array of values assumed by xi over the time interval [tl, tu] into
a set of qualitative values qV als = {qval1, . . . , qvalm}.

For example, the following interpretative rule:

{(δ(roll) > limitsroll∨ δ(pitch) > limitspitch)}
⇓

severe-hazard(roll, pitch)

is used to generate a severe-hazard event whenever the derivate value
of either roll or pitch exceeds predefined thresholds in the current rover
status.

Another example is the rule:

{(attitude(roll, [tcurrent −∆, tcurrent]) = nominal)∧
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(attitude(pitch, [tcurrent −∆, tcurrent])= nominal)}
⇓

safe(roll, pitch)

where attitude is an operator which abstracts the last ∆ values of either
roll or pitch (the only two variables for which this operator is defined) over
the set {nominal, border, non-nominal}.

- The Temporal Reasoner (TR) is essentially a Chronicle Recognition
System (CRS) similar to the one proposed by Dousson in [39]. It is re-
sponsible for triggering the Active Controller once a new chronicle has
been recognized.

- TheActive Controller (AC) accomplishes two important activities. First,
it selects an execution modality to be issued towards the FL. In principle,
such a selection should correct the current robot’s behavior smoothly; that
is, on one side, the AC’s strategy should not be too reactive in order to
avoid abrupt changes in the robot’s behavior which may be as dangerous
as the threat to face; on the other side, the AC should be able to restore
the nominal execution modalities when it is reasonable to presume that no
menace is expected in the near future. Second, the AC updates some pa-
rameters of the current action according the execution modalities it emits.
To make the selection of the modality more intelligent, AC is guided by
the Safe Execution Modalities computed by the extension of FLEX-RR
proposed in 8.

9.4.2 Algorithms

In the previous subsection we have introduced the main modules of ActS; in this
subsection we discuss how these modules are actually integrated with each other
to provide the supervision service ActS is responsible for. The main supervision
task is reported in algorithm 10, whereas algorithm 11 explains the transduction
process which starts by polling the Raw Data from the FL and ends with the
submission of qualitative events for the temporal reasoner module. Finally the
algorithm 12 is in charge of deciding the actual modality of execution. It is worth
observing that the last algorithm has to provide a prompt answer. For this
reason, the decision is quite a direct consequence of the monitoring performed
before.

The ActS supervision task is activated once the action is submitted to the
Functional Layer. Actually the role of the action supervision makes sense when
dealing with durative actions. For this reason, we discern actions in controllable
actions (durative actions) and non controllable (i.e. atomic actions). Whether
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Algorithm 10: ActiveSupervision
Input: a - action, sem - safe_exeucution_modalities , c - modality

1 submit a to FL;
2 if a is controllable then
3 t = 0;
4 while a is not ended do
5 <chronicles,result> = Monitoring(a,t);
6 if result = abort then
7 abort(a) command to FL;
8 wait for abort completion from FL ;

9 else
10 ActiveController(a,sem,chronicles);

11 t = t+1;

12 else
13 wait for completion from FL ;

a controllable action is submitted to the FL, the action supervision is activated;
otherwise this simply waits for the end message provided by the FL. Let us
introduce with more precision the active supervision procedure.

Active Supervision

The algorithm takes in input the next action to be executed,the Safe Execution
Modalities and the initial modality associated with the action. As a first step
the algorithm submits the action toward the FL with the current modality and
checks if the action is actually controllable. As anticipated the supervision is
possible only whether the action is durative and hence controllable.

If this is not the case the algorithm simply waits the acknowledgment of the
FL for the action completion; otherwise the actual active supervision starts.

The supervision is performed at a predefined frequency and for each iteration
the temporary variable t is increased by one thus keeping trace of each execution
step3.

For each iteration, the algorithm firstly invokes the monitoring routine then,
depending on the outcome, can either perform the control on the action modality
or return an abort.

In a nutshell, the ActiveSupervision is up to emit (when necessary) an exe-
cution modality towards the FL so that the trend of the current action can be
corrected. This result is obtained by the cooperation of the Monitoring (Status

3The pseudo code reported above does not make any assumption on the update frequency.
We have actually performed tests in 1hz. It is worth noting that the frequency of update
actually depends on the amount of reasoning time needed for performing the whole supervision
task and this strongly depend on the particular domains of application. However the strategy
can be easily configured for different frequency of control
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Algorithm 11: Monitoring
Input: a - action, t-time
Output: RC - chronicles , abort - message (just in case,otherwise null)

1 statust = interpret_raw_data();
2 if statust 0 invariant_condition(a) then
3 return <∅,abort>
4 H = append(H,statust);
5 rules(a) = get_interpretative_rules(a);
6 eventst = status_interpreter(H,rules(a));
7 RC = ∅;
8 chronicles(a) = get_chronicles(a);
9 foreach event e ∈ eventst do

10 chr(a) = get_relevant_chronicles(a,chronicles(a));
11 if TemporalReasoner(chr(a),e) is recognized then
12 RC ∪ chr(a);

13 return <RC,null>

Algorithm 12: Active-Controller
Input: a - action, sem - safe_exeucution_modalities, rc -chronicles

1 mods(a) = get_associated_modality(rc);
2 modality= most_suitable_mod(sem,mods(a));
3 submit modality to FL;

Interpreter (SI) and Temporal Reasoner (TR)) and the Active Controller (AC).

Monitoring

The details of the monitoring task are reported in Algorithm 11. As a first
step, the algorithm interprets the raw data provided by the Functional Layer.
As explained above such a computation is performed by the SE. This gives
the Active Supervision a first abstraction on the status of the system. Then the
algorithm matches the inferred new state with the invariant conditions expressed
in the model of the durative action. Whenever such invariant conditions are not
satisfied the procedure will immediately return with an abort message toward
the main routine, which in turns will issue the abort command towards the FL
and will wait for its completion. The functional layer may take some time to
perform the abort of the action; for this reason it is safe that the system will
suspend the control until the abort is actually performed.

If the invariant conditions are satisfied, the action can proceed the execution;
however, the situation requires a deeper analyses as also minor deviations from
the nominal behavior may be the cause of future failures. This kind of reasoning
is performed in a temporal dimension by the CRS module presented so far. More
precisely, the recognized situation (i.e. the chronicles) are computed from line
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9 to 12. Since the chronicles are activated on a set of events, these have to be
extrapolated by analyzing the status history against the rules associated with
the action currently in execution. This task is up to the SI, which exploits a
history of rover’s past states (H ) together with a set of interpretative rules in
order to synthesize the internal events representing relevant changes in the rover
status: eventst is the set of internal events generated by the SI at each time t.
Each event e ∈ eventst is subsequently sent to the TR.

For simplicity, in our approach we assume that each event e can be consumed
by exactly one active chronicle chr; the function get-relevant-chronicle in Figure
11 selects such a chronicle from chronicles(a) so that the TR receives in input
just the event e which influences that chronicle. By consuming the events it
receives from the SI, the TR will eventually recognize a chronicle chra. In
general, more chronicles can be recognized simultaneously, so all the chronicles
recognized at time t are collected into the set CHR.

Active-Controller

The task of the Active-Controller consists of two main steps (see Algorithm 12).
Firstly, the algorithm extracts the modalities which have been recognized by
the monitoring; then it selects from this set the next modality to be issued to
the FL.

The function most_suitable_mod performs the choice on the basis of the
Safe Execution Modalities set. In particular the set is used to establish what
are the modalities that should be preferred. The ratio is to guide the selection
towards those modalities which are supposed to not compromise the feasibility
of the plan. As indeed observed in 7, the Safe Execution property guarantees
that, whether other contingencies does not arise, if an action is applied with
a Safe Execution in a given state of the system the rest of the plan remains
valid after the action execution. Hence, FLEX-RR will not need any further
computation.

However the rank in the current implementation only distinguishes two levels
of application; for this reason there may be more than one modality with the
best rank. At the moment we break ties by picking up the modality according
to the order in which they appear in the MMA model.

There are two possible heuristics that can be employed in the selection mech-
anism reported above.
Domain Independent Heuristic. The idea is that, since action modality may
differently affect the use of resources, one may guess the modality that better is
supposed to improve the satisfaction of conditions expressed in the upcoming
numeric kernels. For instance, let us consider a scenario where a drive action has
been slowed down due to the presence of many vibrations. Once the vibrations
have terminated, the monitoring recognizes that both cruise and fast modality
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can be selected. However the next kernel imposes a very strict constraint on
the time to the end of the action. So, even if both the cruise speed and the
fast speed belong to the set of Safe Execution Modalities, the active control may
choose to pick the fastest one as that represents a greater chance to satisfy the
kernel constraint once the action is terminated.
Domain Dependent Heuristic. The idea is to provide further knowledge to
the domain. For instance one could imagine to have another rank among modal-
ities in such a way that given a set of possible applicable modalities, the active
control would pick the one closer to the current execution one. Such a kind of
approach would be aimed at minimizing the impact on the change of modality
since presumably, closer modality could request less impact on the parameter
configuration (or the use of different devices) w.r.t. distant modalities.

Both heuristics are under development as our future works.

9.5 Running example

9.5.1 ActS

To show the effectiveness of ActS, in this subsection we compare the execution
of the rover’s mission plan (introduced in Section 9.2) focusing on a specific
drive action - drive(A,B) - in two different situations: first when ActS is off,
so no execution modality is adjusted on-line; second when ActS is on and is in
charge of adjusting the execution modality of durative actions while they are
in progress. Of course, in both situations the violation of invariant conditions
causes the abortion of the current action. Figure 9.7 plots the derivate value
of the roll parameter over the time, while the navigate action is in progress in
the two situations: when ActS is off (above) and when ActS is on (below). It is
apparent that, when ActS is off, the execution of the navigate action is stopped
after a number of time instants (in our experiments we sampled the rover’s
status every second). This happens because of the violation of the invariant
conditions associated to the drive, which require that the derivate value of the
roll parameter must be below 5 degrees. On the contrary, when ActS is on, the
drive action can be carried out successfully; in fact, ActS recognizes a chronicle
hazardous-terrain, and intervenes at time instant 87 by setting the action
modality to reduced speed : such a change has a positive effect on the roll derivate,
which does not exceed the threshold, and therefore the navigation can go on until
the final target (B) is reached. 4

4For the sake of discussion we only consider the roll parameter; however, the interpretation
rules used to generate the internal events actually take into account a greater set of parameters.
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9.5.2 ActS + Flex-R

Let us consider the case in which ActS is actually combined with the FLEX-R
system, and let us imagine what could happen as a consequence of the ActS
intervention. For this purpose, suppose that the drive(A,B) is actually just
one of a larger set of actions to be executed that actually involves a TP(B)
and a COMM(B) as well. The TP(B) is set to perform an high resolution
image (HR modality) while the communication has been instantiated to upload
data through the CH1. As observed in Chapter 3 (where the planetary rover is
introduced) the high detailed image produced by the TP is predicted to consume
a larger amount of memory with respect to the low resolution version. While
the difference on the time spent by the two versions of the TP is negligible, the
particular choice indirectly affects the time spent by the communication action.
Indeed as long as the memory to be uploaded increases, the time spent by the
communication grows up (actually it is linearly increased).

As defined in Chapter 4, Definition 19, in order for a plan to be valid in our
system a plan, it is requested to satisfy some constraint on the use of resources.
Let us assume that such requirements constrain the mission to be achieved in
less than 107 time slots. Imagine moreover that the mission plan in such a
configuration predicts to consume 102 time slots so that the constraints defined
for the problem (at least on the time) hold. For the sake of comprehension
Figure 9.6 shows the situation before the start of the drive action. As well as
there might be many other propositional and numeric fluents, Figure 9.6 focuses
on the time and memory resources.

In such a scenario, it is interesting to note that, from the point of view of
FLEX-R, the endogenous event caused by the intervention of ActS can becomes
an issue since the resulting time delay could compromise the consistency of the
plan. For instance let us introduce two situations obtained after the execution
of the drive action under the ActS control (from Figure 9.6 see situation A and
situation B).

In Situation A ActS causes a delay evaluated in 10 time slot; for this reason,
the total predicted time moves from 102 to 112. Since the time was constrained
to be maximum 107 time slot the mission is not valid anymore in such a con-
figuration. For this reason, after the completion of the drive action, FLEX-R
should stop the plan execution to find an alternative configuration of action
modalities. A possible solution to this problem concerns the TP to be set to the
low resolution modality instead of HR. Imagine that as an effect of this setting
the prediction on the time decreases from 112 to 105. Therefore the new allo-
cation is consistent with the numeric constraint and the execution can proceed
(indeed 105 < 107 hold).

In another scenario however the intervention of ActS could have been more
prominent (Situation B). If in fact the delay had got a greater impact (122 time
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Figure 9.6: ActS + FLEX-R example

slot instead of 102), the FLEX-R would have had no chance for reconfiguring
the plan as neither the demotion to the TP toward the low resolution image or
the communication set to ch2 would have been able to restore the situation.

It is quite important to note however that given time constraint so strong,
even a replanning mechanism could have adjusted the plan. The time indeed is
an example of consumable but not renewable resource.

Figure 9.7: The derivate of the roll parameter during action navigate(A, B):
when ActS is off (above) and when ActS is on (below).
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9.6 Experimental Results

The experimental scenario. The approach described in this Chapter has
undergone to a validation by using as test bed the space exploration scenario
previously introduced. In particular the role of ActS has been analyzed during
the execution of drive action. The planetary environment has been modeled
as a Digital Elevation Model (DEM); we assumed that an initial DEM Dinit,
presumably computed from satellites images, is available, and we used it for
synthesizing a set of rover’s missions.

In particular, by taking into account the terrain’s characteristics, we have
subdivided the rover’s missions into two classes: easy and difficult.

Note that the planning phase verifies the feasibility of each navigate action
by invoking a specialized path planner that, relying on Dinit, for each pair (A,B)
of sites of interest, assesses (i) the reachability from A to B, (ii) the distance for
reaching B from A, (iii) the validity of the invariant conditions associated with
this action type (see Figure 9.1).

Obviously, Dinit is just an approximation of the real terrain, therefore the
actual execution of a mission plan may be affected by unexpected environmental
conditions. For simulating the discrepancies between Dinit and the real terrain,
we have altered the original DEM by adding a random noise on the altitude of
each cell. In our experiments, we have considered 6 noise degrees: from 10 cm
to 15 cm, and for each of them we have generated 320 cases: 160 for the easy
class and 160 for the difficult one.

Note that, since the main contribution of ActS is the supervision of durative
actions, we focus the experimental analysis on these actions as they are the most
challenging to deal with; in particular, in our experiments we have considered
up to 1920 drive actions differing with one another for their starting and ending
points, and their length.

To prove the effectiveness of ActS, we have simulated the execution of both
easy and difficult cases in each noisy DEM comparing the responses of the two
architectures, a basic one in which ActS is turned on, and an improved one where
ActS is switched off. A simplified simulator of the FL has been implemented in
order to generate with a frequency of 1Hz the set of raw data the Supervisor
(either basic or improved) has to interpret.

For measuring the robustness of the action execution and for providing some
insights of the ability of the Supervsior in tolerating uncertainty in the DEM,
we are reporting data about three main parameters concerning the execution of
the drive actions:
1) the percentage of navigate actions that were completed successfully.
2) the percentage of progress actually done by the rover with respect to the
whole trajectory, computed taking into account both the navigations that were
actually completed and the aborted ones.
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3) The percentage of steps the navigation has been performed in the slowdown
modality w.r.t. the whole trajectory. Of course this datum is relevant just for
the improved architecture.

Figure 9.8: ACTS Results

Figure 9.8 summarizes the results of the tests. The graphs show the average
values for the class of difficult cases (solid line), and for the class of the easy ones
(dashed line). Each bullet corresponds to the average value of 160 navigations;
squares denotes the responses of the basic architecture, triangles denotes the
responses of the improved architecture.

It is easy to see that the improved architecture always provides better results
than the basic one for what concerns both the percentage of success and the
progress. Note that, in the difficult cases, the gains are significant even for small
deviations in the DEM, whereas in easy ones the gain becomes significant for
larger deviations.

The results also show that the mechanism of active control is quite powerful
but cannot avoid failures when the noise degree grows.

A final remark concerns the cost of the intelligent monitoring: while the
computational cost is negligible, there is an impact on the actual execution that
we estimate as the percentage of steps performed in reduced-speed modality,
showed in Figure 9.8.c. It is easy to see that this part is small when the noise is
small and the cases are easy and increases for difficult cases and larger amounts
of error. In conclusion, the overall evaluation shows that the benefit in terms of
suceess and progress are quite relevant w.r.t. the part of the path performed at
a reduced rate.

9.7 Conclusions

In this Chapter we extend the problem of robust plan execution to deal with
durative actions. In particular ActS is able to control the action execution while
the action is still in progress.

Similarly to previous works in literature ([5],[76],[19]) where multiple levels of
control architecture have been proposed, we have extended the reconfiguration
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mechanism provided at plan level by FLEX-RR with a further level of control
which focuses on the action level.

As we have seen in the chapter, there is an interesting interdependence be-
tween ActS and FLEX-R(R). On one hand, ActS is able to avoid action failures
by providing a continuous control over the parameter configuration of the drive
action. On the other hand, FLEX-RR is able to compensate the effects of ActS
interventions by reconfiguring the whole set of the action whether the ActS
contribution (numerically) invalidate the rest of the plan.

Both ActS and FLEX-RR perform action reconfiguration as they rely on the
concept of execution modalities, however the flexibility of ActS is limited to the
current action configuration while FLEX-RR has the chance of reconfiguring
more actions per time. Moreover, to mitigate the ActS intervention we exploit
the concept of Safe Execution Modalities developed in Chapter 8.

The experimentation phase has been aimed to thoroughly investigate the
ActS methodology on a specific navigation scenario within a typical space ex-
ploration mission. The results seems promising however further experimentation
involving the role of the numeric kernels could be useful. Moreover it would be
interesting to employ the mechanism for a new test bed scenario.

However, we believe that the behavior of the actions can be often explained
in a temporal dimension by reasoning on the qualitative events happened (e.g.
by CRS). To this end, this approach can be useful, as a framework and/or tool,
for symbolic control strategy where failures can be prevented by tuning properly
and on the fly the action parameter configurations.



Chapter 10

Conclusions

As we have seen in Chapter 2, the technological and methodological advance-
ments in the field of autonomy have provided an in-depth analysis of the prob-
lem of robust execution, and a variety of (alternative) approaches have been
presented.

In principle the robust execution can be dealt with from the very beginning
of the planning process, i.e. in an off-line phase. However, as we have seen,
the approach is adequate just when the plan is given in form of a schedule (i.e.
as an STP or a DTP, [33],[94],[27],[81]), while for the more general planning
context a continual revision of the plan (i.e. on-line) is more suitable and even
mandatory when the cases to consider are unbounded. The idea of the contin-
ual planning ([34],[15]) involves the interleaving of planning and execution all
along the task and, as soon as some plan inconsistency is detected, the attempt
to recover from the impasse. Several works based on this idea appear in liter-
ature, among which a number of them proposes domain tailored architectures
([5],[96],[76],[19]) while other ones focus on making the plan revision as efficient
as possible ([2],[44],[97],[82]).

The architectures that have been developed so far provide good examples
for the implementation of real world artificial agents; however the main limit
relies on the difficulty of singling out a domain independent methodology. On
the other hand, the approaches discussed in the context of repair are quite solid
from a methodological point of view, but they are more suitable for the off-line
plan-adaptation context. Moreover, even if they proved the efficiency of the
repair-based approach against replanning from scratch, they have mainly been
employed for the classical setting, and therefore are unable to deal also with
consumable resources.

The problem of dealing with resources is receiving an increasing amount
of attention in the last years. As a demonstration of this, the planning com-
munity has recently introduced the notion of numeric fluent ([42]) as a means
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for expressing continuous and consumable resources. However, the majority of
the methodologies developed so far have addressed the problem of plan genera-
tion ([50],[45],[25],[37],[23]). To the best of our knowledge, indeed, previous ap-
proaches to robust plan execution that explicitly deal with resources are mainly
off-line ( e.g., [82, 81, 26]) and only the work presented in [26] actually handles
resources that are consumable.

The thesis have addressed the problem of robust execution of plans dealing
with continuous and consumable resources, by extending the use of the numeric
fluents for the on-line phase.

The main contribution of the thesis is a continual planning framework to
(i) detect unexpected contingencies and (ii) - if necessary - recover the plan
in execution. The recovery is based on two repair mechanisms: a reconfigu-
ration and a replanning. The continual revision of the plan is the means for
achieving tolerance, and hence robustness, in unexpected deviations from the
nominal behavior. The methodology have extended hence the classical continual
planning framework for dealing with consumable and continuous resources. To
achieve this result, the dissertation has addressed the problem from a number
of perspectives.

Methodological Contributions. The approach pursued by the thesis
handles numeric fluents by introducing the notion of a Multi Modality Action
(MMA) (Chapter 3). The model has been conceived observing that in many
real world problems an action achieving a given set of qualitative effects can
use different configurations of execution, i.e. execution modalities. While these
execution modalities have the same propositional aspects, they use and require
different amount of resources. For this reason, the MMA models an action by
means of two levels of abstraction; the higher expresses the propositional high
level behavior of the action, while the lower specifies the set of modalities in
which the action can be executed.

In other words, the MMA establishes a similarity relation among actions
that have the same qualitative effects but can produce and consume resources
in different ways. The MMA model is able to capture this similarity in a com-
pact form; even more important such a relation is made explicit inside the MMA
model and can be exploited for efficient on-line reasoning mechanism (such as
reconfiguration). In this perspective the MMA extends the PDDL model by
allowing the user to specify the several execution modalities within a single ac-
tion schema. Moreover, the MMA is compatible with the PDDL model, meaning
that the MMA can exploit the several tools available for reasoning about PDDL
actions (e.g. automated planner, knowledge engineering tools and so forth).

The MMA proposal fits in the branch of research aimed at extending the
PDDL formalisms to handle real world problems (e.g., [49],[38]).

Given the Multi Modality Plan (MMP) characterization, we observed that
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while the replanning (i.e. a computation of the MMPP, Chapter 4) is sometime
necessary (invalid plan), when the plan is just partially valid it may be an exces-
sive reaction. For this reason, we introduced the Dynamic Modality Allocation
Problem (DMAP) which allows the agent to manage a partially valid plan in a
more efficient way.

The DMAP is the declarative representation for the problem of reconfiguring
the modality of the actions during the plan execution. To solve the DMAP
the thesis have adopted a CSP encoding of the problem and have exploited a
general purpose CSP solver. The translation inherits the fundamental steps
performed in the CSP based classical planning ([59] and [36]), but extends the
mechanism for handling the numeric fluents involved in the MMAs. To the best
of our knowledge, the characterization of the repair problem as a process of
reconfiguration of action modalities is a (completely) new idea.

Architectures Contributions. Relying on the notion of the MMA and
the resolution methods provided by MMPP and a DMAP, the thesis proposes a
multi level architecture which integrates in a single framework different mecha-
nisms for dealing with partially knowledge of the environment and unexpected
contingencies. The architecture consists of a long term supervisor, namely
FLEX-RR, and a reactive module, namely ACTS. The architecture draws one’s
inspiration from the hybrid architecture proposed by Alami et al. ([5]): indeed it
provides in a unified framework deliberation (FLEX-RR) and reaction (ACTS).
As an innovation w.r.t. the State of the Art, the architecture is based on a clear
domain independent methodology. Indeed, we have adopted the same MMA
model throughout the approach, defining precisely the granularity of supervi-
sion for FLEX-RR (plan supervision) and ActS (action supervision).

FLEX-RR provides flexibility for the execution of the multi modality plan
via the reconfiguration provided by the resolution of the DMAP (in particular
by exploiting the CSP mechanism) and a replanning from scratch. Basically,
FLEX-RR manages the unexpected contingencies adapting the current course of
actions. FLEX-RR contributes with a concrete integration of the reconfiguration
and a replanning. Thus, FLEX-RR can take advantage of the (theoretical) more
flexibility of a replanner, while relying on the efficiency of the reconfiguration.
Moreover, given the high modularity of the system, it can be easily combined
with new (possibly more efficient) CSP solver and replanning mechanisms.

ACTS is able to anticipate (some) action failures by reconfiguring the current
action execution modality while the action is still in execution. ActS accom-
modates the execution on the basis of those information which have not been
modeled at plan level (for a lack of knowledge or for computational reason) and
that represent a threat for the successful completion of the action. The ActS
mechanism applies for durative actions and performs the supervision by means
of a detection system which classifies and activates the controller module for the
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selection of the proper execution modality. While the use of the durative actions
has been limited to the off-line phase ([42],[45]), here, ActS have extended the
notion for the on-line phase too, by providing a mechanism for the asynchronous
control over the action configuration.

Numeric Kernel Contribution. Since the works done in the context of
propositional planning, it has been noticed that to avoid plan simulation step,
it is possible to annotate the minimal conditions which allow to assess the plan
validity ([43], [40]). The result is what is called a kernel. The thesis have
generalized the concept for dealing with numeric fluents introducing the notion
of Numeric Kernel.

The notion of the kernel is beneficial in FLEX-RR not only because it allows
to focus the monitoring only on the numeric fluents which are really relevant, but
also because it is possible to implement a focused replanning strategy, namely
kernel replanning. This strategy falls into the middle of a spectrum whose
extremes are the reconfiguration and the replanning from scratch. The Kernel
Replanning turns out to be useful when the resources under consideration are
not only consumable but also renewable. A similar approach in literature has
been presented in [44], where an anytime repair strategy is introduced. The
Garrido’s proposal however is just focused on the classical setting and does not
account consumable resources.

The kernel has been also useful for a better integration of ActS and FLEX-
RR. Indeed, we combined the Numeric Kernel with the MMA model for intro-
ducing the notion of a safe execution modality. At each step of the execution
FLEX-RR can delegate to ActS only the control of those modalities which are
actually safe to be executed, meaning that they do not prevent the feasibility
of the plan. By this, ActS will prefer safe modalities leaving the other options
just for extreme situations.

Experimental Analysis Contributions. To validate the methodology
employed, the thesis provides a variety of experimental sessions, which evaluates
the FLEX-RR system, the Kernel Replanning and the ActS module (Chapters
7, 8, 9). The domains used as test bed are the Planetary Rover, the ZenoTravel
and the DriverLog.

Results confirmed our hypothesis that the reconfiguration is more efficient
and still more competent than a replanning mechanism. Even if the replanning is
theoretically more competent than a reconfiguration mechanism, in the majority
of the tests the replanning was not able to provide an answer given the time limit,
while the reconfiguration did. The reconfiguration proved to be feasible also for
plan with a large number of actions (40-50 in the Planetary Rover domain) and
(60-70 in the DriverLog Domain). Moreover, we have seen that the mechanism
guarantees a larger plan stability than a replanning from scratch, proving that
the strategy could be a viable solution in extending the framework for different
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contexts (e.g. mixed initiative system, multi agent systems).

The ActS subsystem has been tested in the Planetary Rover domain by
checking its ability in carrying on the plan in presence of an increasing amount
of discrepancy between the actual and the predicted environment. The experi-
ments have made evident that ActS is able to anticipate many action failures,
improving the robustness of the overall plan execution, with a small extra time.

The Kernel Replanning has undergone a first validation in the ZenoTravel
domain. The result seems rather positive; the kernel replanning outperformed
the traditional replanning from scratch methodology in all cases tested. More-
over, surprisingly, the quality of the plan produced by the two mechanisms are
quite similar, and even better for the kernel replanning in the hard version of
the domain.

A part of the contributions reported in this thesis have been published.
In particular in [65] we presented a first prototype of FLEX-RR for the only
Planetary Rover domain, in [90] we have introduced the notion of the kernel for
a repair problem in the ZenoTravel domain, and finally in [61] we proposed the
ActS subsystem. A preliminary version of ActS has been presented in [64].

Going Further There are a number of extensions that can be investigated
starting from the core of the system developed in this thesis. A natural extension
of the approach could be the integration in a multi agent system. As highlighted
above, one of the advantages of the reconfiguration mechanism is that it keeps
the plan quite stable (see Chapter 7). In the thesis we have indeed seen that the
DMAP is not allowed to change the structure of the high level plan, since the
reconfiguration just changes the action modalities. Typically, in a multi agent
system, the main cooperative tasks are modeled at a propositional level. Thus,
since the reconfiguration does not change the propositional structure of the
(local) plan, whether we employ the mechanism in one of the agents involved,
we have the guarantee that its intervention will not endanger the feasibility of
future cooperations.

However, real world agents may agree on particular resources usage profiles
and a reconfiguration may violate such constraints. For this reason, a multi
agent aware reconfiguration should privilege first those modalities which have
less impact on the rest of system.

Another possible extension could be the adoption of the reconfiguration for
the off-line setting. For instance, the user could be interested in assessing the
quality of a given MMA solution by using different criteria of optimization on
the available resources, before the actual plan execution. To this end, we have
started a preliminary phase of study which has been reported in Chapter 7
where we tested the DriverLog and the Planetary Rover domain forcing the
CSP solver to optimize the overall consumption of resources.

In this thesis we adopted a general purpose CSP engine for the computation
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of the DMAP. Despite the performance resulted already quite good, there are
a number of possible extensions for enhancing the mechanism. Firstly we could
improve the search by adopting a more sophisticated heuristic function tailored
on the problem of reconfiguration. Secondly, by exploiting the recent progresses
in the reachability analysis performed in the context of off-line planning (e.g.
in the FastDownward planning system [48], in the Metric-FF planning system
[50]) we could anticipate the CSP resolution by compiling away all the modalities
which can be proved to be useless given the problem and the plan at hand.

Analogously to the work presented by Garrido et al. ([44]), it is possible to
extend the kernel replanning to consider not only the first kernel at disposal, but
all the set of kernels till the goal. However, this kind of mechanism would require
some kind of heuristic function to smartly order the kernel to be analyzed. A
solution could be the adoption of the distance based heuristic function developed
so far in the recent numeric planning system ([50],[45]).

The notion of the Numeric Kernel is rather general in the context of the
numeric planning and we believe it can be explored in the more general branch
of the case based planning.

As reported in Chapter 4, one of the main advantages of the DMAP relies
on the clear distinction between the propositional and numeric aspect of the
planning problem. It could be interesting to study an extension of the mech-
anism where we release this assumption, making explicit the applicability of
an execution modality (i.e. its precondition) in the propositional sense too.
While in principle the mechanism could be easily handled given the current
CSP translation, the efficiency of the system could be compromised because of
the occurrence of many interdependences arising between these two levels of
representation.
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Solving the MMPP: a Top
Down Perspective

The more intuitive technique, which can be employed to solve the MMPP, is
to invoke a standard PDDL 2.1 planner. As noted previously, we can translate
each MMA in a set of flattened PDDL traditional actions (see Figure 3.2). In
the PDDL 2.1 formalism this means that the planner has to support the level 2
of PDDL, that is the level in which numeric fluents have been introduced.

Examples of efficient planners in this context are Metric-FF and Lpg-Td
that differ in the way the resolution process is performed. While Metric-FF
bases its forward search process on the exploitation of a modified version of the
relaxation heuristic, the Lpg-Td planning system, instead, searches solutions in
the space of action graphs. For further details see [50] and [45].

However, considering the formulation of MMA defined in 3 it may be quite
clear that the problem can be considered in a separated fashion. A first phase
may in principle search for a solution that is consistent w.r.t. the propositional
fragment of the overall MMPP. A second phase can look instead the way in
which the plan is actually instantiated in terms of action modalities.

The assumption that the numeric preconditions of a modality do not depend
on the propositional high level preconditions allows us to effectively reason in
the above terms.

Thus, given a plan of MMA representing a solution of the propositional part
of MMPP, we can focus the attention just on the way such actions have to be
performed.

More formally we can define the subproblem concerning the modality allo-
cation of the overall MMPP in the following way:

Definition 19. Given the domain < U,F,X >, a Modality Allocation Problem
(MAP) Ω is a tuple < A′,≺, Inum, Gnum > where:
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• A′ is a subset of MMA over < U,F,X >;

• ≺ is a total order relation for A’.

• Inum ∈ <|X| is an assignment of numeric fluents;

• Gnum is the numeric goal; i.e., a conjunction of numeric constraints over
X.

The modality allocation problem corresponds to the consistency checking
task for a valid assignment of modalities in A’, given the fact that A’ is a total
ordered set according to ≺.

A solution for Ω is an assignment of modalities for each action, i.e. {m0...m|A′|}
in A’ such that the following conditions hold:

• A0(m0) is applicable in Inum w.r.t. its numeric precondition

• the plan π obtained by considering the total ordered action in A’ with the
modality {m0...m|A′|} is such that Inum[π] satisfies Gnum.

• each action A′i(mi) is numerically applicable in the state I[π0→i] .

It can be also noticed that a MAP problem is a specific instance of the DMAP
problem. In particular, an MAP is equivalent to the DMAP< π, 0, S0

num, Gnum >

where of course Snum is Inum.
Let A’ be a solution for the propositional part of the MMPP, it is quite

evident that the assignment of A’ obtained as MAP resolution, in analogy with
the relation among the MMPP and the DMAP, turns out to be a solution for
the overall MMPP.

For this reason we have an alternative option for the resolution of the MMPP.
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Problem Generators

In Chapter 7 we analyzed the performance of FLEX-RR w.r.t. plans of different
length. In particular we were interested in understanding the performance of
the DMAP (see Chapter 4). Thus this Appendix explains some detail in the
method used to generate cases for stressing the DMAP resolution. In particular
we develop two automatic problem generators, one for the Planetary Rover and
the other one for the DriverLog domain.

B.1 Planetary Rover Problem Generation

In the Planetary Rover, besides the number of the sites, it is important to select
which of these site have to be visited, that is the positions the rover should reach
for acquiring information. As such a number increases, the rover is constrained
to perform more and more drive actions to reach the spcific locations. Moreover,
for each reached site, a take picture has to be performed for actually acquiring
the information.

To make the problems more challenging from the numeric point of view, we
enforced the rover to transmit all the information acquired at the end of the
mission. In addition, we impose constraints both on the overall time and on the
total energy consumed.

For very large problems, however, Metric-FF has not been particular efficient
(and in some case it has been useless) to generate plans1. In particular this
happens when propositional and numeric goals show many dependencies among
each other. Indeed we was not able to produce plans when constraining the
rover to transmit all the information acquired.

For these reasons the plan generation has been performed into two steps.
Firstly we gave to the planner a relaxed version of the problem in which the
only constraint refers to the time and the power spent by the rover. After

1We tested Lpg-TD as well noticing the same issues
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which we add manually a communication action to the end of the mission, and
we imposed a constraint on the memory for explicating that the communica-
tion action is actually mandatory. The insertion of the communication action
inevitably causes an increasing on the time and on the power, yielding (in the
most of the case) a dynamic modality allocation problem.

The tests generated are produced to consider problems ranging among 5 to
a maximum of 50 sites. The number of interesting sites (the one that have to
be visited) are the half of the total number of sites. They will be randomly
selected from the whole set of sites. Distances and the degree of connections
among sites have been obtained randomly as well. The power and the time is
taken by estimating the average time and power consumption of the rover given
the information reported above and the model of the actions.

As anticipated, the number of the sites of the problem is clearly the main
parameter for the generation. Since problems have been generated randomly,
for each generation, we performed 9 different "runs". For this reason we have a
number of 405 ((50-5)*9) pairs "problem and plan".

The DMAP arises when the plan becomes just partially valid. For this reason
a part of cases is generated directly at the beginning of the execution because
of the insertion of the communication action. Whereas, the other part of cases
is obtained simulating the execution of the plan and by injecting discrepancies
in the way in which numeric fluents are affected after the action execution.

For the former cases the measure of the difficult of the DMAP corresponds,
of course, to the length of the plan. Whereas for the second set of cases, the
measure of the DMAP is taken by considering the part of the plan that requires
a modalitiy re-allocation. Given the 405 cases mentioned above we collected
DMAP ranging from 5 to 50 unities of actions (the number of cities provided a
good estimation of the resulting DMAP length).

B.2 DriverLog Problem Generation

Similarly to the Planetary Rover domain, the generation of cases for the Driver-
Log has been performed starting from the number of cities. The other charac-
teristics are generated automatically starting by the number of cities. More
precisely:

• the number of packages to be transported is equal to the half of the loca-
tions

• each package has to be moved in a location different from the starting
position. Both the initial and the final position is randomly chosen on the
cities at hand.
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• temporal distances (both by walk and by truck) and the degree of connec-
tion among the locations is computed randomly

• the total fuel used and overall time consumption are computed by esti-
mating the information above combined to the model of the action.

As the Planetary Rover case, the measurement have been performed consid-
ering the length of the plans to be reconfigured during the arising DMAP.

The cases have been generated starting by a number of locations ranging
from 5 to 30, and for each one of them the generator computed 9 different
pairs of problems and plans. The resulting plan to be reconfigured (the DMAP
complexity) range between 5 to 80 actions. The total number of cases is 225
((30-5)*9).
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Appendix C

MMA Domains

In this Chapter we report the entire version of the domains used throughout the
thesis. The same formulations have been used for the experimental sessions.

C.1 Planetary Rover Domain

Below the PDDL-like code implemented for the representation of the Planetary
Rover domain.

(define (domain planetary-rover)
(:requirements :typing :fluents)
(:types robot - object site - object)
(:predicates (in ?r - robot ?l - site)

(road ?l -site ?l1 - site)
(info ?r - robot ?l - site)
(infoSent ?r -robot ?l -site)

)
(:functions (distance ?l1 ?l2 -site)

(roughness ?l1 ?l2 -site)
(comm_cost)
(time)
(memory ?r -robot)
(memoryC ?r -robot)
(power ?r -robot)
(powerC ?r -robot)

(infoLoss)
(safe_cons ?r -robot)
(safe_speed ?r -robot)

(cruise_cons ?r -robot)
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(cruise_speed ?r -robot)
(agile_cons ?r -robot)
(agile_speed ?r -robot)

(bandwidth-ch1 ?r -robot)
(bandwidth-ch2 ?r -robot)
(ch1-cons ?r -robot)
(ch2-cons ?r -robot)
)

(:action drive
:parameters ( ?r - robot ?l1 - site ?l2 - site)
:modalities (safe,normal,agile)
:precondition (and (in ?r ?l1) (road ?l1 ?l2)
(safe: (>= (power ?r) (* (safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))))

(cruise: (>= (power ?r) (* (cruise_cons ?r)
(/ (distance ?l1 ?l2) (cruise_speed ?r)))))

(agile: (>= (power ?r) (* (agile_cons ?r)
(/ (distance ?l1 ?l2) (agile_speed ?r)))))

)
:effect
(and

(in ?r ?l2) (not (in ?r ?l1))
(safe: (decrease (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (safe_speed ?r)))
(increase (powerC ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(cruise: (decrease (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (cruise_speed ?r))
(increase (powerC ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (decrease (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (agile_speed ?r))
(increase (powerC ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)

(:action tp
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:parameters ( ?r - robot ?l1 - site )
:modalities (lr,hr)
:precondition (and(in ?r ?l1)

(lr: (>= (memory ?r) 1))
(hr: (>= (memory ?r) 2))
:effect
(and (info ?r ?l1)

(lr: (increase (memoryC ?r) 1)
(decrease (memory ?r) 1)
(increase (time) 1)
(increase (infoLoss) 3))

(hr: (increase (memoryC ?r) 2)
(decrease (memory ?r) 2)
(increase (time) 1)
(increase (infoLoss) 1))))

(:action comm
:parameters ( ?r - robot ?l1 - site )

:modalities (ch1,ch2)
:precondition (and(in ?r ?l1)

(ch1: (and (> (memoryC ?r) 0) ( >= (power ?r)
(/ (memoryC ?r) (bandwith-ch1 ?r)))))

(ch2: (and (> (memoryC ?r) 0) ( >= (power ?r)
(/ (memoryC ?r) (bandwith-ch2 ?r)))))

:effect
(and (infoSent ?r ?l1)

(ch1: (assign (memoryC ?r) 0)
(assign (memory ?r) (memoryC ?r))
(increase (time) (/ (memoryC ?r) (bandwith-ch1 ?r)))
(increase (powerC ?r) (* (ch1-cons ?r)
(/ (memoryC ?r) (bandwith-ch1 ?r)))
(decrease (power ?r) (* (ch1-cons ?r)
(/ (memoryC ?r) (bandwith-ch1 ?r)))
(increase (comm_cost) 1)))

(ch2: (assign (memoryC ?r) 0)
(assign (memory ?r) (memoryC ?r))
(increase (time) (/ (memoryC ?r) (bandwith-ch2 ?r)))
(increase (powerC ?r) (* (ch2-cons ?r)
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(/ (memoryC ?r) (bandwith-ch2 ?r))))
(decrease (power ?r) (* (ch2-cons ?r)
(/ (memoryC ?r) (bandwith-ch2 ?r))))

(increase (comm_cost) 3))
)

C.2 Zeno Travel Domain

(define (domain zeno-travel)
(:requirements :typing :fluents)
(:types locatable city - object
aircraft person -locatable)
(:predicates (located ?x - locatable ?c - city)

(in ?p - person ?a - aircraft))
(:functions (fuel ?a - aircraft)

(distance ?c1 - city ?c2 - city)
(cruise-burn ?a - aircraft)
(fast-burn ?a - aircraft)
(inv-zoom-speed ?a - aircraft)
(inv-cruise-speed ?a - aircraft)
(capacity ?a - aircraft)
(total-fuel-used)

(onboard ?a - aircraft)
(zoom-limit ?a - aircraft)
(tot-time)

(cost)
)

(:action board
:parameters (?p - person ?a - aircraft ?c - city)
:modalities (normal,express)
:precondition (and (located ?p ?c)

(located ?a ?c))
:effect (and (not (located ?p ?c))

(in ?p ?a)
(normal: (increase (onboard ?a) 1)

(increase (tot-time) 240)
(increase (cost) 1))))

(express:(increase (onboard ?a) 1)
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(increase (tot-time) 120)
(increase (cost) 4)))

)

(:action debark
:parameters (?p - person ?a - aircraft ?c - city)
:modalities (normal,express)
:precondition (and (in ?p ?a)

(located ?a ?c))
:effect (and (not (in ?p ?a))

(located ?p ?c)
(normal: (decrease (onboard ?a) 1)

(increase (tot-time) 240)
(increase (cost) 1)))

(express: (decrease (onboard ?a) 1)
(increase (tot-time) 120)
(increase (cost) 1)))

)
(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:modalities (cruise,zoom)
:precondition (and (located ?a ?c1)

(cruise: (>= (fuel ?a)
(* (distance ?c1 ?c2) (cruise-burn ?a))))

(zoom: (>= (fuel ?a)
(* (distance ?c1 ?c2) (zoom-burn ?a))))

:effect (and (not (located ?a ?c1))
(located ?a ?c2)

(cruise:
(increase (total-fuel-used)

(* (distance ?c1 ?c2) (cruise-burn ?a)))
(decrease (fuel ?a)

(* (distance ?c1 ?c2) (cruise-burn ?a)))
(increase (tot-time)

(* (distance ?c1 ?c2) (inv-cruise-speed ?a)))
(zoom: (increase (total-fuel-used)

(* (distance ?c1 ?c2) (zoom-burn ?a)))
(decrease (fuel ?a)

(* (distance ?c1 ?c2) (zoom-burn ?a)))
(increase (tot-time)

(* (distance ?c1 ?c2) (inv-zoom-speed ?a)))
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)

(:action refuel
:parameters (?a - aircraft ?c - city)
:precondition (and (> (capacity ?a) (fuel ?a))

(located ?a ?c)
)
:effect (and (assign (fuel ?a) (capacity ?a))

(increase (tot-time)
900)))

)
)

C.3 DriverLog Domain

(define (domain driverlog)
(:requirements :typing :fluents)
(:types location locatable - object

driver truck obj - locatable)

(:predicates
(pos ?obj - locatable ?loc - location)
(in ?obj1 - obj ?obj - truck)
(driving ?d - driver ?v - truck)
(link ?x ?y - location) (path ?x ?y - location)
(empty ?v - truck))

(:functions
(time-to-walk ?l1 ?l2 - location)
(time-to-drive-fast ?l1 ?l2 - location)
(time-to-drive-normal ?l1 ?l2 - location)
(fuel-used)
(time-spent)
(fuel-per-minute-fast ?t - truck)

(fuel-per-minute-normal ?t - truck)
(load ?t - truck)

(capacity ?t - truck))

(:action loadtruck
:modalities (safe,normal)
:parameters
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(?obj - obj
?truck - truck
?loc - location)

:precondition
(and (pos ?truck ?loc) (pos ?obj ?loc) (empty ?truck)

(safe: (< (load ?truck) (capacity ?truck)) )
(normal: (< (load ?truck) (/ (capacity ?truck) 2))))

:effect
(and (not (pos ?obj ?loc)) (in ?obj ?truck) (increase (load ?truck) 1)

(safe:
(increase (fuel-per-minute-fast ?truck) (+ (load ?truck) 1))

(increase (fuel-per-minute-normal ?truck) (+ (load ?truck) 1))
(increase (time-spent) 4))

(normal:
(increase (fuel-per-minute-fast ?truck) (+ (load ?truck) 1))

(increase (fuel-per-minute-normal ?truck) (+ (load ?truck) 1))
(increase (time-spent) 2))))

(:action unloadtruck
:parameters
(?obj - obj
?truck - truck
?loc - location)

:precondition
(and (pos ?truck ?loc) (in ?obj ?truck) (empty ?truck))

:effect
(and (not (in ?obj ?truck)) (pos ?obj ?loc) (decrease (load ?truck) 1)

(decrease (fuel-per-minute-fast ?truck) (load ?truck))
(decrease (fuel-per-minute-normal ?truck) (load ?truck))

(increase (time-spent) 2)))

(:action boardtruck
:parameters
(?driver - driver
?truck - truck
?loc - location)

:precondition
(and (pos ?truck ?loc) (pos ?driver ?loc) (empty ?truck))

:effect
(and (not (pos ?driver ?loc)) (driving ?driver ?truck) (not (empty ?truck))

(increase (time-spent) 1)))
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(:action disembarktruck
:parameters
(?driver - driver
?truck - truck
?loc - location)

:precondition
(and (pos ?truck ?loc) (driving ?driver ?truck))

:effect
(and (not (driving ?driver ?truck)) (pos ?driver ?loc) (empty ?truck)

(increase (time-spent) 1)))

(:action drivetruck-fast
:modalities (normal,fast)
:parameters
(?truck - truck
?loc-from - location
?loc-to - location
?driver - driver)

:precondition
(and (pos ?truck ?loc-from)
(driving ?driver ?truck) (link ?loc-from ?loc-to))

:effect
(and (not (pos ?truck ?loc-from)) (pos ?truck ?loc-to)

(:normal
(increase (fuel-used) (* (fuel-per-minute-normal ?truck)
(time-to-drive-normal ?loc-from ?loc-to)))
(increase (time-spent) (time-to-drive-normal ?loc-from ?loc-to))))

(fast: (increase (fuel-used) (* (fuel-per-minute-fast ?truck)
(time-to-drive-fast ?loc-from ?loc-to)))
(increase (time-spent) (time-to-drive-fast ?loc-from ?loc-to))

(:action walk
:parameters
(?driver - driver
?loc-from - location
?loc-to - location)

:precondition
(and (pos ?driver ?loc-from) (path ?loc-from ?loc-to))

:effect
(and (not (pos ?driver ?loc-from)) (pos ?driver ?loc-to)
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(increase (time-spent) (time-to-walk ?loc-from ?loc-to)))))
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