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Abstract

In the last years the research community has dedicated considerable atten-

tion to peer-to-peer (P2P) protocols. This manly derives from the great

diffusion of P2P applications on the Internet and from the benefits of this

paradigm, that are scalability, robustness and resource savings. The num-

ber of P2P software is steadily increasing, and many of them have a huge

user base, sometimes made up of thousands of clients connected at the same

time. Furthermore, services have evolved from the first file-sharing proto-

cols into a wide variety, showing the flexibility of a P2P overlay. Some

notable examples are IPTV, distributed portals, distributed computing and

so on.

This popularity has also some drawbacks. The huge daily traffic generated

by P2P has a great impact on the underlying network, and protocols opti-

mization becomes a very critical task. Indeed the efficiency of a protocol is

closely related to the user satisfaction and resource savings. The goal is to

reduce the impact on the physical infrastructure while maintaining similar

performance in terms of customer service. This dissertation focuses on P2P

protocols, aiming to study the impact on the underlying network layer and

improving their performance using coding techniques.

First, we begin our investigation with a case study to define the behaviour of

a P2P overlay and evaluating its impact on the physical network. Our first

analysis is based on a very popular P2P IPTV application i.e., PPLive. This

is a closed source software, so we develop a methodology that is a mixture

of active and passive measurements to describe the client’s behaviour and

the network overlay, their relationships and evolution over time.

Using this knowledge, we address the problem of protocol optimization fo-

cusing on the most popular file-sharing application: BitTorrent. With sim-



ulation tools we evaluate the potential applications of rateless codes in Bit-

Torrent and identify specific network conditions in which the use of coding

techniques is particularly useful.

We than develop a novel protocol, Toroverde, based on Luby-Transform

codes. We provide a complete protocol specification and develop a fully

functional protocol implementation. Its performance are compared with

BitTorrent using simulation tools and a C++ prototype deployed on Plan-

etLab. Our results show that ToroVerde achieves better performance than

BitTorrent when the overlay is in unstable conditions i.e., the peers exhibit

a high dynamical behaviour characterized by high churn rates and flash

crowds.

In this dissertation we also study the impact that a P2P protocol has on

the network infrastructure. We propose a model for P2P traffic and several

techniques for network awareness. First we focus on the Internet Service

Provider (ISP) behaviour and their cooperative/non-cooperative attitudes.

We propose a game theoretic framework to help the design of techniques

promoting the ISP cooperation in P2P streaming platforms. Moreover, we

apply ideas from Evolutionary Game Theory to the ISP game in a large ISP

population. The model shows that the proposed strategies can effectively

stimulate ISP cooperation aiming at the minimization of inter-ISP traffic

and help to provide reliable P2P streaming service.

Finally, we use an approach based on the use of generating functions, to

study analytically the link occupation and the transfer costs associated to

file-sharing traffic. Our model is able to compute costs and rewards for

Autonomous Systems organized in a complex network topology, consider-

ing commercial agreements like peering and transit and inter Autonomous

Systems routing policies. Our model has been validated using one of the

most widely used P2P simulator, PeerSim. Several experiments show how

the proposed model is able to consider overlay with many peers connected

through a series of links and sharing several resource.
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Chapter 1

Introduction

A P2P network (or overlay) is a distributed application architecture that subdivides the

workload among all participating peers. The peers, also called nodes of the overlay net-

work, are equally privileged, and each one shares a fraction of its resources with others,

without a central coordination. This type of architecture is suitable for many kind of

applications: file sharing, video-on-demand, live-streaming and distributed computing

are few examples.

Nowadays peer-to-peer (P2P) applications generate a substantial fraction of the

total Internet traffic (81, 82). The popularity of these applications is rapidly grow-

ing thanks to the widespread adoption of large bandwidth access links by residential

customers.

Many people use P2P software to retrieve and share contents over the Internet and

the user base is constantly growing following a trend that it is not likely to stop soon.

The reasons for this widespread diffusion are not difficult to understand. From the

perspective of the end user, P2P applications make possible to retrieve a large amount

of multimedia contents, and in turn to share media with other people. Most important,

the benefit of using a P2P overlay with respect to the classical client/server paradigm

is to shift the load from a central server to peers, with many advantages: saving server

bandwidth, providing the service to more users with the same resources utilization,

obtaining a more robust system due the error-resilient features of a distributed overlay.

On the other side, a P2P overlay exploits the Internet infrastructure (core and

access networks) and generates a huge amount of traffic. This represents a problem

especially for Internet Service Providers (ISPs), that are flooded by traffic generated

1



1. INTRODUCTION

by P2P networks. The optimization of P2P protocols and understanding the interac-

tion dynamics between ISPs and a P2P networks are very critical tasks to reduce the

workload on the Internet infrastructure and to offer better services for end users.

1.1 Motivation and context: P2P and ISPs

A P2P protocol can be suited for many different purposes. Historically these kinds of

protocols was mainly oriented to share and download content for an off-line utilization,

while in recent years other applications arose. Nowadays P2P systems are used in

different contexts, such as file sharing (Napster(71), Gnutella (70), KaZaa(73), eDonkey

(72), BitTorrent (11, 12) to name a few), telephony applications (Skype (74)), video-

on-demand and live-streaming.

In a P2P overlay, the strategies used by peers to exchange data one another can be

very different, according to the application that the protocol implements. E.g. a live-

streaming software needs to retrieve the video chunks that are near to be reproduced, so

its strategies to share and download video pieces take in account the playback deadline.

To the contrary in file-sharing applications the content can be distributed without

particular order’s constraints. Clearly a protocol is built and developed around its

objectives. Protocol’s strategies can be less or more sensitive to several factors, like

peers behaviour, network conditions and end users bandwidth distribution, to name a

few.

Among all P2P applications file-sharing is one of the most popular. The resources

shared with this kind of application range from several kilobytes up to some giga-

bytes. The reference protocol is nowadays BitTorrent, and the research community

has dedicated many efforts in the last years to investigate, understand and improve its

strategies. Many works in the literature argue that BitTorrent can reach near-optimal

performance (15, 16, 17, 18, 19, 20, 21, 52, 62, 63).

Despite its excellent performance, (52, 62, 63) show how these are strongly related

with the network conditions: when the network is characterized by constant arrival

rates, there are no flash crowds and many peers continue to share the already down-

loaded file the protocol performs well. In other words BitTorrent shows near-ideal

dowloading times when the overlay is quite stable. But the peers’ behaviour could be

very different, especially in different P2P applications. Examples are video-on-demand

2



1.1 Motivation and context: P2P and ISPs

or live-streaming, characterized by higher churn rates respect to file-sharing application

with a high percentage of short-stay users (13, 14) and flash crowds (81). This made

the BitTorrent protocol not suitable for other purposes than file-sharing.

To increase the performance of the P2P overlay, many works concentrate their efforts

on the network coding. Indeed a large body of literature has focused on the analysis of

potential benefits of coding techniques for content distribution. The concept behind is

to combine packet together before transmission: a node receives some packets from its

neighbors, combines a subset of these together (the re-combination strategies depend on

the coding technique adopted), then sends the newly generated packet to other nodes

in the network. A node that has received enough coded packets is able to retrieve the

original message.

Since network coding was originally introduced in information theory (51), (64),

some approaches have been proposed to use it with P2P protocols. However, conclusions

ranged from very optimistic (early results pointed out that throughput of the system

exploiting network coding at the block level is two to three times better than the non-

coding system (58, 59, 60)) to rather pessimistic (systems using network coding perform

even worse than BitTorrent (69)) to inconclusive (both throughput and its theoretical

upper bound overlap in coding and non coding systems (66, 67)). These results depend

on the type of coding technique and on the analysis methodology employed by different

researchers.

In Chapters 4 and 6 we study how several network factors impact on protocol perfor-

mance, and propose some solutions to counteract drawbacks resulting by the unstable

peer’s behaviour, high churn rates and flash crowd. In particular we investigate how

network coding techniques can improve the P2P protocol performance first modifying

the BitTorrent protocol, then developing a completely new one.

The use of network coding, even when introduces improvements in the protocol,

is limited to the application level. Indeed, the P2P overlay operates over a complex

network made of interconnections among Autonomous Systems (ASes). So another

important aspect speaking of P2P overlay is the interaction between the application

level and the underlying network layer.

The main problem is that in P2P applications, the participating nodes form an

overlay network which is largely agnostic of the ASes topology. This increases the cost

associated with P2P traffic for individual Internet Service Providers (ISPs) which face
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the problem to manage a vast amount of unnecessary inter-domain traffic. Such traffic

level can cause congestion on valuable inter-ISP links and more generally an overall

performance degradation. Network-aware techniques may drastically reduce the inter-

ISP traffic volume. As example, in (81) a measurement study of PPLive, reported

that the 70% of the observed traffic deployed in North America was originated by

peers located in Asia. In this situation clearly a ISPs-aware policy (e.g. here trying

to maximize connections in the same country) reduces drastically the negative effects

of topology mismatch between the P2P overlay and the underlying IP network layer,

improving the poor usage of the latter.

New policies that regulate the interaction between ISPs and P2P applications are

necessary to alleviate these drawbacks and to lead to a better use of network resources.

Model the interaction between ISPs and P2P overlay, studying how the resources dis-

tribute between the different autonomous systems and how this process impact on ISP’s

costs are important steps to understand what are the potentially drawbacks of policies

not ISP-aware. The goal is to develop effective methods that optimize the process of

resource distributions and minimize the costs for ISPs.

Considering the popularity of P2P application and the current trend, we expect that

great research efforts will be made soon in this direction. In Chapters 7 and 8 we focus

on the interaction of P2P overlay with the underlying Internet structure, proposing a

model for P2P resource diffusion and several techniques for network awareness.

1.2 Research objective and contribution

In order to understand the P2P overlay dynamics, it is interesting to study a widespread

diffused video-streaming application. Moreover the measurement of relevant applica-

tion parameters could be exploited to build simulators or analytical models of P2P

based IPTV applications and support the design and implementation of more efficient

systems.

Our case study is the popular P2P IPTV application PPLive. This software permits

to watch both video on demand and live streaming contents. In Chapter 3 we develop

a measurement study of PPLive that combines the use of passive and active measure

to derive informations on the traffic as well as on the overlay topology generated by

PPLive channels. To this end we develop a distributed analysis software (i.e., a crawler)

4



1.2 Research objective and contribution

that collects information on the topological properties of PPLive overlay networks. This

active measurement experiment is correlated with the concurrent measures obtained by

monitoring a peer joining the crawled overlay (passive measurement).

Our technique allow us to discuss the limits and the accuracy of the information

that can be collected by using only active measurement for PPLive, and provides a

better interpretation of the results presented in previous studies. We report findings

that confirm the results obtained by other investigators as well as a characterization

of the user behavior in the time domain. These results are useful as they enable us to

understand the potential weaknesses of a p2p overlay, and work on improving these.

Indeed a significant part of our research is dedicated to improve the performance

of file-sharing applications. We investigate how the introduction of application level

coding techniques in a P2P protocol can improve its performance.

Our choice has fallen on LT codes (36). This is a fountain code invented by Michal

Luby that use simple XOR operations to encode the message. LT codes were chosen due

their simplicity and efficiency. They belong to the class of rateless erasure codes, and

they have the property to generate a potentially limitless sequence of encoded symbols,

differently from standard erasure codes that have a fixed number of codewords.

First we work on BitTorrent, testing some modifications to the protocol’s standard

algorithms. In BitTorrent no coding at all is used. The whole file is subdivided in pieces,

and each piece in blocks. These latter are exchanged among peers. We introduce the

LT encoding at piece level, generating coded blocks from the file’s pieces. The other

protocol’s strategies i.e., tit-for-tat or rarest-first (12) required also several modifications

to work with rateless codes.

We proved by simulations that better performance can be achieved considering

file of small size and when peers show a very dynamical behaviour, characterized by

high churn rates and flash crowds. In such situation our proposed protocol yields

downloading times that are 10% less in all simulated scenarios, despite the decoding

overhead that the LT codes introduce. These results show that using coding techniques

can lead to improvements, but these are mainly related to network conditions and peers’

behaviour.

Using this knowledge, we implement a completely new P2P protocol that uses

rateless codes, namely ToroVerde. We defined a complete specification of the protocol

and provided a detailed description of all the employed strategies. We developed both a
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detailed simulator and a complete prototype that we used to perform a fair comparison

between ToroVerde and BitTorrent. Experimental results suggest that the average

download delay can be reduced by ToroVerde in several realistic scenarios for small-

to-medium sized files in overlays composed of a few hundred peers. Experiments on

PlanetLab show a clear advantage in all the scenarios presented. ToroVerde can achieve

performance increase of 10%, in terms of downloading time. The simulation results

confirm these benefits, in particular for overlay networks with a size less than 300

peers.

In this dissertation, we also work on models for P2P resource diffusion and strategies

for network awareness trying to optimize, in terms of resources saved, the interaction

between P2P protocol and Internet Service Providers. We have developed a game

theory framework that can be used for the design of ISP strategies aiming at providing

efficient and reliable support for P2P streaming application and a probabilistic model,

based on generating functions, that describes the diffusion of a resource taking into

account non-homogeneous resource popularity and peers behavior.

The game theory framework allows us to illustrate the existence of equilibrium

points and the role of possible strategies to find these points. We use ideas from the

evolutionary game theory to derive techniques, that a player (an ISP) of the game can

use, to compute the operational points assuming only limited knowledge on the state

of the other players. We develop a simulation based analysis that shows the relation

among peer dynamics and the effects of these dynamics. We focus the attention on

the role of the ISPs. In particular, we do not consider them as simple providers of

network connectivity but as the main players for supporting P2P streaming platforms.

The proposed framework helps the design of techniques promoting the ISP cooperation

in P2P streaming platforms. Using the proposed models we derive strategies that can

effectively stimulate ISP cooperation aiming at the minimization of inter-ISP traffic by

supporting a reliable P2P streaming service.

To understand the diffusion of a resource in a network organized into indepen-

dent ISPs, we also propose a probabilistic model. We have studied the diffusion of a

resource in this non-homogeneous environment. Peers are grouped into Autonomous

Systems (ASes), each one having its own parameters in terms of resource availability

and demand. We then describe the diffusion of a resource taking into account resource

popularity and peers behavior. We study the impact of P2P file sharing applications
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on the overall network traffic, by considering the geographic location of peers and the

communication costs. Our analytical model computes how a P2P overlay influence the

distributions of costs and rewards for ASes organized in a complex network topology,

considering peering and transit accords and inter-AS routing policies.

1.3 Used methodologies

Different methodologies and techniques has been employed during our investigation.

Our work on PPLive network requires us to develop the software for data collection and

analysis. Our goal was derive topological property and traffic patters of the protocol, so

we have developed a mixed measurement technique, that combines passive and active

ones. Implementing this technique requires us to program a crawler that explore the

PPLive network overlay and report topological information. We have merged these

active measurements with passive ones, that are collected by logging nodes activity.

Using this methodology we have been able to derive many useful informations such the

length of users session in the PPLive overlay, statistics on bandwidth utilization and a

graph representation of the network.

We have also developed a lot of simulation tools during our study on P2P protocols

for file-sharing. Using these we have tested our strategies and evaluated their effec-

tiveness in different network conditions. The simulated protocols also permit to scale

up to overlay with many peers. First we have modified the General Purpose Simu-

lator (GPS) modifying BitTorrent. Then we have developed a totally new simulator

from scratch, using the Java programming language, providing a full implementation

both of BitTorrent and our new protocol, ToroVerde. To evaluate realistic scenarios

we added in our software the support for the transit-stub topology model, peer’s churn

and heterogeneous bandwidth distribution.

In the second part of this dissertation we analyze the relationships between Internet

Service Providers and P2P overlays. The goal was derive strategies that can effectively

stimulate ISPs cooperation aiming at the minimization of inter-ISP traffic and help

to provide reliable P2P streaming service. So we have used a game theory model

to investigate the peer’s interactions and analyze incentive mechanisms for P2P file-

sharing systems. With this model we have discussed the Nash equilibrium, the Pareto
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optimality, and fairness criterion to renew the equilibrium points. Moreover, we apply

ideas from Evolutionary Game Theory to the ISP game in a large ISP population.

Then we focused the attention on the resource distribution in a network of au-

tonomous systems. To obtain a model that handle very large networks with low com-

putational cost we proposed a probabilistic approach that exploits the properties of

the Z-Transform. We validate the proposed model implementing a simulation using

PeerSim (117). Once we derived the resource diffusion we used it to compute interest-

ing performance indexes such as the amount of P2P traffic on the links connecting the

ASes and the cost required to each AS for transmitting P2P traffic.

1.4 Dissertation overview and structure

We now provide an overview of each technical chapter of this thesis. We present the

background material, literature review and additional related work in Chapter 2.

We describe the general P2P paradigm and how it is adapted to different tasks. We

introduce BitTorrent and describe its dynamics. We also give an overview of IPTV

applications. Here we introduce the previous attempts to conjugate P2P with some

kind of network coding.

In Chapter 3 we start our investigation focusing on a popular P2P-IPTV applica-

tion, PPLive, exploiting a measurement strategy that combines both active and passive

measures. We take active measurements using a crawler that explores the topology of

the PPLive network, and these are combined with passive ones that are relative to the

behaviour (bandwidth usage, number of open download and upload connections and

so on) of a particular node of the network. We describe PPLive and the motivations

of our research. We describe the crawler we developed that allows the study of the

topological characteristics of the overlay.

In Chapter 4 we first introduce some modifications in BitTorrent to enhance it with

a particular class of rateless codes, i.e., the LT codes. Later on, by using a simulation

based study, we compare the performance of the modified BitTorrent against a standard

version of the protocol. We describe the different scenarios that we set up to prove the

effectiveness of the modified protocol, producing experimental results. We describe the

simulator we have developed in Chapter 5, its architecture and its validation with

real BitTorrent data.
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The ToroVerde protocol is presented in Chapter 6. We provide the protocol spec-

ification and describe the simulator and the complete prototype we developed for Plan-

etLab deployment and testing. We perform an analysis of the potential advantages of

introducing rateless codes in a content dissemination protocol. We present results from

PlanetLab experiments that are compared with performance of the protocol that is

widely considered as the reference system for content distribution, i.e., BitTorrent. We

also present a few simulation results showing the behavior of ToroVerde as the number

of peers in the systems increases.

The second part of this dissertation concern about interaction between P2P pro-

tocols and Internet Service Provider. In Chapter 7 we present the game theoretical

framework we have developed while Chapter 8 is dedicated to the probabilistic model

that describes how the diffusion of resources in a P2P overlay impact on the under-

lying structure of autonomous systems. In this chapter we present some examples of

application of this model.

Finally in Chapter 9 the conclusions of this research are presented and recommen-

dations for further research are made.

1.5 Original contribution

The work presented in this thesis has led to some original contributions. The measure-

ments strategy of PPLive, and its results, described in Chapter 3 has been published in

”Analysis of PPLive through active and passive measurements”, 23rd IEEE

International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,

Italy.

In Chapters 4 we present our improvements of the BitTorrent protocol using LT

codes. This work appeared in ”BitTorrent and fountain codes: friends or foes?”,

in proceedings of 24rd IEEE International Symposium on Parallel and Distributed

Processing, IPDPS 2010, Atlanta, Georgia.

In Chapter 6 we extend the previous work and develop ToroVerde, a novel P2P

protocol based on Luby-Transform codes. ToroVerde protocol has been published in

”Fountains vs Torrents: The P2P ToroVerde Protocol”, 18th Annual IEEE/ACM

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication, MASCOTS 2010.
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The game theoretical framework presented in Chapter 7 has been described in the

article ”ISP and P2P: friends or foe?”, currently submitted to journal.

The analytical P2P resource diffusion and the AS-level models described in Chapter

8 has been submitted to the journal ”Performance Evaluation” in the article ”Peer to

Peer transfer among Autonomous Systems”.
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Chapter 2

Literature review

In this chapter we describe the topics of this dissertation and give an overview of

the related literature. First we introduce the peer-to-peer (P2P) paradigm and its

applications, focusing in particular on file-sharing and video-streaming.

Then we describe the BitTorrent protocol, that is considered the state of the art

for file-sharing P2P applications. We explain the strategies that it employs and the

related terminology. We also provide an overview of the previous attempt to introduce

network coding techniques in P2P protocols.

Finally we give a review of the previous works that have investigated the relation-

ships between Internet Service Provider (ISP) and P2P overlays.

2.1 The peer-to-peer paradigm

Peer-to-peer (P2P) is a distributed application architecture that subdivides the work-

load of a specific task among all participating peers. These peers, also called nodes,

connect one another in a network of relationships usually called overlay. In the overlay

resources such storage, bandwidth or processing power are shared. There is no central

coordination of the nodes, and their behaviour is totally defined by the protocol them

implement. In a P2P overlay nodes are both suppliers and consumers, differently from

the forerunner traditional client server model. To the contrary in this latter model the

server provides for resource diffusion and all other nodes are only consumer. A P2P

cooperative overlay distributes the workload on end-user systems, achieving scalabil-

ity and error resilience. The system capability grows up following the overlay’s peer
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number, and this eliminates the need for central servers with great outgoing bandwidth.

In some P2P protocols the only exception to the totally decentralized architecture

is the tracker peer. Indeed some P2P overlay use this particular node to keep track of

the peers already present in the network. Peers query the tracker to obtain a list of

other nodes to connect. The tracker does not participate in resource sharing or resource

diffusion.

A P2P network overlay can be classified as structured or unstructured. In un-

structured overlays peers’ connections are not determined in any particular way. This

means that when a peer joins the overlay network it connects to a random subset of

other nodes, which addresses are provided from the tracker. Gnutella (70) and Bit-

Torrent (11, 12) are examples of unstructured P2P network. In an unstructured P2P

network a peer queries for the needed resource finding as many peers as possible. A

drawback is that in unstructured protocols, due its random connection strategy, there

is no warranty for efficient data allocation and message routing.

On the other side, in structured P2P networks peers are organized basing on par-

ticular rules and algorithms, forming and overlay with specific properties and topology.

This overlay guarantees efficient message routing and provides upper bounds for re-

source finding. Distributed Hash Table (DHT) like Chord (49) and Kademlia (50)

are examples of structured P2P overlay. This work manly focus on unstructured P2P

overlay, so we do not deepen structured ones.

In recent years applications based on peer-to-peer protocols are experiencing a huge

diffusion. The data flow originated by P2P applications characterizes most of the

Internet traffic (81, 82). Indeed the P2P paradigm is well suited to implement a great

variety of applications: video streaming, file sharing, distributed computing and others.

File-sharing is one of the most popular. The service provided by this application is to

spread out contents such as multimedia and software. The size of resources ranges from

several kilobytes up to some gigabytes. The best example of file-sharing architecture

is doubtless BitTorrent. This protocol is considered today the state of art for generic

content distribution and the strategies that it implements have been deeply investigated.
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2.2 BitTorrent

Proposed by Bram Cohen, BitTorrent (12) is considered the state of the art for file-

sharing protocol. Like every other P2P protocol its purpose is improving the dissemina-

tion of generic content among a network distributing the workload on the overlay. For

the sake of clarity, before explain BitTorrent’s strategies, we summarize the terminology

related to the protocol.

• MetaInfo file: a file that contains information related to a particular document.

The most relevant information is the tracker address, the file size and piece size.

Usually it has ”.torrent” extension.

• Swarm: the set of peers that cooperate to download a file.

• Tracker: a central server that stores the list of peers related to a particular

torrent. It replies to client requests with a list of the addresses of the other peers

in the swarm.

• Seeder: a peer that has completed the download but continues to share the file.

• Leecher: a peer that has not yet completed the download.

• Piece: the whole file is subdivided into pieces of roughly the same size, usually

a piece has dimension of 218 Bytes.

• Block: every piece is subdivided into blocks. These blocks are exchanged among

clients and usually have dimension of 214 Bytes.

• Choked and Unchoked: a peer can make a request to another one if this latter

considers him in unchoked state. Peers do not reply to requests from peers in

choked state. Choke and unchoke states depends on download and upload rates.

The protocol adopts a multi-part download scheme: the file is divided into several

pieces, usually of about 218 Bytes, that are shared among peers. These exchange blocks

of 214 Bytes at time.

A BitTorrent system uses two protocols: the Tracker protocol and the peer-wire

protocol. The first is made by HTTP requests and is used when a client needs to

connect to the overlay: a request is sent to the tracker that replies with a list of
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peers that are actually in the swarm. The tracker address and a description of the file

properties is stored in a metainfo file that the client has previously downloaded from

the web. After a user has got the list, it tries to connect to a random subset of the

obtained peers and starts to use the peer-wire protocol.

This protocol consists of many messages, but two are the main strategies employed:

a request of pieces based on a local rarest first criterion and a tit-for-tat mechanism.

The rarest first strategy assures an even distribution of the file pieces among the overlay

forcing a peer to request the rarest pieces in his neighborhood. There are two exceptions

to the rarest first strategy: at start up, when a peer has no piece at all, the piece to

download is selected at random, and near the end, in the so called endgame, the requests

for the missing blocks are sent to the entire neighborhood. This is necessary because

it has been observed that the last pieces take a long time to download.

There are two different tit-for-tat mechanisms for seeders and leechers. A seeder

sorts the neighbours by their download rates, unchoking the best ones. On the other

hand a leecher unchokes the peers with the higher upload rates. In this way the protocol

assures a good match between the download and the upload rates among peers and

tries to maximize the bandwidth utilization for data dissemination. The download and

upload rates are computed every rechoke period.

BitTorrent discovers new useful connections with a strategy named optimistic un-

choke: every three rechoke periods one peer is unchoked at random from the neigh-

borhood. Although quite standard, some parameters of the protocol, such as the peer

list size or the length of the periods of rechoke and optimistic unchoke, can vary in

different implementations, but this does not affect the overall performance of the pro-

tocol and his strategies. Using the first policy a peer always requests the rarest piece

in his neighbourhood, contributing to replicate pieces that are difficult to found, while

the latter assures reciprocity between downloading and uploading rates, indeed a peer

sends data only to his best uploaders.

Its widespread diffusion and many research studies (see for instance (62), (63),

(52)) have shown that the two main BitTorrent algorithmic solutions, namely tit-for-

tat and rarest-first achieve optimal performance in stable network conditions. Also if

the BitTorrent protocol was originally developed for file-sharing, some attempts have

been made to adapt it for IPTV applications.
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2.3 IPTV

IPTV applications aim at the provision of high-quality real-time video streaming. The

popularity of these applications is rapidly growing thanks to the widespread adoption

of large bandwidth access links by residential customers.

The first attempts of deploying IPTV applications were made by ISPs exploiting

IP multicast functionalities in small-scale environments through proprietary solutions

based on the traditional client-server model of Internet protocols and services. The

limitations of this approach are many: due to the limited deployment of IP multicast

in the Internet the distribution of contents is often confined to the network of each

ISP only. Furthermore, poor scalability, lack of authentication and security mecha-

nisms, and difficult integration with hierarchical routing, makes this solution unlikely

to provide the infrastructure for future massively deployed IPTV.

Recently, a different approach has emerged: IPTV applications are developed based

on the popular P2P paradigm. This model for application development requires each

participant to send data to one another using application-level multicast on overlay

topologies. This approach has proven to be successful as witnessed by the steadily

increasing number of applications that are nowadays available (1).

A popular example is PPLive (2). It is a P2P streaming platform that distributes

both live and pre-recorded contents. According to the PPLive web site (2) in January

2008 the PPLive application provided almost 500 channels with 1,000,000 daily users

on average. The number of channels in December 2008 was reported to be equal to

1775. These data confirm the popularity of IPTV application nowadays.

2.3.1 BitTorrent for video-streaming

There are in the related literature few attempts to adapt the BitTorrent protocol for

video-streaming purposes. The main difference between a file-sharing scenario and the

video-streaming one is that in this latter the network behavior can be very variable.

Peers join and leave the network with high rates, differently from file-sharing where

the peers often remain connected to the overlay for the whole download time. In

addition in live-streaming case, because the multimedia content is generated in real-

time, only few pieces are available at a time. This because the oldest video parts are

useless. In this case the BitTorrent’s rarest first policy is strongly penalized due to
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the reduced diversity of available file parts. Many works concentrate their efforts on

video-on-demand applications.

All (31, 32, 33, 34) share very similar approaches: the intent is to modify the rarest

first policy and the tit-for-tat mechanism in order to make them suitable for video-on-

demand applications. (31) and (32) modify the rarest first policy to require the pieces

that are necessary in the immediate future for the playback, while the papers (33) and

(34) extend the tit-for-tat mechanism; in (33) the peers are ranked on forwarding rates,

i.e., the capability that a peer has to serve the other peers, in place of standard download

and upload rates. Also mixed approaches has been proposed: (29, 30) maintain a

conventional streaming server and to assist it with the BitTorrent overlay: a request

is first sent to the peer-to-peer network then, if the request cannot be satisfied, it is

forwarded to the streaming server. (30) modifies the rarest first policy in order to give

higher priority to the pieces near to the playback point. Tripler (35) is a modification

of the protocol proposed for live-streaming. Similar to the previous works, it proposes

a modification of the rarest first strategy reducing the downloading set to an interval

around the playback time.

2.4 The use of network coding in P2P applications

Network coding is a technique that combines several packets together for transmission

instead of simply relaying them. Figure 2.1 show the so called butterfly network, that

is a simple example that clarifies this concept. There are two sources in the top of the

figure and two destination nodes in the bottom. Figure 2.1 shows how using a very

simple code we can forward both A and B messages to both destinations simultaneously.

Indeed we encode the (A+B) message and send it to the central channel. Both recipient

nodes receive this message besides the A message, for the bottom-left node, and B

message, for the bottom-right one. Now both the original messages can be retrieved

simply computing respectively B = (A+B)−A and A = (A+B)−B. It is not possible

achieve the same performance using unicast routing, because no routing strategy can

transmit both the A and B messages to destination at the same time.

This simple example illustrates how using coding techniques it is possible to obtain

better performance then simply relaying. The code used in the example is linear because

both the encoding and decoding schemes use linear operations.
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Figure 2.1: Butterfly network

The linear network coding problem can be generalized as: Xk =
∑n

i=1 ciMi where

Xk are the coded packets generated from the original messages Mi, that are combined

using the ci coefficients. These coefficients are chosen from the Galois field GF (2s).

Each node in the network forwards the computed value Xk and the destination peer

can retrieve the originals Mi solving X = GM . This is possible when N ≥ n packets

are received.

In (75) is proposed the Random Network Coding technique. This is a linear code

where nodes choose random the coefficients used to combine the original packets. These

coefficients are forwarded with data and receivers are able to retrieve the original mes-

sage when obtain enough linear independent combinations.

Network coding initially appeared as a potential breakthrough for application level

multicasting and content distribution networks. Theoretical results showed how net-

work coding can asymptotically achieve the maximum capacity of a network (51), (64).

However, such important results until now have never become popular in practical P2P

applications. At the same time, a large body of literature has focused on the analysis

of potential benefits of coding techniques for content distribution. To maximize band-
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width utilization and error resilience some attempts have been made to extend P2P

content distribution applications with coding techniques.

In particular, network coding has been the subject of several studies: conclusions

ranged from very optimistic (early results pointed out that throughput of the system

exploiting network coding at the block level is two to three times better than the non-

coding system (58, 59, 60)) to rather pessimistic (systems using network coding perform

even worse than BitTorrent (69)) to inconclusive (both throughput and its theoretical

upper bound overlap in coding and non coding systems (66, 67)) depending on the type

of coding technique and on the analysis methodology employed by different researchers.

One of the most relevant results so far is represented by the Avalanche proposal

(60), (59), (58) that suggests a protocol based on exclusive use of network coding. In

Avalanche a file is divided into blocks and distributed by using random linear network

coding. A peer sends to its neighbors a linear combinations of the original blocks using

random generated coefficients. These need to be selected in a field of relevant size,

e.g., 216 bits, and are included in the block header to allow the receiver to solve the

corresponding linear system of equations and retrieve the original file blocks. The use of

coding coefficients with 216 has a significant cost in terms of additional computational

power. The use of coded blocks simplifies the issue reconciliation and the search of rare

blocks in the overlay, since after few hops both rare and popular blocks turns to be

combined making very likely hat each block is useful for a receiving peer. The original

file can be recovered when enough pieces are received.

Avalanche use random network coding to generate coded blocks from the original

file. In (60) simulation results show that Avalanche can achieve a 30% gain in per-

formance respect to a generic P2P protocol. A prototype implementation and some

experiments are presented in (59), where network coding is applied to different file

segments independently.

However all the results presented in (59, 60) are not compared with BitTorrent, that

is considered the reference protocol concerning file-sharing. Instead the generic P2P

protocol used for comparison has 4-6 neighbors, while BitTorrent in the real world typ-

ically uses 30-50. Moreover the simulation does not look at other variables such rarest

first policy or endgame mode. Finally in (60) all the memory and calculations required

by random network coding are ignored and have no impact on protocol performance.

Therefore, the results presented cannot be considered conclusive.
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Many attempts have been made trying to integrate network coding also in BitTor-

rent; in (61), (45) the use of coding is exploited to avoid some scenarios in which the

BitTorrent’s local rarest first strategy fails, resulting in the peers starvation.

Some works (47, 48, 53) proposes, instead of network coding, protocols based on

Luby-Transform (LT) (36) codes. LT belong with the family of erasure rateless (also

called fountain) codes. These are forward error correction (FEC) code, that transform

a message of n symbols into a longer message of k symbols, with k ≥ n. The original

message can be retrieved when k
′

messages are received. The ratio k/n is called the

code rate and k′/k reception efficiency. The LT codes are rateless because it is possible

generate a potentially infinite sequence of coded symbols. The original message can

ideally be recovered from any subset of the encoding symbols of size equal to or only

slightly than the number of source symbols.

Rateless codes are particular useful for erasure channels, that are noisy transmission

channels, where a message could be delivered with some errors. More formally, in

information theory, a Binary Erasure Channel (BEC) is a channel that transmits binary

symbols, 0 or 1, and has a certain error probability. On a BEC a message is delivered

with errors with a probability p and without error with a probability 1 − p. BEC is

useful to model many real world situations. Indeed files that travel across the Internet

are subdivided into packets that could be delivered with errors or not delivered at

all. Usually the communication methods over such channels provide constant feedback

from the receiver. If some messages are lost or damaged, they are retransmitted. The

drawback is that acknowledgements are wasteful specially on very noisy channels or

some networks could not have a feedback channel. Thanks to the property of fountain

codes in general, and LT in particular, it is possible eliminate acknowledgements using a

one-way protocol. It is used only one feedback message, when the receiver has decoded

successfully the original data.

In (47) is proposed rStream, a protocol for streaming video content based on LT

codes. In (47) the whole file is encoded and coded blocks are exchanged among peers. A

peer must wait for the recover of the original data before relay packets on the network.

This introduce a delay in the content’s spreading. In (48) some preliminary ideas on

the distribution of LT coded blocks with application to the P2P video streaming are

presented without the design of a complete protocol. Many of the cited works do not

compare their performance with the BitTorrent protocol.
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In (53) provides simulation analysis of a protocol based on network coding, but the

results are inconclusive. Moreover, according to results presented by the authors, the

overall performance is worst than BitTorrent. In (61) a study on the distribution of

file’s pieces that arise in the overlay using a rarest-first strategy is presented. The paper

points out that this latter can lead to bottleneck when all peers try to download the

same piece (i.e., the rarest piece). Then, a protocol based to use of source coding in an

attempt to bridge these gaps is proposed. A similar approach is described in (45).

In conclusion, many attempts have been made trying to conjugate coding techniques

and P2P protocols, but until now the results are inconclusive, and further research is

needed to understand the potential benefits.

2.5 The impact of P2P protocols on Internet Service Providers

(ISPs)

P2P protocols, both for file-sharing and video-streaming, may generate a huge amount

of network traffic (see for instance (81) and (83)). Moreover, the participating nodes

in the overlay are largely agnostic of the underlying IP network. This increases the

cost associated with P2P traffic for individual Internet Service Providers which face

the problem to manage a vast amount of unnecessary inter-domain traffic (82). Such

traffic level can cause congestion on valuable inter-ISP links and more generally an

overall performance degradation in an ISP network.

There are several negative effects that derive from the topology mismatch between

the P2P overlay and the underlying IP network layer (see for instance (86)). As example

a measurement study of PPLive reported that the 70% of the traffic observed by tagged

peers deployed in North America was originated by peers located in Asia (81). In this

situation a policy ISPs aware, that aims to maximize connections in the same country,

can reduce the more expensive intercontinental traffic.

Several works argue that network awareness leads to improvements. (91) shows that

by exchanging information about network topology both ISPs and P2P systems could

optimize their operations: ISPs could improve the utilization of the network resources,

while P2P systems could achieve better system performance. In (93) is proposed a

solution that aims to minimize the AS op count for a message between source and

destination. They also modify the BitTorrent system to add locality-awareness into
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neighbor selection, peer choking/unchoking, and piece selection. An interesting results

is that while the work clearly shows the advantage of locality-aware solutions at reducing

inter-AS traffic and achieving shorter downloading time, there are also deficiency in

the distribution of the peer workload respect to the traditional strategy employed by

BitTorrent.

In literature many other practical proposals aim to reduce the inter-ISP traffic. The

paper (80) proposes to cache P2P contents by using ISP-controlled proxy-caches. The-

oretically this is an interesting solution because helps to segregate P2P traffic inside the

ISP network, but due to legal risks for unauthorized exchange of copyrighted contents,

this solution is not applicable.

A different approach in (76) proposes the use of an ”oracle” provided by the ISP

that helps a peer to locate neighbor peers. In (89) has been proposed the use of an ISP-

controlled tracker that provides network related information such as topology, traffic

engineering information, and so on.

The works (88) and (84) study the need to localize P2P file sharing traffic within the

ISP boundaries. The paper (88) proposes an overlay structure composed by mTrackers

aiming at minimizing transit ISP costs. The paper (84) describes an ISP-friendly

variant of BitTorrent to reduce the cross-ISP traffic.

An approach to improve inter-AS routing is geographically informed routing . The

most relevant work in this direction is the Geographically Informed Inter-domain Rout-

ing (GIRO) (120) protocol. The protocol tries to improve performance including the

geographical information of the routing nodes. A similar approach is presented in (118),

another inter-domain routing protocol that propose some heuristics to reduce the geo-

graphical path between ASes. However results are not conclusive, indeed in (118) the

strategy proposed is compared with the Border Gateway Protocol protocol but does

not demonstrate great improvements.

Some approaches during the last years, in the P2P literature, show that the game

theory assumed an important role in modeling strategies used by the peers of a P2P

system and several papers on this topic have been published. In (77), (78), and (79)

game theory models have been used for the investigation of peer interactions and to

analyze incentive mechanisms for P2P file sharing systems.

The work presented in (85) studies the interaction among peers in P2P stream-

ing applications, illustrates the existence of Nash equilibrium points, and introduces
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renewement criteria to help the selection among these equilibria.

Our opinion is that to find effective network-aware strategies, is essential to work

on modeling the interaction between P2P overlays and ISPs. Many works in literature

aim to model P2P traffic, but only few evaluate the P2P overlay in relation with the

underlying AS topology.

Some models try to describe the resource diffusion process in the overlay, also

referring to specific protocols, like BitTorrent (23),(22) or eDonkey (24). In (23) is

proposed a fluid model for resource diffusion in the BitTorrent protocol. The model

is able to study steady-state performance measures, such as the number of peers that

have a resource and remains in the system to allow its diffusion. A similar approach is

used in (28), that describes P2P dynamics through a set of second order fluid equations

and derive results related to the resource distribution among peers.

One model presented in (22) uses dynamic analysis to study the variations in terms

of popularity of individual files, and in terms of the number of available files at individ-

ual peers. Also this work considers how a document is spread to the requesting peers

into a BitTorrent environment.

A different approach is use simulation techniques to understand protocol dynamics.

(24) proposes a simulation for investigate the diffusion of a file in an e-Donkey system,

as function of several parameters such as sharing probability and requests arrival rate.

The main drawback related with this kind of approach is that often it do not scale very

well for overlay with many peers. In (25) is presented an analytical model based on

biological epidemics. Also here the model is used to predict the diffusion of single files

in a P2P network.

An attempt to develop a mathematical model for topology awareness of overlay

networks is described in (94). The work builds a mathematical framework capable to

mach as possible the P2P overlay with the ASes topology. The main drawback is that it

do not consider commercial accords and how these affect the routing paths of messages.

In (92) is presented a model of interaction between P2P and ISPs. This work take into

account peering and transit agreements, but the examples are limited to a topology of

only two ISPs, and complex inter-AS routing is not modeled.

A great limitation of the existing P2P models is that they do not take into consider-

ation economical and commercial factors and do not regard the underlying IP network,

but mainly concentrate on the P2P overlay. Also when commercial agreements are
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considered, model the complex inter-AS routing is a difficult task. We consider model

interaction between ISPs and P2P overlay network and develop effective ISPs-aware

strategies hot research topics nowadays, due the popularity of P2P applications and

the economic implications, and we expect many research efforts will make in this di-

rection in the near future.
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Chapter 3

A case study: PPLive

In this chapter we start our investigation focusing on a popular P2P-IPTV application,

PPLive. PPLive provides users with hundreds of TV channels and this made it an

interesting case study in order to understand P2P protocols dynamics. We describe a

passive/active measurement study regarding the characteristics of the PPLive overlay

networks.

Our contribution is the refinement of the crawling strategy developed in [7] to

confirm results presented therein as well as to discuss on the accuracy of active mea-

surements aimed at the characterization of overlay network topology.

All data collected in this chapter are useful in order to understand P2P overlay

dynamics, their weaknesses and identify possible protocols optimizations

3.1 The PPLive application

PPLive is a mesh-pull P2P streaming platform that distributes both live and pre-

recorded contents. According to the PPLive web site (2) in January 2008 the PPLive

application provided almost 500 channels with 1,000,000 daily users on average. The

number of channels in December 2008 was reported to be equal to 1775. The bit rates

of video programs mainly range from 250 kbps to 400 kbps with a few channels as high

as 800 kbps. The PPLive is a proprietary system, which means that neither the source

code nor protocols are available. The following description of the behavior of PPLive

is derived by our experiments and by previous investigation that use passive and active

measurements (see for instance (6), (4), and (7)).
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The PPLive platform consists of multiple overlays. A single overlay corresponds to a

PPLive channel. Each peer in an overlay is identified by the pair (IP address, port

number).

Figure 3.1 shows the basic actions of a PPLive peer: (1) channel list download from the

channel list server (via HTTP); (2) for the selected overlay (channel) the peer collects

a small set of peers involved in the same overlay by querying the membership servers

(via UDP); (3) the peer communicates with the peers in the list to obtain additional

lists which it aggregates with its existing peer list (via UDP). In this manner the peer

maintains a list of other peers involved in the same overlay (i.e., watching the same

channel). During the streaming the peer periodically executes steps (2) and (3) to

collect neighbors peers candidate.

3.2 Methodology

A common approach for measurement based investigation of P2P systems is to capture

snapshots of the overlay network using a crawler, i.e., a program that collects informa-

tion on the topological properties of the overlay network. The development of a crawler

requires the knowledge of protocols used by the application under study. In the PPLive

case this is a challenging task because this application is not open source and its details

are not public. In the following we first provide a short description of what is known

about the PPLive protocols and then we describe the design of our crawler.

3.3 The crawler

As discussed PPLive is a closed source application whose details are unknown. To

overcome this difficult we use the technique presented (7) that allows to collect the

query strings that the peers use in steps (2) and (3)1.

Unfortunately, this is not the only problem to solve to obtain accurate data from the

crawling experiments. In fact, according to the studies of the Gnutella P2P file sharing

application presented in (3) and (8), the accuracy of captured overlay snapshots depends

1Unfortunately, the number of PPLive channels that can be investigated using the method described

in (7) is decreasing, this is probably due to changes in internal protocols used by PPLive.
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Figure 3.1: PPLive basic architecture

on the crawling speed. In principle, a perfect snapshot is captured if the crawling

process is instantaneous and complete, i.e., if all peers are contacted. However, neither

of these conditions is generally met for the following reasons: rapidly changing topology,

and unreachable peers.

To obtain accurate overlay snapshots, we used a distributed crawler architecture, similar

to the one described in (3). The PPLive crawler employs a master-slave architecture to

achieve a high degree of concurrency. For our experiments, we used 5 PCs that run 1

master and 200 slaves. The master process performs step (2) of Figure 3.1 to collect the

initial list of peers and then coordinates multiple slave processes. In particular, each

slave receives peer addresses from the master according to the slave crawling speed

and performs the step (3) of Figure 3.1. The slave processes are independent crawlers

that probe different portions of the overlay. Moreover, to increase the crawling speed

each slave process is composed by a set of threads that independently send queries to

PPLive peers. Periodically, each slave process reports back to the master process with

the peer neighbors.

Unresponsive peers make the snapshots less accurate. Peers may not respond to

queries from our crawler for several reasons. If a peer is temporarily overloaded it might

later respond if we adopt a high timeout value. On the other hand, a too high timeout
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may introduce long delays.

We performed a set of preliminary experiments to derive a timeout value to trade-off

the increase of the number of responding peers and the decrease of long delays. In our

experiments we set the timeout equal to 5 sec.

A related issue concerns the difficulty in obtaining the neighbor list. In particular, as

observed in (7) and confirmed in our experiments, successive queries sent to the same

peer may yield slightly different list of neighbors. We performed a set of experiments to

derive a value for the number of successive queries that represents a trade-off between

the need to obtain the peer’s neighbor list and the necessity of having short crawling

time.

In our experiments we set the number of successive queries sent to the same peer equal

to 10. Furthermore, we address in more detail the ”completeness” of the peer’s neighbor

lists in Section 3.3.1.

With the optimizations we use the average duration of each crawling experiment is 106

sec, with an almost negligible standard deviation.

3.3.1 Crawling ”completeness” and passive/active measures

In Section 3.4 we provide results on the amount and type of data exchanged by a

controlled PPLive client whose activity is traced by a sniffing packet tool. The data

collected during these passive measurements are exploited to define the concept of

neighbor and to compute the intersection between data obtained by the active crawling

and passive monitoring. This latter task permits to evaluate the completeness of the

active measurements.

Furthermore, active measurements allows us to report on the topological properties of

sample overlay networks and on the time behavior of peers joining these channels.

3.4 Passive measurements

For the passive measurements we use a PPLive running on a non-natted LAN node.

We only capture UDP traffic on the known PPLive port number. In the first experi-

ment we capture the in/out traffic of the PPLive node watching a cartoon channel. In

Figure 3.2 the packet size histogram of the captured packets during a session of 1500 s
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Figure 3.2: PPLive packet size histogram

is shown.

Three packet types can be identified: < 100 bytes (signaling, class A), around 800

bytes (to be identified, class B), > 1000 (video data, class C). During the same session

we observe an overall download rate of 616 kbps whereas the upload rate reaches 6082

kbps. Table 3.2 shows the partial rates obtained considering the three packet classes

identified in Figure 3.2. It is very likely that class C represents video data encoded at

350 kbps. Class A is probably to be referred to the signalling for the overlay network

management and control (neighbor lists); it is worth pointing out that such control

traffic is larger in the downlink than in the uplink. Class B deserves further attention;

it can be noticed that the class B traffic represents a constant fraction of the class C

rates, i.e. video packets. In particular, class B amounts to the 18% of the video traffic

in both the downlink and uplink. This allows us to infer that class B carries data which

are strictly correlated to the video; these are likely to be the buffer maps, which are

exchanged among peers in a fixed proportion with respect to the video rate.

In Figure 3.3 and Figure 3.4 the rate from and toward the different peers is shown;

each peer is mapped onto a unique positive integer identifier reported on the x-axis; on

y-axis positive are used for the uplink, whereas negatives refer to the downlink rates,
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Table 3.1: Rates [kbps] for the packet class A, B, C.

Packet class A B C

uplink 42.79 964.98 5116.81

downlink 196.51 64.76 355.07

measured in kbps. For sake of clarity, the same data are plotted in Figure 3.6 and

Figure 3.7 where upload and download bandwith are sorted in ascending order. It can

be noticed that class A rates are far more uniform with respect to class B, C. This is

due to the fact that control packets evenly spread around the overlay. On the contrary,

video and buffer maps traffic is more peaked around few peers which the probed node is

collaborating with. In the observed time window about 2000 peers are contacted by our

node. Nevertheless, the number of active neighbors is rather limited; as an example, by

considering only those peers exhibiting class B/C rates larger than 1 kbps, one retains

only 15% of the observed 2000 peers. The same behavior is shown in Figure 3.5, where

the uplink/downlink rates are sorted in descending order.

3.5 Combination of active and passive measures

The goal of crawling experiments is to obtain a snapshot of the overlay topology that

could also be used to derive a graph representation of the overlay network.

To this end, peers are queried to provide the list of their neighbors. Who are these

neighbors? We analyzed the trace obtained from the experiment described in Section

3.4 and we computed the number of neighbors of our controlled PPLive client. The

concept of neighbor is defined as follows: a peer u is a neighbor of our controlled PPLive

client if and only if in a time window starting at time t and lasting for ∆ seconds at

least one packet exchange is reported. Clearly, this definition yields different concepts

of neighbor depending on the direction of the video packet exchange and on the class of

the packet being exchanged (class A, B or C). Furthermore, this definition is dependent

on both t and ∆. In Figure 3.8 the number of neighbors is reported versus time for

∆ = 15 seconds by considering only class C packets exchange and for all directions of

packet exchange. It can be observed that after an initial transient time interval, where

the cardinality of the neighborhood is rapidly growing, the measures reach a steady
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Figure 3.3: Class A rates [kbps] per peer.

state where slight oscillation around an equilibrium value are noted.

In order to compare active and passive measurement results we performed the following

experiment. With the same settings described in Section 3.4 we started a crawling of

the cartoon channel overlay network after a time interval that allowed our controlled

PPLive client to reach the steady state. At the end of the crawling we computed the

intersection between the list of neighbors obtained from the crawler for our controlled

client and the list of neighbors we compute from the passive measurement. We consider

different values for ∆ (10, 20 and 30 seconds) and throttle download and upload rates

of our PPLive client by means of the tool NetLimiter (9). We consider neighbor as

defined for each of the packet classes (A, B, and C).

From the results of Table 3.2 and Table 3.3 we can observe that (i) the best over-

lapping among the passive and active measures occurs for packets belonging to class C;

(ii) the overlapping decreases as the bandwidth increases, and in this case the upload

bandwidth has a stronger impact; (iii) a measurement strategy for PPLive that uses a

crawler yields only partial information about the actual overlay links. Therefore active
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Figure 3.4: Class B-C rates [kbps] per peer.

measurements must be used with care in order to infer overlay features e.g., topological

characteristics.

3.6 Active measures and topological properties

As we observed in the previous section the accuracy of the crawling experiments de-

pends on the type of bandwidth connectivity and the quality of results decreases as the

bandwidth increases (and this effect is more evident for the upload bandwidth).

On the other hand the accuracy of the experiments also depends on the percentage of

non-responding peers, those whose identity has been discovered during the exploration

of the overlay network (i.e., from another peer or from the membership servers) but

that deny (or excessively delay) their reply to a request from the crawler.

In the following we present results obtained from a group of successive measurements

of the same PPLive overlay channel (in particular we focus the attention on a cartoon

channel) acquired at a constant rate. The duration of this battery of snapshots derives
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Figure 3.5: Class C sorted rates [kbps] per peer.

from the crawling time of each snapshot and from the constant time interval between

successive acquisitions. We identify each snapshot with a progressive number (ID).

These crawling experiments were collected between 11/02/2008 and 11/11/2008; dur-

ing this period we collected 7670 snapshots of the PPLive overlay channel under study.

The average duration of the crawling experiments was 106 sec (with a small standard

deviation). The plots of Figure 3.9 show a typical daily behavior.

From these experiments we found that the fraction of responding peers varies from

the 83% to the 52%. We cannot discriminate excessive long delay from un-reachable

peers but with a time out chosen to minimize these mis-classifications we found the

fraction of non-responding peers is mostly due to un-reachable peers (probably NAT-ed

peers).

In Figure 3.10 we plot the degree distribution computed from the collected snap-

shots. In particular, we consider two PPLive channels, one the cartoon channel that

we previously described (channel A), and a news channel (channel B).

To be representative of the ”real” overlay PPLive topology the results depicted in

the previous figure should be ”corrected” and according to the considerations summa-
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Figure 3.6: Class A sorted rates [kbps] per peer.

rized in Table 3.2 and Table 3.3 the ”corrections” should be focussed on the tail of the

degree distribution.

3.6.1 Analysis of user sessions

We also studied the length of users connection to PPLive overlay, taking the battery

of consecutive snapshots we introduced in previous section. A continuative session

is characterized by the presence of the same node, identified by his IP address and

UDP port, in a set of continuative snapshots. Every snapshot has an average duration

of 106 sec, in which a peer is considered active and connected. A connected session

is characterized by the presence of the same IP address and UDP port in a set of

consecutive snapshot. The lengths of connected sessions have been already studied

by using a similar approach in (7). We obtain results similar to those presented in

that paper i.e., the duration of sessions on a PPLive channel (we perform the same

experiment for different channels) can be approximate by means of an exponential

distribution (or geometric as reported in (7)). In particular we plot in Figure 3.11

the session length distribution computed on the battery of 7670 snapshots. In 3.12

we plot the distribution of peer session length obtained from an example snapshot on

logarithmic scale.
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3.7 Conclusions

We produce a set of measurement useful to describe the protocol behaviour and all data

collected in this chapter are useful for understanding the dynamics of P2P protocols,

weaknesses and identify potential optimizations.

As a sort of validation we re-derived results on the length of users connection to

PPLive channels: the preliminary results we obtained confirm those in (7) i.e., the

session lengths can be represented by memoryless distributions (geometric or negative

exponential). The main contribution of the analysis presented is the study of the limits

and the completeness of active measurements acquired crawling the PPLive overlays.

The presented results showed that a simple crawling strategy is not able to get

accurate snapshots of the PPLive. Moreover we also point out the relations between

bandwidth (upload and download) and the crawling accuracy.

The lesson that we can draw is that the derivation of accurate topological informa-

tion for PPLive (and possibly for similar P2P-IPTV applications) requires the setting

of a more sophisticated measure methodology.

We describe peers’ behaviour and overlay topology. The closed source nature of the

software is a great limitation, but with our methodology we have been able to collected

data useful for understanding interesting dynamics of P2P streaming protocols.
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Figure 3.9: Evolution of peer population over nine days
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Table 3.2: Intersections between neighbors list and sniffed traces.

Download/Upload bandwidth, ∆s Class A Class B Class C

Intersection Intersection Intersection
sniffed/crawler sniffed/crawler sniffed/crawler

1Mb/0.25Mb, 30s 7% 50% 78%

1Mb/0.25Mb, 20s 9% 50% 74%

1Mb/0.25Mb, 10s 13% 50% 73%

1Mb/0.5Mb, 30s 15% 33% 88%

1Mb/0.5Mb, 20s 23% 33% 91%

1Mb/0.5Mb, 10s 39% 33% 90%

1Mb/1Mb, 30s 5% < 1% 35%

1Mb/1Mb, 20s 7% < 1% 36%

1Mb/1Mb, 10s 9% < 1% 37%

4Mb/0.25Mb, 30s 12% 25% 61%

4Mb/0.25Mb, 20s 13% 25% 61%

4Mb/0.25Mb, 10s 20% 33% 61%

4Mb/0.5Mb, 30s 11% 10% 59%

4Mb/0.5Mb, 20s 15% 34% 60%

4Mb/0.5Mb, 10s 19% < 1% 63%

4Mb/1Mb, 30s 11% 50% 55%

4Mb/1Mb, 20s 13% 50% 54%

4Mb/1Mb, 10s 18% 50% 54%

Lan, 30s 10% 40% 40%

Lan, 20s 16% 40% 44%

Lan, 10s 12% 40% 44%

Table 3.3: Active measures on our nodes: number of neighbors with different bandwidths

Down/Up band. Node degree

1Mb/0.25Mb 93

1Mb/0.5Mb 94

1Mb/0.5Mb 102

4Mb/0.25Mb 102

4Mb/0.5Mb 115

4Mb/1Mb 115

Lan 121%
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Chapter 4

Improving BitTorrent using

Luby-Transform (LT) codes

In this chapter we propose a modification of the BitTorrent protocol with the purpose

to enhance it. We use a particular class of rateless codes i.e., the LT codes.

Later on, by using a simulation based study, we compare the performance of the

modified BitTorrent against the standard version of the protocol. Here we give a de-

scription of LT codes and describe the proposed protocol. Then we describe both

simulation methodology and the different scenarios that we set up to prove its effec-

tiveness. Finally experimental results show that in particular network conditions our

protocol performs better than the original one.

4.1 The Luby-Transform codes

LT codes are a class a fountain codes invented by Michal Luby that use simple XOR

operations to encode and decode the message. They belong with the class of rateless

erasure codes, and they have the property to generate a potentially limitless sequence

of encoded symbols, differently from standard erasure codes that have a fixed rate. An

erasure code transforms a message of n symbols into a longer message of k symbols,

with k ≥ n. The original message can be retrieved when k
′
messages are received.

LT codes are particular useful for erasure channels. A message sent on an erasure

channel is affected by errors with a certain probability. The standard communication

methods over such channels provide constant feedback from the receiver, so lost or
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damaged messages could be retransmitted. But acknowledgements could be wasteful

specially on very noisy channels or some networks could not have a feedback channel.

Thanks to the property of fountain codes in general, and LT in particular, it is possible

eliminate acknowledgements with a one-way protocol. It is used only one feedback

message, when the receiver has decoded successfully the original message.

In the following we give a description of the encoder and the decoder.

The encoding process

A coded message Mi is generated from the original Mo according to the following

process:

• the original message Mo is divided into n blocks of the same size, each block is

labeled with an index i, so the blocks are S1...Sn.

• choose a degree d, 0 < d ≤ n, using a particular distribution, the Robust Soliton

Distribution (36).

• choose randomly d blocks with uniform distribution.

• XOR together the d chosen blocks generating one coded message Mi.

The coded message Mi is sent to the destination, appending a list of blocks indexes

used to generate it.

This process is repeated until the original message is decoded from the destination.

The Robust Soliton Distribution used in the step 2 of the coding process minimizes the

overhead required for decoding (36) (see the decoding process).

The encoder could be considered as a process that generates a bipartite graph con-

necting the coded packet with those used to generate(see Figure 4.1).

The decoding process

Also the decoding process uses XOR operations to recover the original message. It is

based on the consideration that for a coded block Mi, Mi ⊕Mi = 0, where ⊕ is the

XOR operator. So when a coded message is XOR-ed with a packet of degree 1 i.e., a

decoded block, his degree is decreases by one.

If this operation is repeated for d− 1 times the original message is retrieved.
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4.1 The Luby-Transform codes

Figure 4.1: Example of decoding process for k=3 source bits and n=4 coded bits

The graph representation is particular useful to understand how the decoding pro-

cess works (see Figure 4.1). Here the coded packets (showed on the bottom of the

graph) are connected to the source packets (showed on the top) Si used to generate

them.

Following are the steps for decoding:

• find a coded packet Mi that is connected to only one source node, Sk. If there is

no such node, the decoding fails.

• XOR Sk with all the coded packet connected to Sk.

• remove all the arcs connected to the source packet Sk.

• repeat from the first step until all packets are recovered or decoding process fails.

In Figure 4.1 is showed an example of decoding for a simple message with k = 3

source bits and n = 4 encoded bits. Here each packet is only one bit. In the top of each

subfigure the nodes are the original bits S1, S2, S3. In the bottom the coded packets

are showed. The coded message is ”1 0 1 1”.

In the beginning, the coded block connected to only one source packet is the leftmost

one (Figure 4.1a). According to the first step of the decoding process we can set the

first source bit to 1 and discard the coded node (Figure 4.1b). Then we add the value
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of S1 (1) to all coded bits which it is connected and then disconnect S1 from all nodes

(Figure 4.1c). We repeat the process using the rightmost coded block, now the only

node with degree one. So we set S2 to 0 (Figure 4.1d) and XOR S2 with all the coded

packet which it is connected (Figure 4.1e). Finally (Figure 4.1f) is simple to obtain the

value of S3, connected with the two remaining coded nodes. Putting S3 = 1 we have

ended the decoding process. The source message is ”1 0 1”.

As we have seen from the example, this decoding process has a certain overhead

(36): the recipient needs to receive a number of packets that exceed in percentage the

original size by a certain amount ε. So if k is the original number of non coded blocks,

the decoding process succeeds when k(1 + ε) packets are received.

The decoding overhead depends on the number of source packets (36). In (36) it is

shown that LT codes are asymptotically optimal, i.e., the overhead ε → 0 in the limit

of large block sizes k →∞.

4.2 The modified Protocol

In order to introduce the LT codes we have done some modifications to the standard

BitTorrent protocol. First of all the pieces are now encoded using LT codes (36) and

the generated coded blocks are exchanged between peers. Consequently some modi-

fications to the protocol’s strategies must be done. The choice of LT codes has been

made due their simplicity and efficiency.

4.2.1 Modifications to BitTorrent protocol

In order to evaluate the LT codes’ effectiveness, we choose to start from BitTorrent

then introduce the proper modifications. This choice is motivated by many reasons.

First of all it is impractical to encode the whole file, specially when it is of large size.

Indeed the LT’s decoding process requires that all received blocks must be maintained

in memory until the original piece is recovered, and this can require a considerable

amount of memory for large files. For this reason we choose to maintain the file’s

piece subdivision and encode the pieces’ data. So, similar to BitTorrent, our protocol

subdivides the file into pieces, and each one is encoded with LT codes.

The original BitTorrent’s piece size is of 218 Bytes and the block size is of 214 Bytes.
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In order to use the LT codes with efficiency the piece is now subdivided into about

1000 blocks. To obtain this ratio the block size is set to 500 Bytes with a subsequent

piece size of 219 Bytes, that results in roughly 1048 blocks for piece. According to

the LT codes properties (36) (37), with this number of blocks the decoding process is

accomplished with an overhead of about 10%. LT codes introduces some advantages

with respect to the original protocol.

In BitTorrent a piece can be shared only when it is completely downloaded. Indeed,

downloading of a partial piece with the standard protocol would require the introduction

of a proper strategy for content reconciliation: a peer must share with others the piece’s

progress information, avoiding to receive duplicated information. This would result in

a signalling overhead.

Instead, with LT codes it is possible to download the same piece from multiple peers.

In fact, provided that the transmitting peers use asynchronous random generators for

the creation of LT coded packets, every new packet is innovative for the receiver and

coded blocks can be sent without information of the piece’s progress.

More importantly, LT codes allow one to share partially downloaded pieces without

content reconciliation. When a piece is partially downloaded it cannot be decoded at

all, so the only possible action is forwarding some of the received coded blocks. The

block to be forwarded is chosen randomly, so it can happen that some duplicated blocks

are collected by the receiving peers. When a peer successfully recovers a piece, new

encoded blocks can be generated, avoiding duplicates. In the simulation we made, we

observed a reduced number of duplicates received on average. A significant percentage

of duplicated packets is experienced only in the early stage of torrent distribution when

the leechers own partial pieces.

This transient behavior disappears as soon as the peers decode some pieces, starting to

generate new blocks. The introduction of encoding at piece level requires a new policy

to select the next piece to download.

BitTorrent chooses a piece according to the rarest first strategy, selecting it only among

the completely downloaded ones. The possibility to share partially downloaded pieces

extends the set of possible parts to download. So we modified the rarest first in order

to consider also partial pieces: a peer tries first to download the rarest complete piece

in its neighborhood, but when useful pieces are not available, it selects a partial rarest

one. In this way we try to minimize the negative impact of duplicates. The tit-for-tat
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does not require modifications, indeed it performs in the same way in both protocols.

In the following we summarize the modifications of the BitTorrent protocol we made:

• the dimensions of a block is changed from the original 214 Bytes to 500 Bytes for

an efficient use of LT codes. Every piece is thus composed of 1048 blocks;

• a chunk is shared to the other peers in the overlay also when it is partially

downloaded. Now a peer sends the HAVE message, that in the original protocol

inform other peers that the source own a piece, as soon as one coded block has

been received. In this way a peer can start to share content sooner with respect

to the standard BitTorrent.

• the local rarest strategy takes in account also the partially downloaded pieces

This increase the availability of downloadable content, and reduce the start-up

period.

• a piece can be downloaded from many peer at the same time.

All the other protocol parameters, such as the length of the rechoke period or the

maximum number of unchoked peers are the same as in the original BitTorrent.

4.3 Simulation methodology

To evaluate the performance of the modified protocol we use the GPS (38) simulator.

GPS includes a complete implementation of the standard BitTorrent, that is, at the best

of our knowledge, a complete and accurate implementation. We use this implementation

as a starting point to develop and test our changes. We generated different scenarios

implementing high churn rates and flash crowds, and compare the performance of both

protocols.

4.3.1 Extension of the GPS simulator

We made some changes to the simulator in order to define more complex scenarios.

By modifying the simulator classes we add the possibility to generate heterogeneous

networks, in which the peers can have different connection speeds. In the original sim-

ulator, it was not possible to define peer departures, but only joins. We extend GPS

adding the possibility for a peer to leave the network overlay at certain instant in time,
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Table 4.1: Downloading times

in a common file sharing sce-

nario.

File size BTd 1 LTd 2

1 MBytes 52s 59s

2 MBytes 74s 103s

4 MBytes 132s 183s

8 MBytes 219s 313s

100 MBytes 1900 s 2100s

200 MBytes 3300 s 4100s

1 BitTorrent standard proto-

col download’s times
2 Modified BitTorrent proto-

col download’s times

independently from the progress of its download. Then we implemented the modified

protocol introducing the modification described above starting from the original Bit-

Torrent. Finally, we developed the classes to collect and analyze simulation results and

statistics.

4.4 Experimental results

First we conduct some experiments in a common file sharing scenario: 30 peers join

the swarm to download a file; we use in these tests different file size, from 1MByte

to 200MByte. The peers do not leave the network after the download completion,

but start to act as seeders. In Table 4.1 the results of these simulations are reported:

the modified protocol has achieved the worst performance. This is mainly due to the

overhead introduced by the use of LT codes.

We can assume here that rarest first and tit-for-tat are enough to assure diversity

and a fair distribution of the content in the overlay. In this condition LT codes do not

introduce any performance improvement.

Then we instrumented the simulator to conduct some experiments in scenarios char-

acterized by high rates of peer arrivals and departures, using files with low number of
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pieces. According to (13, 14) these conditions could be compared to live-streaming or

video-on-demand. Indeed in these applications the pieces are spread on the overlay as

they are generated, and have a short life time. Moreover in such kind of applications

generic users can join the channel for a short time, and this results in high churn rates.

Also flash crowds phenomena (46) can be an issue for the peer-to-peer overlay. This

corresponds, for example, to some particular moments of the channel schedule, as the

start or the end of a particular TV program. So a desirable property for a protocol is to

be resilient to such kind of events. In all scenarios we simulate also the possibility that

BitTorrent shares and spreads a document with only a single piece. This limitation

derives from the unavailability of more pieces due the real-time nature of the content

distribution. All the results presented are the average of ten simulation runs.

4.4.1 A simple topology of three peers

We start our investigation by defining a simple toy topology of three peers as shown

in Figure 4.2. In this topology, using the BitTorrent protocol, the leechers cannot ex-

change data between them until a piece is completely downloaded. We want to verify

if the modified protocol can achieve better performance by relaying incomplete pieces.

The arrows show the flow of data between peers. Peer 1 is the seeder, that replies to

requests made from the leechers, peers 2 and 3. We show that in such a simple scenario

our modified protocol performs better compared to BitTorrent whether the shared file

has a single or multiple chunks.

In Table 4.2 we report the results that compare the download times and the resulting

achievable download rates of the standard BitTorrent protocol and the one modified

with LT codes. From Table 4.2 we observe that the modified protocol achieves better

performance for all the considered file size. The columns BTd and BTb show respec-

tively the download times and achievable bitrate of the standard BitTorrent protocol

while the columns LTd and LTb show respectively the download times and achievable

bitrate of the modified protocol that uses LT codes The column Gain report the gain

expressed in percentage.

There is always a gain using the modified protocol, and it is particular evident for file

dimensions of 1 MByte and 2 MBytes. This derive from the possibility to start to
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Figure 4.2: Simple three peers topology, peer 1 is the seeder while peer 2 and 3 are leecher

download a piece immediately, because the leechers can share data between them even

if these latter do not belong to a completed piece.

4.4.2 A more complex scenario

After having verified that in the previous simple scenario the modified protocol has some

benefit over the standard BitTorrent, we built a simulation scenario that represents a

flash crowd in a network overlay: to this end we generate with GT-ITM (56) a network

topology and define over it a network with a 10% of nodes with a bandwidth of 10

Mbps and a 90% of 1 Mbps for a total of 50 nodes.

The peers with the larger capacity represent some institutional nodes whereas the slower

ones represent standard ADSL connections. Moreover, this scenario is characterized by

massive arrivals and departures of peers. These events are scheduled in this way:

• Time 0: a flash crowd of 50 peers occurs

• Time 50: 20 random selected peers leave the network, regardless of the state of

the download
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Table 4.2: Downloading times and achievable bitrate observed on a

simple topology of three peers.

File size BTd 1 LTd 2 BTb1 LTb2 Gain (%)

1 MBytes 38s 35s 210Kbps 228Kbps 8%

2 MBytes 50s 48s 320Kbps 333Kbps 4%

4 MBytes 77s 75s 415Kbps 426Kbps 2.6%

1 the columns BTd and BTb show respectively the download

times and achievable bitrate of the standart BitTorrent protocol
2 the columns LTd and LTb show respectively the download

times and achievable bitrate of the modified protocol that use

the LT codes

Also in this scenario we use a file of dimension of 1 MByte. The results are shown in

Table 4.3: the first row compares the performance in the case of a file with a single

chunk and the second for a file subdivided into more chunks.

Also in this case our protocol performs better, with the downloading times and the

resulting achievable bitrate that show a gain of 66% if we consider files with only one

piece. The gain decreases to 25% if consider the file subdivide into more pieces. When

the file is divided into more parts, these are a dimension of 218 Bytes for the standard

protocol and of 219 Bytes for the modified one. This result proves the increased re-

silience of the codes to flash-crowd. The resulting overlay is more robust to a single

massive arrivals and departures of peers. In Figure 4.3 we report the normalized dis-

tributions of the download times.

The distribution on the left refers to the modified protocol while the one on the right

describes the downloading times of the standard BitTorrent.

It is clear that the BitTorrent that uses the LT codes performs better in both situations,

showing shorter download times. Indeed the modified protocol’s time distribution is

centered around 20 seconds, and show values from 5 to 40 seconds. Instead standard

BitTorrent donwload’s times are between 10 and 120 seconds, with a peak aroud 60

seconds.
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Table 4.3: Downloading times and achievable bitrate observed in a

single flash crowd scenario.

File size PS1 BTd2 LTd3 BTb2 LTb3 Gain

1 MByte S 53.1s 18.1s 151 Kbps 441 Kbps 66%

1 MByte M 23.9s 17.1s 334 Kbps 467 Kbps 26%

1 the file subdivision, single (S) or multiple (M) pieces
2 the columns BTd and BTb show respectively the download

times and achievable bitrate of the standart BitTorrent protocol
3 the columns LTd and LTb show respectively the download times

and achievable bitrate of the modified protocol that use the LT

codes

Figure 4.3: Normalized distributions of the download times: on the left the modified

protocol, on the right the original BitTorrent protocol
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Table 4.4: Parameters used for generate flash crowd scenario

Parameter Description

a Time between a flash-crowd and the next

b Intensity of the flash-crowd

c Flash crowd duration

d Time between a massive departure of peers and the next

e Intensity of the massive departure of peers

f Flash crowd duration for massive departure

g Inter-arrival times parameter distribution

h Leave times parameter distribution

4.4.3 Flash crowd scenario

Now we generate a more complex scenario that presents multiple flash crowd phe-

nomenon and massive departure of peers to test the overlay robustness. To describe

a flash-crowd we use three parameters: a, b, c are the exponents of three exponential

distribution, from which the values are random sampled to model a flash-crowd.

Values derived from the distribution with parameter a model the times between two

consecutive flash-crowds, b is used to model the intensity, expressed as the number of

the peers that join the network in a reduced interval time, and the third parameter

describe the flash crowd duration. Short values sampled from the distribution with

parameter c describe a more critical flash-crowd, because the peers join the network

in a reduced amount of times. The total number of peers that join the network is

distributed linearly among this time interval.

Massive departures of peers are modeled in the same way, but using three different pa-

rameter: d, e, f In addition in the simulated scenarios arrival and departures of peers

at fixed rates are simulated independently from flash-crowds. This rates are modeled

using two additional exponential distribution that use parameters g and h. Table 4.4

summarize all the used parameters.

We conducted some experiments building complex scenarios that cripple the Bit-

Torrent performance. The experiment has the subsequent parameters: a = 0.025,

b = 0.05, c = 0.5, d = 0.025, e = 0.05, f = 0.5, with a total simulation length of 1500
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Table 4.5: Downloading times and achievable bitrate observed

in a scenario affected by multiple flash crwod and massive de-

parture of peers.

File size BTd1 LTd2 BTb1 LTb2 Gain

4 MBytes 65 s 56 s 492 Kbps 571 Kbps 14%

8 MBytes 145 s 129 s 441 Kbps 496 Kbps 12%

1 the columns BTd and BTb show respectively the down-

load times and achievable bitrate of the standart BitTor-

rent protocol
2 the columns LTd and LTb show respectively the download

times and achievable bitrate of the modified protocol that

use the LT codes

seconds. The unit measure of the variables is s−1, while respective exponential distribu-

tion have mean: meana = 40s, meanb = 20s, meanc = 2s, meand = 40s, meane = 20s,

meanf = 2s. The results are averaged over 20 runs of 2 different randomly generated

scenarios.

In Figure 4.4 one scenario generated with the above parameters is shown. It is affected

by many flash-crowds and massive departure of peers, as expected. The simulated

network has 1000 nodes, with 10% of 10 Mbps of bandwidth and 90% represent ADSL

connections with 1 Mbps of bandwidth. In this case we conduct two simulations using

file of 4 MBytes and 8 MBytes, that are subdivided into multiple pieces.

In this way the original BitTorrent protocol can use his standard local rarest first

strategy and tit-for-tat at his best. Table 4.5 reports the results of such simulations

compared to BitTorrent in the same scenario and network conditions: there is a clear

gain of 14% for the file of 4 MBytes and 12% for dimensions of 8 MBytes.

Also in this case there is a clear advantage that derives from the introduction of LT

codes, that can spread content with limited file size and in precence of high churn

rates in a faster way. The gain mostly derives from the capacity to share partially

downloaded pieces. These advantages, in case of file of small size and in high dynamic

network conditions, exceed the drawback derived from the overhead introduced from

the use of the LT codes.
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Figure 4.4: The evolution of overlay population in a sample scenario generated with

parameters a = 0.025, b = 0.05, c = 0.5, d = 0.025, e = 0.05, f = 0.5

4.5 Conclusions

We proved by simulations that the protocol we developed can achieve better perfor-

mance considering file of small size, high churn rate and flash crowd. This conditions

represent real-world applications like live-streaming, in which only a little fraction of

the total file is available at time and peer join and leave the network with high rates. In

such situation our proposed protocol yields a gain that is above the 10% in all simulated

scenarios, despite the decoding overhead that the LT codes introduce.

This results show that the introduction of some kind of network coding, in our case

LT codes, can lead to improvements, but these are mainly related to network conditions

and peers’ behaviour.
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Chapter 5

P2P simulator

In this chapter we describe the discrete-events simulator we develop. We implement a

new simulator to obtain a more efficient tool than General Purpose Simulator (GPS),

previously used in Chapter 3.

Fist we give a brief introduction to GPS. Then we describe the transit-stub model,

used to represent the network layer in both simulators and explain the new simulator’s

architecture. We present benchmarks that show how our tool is more efficient than

GPS, both for memory and time requirements, and validate the BitTorrent protocol

with data obtained from real clients deployed on PlanetLab.

5.1 The General Purpose Simulator (GPS)

The General Purpose Simulator (38) is a discrete-event simulator written using the Java

programming language. It has been developed with the specific task of implementing

the BitTorrent protocol. The simulator architecture can be subdivided into two layers:

network layer and application layer.

GPS models the network layer according to the transit-stub model. Such model is

explained more in depth in the following section. The available bandwidth of a link

in the network is computed according to the macro-model proposed in (41), that is

used to simulate the TCP/IP overhead. In addition GPS uses a flow model to assign

bandwidth to a connection: the available bandwidth is equally shared among all active

connections on a certain link. Because a message is routed from source to destination
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Figure 5.1: Example transit-stub network with three transit domains (in red) and many

stub domains (in blue)

across a links chain, the maximum available bandwidth corresponds to the bottleneck

link between source and destination.

The BitTorrent protocol is implemented on the network layer. The protocol’s sim-

ulation is quite accurate, providing an almost complete implementation of BitTorrent’s

strategies and network messages, except for the ’endgame’ scheme, that is not simu-

lated.

Drawbacks of GPS are the huge memory and CPU requirements that limit the

scalability. Moreover it is not possible to define complex network scenarios, taking into

account churn, disconnections or peers failures. Finally the simulator’s validation has

been made in a very simple set up of only five BitTorrent clients connected to a hub.

5.2 The transit-stub model

An example of transit-stub network is shown in Figure 5.1. The topology is represented

in a hierarchical way: a peer is a node in a stub domain (blue in Figure 5.1). Each stub

domain is linked to a transit node. Transit nodes are organized into domains (red in

Figure 5.1) building an internal network that represents the router sub-net. Both stub

and transit domains are random graphs (40). Specifying the properties of these i.e.,

the average number of nodes or the number of connections among different domains, it

is possible to generate many different topologies. For example the network depicted in
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5.2 The transit-stub model

Figure 5.1 has three transit domains composed by several transit nodes and each one

of these is connected to a stub domain.

A network message between two peers leave a stub, travel across a set of transit

nodes, and finally is delivered to the destination stub node. The links’ bandwidth

among transit nodes is defined to be greater than the transit-stub ones. Connections

among different stub domains are not allowed. To generate topologies that can be used

in our simulator, we modify GT-ITM, a software used to build transit-stub graphs,

developed at the Georgia University.

5.2.1 GT-ITM

Georgia Tech Internetwork Topology Model (GT-ITM) is a C program that allows to

define topologies according to the transit-stub model. GT-ITM loads parameters from

a config file, generating in output the graph. Here we explain what are the most im-

portant settings used to define a valid transit-stub graph that can be used as network

topology. The format of the config file is:

[#comment− line]

[method− keyword] [number − of − graphs] [initial − seed]

[method− dependent− parameter − lines]

[method− keyword] can be ”geo”, that generates a flat random graph, or ”ts”, for

a transit-stub. [number − of − graphs] specifies how many graphs will be generated.

Several parameters that depend on the method keyword specified are specified in

[method− params]. In the following we report an example of the config file, with

some comments to the most relevant lines.

#Type and number o f graphs to be generated
t s 10 47
#Average number o f stub domains f o r each t r a n s i t domain
3 0 0
#Average number o f t r a n s i t domains
1 20 3 1 .0
#Average number o f nodes in a t r a n s i t domain
4 20 3 0 .6
#Average number o f nodes in a stub domain
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8 10 3 0 .42

With this file, GT-ITM generates ten transit-stub graphs, using as random seed

47. Each graph will have three stub domains per transit node (line 2), with no extra

transit-stub or stub-stub edges. Next line (line 3) creates one transit domain. Line

4 specifies that transit domains have (on average) four nodes and an edge between

each pair of nodes with probability 0.6. The last line says that each stub domain will

have (on average) eight nodes, and edge probability 0.42. Resuming this config file

generates a graph with one transit domain composed by four transit nodes, each one

with three stub domains of eighth nodes. The total number of nodes in the graph is

1 · 4 · (1 + 3 · 8) = 100.

5.2.2 The new file format

The original graph format generated from GT-ITM is not practical to be loaded from

an application in real time, because the graph representation is redundant and not

well structured. We have done some modification to GT-ITM software to generate a

more practical file format. With the new file format we have been able to reduce the

time and memory requirements in the network loading stage. The modified GT-ITM

software compiles both under Linux and Cygwin32 on Windows. This latter version

requires libgb-linux instead of libgb.

The new version of GT-ITM generate both the original file with ”.gp” extentions

and the new .alt2 format that is used in our simulator. Here we illustrate the ”.alt2” file

format. Each line starts with a tag, that specifies the meanings of the other parameters

on the same line. In the following is reported the semantic of each tag.

• I [number of transit domains]: specify the number of transit domains;

• T [transit domain id] [number of transit nodes] [list of link pairs]: cre-

ates a new transit domain with a new id, number of nodes, and a list of pairs

representing the links between nodes;

• S [id of the parent transit domain ] [parent transit node] [list of link

pairs in the stub]: creates a new stub domain and its parent transit node;
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• GWS [transit domain] [stub domain] [start stub node] [destination

transit node]: add a stub gateway i.e., a link between a stub and a transit

domains;

• GWT [transit domain source] [transit domain destination] [start transit

node] [destination transit node]: add a transit gateway i.e., a link between

two transit nodes in different domains;

5.3 The new simulator

Using the Java programming language we developed a new discrete-event simulator and

used it to implement the BitTorrent protocol and the ToroVerde protocol presented in

Chapter 6. The simulator’s architecture is organized in three logical layers: network

layer, application layer and simulation layer. Here we report a brief description of each

layer.

5.3.1 Network layer

The network layer is realized according to the transit-stub model (56) previously ex-

plained. Direct stub-stub connections are not allowed. End-systems are attached to

stub nodes, that are logically placed at the bottom of the hierarchy, and in our case

these are P2P clients. Also the tracker is attached to a stub node. A unique address is

assigned to each peer and the network messages travel form source to destination via

transit domains. Indeed these represent the router sub-net.

The network topology is loaded from the ”.alt2” file generated using GT-ITM soft-

ware (56). The nodes in the topology are connected with links that have fixed capacity.

We assign a bandwidth of 100 Mbps to links among transit nodes and 1 Mbps to stub-

transit ones.

A network message is routed from the source peer to destination across many inter-

connected links. The avaible link’s bandwidth is equally shared among all the active

connections.

The GPS simulator uses the Floyd-Warshall algorithm to compute shortest path

between all node pairs in the network. This algorithm has o(n3) time complexity

and o(n2) space complexity. We modify the original algorithm to perform the Floyd-

Warshall only at local level i.e., we compute all pairs shortest path only for nodes in
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the same domain, storing these paths in local routing tables. To route a message from

a domain to another we build global routing tables that save the shortest path among

different domains. Using both routing tables the path between any pair of nodes can

be built in a top-down way. As showed in the benchmark sections this leads to a great

improvements in performance, both for memory and for CPU saving. Allocation and

deallocation of network resources on links occur for each network message that travels

across the network.

5.3.2 Application layer

The protocols are implemented in the application layer. The application level messages

are passed to the underlying network layer. Here they are encapsulated in network

messages, then delivered to the recipient. The BitTorrent implementation conforms to

official protocol specification described in (12). Peers and tracker only rely on local

information, replicating the behavior of the real network clients.

5.3.3 Simulation layer

Finally the simulation layer loads the system parameters, builds the network, assigns

bandwidth to links and allocates all peers in memory. Each peer is assigned a protocol

(e.g. BitTorrent) and it is associated with a unique stub node.

Protocols are initialized with parameters and simulation started. The simulation layer

has access to peer’s internal state, gathering information and building statistics.

5.4 Benchmarks and validation

First we conduct some test for the simulator’s network layer. We use different topologies

up to 512000 nodes. In Table 5.1 are reported the results of our benchmarks. The file

ts[number of nodes in the network] is the topology file used. For example the file t1728

specify a topology with 1728 nodes. All the benchmarks have been conducted on an

Intel core2 Duo CPU T250 @ 2.00 GHz with 2GB RAM. The Java heap size is set to

1400MB.

Both for execution time and the memory requirements our simulator performs much

better than GPS. Concerning loading time our algorithm is more efficient than Floyd-

Warshall, while for memory requirements GPS is able to load graph only up 1728
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Table 5.1: Comparison for CPU and memory requirements between GPS and the NEW

simulator. OOME stand for ”Out of memory error”

Topology Time GPS Memory GPS Time NEW Memory NEW

ts16 1.85 Ms 13 MB 1.96 ms 64 MB

ts125 91.5 Ms 78 MB 0.417 ms 60 MB

ts512 4887 Ms 126 MB 1.22 ms 61 MB

ts1728 161 s 854 MB 3 ms 63 MB

ts3375 OOME OOME 6.14 ms 66 MB

ts8000 OOME OOME 14.7 ms 71 MB

ts27000 OOME OOME 41.6 ms 81 MB

ts125000 OOME OOME 247 ms 153 MB

ts512000 OOME OOME 1322ms 428MB

nodes. Indeed the simulation load the graph, but crashes when start to run simulation

throwing a OutOfMemory exception.

To the contrary using our simulator we are able to load topology up to 512000

nodes. In Table 5.1 we show the memory usage during a simulation run. This is more

evident in Figures 5.2 and 5.3.

Previous results refer only to the loading process of the network layer. We also

examine how the memory requirements evolve during the simulation. In Figure 5.4 we

depict the heap usage by GPS and our simulator for a network with 1725 nodes, without

P2P clients, and in Figure 5.4 is showed the same scenario but with 500 simulated

BitTorrent clients. For both scenarios simulator’s requirements remain constant during

the entire running time, but also here our tools use much less heap memory than GPS.

5.4.1 Simulations validation

We validate the BitTorrent simulation comparing the simulated downloading times with

data obtained from BitTorrent client deployed on PlanetLab. In these tests the overlay

size was up to 60, and the peers join and leave the network; they alternate periods

where are connected (ON) to periods when are not (OFF). Both ON and OFF periods
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Figure 5.2: Memory requirements (in bytes) comparison between GPS and the NEW

simulator
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Figure 5.3: Time requirements (in seconds) comparison between GPS and the NEW

simulator.
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5.4 Benchmarks and validation

Figure 5.4: Heap usage comparison between GPS (up) and NEW (bottom) for a network

of 1725 nodes without BT clients

Figure 5.5: Heap usage comparison between GPS (up) and NEW (bottom) for a network

of 1725 nodes with 500 BT clients
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Figure 5.6: Dowloading times comparison between BitTorrent clients deployed on Plan-

etLab and simulated ones

are negative exponentially distributed with mean of 100 seconds. Each peer starts with

an OFF period. The file size is 32 Megabyte.

Figure 5.6 shows the comparison between the simulated downloading times and real

ones. We plot the mean and the confidence interval of 95% for simulation results and

compare these with the PlanetLab results. For network of 20, 30, 40 and 60 peers we

can see how the simulated downloading times mach with the real ones. Indeed these

latter are always included in the confidence intervals of those simulated.

5.5 Conclusion

In this chapter we have presented our simulator. We have described several improve-

ments that we have implemented respect to GPS, used in Chapter 3. We have presented

several benchmarks that show how our tool is better for both CPU and memory require-

ments. Finally we validated the BitTorrent simulation in complex network conditions

using data obtained from real clients deployed on PlanetLab.
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Chapter 6

The Toroverde protocol

In this chapter we extend the work presented in Chapter 3 and present ToroVerde, a

novel push-based P2P content distribution application exploiting the digital fountain

concept through the use of rateless codes.

We provide the protocol specification and describe the simulator and the prototype

we developed for Planetlab deployment and testing. We present results from PlanetLab

experiments that are compared with the protocol that is widely considered as the

reference system for content distribution i.e., BitTorrent. Preliminary results show

that ToroVerde has the potential to improve the BitTorrent performance up to 20% in

several scenarios for small-to-medium sized files in overlays composed of a few hundred

peers.

6.1 Protocol Description

In this section we describe the main ideas and features of the ToroVerde protocol.

In particular, the section is divided in sub-sections that address issues such as the

used overlay management criteria, the bitmap management, the flow control, the block

scheduling process, and the implementation of the rarest first block criterion.

6.1.1 Protocol overview and terminology

Since ToroVerde shares with BitTorrent several architectural characteristics (i.e., sin-

gle file centric architecture, the tracker, and the use of a torrent file for instance) we

adopt the classical BitTorrent terminology. In particular, a peer is a host that wants to
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download the shared file. The peers (or the peer) that own the complete file are called

seeds.

The tracker is the host that organizes the overlay topology as described in Section

6.1.2. Upon opening a torrent, a peer contacts the tracker and receives a list of peers

to connect to.

The torrent is a small metadata file which contains information about the file to down-

load, not the data itself.

The shared file is divided into pieces (also called chunks). Every piece is further subdi-

vided in k blocks. ToroVerde introduces linear coding at the block level. In particular,

LT codes (36), an asymptotically optimal family of rateless codes, are used on every

piece independently and the peers exchange coded blocks.

The use of coding naturally implies the adoption of a push mechanism for data distri-

bution simplifying the protocol operations for content retrieval and reconciliation.

On average, a piece can be completely retrieved when any set of k(1 + ǫ) coded blocks,

where ǫ is the overhead introduced by coding, has been received. The details on LT

coding/decoding, that are relevant for the protocol description are discussed in Section

6.1.3.

As opposed to network coding where a peer keeps combining the received coded blocks

and forwards such novel combinations, with LT codes a peer is required to have already

downloaded a piece to be able to create new coded blocks. In such a case, given the

rateless property of the code, an arbitrary large number of coded blocks can be pushed

to the neighbors.

Nevertheless, a peer can push coded blocks from incomplete pieces using the algorithm

described in Section 6.1.6. This algorithm prevents the same coded block to be sent to

the same destination more than once.

This approach aims at achieving a fast dissemination of the coded blocks by means of

a practical coding approach exploiting both the advantage of network coding and the

efficiency of the LT codes with respect to random linear coding used in the past. The

kernel of ToroVerde, constituted by a push approach for the dissemination of the coded

blocks, is completed by a set of solutions that have been derived from the BitTorrent

experience but that need to be carefully reconsidered when moving from a pull-based

to a push-based protocol.
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Table 6.1: Table of symbols

Symbol Description

P a generic peer

K number of blocks per piece

N network size

IN(P ) bitmask representing the pieces needed by P

OUT (P ) bitmask representing the pieces offered by P

Nclasses number of classes used by the rarest first algorithm

NEN number of enabled neighbors

Bitmaps with a new semantic with respect to BitTorrent are used to inform the neigh-

borhood about the pieces required by each peer and allowed us to implement the rarest

first policy for the distribution of the file pieces. Each peer selects the destinations of

the coded block with an algorithm aiming at maximizing the reciprocity and limiting

the effects of free riders.

Another remarkable feature of ToroVerde is the use UDP with TCP Friendly Rate Con-

trol (TFRC) (57). With the use of rateless codes there is no need to resend lost blocks

(like for instance TCP does) and hence UDP is the natural choice since reliability is

provided by the use of the linear coding.

6.1.2 Overlay management

Peers are organized in a non structured overlay network, whose management is per-

formed by the tracker. A peer joining the swarm contacts the tracker to receive a list

of other peer addresses within the swarm. Moreover, a peer can ask the tracker for

new addresses when the number of their neighbors falls below a threshold. The tracker

maintains the list of the participant peers, that must also send it a periodical keep-alive

message to signal their presence and to allow it to detect silent departures.

A peer establishes application level bi-directional links1 with their new neighbors by

using a two ways handshake and maintains these links by means of keep alive messages.

1Note that we avoid the term connection because we use UDP and not TCP.
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6.1.3 LT coding and decoding

Seeds and peers that have completed the download of a piece are capable of creating

new LT coded blocks for such piece. The LT encoder forms random linear combinations

of the k blocks using binary coefficients as follows.

First, the number of blocks d to be combined is randomly selected according to Robust

Soliton Distribution RSD(c, δ), that depends on two parameters c and δ; then d random

blocks out of the k available are combined through the XOR operation obtaining a coded

block.

The seed of the random number generator used to produce the LT coded block is sent

along with any coded block so as that the receiving peer is able to repeat the random

selection process according to the RSD. This avoids the explicit signalling of the block

indexes used to form the coded blocks.

Clearly, the adopted solution being independent of k is the most compact for large

values of k.

The receiving peers use the recent On the Fly Gaussian Elimination (54) algorithm to

solve the linear system of equations imposed by LT coding. This technique guarantees

low overhead ǫ i.e., percentage of coded blocks to be received in excess of k to get the

original content, and exhibits a limited computational cost per received block.

In Chapter 3 LT code have been explained more in depth.

6.1.4 Bitmap update

For each peer P a certain piece can be in three possible states:

• empty if P has not received any block of the piece;

• decoded if P has received enough coded blocks to accomplish LT decoding on the

piece;

• downloading if P has received some encoded blocks, but not enough to complete

LT decoding.

To identify the state of all pieces for a generic peer we use two bitmaps, namely the

IN and OUT bitmaps. The bit IN (i) is set to 1 if and only if the peer has not yet

decoded the i-th piece, whereas the bit OUT (i) is set to 1 if and only if the peer has

received at least one coded block of the i-th piece. Note that, the IN bitmap contains
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information about the pieces that P is looking for, while the OUT bitmap represents

the set of pieces that P can potentially share with the neighborhood.

In the ToroVerde protocol the only information exchanged between peers are by

their own IN bitmaps. The IN bitmap is initially exchanged during the connection

handshake and is updated every time a peer decodes a new piece to inform its neighbors

that it does not need more coded blocks for that piece.

Since these update messages can get lost because all the protocol messages are com-

municated via UDP, the receiver must acknowledge the update. An update message is

sent every time a peer accomplish LT decoding of a piece and at periodical intervals;

this message contains the differences between the new IN and the last acknowledged

bitmap.

The protocol can choose whether to send the list of bits to be updated or the whole

bitmap, depending on what representation is the most compact.

6.1.5 Flow control

The use of UDP together with a push mechanism requires the implementation of rate

adaptation mechanism to control the amount of coded blocks forwarded to every peer.

To this aim we adopt the classical TFRC. With this mechanism, the sender explicitly

adjusts its upload rate toward a receiver as a function of the measured rate of loss events,

where a loss event consists of one or more blocks dropped within a single round-trip

time.

According to the specification of (57) for the computation of the appropriate rate, the

sender uses the following equation:

X =
s

RTT
√

2p
3 + tRTO

(

3
√

3p
8

)

p (1 + 32p2)

,

where s is the block size in bytes, RTT is the round-trip time in seconds, p is the loss

event rate, tRTO is the retransmission timeout value in seconds (with tRTO = 4 ·RTT).

Clearly, TFRC statistics must be kept updated for every active P2P connection.

In our implementation every data message contains a simple TFRC header, with a

sequence number and the estimated RTT. Feedback messages are sent every time a

data message is received by a neighbor. These messages contain the timestamp of the
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last received data block, the amount of time elapsed between the receipt of the data

block, and the generation of the feedback report. Further details can be found in (57).

6.1.6 Block scheduling policy

The block scheduling process includes several algorithms. The first operation is con-

stituted by the selection of what we call the set of enabled neighbors, to whom a peer

will send coded blocks. This set changes over time, as explained later on in Section

6.1.8. For each enabled neighbor e the sender computes, by using TFRC algorithm,

the number of blocks that can be sent to e, denoted as b(e).

For each enabled peer e, blocks are selected from the pieces available in the OUT

bitmap of the sender and required by e according to its IN bitmap.

The ToroVerde protocol is based on a simple push protocol without reconciliation

at the receiver; clearly, the transmission of duplicated information must be avoided on

the sender side in order to save the precious upload resources of the peers.

To this end every peer can forward a coded block only once. This constraint is not

enough to guarantee that any coded block is received only once by any peer in presence

of cycles in the overlay. To avoid the propagation of the same coded block along a cycle

in the overlay we include a Bloom filters (55) in the packet header so as to compactly

represent the path already covered by any block. The ID of any destination peer is

hashed and accumulated in the Bloom filter bitmask. When selecting a new destination

the Bloom filter is used to detect if a given destination has already been added to the

filter. In the case of completed pieces the Bloom filter is put to all 0s, since new coded

blocks for all interested receivers can be generated on the fly according to the random

LT coding process.

We use a 64 bits Bloom filter with 3 hash functions. This ensures that a block is

never sent twice to the same peer. The Bloom filter permits a very compact repre-

sentation of the path followed by any coded block even if, being a probabilistic data

structure, it can generate false positives when querying for added destinations.

As a marginal note, the Bloom filter properties can be used to speed up the search

for useful blocks from pieces that a peer has partially downloaded. Given a certain

piece, a peer computes the Bloom filter of the intersection of all the coded blocks of

that piece by a simple AND operation among all the corresponding Bloom filters. The

intersection Bloom filters is used to check if a destination peer already owns all the
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blocks that the sending peer has for a given piece, thus speeding up the search process

of a useful piece.

6.1.7 Rarest first implementation

The choice of what piece to forward first is very critical, because some pieces are more

useful than others since more peers need them.

A peer can share with others only pieces represented by its OUT bitmap. These

pieces are further classified according to their popularity depending on the number of

neighbors that require them.

We define the popularity class of a piece as

class =

⌊

needing

Nneigh
· (Nclasses − 1)

⌋

where needing represents the number of neighbors that need a piece and Nneigh is the

current number of neighbors. For the computation of the value needing for each piece

the IN bitmaps of the neighbors are used. The use of the floor function implies that

the highest popularity class is populated only by pieces requested by all neighbors.

This is particularly useful for seeds, since a piece has the highest priority only if there

are no other replicas in the overlay except the original copy.

Another important aspect for an efficient distribution of the content is the ability

to increase the number of completed pieces in the overlay as quickly as possible. To

this end we introduce the idea of preferential piece; every peer associates to every of

its enabled neighbors a preferential piece and, whenever possible it tries to send to a

neighbor always blocks belonging to the same preferential piece.

For each enabled peer e a peer selects one of the most requested i.e., rare pieces in

its neighborhood, and sends as many coded blocks as possible according to the TFRC

estimate b(e), trying to make e complete the piece as quickly as possible according to

the preferential piece selection criterion.

The piece selection algorithm is sketched in the following, where PREF is the bitmap

containing the indexes of all the preferential pieces of the neighbors.

For any enabled peer e with a preferential piece pref and bitmaps IN do:

1. Initialize the set of blocks blocks(e) to be sent to e as the empty set.
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2. Initialize priority class = (Nclasses − 1).

3. Create a bitmap PC, that contains the indexes of the pieces available from OUT

with priority class.

4. Evaluate the bitmap of the pieces with priority class required by e: PIECES =

PC ∧ IN.

5. If PIECES is empty and class = 0, then return the set blocks(e).

6. If PIECES is empty, then set class = class− 1 and go to 4

7. If pref piece belongs to PIECES select it.

8. Else if the intersection PIECES ∧PREF is not empty select a random piece from

such intersection set.

9. Else select a random piece from PIECES.

10. Add blocks from the selected piece to blocks(e) until it has b(e) blocks.

11. Clear the bit corresponding to the selected piece in PIECES.

12. Update the value of PREF, indicating the selected piece as the new preferential

piece for e.

13. If blocks(e) contains less than b(e) blocks go to 5.

14. Else return the set blocks(e).

It is worth noting that the previous algorithm does not explicitly discriminate be-

tween pieces in downloading and decoded state. Nevertheless, the use of the preferential

selection strategy implicitly advantages decoded pieces. This happens because once a

decoded piece is selected from the previous algorithm, the sender continues to send

blocks of this piece until the recipient decodes it, unless the piece looses popularity.
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6.1.8 Enabled neighbors

Peers and seeds use different criteria to create the list of NEN enabled neighbors. The

peers use a mechanism that is derived from chocke/unchoke mechanism of BitTorrent.

In the ToroVerde case we compare the neighbors in terms of the number of blocks they

pushed to a given peer in the last 60 seconds. The list of enabled neighbors is refreshed

every s seconds (in our experiments we set s = 10) as follows: the worst enabled neigh-

bor is replaced with a random disabled peers. This strategy mimics the BitTorrent’s

optimistic unchoking.

In addition, the best disabled peer is swapped with the next to the worst enabled one

(if the first is is better than the last). This refresh mechanism aims at preferring collab-

orative peers giving them more chances to receive blocks and complete the download.

When an enabled neighbor quits, another one takes its place.

On the other hand, the seeds use a different policy and refresh the enabled neighbor

set less frequently. When an enabled peer completes its preferential piece, that it is

removed from the enabled set, and the one that has been disabled for the longest time

takes its place.

Each peer or seed can increase the number of enabled neighbors NEN dynamically

when for some time it is not able to provide to the neighbors as many blocks as it

should (according to the TFRC estimates) or its outgoing buffer is getting empty. On

the other hand, when the outgoing buffer is full for some time, it can decrease NEN .

It is worth pointing out that enabling and disabling decisions are local operations that

do not imply the sending of any messages in the ToroVerde push approach.

6.1.9 Protocol’s messages

Here are summarized the protocol’s messages.

6.1.9.1 TRACKER REQUEST

This is the first message, that a peer sends to the tracker, it contains:

• the hash of the file that the peer wants to download

• the ID of the peer, if it has already one
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• IN bitmask of the peer (it will be used by tracker heuristics to choose the neigh-

bors of the peer)

• OUT bitmask of that peer

6.1.9.2 TRACKER RESPONSE

It contains a list of addresses of connected peers for that file and a new ID for peers

that have not one yet.

6.1.9.3 CONNECTION REQUEST

This is the first message of the application level handshake, it is sent by the active

opener peer to the passive one. It contains the IN bitmask of the active opener. After

the elapsing of a timeout, the active opener can resend it to the other peer.

6.1.9.4 CONNECTION ACCEPT

It is the positive answer of the passive opener, and contains its IN bitmask. If it is lost

the passive peers considers that connection established, while the active one do not.

This anomaly will be resolved after some seconds because the passive opener will drop

this connection thanks to a keep-alive policy that will be explicated later.

6.1.9.5 CONNECTION REFUSE

This is sent in response to a CONNECTION REQUEST when the passive peer has

reached its maximum connection number so refuses a new one.

6.1.9.6 ALREADY CONNECTED

This is sent in response to a doubled CONNECTION REQUEST and means that the

passive peer considers that connection already on, so it sends its IN bitmask, and the

other peer can complete the handshake.

6.1.9.7 CLEAR BM

IN bitmasks have initially all the bits set, because a peer needs all the pieces. Every

time it decodes a piece, it clears the corresponding bit. This message contains the bits

to be cleared. It is sent when a peer decodes a pieces, when it keeps receiving blocks
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for a decoded pieces. There is a periodical check that can send again this message if a

neighbor has not confirmed to have cleared that bits. It can be sent as a list of bits or

as a bitmask, depending to which representation requires less bytes.

6.1.9.8 CLEAR ACK

When a peer receives a CLEAR BM message, it must inform the sender that it has

successfully cleared those bits, so the sender keep track of it and avoids sending useless

CLEAR BM messages.

6.1.9.9 KEEP ALIVE

These messages are exchanged by peers to confirm their presence in the network and to

make the receiver reset the neighbor timeout for the sender. When a neighbor timeout

elapses, that peer is considered disconnected.

6.1.9.10 TRACKER KEEP ALIVE

This message have the same use of the previous, but it is addressed to the tracker, with

lower frequency. It can also be used to require new peers’ address when the number of

neighbors of a peer falls below a certain threshold.

6.1.9.11 BLOCK

This message contains a header and one encoded block. The header is made by these

fields:

• Piece

The piece this block belongs to.

• Seed

It is the seed used by the sender to initialize the random generator to encode

the block. So the receiver can do the same and obtain the same values without

explicitly receiving them from the sender.

• Bloom filter

Contains in a compressed format, the list of the peers that have already seen this

packet. This is used to avoid to send twice the same block to the same peer.
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6.1.9.12 TFRC FEEDBACK

Since we use UDP, we use a rate control algorithm, namely the TFRC. So when a peer

is receiving blocks from another one, it have to send it feedbacks to limit the sending

rate.

6.1.9.13 QUIT

This message is sent when a peer leaves the network, and it informs others to delete it

from their neighbor lists. The elapsing of the neighbor timeout have the same effect of

the receiving of a QUIT message, and a QUIT message is sent to the elapsed peer, in

the case it is already in the network.

6.1.10 ToroVerde versus BitTorrent

To sum up here we summarize the main differences between ToroVerde and the stan-

dard BitTorrent protocol. Clearly, the most remarkable difference is the introduction

of rateless codes in a push based protocol. Using rateless codes peers are able to share

partially downloaded pieces, while BitTorrent can starve waiting for completion of a

piece. We have introduced the concept of priority class in the rarest first policy, avoid-

ing bottlenecks that can arise when all peers try to download the same piece, i.e. the

rarest, at the same time.

Both protocols implement a tit-for-tat strategies in order to prevent free riding and

spreading the content more efficiently, but the number of connections opened by ToroVerde

can scale according to the bandwidth estimates obtained by TFRC.

6.2 PlanetLab prototype and simulator description

In this section we describe implementation details for the C++ prototype we developed

for deployment and testing on PlanetLab. We also present the software architecture for

the simulator we developed. The simulator fully reproduces the protocol specifications

and it is thus very accurate.
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6.2.1 PlanetLab architecture

Here we briefly describe the ToroVerde’s implementation architecture, a C++ proto-

type composed by a tracker and several peers. The tracker keeps track of connected

peers and gives lists of addresses to the joining peers. The addresses returned by the

tracker are selected at random from the whole list of connected peers. The architecture

of the peer client is organized in several modules that carry out the various tasks. In

the following we give a brief description of the most important modules.

We implement an outgoing queue that stores the messages sent to neighbors. This

is an intermediate layer over UDP transport that organizes messages in 2 queues with

different priority. This allows us to give a higher priority to small control messages with

respect to larger coded data packets. We employ this intermediate layer as a mean to

control the upload rate as well.

All planned actions are scheduled using an events list with corresponding timeouts. A

dedicated thread is automatically executed each time a scheduled event occurs. Events

can also be delayed or removed. Several functions of the protocol like keep alive mes-

saging, retry policies and the refresh of IN bitmap towards neighbors are managed by

means of scheduled events.

All the incoming messages are received by a thread that listens to the UDP sockets,

parses the message payload and schedules the corresponding events. Input/output disk

operations are all performed from the file manager module, that handles temporary

files and updates the IN and OUT bitmaps. It maintains all received blocks and it is

responsible for LT decoding. It also updates the popularity classes used by the rarest

first algorithm. Finally, the set of known neighbors is maintained by the neighborhood

manager. It is responsible for the choice of how many and which peers to enable.

6.2.2 Simulator of ToroVerde

We use the discrete-event simulator described in Chapter 5 for implements both BitTor-

rent and ToroVerde protocols. The simulation of ToroVerde is accurate and implements

all protocol’s strategies.

We verify the simulation’s validity comparing these with the tests carried out on

the PlanetLab in the same way we used for BitTorrent in Chapter 5. In these tests
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Figure 6.1: Donwloading times comparison between PlanetLab ToroVerde’s clients and

simulated ones

the overlay size was up to 60 and the file dimension 32 Megabyte. The validation was

conducted in the second scenario described in the previous section.

Figure 6.1 shows the comparison between the simulated downloading times and real

ones. We plot the mean and the confidence interval of 95% for simulation results and

compare these with the PlanetLab’s results. For network of 20, 30, 40 and 60 peers we

can see how the simulated downloading times’ measures fit with reals, and these latter

are included in the confidence intervals.

6.3 System architecture

We developed a prototype in C++, composed by a tracker and several peers. The

tracker is very simple, since it has only to keep track of connected peers and to give

lists of addresses to the joining peers. The choice of which address include in the list

is done at random. Peers are organized in several modules that carry out the various

tasks.
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6.4 Experimental results

6.3.1 Outgoing queue

This is an intermediate layer over UDP transport that organizes messages in 2 queues

with different priority. This allows to send small control messages before the bigger

ones, thus limiting their delay and to limit upstream rate. Indeed the task to takes

messages from it and put them in the UDP socket is performed by thread that works

at a fixed rate.

6.3.2 Event list

All timeouts and planned actions are considered as events. They are scheduled in

an event list, and automatically executed by a dedicated thread. Events can also be

delayed and deleted. They are used to manage several aspects like keep alive and retry

policies and the refresh of IN bitmasks towards neighbors. It is performed every time

a piece or when the timeout expires.

6.3.3 Message receiver

There is a thread that listens to the UDP sockets, parses messages and executes the

correspondent actions.

6.3.4 File manager

It performs all I/O disk operations, manages temporary files and updates IN and OUT

own bitmasks. It maintains all received blocks and it is responsible for the decoding of

pieces. It also keeps up to date the popularity classes used by the rarest first algorithm.

6.3.5 Neighborhood manager

This module maintains the set of known neighbors and it is responsible for the choice

of how many and which peers to enable.

6.4 Experimental results

In this section we present preliminary results we obtained from comparing ToroVerde

and BitTorrent. We considered several scenarios characterized by different arrival and
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Parameter Value

Block size 1210 Bytes

Blocks per piece (k) 1000

c, δ 0.01

Max connection 40

Min connection 2

Connection timeout 25 s

Keep alive timeout 8 s

Buffer map refresh timeout 2 s

Initial NEN 8

Min NEN 4

Max NEN 20

Table 6.2: System parameters for ToroVerde.

departure patterns and peer churning. We conducted experimental results on Plane-

taLab for small sized overlay networks and resorted to simulations for medium-sized

systems. Simulation results have been validated against measured performance on

PlanetLab; at the same time, the simulator allowed us to optimize some of the system

parameters for ToroVerde.

6.4.1 System parameters and scenarios

The experiments we carried out on PlanetLab required the definition of several system

parameters for ToroVerde. The simulator we developed supported the optimization of

several of them and led us to consider the values reported in Table 6.2 . The default

client settings have been used for BitTorrent.

We considered 32MByte and 100MByte files to be distributed to N peers by one

seed. It follows that ToroVerde segments the file in 28 and 87 pieces while BitTorrent

uses 128 and 400 pieces (BitTorrent default settings for piece size is 256KByte) which

are enough to exploit the benefits of the rarest first algorithm and piece distribution

entropy. The number of blocks per piece in ToroVerde has been set to k = 1000 to

obtain low overhead of LT codes. Furthermore, the block size (1210 Bytes) has been

set to allow a block to be transmitted in a single UDP datagram.
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Each peer starts to download the file using an upload bandwidth that is limited to

20KB/s in order to perform a fair comparison with the BitTorrent client that shares

this limitation. This limitation is also useful to reduce congestion of PlanetLab nodes

that in turn helps to minimize measurement problems.

In each scenario we consider we start with an overlay network containing a tracker

and the initial seed, then we assume that up to N peers join the overlay network to

download the file: the performance index we consider is the average time to complete

the file transfer and the communication overhead computed over the total number of

received bytes.

We consider three scenarios:

1. peers join the overlay network and cooperate until all peers completed their down-

load. The arrival pattern is as follows: peers immediately join the overlay network

at the startup representing a flash crowd arrival pattern. We denote this scenario

as S1.

2. the same as in S1 but on the startup every peer waits for a random initial delay

that is distributed according to a negative exponential probability with mean of

200 seconds (S2).

3. peers join and leave the network repeatedly alternating periods where they are

connected (ON) and periods when they are not (OFF). Both ON and OFF periods

are random; they are distributed according to a negative exponential probability

with mean of 100 seconds. Peers start with an OFF period, i.e., they join the

overlay network after an initial delay, and the initial seed remains for its whole

lifetime in the overlay network. The arrival and departure pattern we consider is

one with a high peer churn (S3).

6.4.2 Results from PlanetLab

The first set of results we present are obtained using a small-sized overlay network

with N = 40, 60 peers. Table 6.3 shows the results for both ToroVerde and BitTorrent

protocols in all scenarios we defined. In Table 6.3 average completion times and the

estimated 95% confidence intervals are shown for BitTorrent and ToroVerde, along with

the gain (in percentage) yielded by the latter protocol. We observe that ToroVerde is
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always able to reduce the average completion time of peers. The best performance are

obtained in the case of stable network (scenarios S1 and S2): in this case the reduction

ranged from by 16% to 22% for a 32MB file while it ranged from 8% to 11% for the

100MB case. In the scenario S3 the advantages of ToroVerde are less evident; in fact,

ToroVerde best performance is for the 32MB case with N = 40 where the reduction is

equal to 6%.

This advantage is due to the ability of peers to spread also pieces in the downloading

state that helps especially in the early stages of the file distribution; on the contrary,

BitTorrent has to wait for completed pieces in order to forward data to neighbors.

Nevertheless, ToroVerde incurs in a slightly higher than BitTorrent communication

overhead; in particular, in the scenarios S1 and S2 we report a total overhead of about

4% in the 32MB case and about 3% in the 100MB case. BitTorrent is slightly more

efficient: its overhead is 1.2% for the 32MB case and 0.8% in the 100MB case. The

higher communication overhead in ToroVerde is because each UDP datagaram carrying

a coded block must also contain some header bits for:

• TFRC signalling and data;

• seed of the random number generator used to select the packets combined in the

LT coded block;

• Bloom filter.

The communication overhead in ToroVerde where the TFRC extra bits are filtered out

from the total number of received bytes is equal to about 1.7%. It is worth pointing

out that for BitTorrent TFRC functionality is not required because rate is shaped by

means of TCP, that in turns requires higher protocol overhead than UDP. Furthermore,

ToroVerde overhead can be reduced by using a shorter Bloom filter for each coded block

or increasing the block size so as to reduce the overhead incurred by the header bits.

6.4.3 Simulation results

Using simulations, we conducted experiments in the same scenarios described for Plan-

etLab, scaling up to 300 peers. We believe that this size for the overlay is realistic;

indeed, previous research showed that a very large number of BitTorrent swarms are

very small-sized with average measured size of a few hundreds peer.
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Table 6.3: Average completion times (with 95% confidence interval) measured on Plan-

etLab.

40 peers 60 peers

scenario BitTorrent ToroVerde Diff BitTorrent ToroVerde Diff

32MB file size

S1 2380± 5.37 1889± 8.4 −20% 2437± 3.1 1922± 7.9 −21%

S2 2082± 58.9 1750± 69.1 −16% 2324± 37.2 1821± 66.6 −22%

S3 1829± 61.1 1747± 58.1 −4% 1867± 77.0 1759± 59.2 −6%

100MB file size

S1 6137± 41.48 5661± 87.31 −8% 6510± 15.5 5769± 11.9 −11.4%

S2 5912± 221.08 5357± 380.99 −10% 6135± 186.6 5606± 16.6 −8.6%

S3 5452± 143.6 5179± 72.23 −5% 5721± 134.22 5492± 201.23 −4%

Table 6.4: Average completion times (with 95% confidence interval) for simulated proto-

cols.

scenario 100 peers 300 peers

BitTorrent ToroVerde Diff BitTorrent ToroVerde Diff

32MB file size

S1 2566± 44 1931± 6.58 −24% 2670± 32.3 2202± 22.7 −17%

S2 2317± 36.5 1816± 7.7 −22% 2412± 31.4 2005± 19.5 −17%

S3 1874± 22.46 1712± 8.8 −9% 2036± 15.8 1766± 4.5 −13%

The results for both BitTorrent and Toroverde are reported in Table 6.4 for the

32MB case. The simulation results confirm what we experimentally observed on Plan-

etLab. The reduction on the average download time ranges from 17% to 22% in scenar-

ios S1 and S2. Simulation also reveals that in larger overlays ToroVerde yields larger

gains also in the high churn scenario S3.

6.5 Conclusions

In this chapter we have presented a push-based P2P content distribution application

exploiting the digital fountain concept through rateless codes. We defined a complete
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specification of the ToroVerde protocol and provided a detailed description of all the

employed strategies. We developed both a detailed simulator and a complete prototype

that we used to perform a fair comparison between ToroVerde and BitTorrent. Early

results suggest that average download delay can be reduced by ToroVerde in several

realistic scenarios for small-to-medium sized files in overlays composed of a few hundred

peers.
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Chapter 7

P2P protocols and Internet

Service Providers: a game

theoretical approach

In this chapter we propose a game theoretic framework to help the design of tech-

niques promoting the ISP cooperation in P2P streaming platforms and aiming at the

minimization of inter-ISP traffic.

We first introduce the ISP game as two-ISP game and for this simple scenario we

discuss the Nash equilibrium, the Pareto optimality, and a fairness criterion to refine

the equilibrium points. Then we introduce the Evolutionary Game Theory model of

the ISP game that allows us to investigate large scale systems. Finally we present a

simulation based investigation that complements the theoretical studies we present.

7.1 Internet Service Provider awarness

In P2P applications, the participating nodes (or peers) form an overlay network which

is largely agnostic on the underlying IP network. The overlay/underlay topology mis-

match affects the performance of existing P2P platforms that can generate large vol-

umes of unnecessary inter-ISP network traffic.

This increases the cost associated with P2P traffic for individual Internet Service

Providers (ISPs) which face the problem to manage a vast amount of unnecessary

inter-domain traffic (98). Such traffic level can cause congestion on valuable inter-ISP
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links and more generally an overall performance degradation in an ISP network.

In this chapter we focus the attention on the role of the ISPs. In particular, we do

not consider them as simple providers of network connectivity but as the main players

for supporting P2P streaming platforms.

We can say that the P2P streaming is traditionally a game among two different kinds

of players: the content provider and the users/peers. The existing proposals basically

share the idea of helping one of these players, or in some case both of them, by pro-

viding information related with the underlying IP network. We move a bit further by

introducing a third type of players, i.e, the ISPs. In our study the ISPs become active

players of the P2P streaming by shifting their role from passive network providers to

active game players that are able to modulate the network resources they require/offer

to the P2P streaming platform. In particular, we propose a game theory framework

to represent the ISP behavior and then, by using this framework, we investigate the

characteristics of the interactions among the ISPs.

Closest to our proposal are the works (106) and (100), that study the need to lo-

calize P2P file sharing traffic within the ISP boundaries. The paper (106) proposes an

overlay structure composed by mTrackers (similar in the spirit to the one described

in Section 7.4) aiming at minimizing transit ISP costs. The paper (100) describes an

ISP-friendly variant of BitTorrent to reduce the cross-ISP traffic.

Another paper that is related with the technique proposed in this chapter is (99). We

share with this paper several model assumptions. In particular, we use the same fluid

assumption whose consequences are that the peers (and also the streaming server), are

able to share their upload among all the participant peers. That is, the stream is seen

as a fluid that can be split in a continuous manner among all the requesting peers.

7.2 P2P Streaming: Peers and ISPs

In this section we describe the basic features of P2P streaming systems we address.

Table 7.1 summarizes the notation used in this chapter.

The video originates from a server node; denote by cs (in chunk per second (cps))1

the streaming server upload capacity. Let r denote the rate of the video that has to

1In the following we express all the measures in terms of chunk per second (cps).
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N Set of peers in the system (with |N | = n)
r Video streaming rate (in cps)
cs Streaming server upload capacity (in cps)
cj j-th peer upload capacity (in cps)

Mi i-th partition of peers, with i = 1, . . . , k, and |Mi| = mi

Ii Aggregate rate at which the stream flows into Mi

Oi Aggregate bandwidth resource that partition Mi offers to the system
αi Locality control parameter for the i-th partition Mi

ui(·) Payoff function for the i-th ISP

Table 7.1: Notation

be streamed to all participating peers. We assume a churnless system. Let N denote

the set of peers in the system (with |N | = n), and with cj the upload capacity of j-th

peer, for j = 1, . . . , n. The aggregate bit rate out of the server cannot exceed cs, while

the aggregate bit rate out of the j-th peer cannot exceed cj , for j = 1, . . . , n.

We use the definition introduced in (99), i.e., when all participating peers receive

the video at rate r, we say that the system provides universal streaming. The system

can perform universal streaming if it is possible to copy and route the bits so that all

peers receive fresh bits at rate r. On the other hands, when the system is not providing

universal streaming, we say that it works in degraded service mode. The following

result presented in (99) defines the conditions that allow the universal streaming.

The maximum achievable streaming rate, rmax, is given by

rmax = min
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. (7.1)

If the parameters are such that rmax ≥ r the system is providing universal streaming.

Remarks. It is important to point out that the previous result is based on the follow-

ing model simplifications: i) fluid assumption; ii) complete connectivity ; iii) churnless

system. The first assumption states that the stream is seen as a fluid and hence it can

be divided among an arbitrary number of peers (in a continuous manner). Obviously

this is a simplification because the stream is divided into a discrete number of packets
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(or chunks). The second assumption states that the P2P overlay topology is a com-

pletely connected graph. The third assumption concerns the peers activity, i.e., the

peers do not alternate between active and in-active states but they are always active.

Since we use Theorem 7.1 in many derivations we obviously inherit the used model

simplifications. In Section 7.4 we discuss these simplifications, and their effects.

Let M1, M2, . . . , Mk be a partition of the set N , i.e.,

k
⋃

i=1

Mi = N , and for any i and

j (with 1 ≤ i, j ≤ k), Mi ∩Mj = ∅. With mi we denote the size of the i-th partition.

A partition can be, for instance, an ISP, or an Autonomous Systems. Let Mi ∈ N be

a partition that does not include the streaming server. If the partition is an ISP, the

connection point between the ISP and the remaining part of the set of peers, can be

the link (or the links) connecting the ISP networks’ to the rest of the Internet.

The aggregate rate that flows into the partition, denoted by Ii, is defined as the

sum of all the contributions copied from peers that do not belong to Mi towards peers

of Mi. To simplify the derivations we assume that the upload capacity of all the peers

in Mi is equal to ci.

If we denote by rl the average rate at which a generic peer pl ∈ Mi receives the

streaming, we can write

rl =
Ii

mi
+ wi,

where Ii

mi
is the average contribution that pl receives from peers outside of Mi, and wi

is the average contribution that pl receives from peers of Mi.

If the system is providing universal streaming then rl ≥ r and hence Ii ≥ m(r−wi). To

simplify the derivation we assume that the streaming system is so efficient that rl = r,

hence we have that

Ii = mi(r − wi). (7.2)

To derive wi we focus on a generic peer of the partition (that we call tagged peer), and

we compute its average upload rate directed towards other peers of the same partition.

Let focuses the attention on the possible destination peers that can be ”served” by the

tagged peer. According to the original assumptions of the Theorem 7.1, i.e., completely

connected overlay topology, this set corresponds to to the entire set of peers (without

the tagged peer to avoid self loops). In our derivations we can relax this assumption

and this set can be a proper subset of N . Let N ′ ⊆ N (with |N ′| = n′) be the set of
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all the neighbors of tagged peer and denote by M ′
i = N ′ ∩Mi, the peers of N ′ that

belong to the partition Mi (with |M ′
i | = m′

i). If we assume that the destination peers

are selected with a uniform probability distribution among the whole set of peers N ′

we can write

wi = ci
m′

i

n′
.

In the previous equation it can happen that wi > r, and in this case Equation (7.2)

assumes negative values. To avoid this we assume that

wi = min

{

ci
m′

i

n′
, r

}

, (7.3)

that is, the average contribution that a peer may receive from the other peers belonging

to the same partition cannot exceed the streaming rate r. The definition of Ii implies

that if the sum of all the contributions from peers outside of Mi is smaller than Ii, then

there are peers of Mi that receive the streaming rate at rate smaller than r!

Lets Oi the aggregate amount of bandwidth that partition Mi offers to the system.

This is defined as the sum of all the possible contributions that the peers of Mi can

offer to peers outside of Mi, i.e.,

Oi = mi(ci − wi). (7.4)

It may happen that the actual aggregate rate at which the stream flows out of partition

Mi is smaller that Oi. This occurs when the amount of resources offered by Mi is greater

than the that required by the system.

Furthermore, if the streaming server belongs to partition Mi this must be ac-

counted by adding the server contribution to rl. If we use the same assumptions

of (99) (i.e., fluid assumption and completely connected overlay topology), the con-

tribution of the streaming server per peer is equal to cs/n, and from this it fol-

lows that rl = (Ii/mi) + wi + (cs/n). Equations (7.2) and (7.4) turn out to be

Ii = mi(r − wi − (cs/n)) and Oi = mi(ci − wi) + (n−mi)(cs/n).

In Figure 7.1 we present some numerical results that illustrate the impact on the re-

quired bandwidth of several different parameters (e.g., the partition size mi and the

upload capacity ci). For these results we assume that wi = ci(mi − 1)/(n − 1). In

particular, the left plot of this figure shows three curves that represent the values of

the ratio Ii as a function of mi computed for different values of the upload capacity of

89



7. P2P PROTOCOLS AND INTERNET SERVICE PROVIDERS: A
GAME THEORETICAL APPROACH

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5000  10000  15000  20000  25000

I i

mi

ci=r
ci=2*r
ci=4*r

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  5000  10000  15000  20000  25000

O
i

mi

ci=r
ci=2*r
ci=4*r

Figure 7.1: Ii (left plot) and Oi (right plot) as function of mi for different values of

upload capacity of the peers belonging to the partition, with r = 1.0 and n = 30, 000 (note

the effects of the min operator on the curves of the right plot)

the peers inside the partition. The rightmost figure shows the corresponding plot for

the values of Oi. For these derivations we assumed that the streaming server does not

belong to Mi.

The derivations of Ii and Oi are based on the assumption that the peers do not

use any proximity information. A possible criterion that enforces locality among the

peers belonging to Mi could be accounted by increasing the average contribution that

a generic peer pl ∈Mi receives from peers of the same partition. This can be obtained

by defining

wi(αi) = wi + (ci − wi) · αi, (7.5)
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where αi is a parameter that controls the locality. That is, with αi = 0 we represent

the random choice, i.e., there is no locality at all, and wi(αi) = wi. With αi = 1

represents the extreme case where all the chunks leaving the peers of Mi remain inside

the partition. We can derive expressions for Ii and Oi that account for the locality, i.e.,

Ii(αi) = mi(r − wi(αi)). (7.6)

and

Oi(αi) = mi(ci − wi(αi)). (7.7)

If the streaming server does not belong to the partition Mi, Ii(αi) cannot be arbitrarily

small (e.g., zero) because to ensure that all the peers of Mi receive the streaming rate

(e.g., fresh bits) at rate r we must assume that Ii(αi) ≥ r. If this does not hold, i.e.,

aggregate rate at which the stream flows into Mi is smaller than the streaming rate r,

we have that the arrival rate of ”fresh bits” to Mi is not sufficient to ensure that the

peers in the partition receive the stream at rate r. This can be also formally verified

by using a version of Theorem 7.1 restricted to the partition Mi. In particular, we can

write that the maximum streaming rate, rmax,i that can achieved by the peers belonging

to partition Mi is given by

rmax,i = min

{

Ii,
Ii + mi · ci

mi

}

Note that in the previous equation the connection point plays the same role played in

Equation (7.1) by the streaming server. We can easily note that if, in the previous

equation, Ii < r, this implies that rmax,i < r. From this we must add a constraint on

the possible values for αi, i.e.,

αi ≤
(mi − 1)(r(n− 1)− ci mi)

ci mi(n−mi)
.

In Figure 7.2 Ii(αi) and Oi(αi) are shown. We can see that the curves presented in

Figure 7.2 allow one to point out the effects of the locality parameter αi on both Ii(αi)

and Oi(αi). In both cases we observe that enforcing the locality decreases Ii(αi) and

Oi(αi).

From the simple derivations we made we can note that:

• Enforcing the locality is useful to reduce the required bandwidth. From the

technical side there are several possible solutions to enforce the locality (see for

instance (105) or (108)).
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Figure 7.2: Ii(αi) (left plot) and Oi(αi) (right plot) as function of mi with r = 1, ci = 2∗r,

and n = 30, 000 for different values of αi

• From the ISP side the optimal solution occurs when Ii(·) = r and Oi(·) = 0. This

can be obtained by increasing the ISP redirection capabilities and dropping all

the communications from peers that belong to the ISP towards peers that are

outside (e.g., bandwidth throttling). It is clear that this extreme ISP free-riding

behavior is not ”socially” acceptable.

Note that this ISP view of the P2P streaming system originates questions related

with the role of free-riders, the cooperation among the participant ISPs, and so

on. These questions are similar to those originated in P2P systems (file sharing

and streaming) at peers’ level; in the next section we will address these similarities

and/or differences.
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The ISPs point of view. According to the definition, Ii (for i = 1, . . . , k) is the

least value for the aggregate rate that Mi must receive from outside such that its peers

receive a streaming rate at least equal to r. When the system is providing universal

streaming, the real aggregate rate may be greater than Ii because the streaming rate

received by each peer can be greater than r (this can be due to the overhead of the

streaming platform, to duplicate chunks, and so on). On the other hand, if the current

aggregate rate is smaller than Ii there are peers of the partition that do not receive

a streaming rate at least equal to r. Obviously, with a significant churn the current

aggregate rates are not constant but vary according to the overlay dynamics. If we

assume that the streaming server belongs to the ISP-1 we can state that the system

can provide universal streaming iff

m1(c1 − w1) + (n−m1)(cs/n) +
k

∑

i=2

Oi ≥ m1(r − w1 − (cs/n)) +
k

∑

i=2

Ii

(n−m1)
cs

n
+

k
∑

i=1

Oi ≥
k

∑

i=1

Ii −m1
cs

n

cs +

k
∑

i=1

Oi ≥
k

∑

i=1

Ii. (7.8)

It is interesting to observe that the previous inequality states that the universal stream-

ing is possible if the amount of available resources (resources offered by the ISPs and

offered by the streaming server) is greater than or equal to the amount of requested

resources (by the ISPs)!

7.3 Game Theory Formulation

In this section we present several game models that involve peers and ISPs. In Section

7.3.1 we first introduce some simple models where the players are the peers of the

P2P streaming platform. These models allow us to highlight peculiarities that will be

also helpful to understand the ISP game models of Section 7.3.2. In Section 7.3.3 we

introduce an analysis of the ISP game based on the Evolutionary Game Theory.

7.3.1 Peer Game Model

In this section we investigate the interactions among peers in a P2P streaming platform.

We start with a simple scenario with two peers and the streaming server. We denote by
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Figure 7.3: Set of values of O1 and O2 that allow universal streaming (left plot); set of

positive payoff values (right plot)

c1, c2 the upload capacity of the peers while cs is the upload capacity of the streaming

server. We assume that r < cs < 2r, i.e., the upload capacity of the streaming server

is such that the two peers cannot be served only by the server but the cooperation

between the peers is necessary.

In the following we denote by O1 (resp. O2) the maximum rate of bits from peer 1

towards peer 2 (resp. from peer 2 towards peer 1). Obviously we have that 0 ≤ Oi ≤ ci,

for i = 1, 2. We can say that the peer i (for i = 1, 2) uses Oi to modulate its cooperation

level. With these assumptions Theorem 7.1 states that both the peers receive the

streaming at rate r (i.e., the system is providing universal streaming) iff

O1 + O2 + cs

2
≥ r.

We can use this condition to define the payoff function of the two-player game. Player

i (i = 1, 2) may receive chunks both from the streaming server and from the other

peer. We define the cost of peer i equal to Oi. If the condition of Theorem 7.1 are

such that the system is providing a universal streaming (i.e., rmax ≥ r) then i receives

a gain1 of g. The term g quantifies the user satisfaction/un-satisfaction. That is, the

peer receives a gain of g (resp. −g) if O1+O2+cs

2 ≥ r (resp. O1+O2+cs

2 < r). If (O1, O2)

1Without loss of generality we can assume that g is expressed in cps (chunk per second).
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7.3 Game Theory Formulation

is the action profile, we can then define the payoff as

u1(O1, O2) = −O1 + g · 1
(

O1 + O2 + cs

2
≥ r

)

,

u2(O1, O2) = −O2 + g · 1
(

O1 + O2 + cs

2
≥ r

)

(7.9)

where 0 ≤ O1 ≤ c1 and 0 ≤ O2 ≤ c2 and

1
(

O1 + O2 + cs

2
≥ r

)

=

{

1 if O1+O2+cs

2 ≥ r
−1 otherwise

The above payoff function consists of two terms: the first term denotes the cost (ex-

pressed in terms of bandwidth) that user i pays, while the second terms denotes the

gain of user i. Note that the gain depends on the quantity of available bandwidth

resources i offers, on the quantity offered by the other peer, and on the quantity of

resources offered by the streaming server. The form of this dependency is defined by

Theorem 7.1.

It is reasonable to assume that O1, O2 < g, since users will only cooperate with

each other if cooperation can benefit both users and gives them positive payoffs. Let

u(O1, O2) = (u1(O1, O2), u2(O1, O2)) be the payoff profile. Figure 7.3 (left plot) shows

the set of values for O1 and O2 that allow the universal streaming (gray region), while

the right plot shows the region with positive payoff values (gray region of the right

plot).

We can see that all the values of O1, O2 that are on the segment between (0, 2r−cs)

and (2r − cs, 0) in Figure 7.3 are Nash equilibrium points (NE). In particular, if we

assume that (x, y) is a point on this line segment and u(x, y) is the corresponding

payoff profile we have that for any h > 0

u1(x, y) = − x + g

u1(x + h, y) = − x− h + g and u1(x, y) > u1(x + h, y)

u1(x− h, y) = − x + h− g and u1(x, y) > u1(x− h, y).

Since the same type of derivation can be done for u2(x, y), we can then conclude that

any value (x, y) on the line segment between (0, 2r− cs) and (2r− cs, 0) is a NE point.

On the other hand, we must point out that not all the payoff profiles on this line

segment are ”socially” acceptable. Note that there are points such as O1 = 0 and
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O2 = 2r − cs (and vice versa). In other words the NE condition does not guarantee

a fair contribution of the two peers. As first effort we try to refine these equilibrium

points by using the Pareto optimality (103), and (104). In particular, we know that a

payoff profile u(O1, O2) is Pareto optimal if there is no other payoff profile u(O′
1, O

′
2)

such that u1(O
′
1, O

′
2) ≥ u1(O1, O2) and u2(O

′
1, O

′
2) ≥ u2(O1, O2). Pareto optimality

means that no one can increase his/her payoff without degrade other’s. It is clear from

Figure 7.3 that all the values on the line segment between (0, 2r − cs) and (2r − cs, 0)

are Pareto optimal. Hence, not even the Pareto optimality allows us to discriminate

among the values on the segment (0, 2r − cs) and (2r − cs, 0).

We postpone the introduction of the discrimination criterion that enforces a fair sharing

among peer 1 and peer 2 after the discussion of the case when the bandwidth requests

of the two peers are different.

It is worth to point out the difference between the peer game model we presented

here and the one proposed in (101). In particular, the model presented in this reference

assumes that the peers may have only two different cooperation levels, i.e., they can

choose a non-cooperative or a cooperative behavior. Our model instead allows us with

a ”continuous range” of cooperation level (i.e., Oi may vary from 0 up to ci). Thank

to this continuous modulation of the cooperation level, the peer level model proposed

here allow interesting studies that cannot be done with the models proposed in (101).

We now investigate a version of the game that is slightly different from the previous

one. The only difference in this case is that the two peers have different rate requests,

i.e., the peer 1 requires a video rate equal to r1 and the peer 2 a rate equal to r2, with

r1 6= r2 (e.g., r1 > r2). This version of the game could represent a P2P platform that

uses a Multiple Description Coding Technique or Scalable Video Coding (96) and then

the peers may have different rate requests. In this game c1, c2, and cs are the upload

capacity of the peer 1, of the peer 2, and of the streaming server respectively, while

O1 and O2 are the maximum rate of bits from peer 1 towards peer 2, and from peer 2

towards peer 1. We assume that r1 < cs < r1 + r2. That is, the upload capacity of the

streaming server is not sufficient to serve the two peers in a client-server manner (right

most inequality), and on the other hand, if the left most inequality does not hold, there

is no hope of having universal streaming (in this case the condition holds iff peer 1

receives the streaming at least at rate r1 and peer 2 at least at rate r2). With these
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assumptions we have that the P2P streaming platform can offer a universal streaming

iff

O1 + O2 + cs ≥ r1 + r2.

We can define the payoff as

u1(O1, O2) = −O1 + g · 1 (O1 + O2 + cs ≥ r1 + r2) ,

u2(O1, O2) = −O2 + g · 1 (O1 + O2 + cs ≥ r1 + r2)

It is easy to see that we can repeat all the reasoning we made for the case with r1 = r2.

In particular, we have that all the values on the line segment between (r1 + r2 − cs, 0)

and (0, r1 + r2 − cs) are NE and also Pareto optimal. Also in this case we need a

criterion that allows us to discriminate among the values on the line segment between

(r1+r2−cs, 0) and (0, r1+r2−cs). In particular, we are interested in a fairness criterion

that allocates the Oi-s proportionally to the amount of required resources. A similar

fairness criterion has been proposed in (97) where it has been called effort fairness. A

version of this criterion for our game provides us the following constraint

O1

r1
=

O2

r2
.

With some simple algebraic manipulation we can derive that the values of O1 and O2

satisfying the previous condition are

O∗
1 =

r1(r1 + r2 − cs)

r1 + r2
and

O∗
2 =

r2(r1 + r2 − cs)

r1 + r2
.

Furthermore, it is easy to see that when r1 = r2 = r we have that O∗
1 = O∗

2 =

2r−cs

2 . Note that when r1 = r2 the effort fairness criterion we use corresponds to the

proportional fairness used in (101).

7.3.2 ISP Game Model

In the following we consider an ISP version of the game where the players are the k

ISPs. We start with the simple scenario with two ISPs, later on we generalize to the

case with an arbitrary number of interacting ISPs. Without loss of generality we can

assume that streaming server is in the ISP n. 1, i.e., partition M1.
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∗
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O
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O
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1
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2
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Figure 7.4: Set of values of O1 and O2 that allow universal streaming for the two ISPs

system

By using Inequality (7.8) we can define the payoff function of the two ISPs game as

follows:

u1(O1, O2) = −O1+g · 1 (cs+O1+O2 ≥ I1+I2)

u2(O1, O2) = −O2 + g · 1 (cs+O1+O2 ≥ I1+I2) , (7.10)

If m1 and m2 and c1, and c2 are the number of participant peers and the upload capacity

in the ISP-1 and ISP-2 respectively, we have that O1 ≤ c1 ·m1 and O2 ≤ c1 ·m2.

It is worth noticing that cs does not represent a variable in Equation (7.10). That is,

each ISP may vary the aggregate bandwidth that the peers of the ISP send to external

peers, but the upload bandwidth of the streaming server cs is fixed (or in other words

it not part of the ISP game we are considering).

Figure 7.4 shows the set of values for O1 and O2 that allow the universal streaming

for the two ISPs (gray region). By using the same arguments used for the peer level

games we can see all the values on the segment line between the values (I1 + I2− cs, 0)

and (0, I1 + I2− cs) are NE points and Pareto optimal. We can refine these equilibrium

points by means of the effort fairness criterion

O1

I1
=

O2

I2
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and then we have

O∗
1 =

I1(I1 + I2 − cs)

I1 + I2
and O∗

2 =
I2(I1 + I2 − cs)

I1 + I2
. (7.11)

The previous equations establish the relations among the several different quantities

in the effort fair point. In particular, we can see what are the effects on the values

O∗
1 and O∗

2 if the bandwidth request of ISP-1 grows. To this aim it is interesting to

observe that lim
I1→∞

O∗
1 = ∞ while lim

I1→∞
O∗

2 = I2. Figure 7.5 shows these behaviors

when I2 = 3 and cs = 5. Note that the ISP bandwidth request Ii may change as a

consequence of a variation of its redirection level, or of the upload capacity, or of the

number of peers of the ISP. We must point out that Figure 7.5 (left plot) only shows the

effects of the variation of I1 on O∗
1 and O∗

2 but, if we consider that the Ii may change

for several different reasons the interleaving of these effects may have unexpected (or

non-intuitive) effects on O∗
1 and O∗

2.

Figure 7.5 (right plot) shows one of these interesting effects. In particular, this

figure shows the behavior of O∗
1 and O∗

2 as function of the size of the ISP-1. To this

end we use Equation (7.2) to derive Ii as function of mi. Hence we compute the values

O∗
1 and O∗

2 as function m1. For O∗
2 we can observe a trend similar to the one observed

in Figure 7.5 (left plot) but for O∗
1 we observe a very different behavior. Note that

this is not only due to the relation between Ii and mi induced by Equation (7.2), but

it is a more general trend that holds when Ii decreases as mi increases. The situation

depicted in this figure can be originated, for instance, by a strong variation in the size

of one of the ISPs (for example due to a ISP market drift).
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At this point we introduce the version of the game with k ISPs. Let I1, . . . , Ik be

the incoming aggregate rates of the k ISPs.

In this case the Nash equilibriums can be found on the hyperplane satisfying the fol-

lowing relation:
k

∑

i=1

Oi =
k

∑

i=1

Ii − cs.

Furthermore, the effort fair points (O∗
1, . . . , O

∗
k) are the solution of the following system

of equations























k
∑

i=1

O∗
i =

k
∑

i=1

Ii − cs

O∗
i

Ii
= h for 1 ≤ i ≤ k,

where h is a constant. From the second equations we can derive that

O∗
j = Ij

O∗
i

Ii
∀ 1 ≤ i, j ≤ k

by substituting this in the first equation we obtain that

O∗
i +

k
∑

j=1,j 6=i

Ij
O∗

i

Ii
=

k
∑

j=1

Ij − cs ∀ i.

From this equation with simple algebraic manipulation we can derive that

O∗
i = Ii















1−
cs

n
∑

j=1,j 6=i

Ij















i = 1, . . . , k. (7.12)

7.3.3 Evolutionary Analysis of Streaming Games

In this section we present a procedure that ISPs can use to compute the effort-fair values

O∗
i , for each i = 1, . . . , k. Note that these values can be computed by using Equation

(7.12) but this requires the knowledge of all the values Ij for j = 1, . . . , k, with i 6= j,

i.e., besides its bandwidth request Ii each ISP has to know the Ij values of all the other

ISPs. Unfortunately, an ISP does not disclose (to the other ISPs) information related

with the services it offers to the subscribers (i.e., the Ii).
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To avoid dissemination of its private information to all other ISPs we use a two tier

structure of trackers composed by a super-tracker and a collection of ISP-trackers, one

for each ISP. This kind of architecture is inspired to the tracker architectures proposed

in (105) and (102).

In our proposal the ISP-i’s tracker sends to the super-tracker the values Ii and the

current value for Oi. Then the super-tracker is able to compute the indicator function

1 (·) and it can send the output of this function to the ISPs. In this manner, ISPs do

not disseminate their Ii-s and Oi-s but they only send these values to a (trusted) super-

tracker. Obviously the implementation of this type of tracker architecture must ensure

that the ISP-trackers and the super-tracker mutually trust each other. Furthermore,

this architecture could also be enhanced with measurement tools that help to avoid

cheating behaviors. The two tier tracker architecture can be viewed a sort of ”oracle”

that ISPs can use to know if system is providing universal streaming or not.

By exploiting the two tier tracker infrastructure and by using ideas from Evolu-

tionary Game Theory (EGT) (107) we device a distributed strategy to allow ISPs to

compute the effort fairness point.

In EGT each player has a local information of the game. In particular, in case of

the ISP game the local information are bandwidth request Ii, the current value for

Oi, and a super-tracker to know if the system is providing universal streaming or not.

The player learns which moves are better by trying them and looking how his utility

function changes. The evolution of the system of players is ruled by equations called

replicator dynamic (107). The replicator dynamic considers the evolution of each player

behavior and shows the temporal evolution of players moves. In this way, if the game is

repeated the replicator could reach an equilibrium, that is the equilibrium of the game.

The common EGT approach is to consider games with a finite number of strategies.

On the other hand the game we propose has infinite strategies because Oi can take

values over a continuous interval. For this reason we cannot use classical equation of

replicator dynamic, but we create a new dynamic with the same kind of proprieties.

In the following we illustrate the method for the two ISPs game. In this case

we look for a replicator dynamic that has an equilibrium in (O∗
1, O

∗
2). The equation

of ISP-i should depend only on Oi and Ii and from the knowledge of being in the

universal streaming region or not (test performed by using the measured quantity Ii).

In particular, if the ISP is in the universal streaming region it should decrease its Oi
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to increase its utility function. If we denote by Os
i the value of the Oi at s-th iteration

step and O0
i the initial values of the Oi (for i = 1, . . . , k), we use a replicator dynamic

described by the following equations

Os+1
i =

{

Os
i (1−β) if universal streaming

Os
i + βIi otherwise

(7.13)

where 0 < β < 1 is a parameter that tunes the convergency speed. We can assume that

the ISP-i decreases Oi proportionally to same value computed in the previous iteration.

If the ISP has a high Oi it is probably far from the bound of the region, so it could

decrease Oi a lot. If, instead, the ISP has a low Oi it is probably near by the bound,

so it should pay attention on decreasing Oi. On the other hand, if the ISP is not in the

universal streaming region it would try to increase his Oi faster to reach that region.

In this case, it is reasonable that the ISP increases Oi depending on its request, i.e., Ii.

We can see the evolution of the dynamic system with the help of Figure 7.3.3.

If we start the iterative method from a point (O0
1, O

0
2) that is in the universal

streaming region, then the system will move out the region in a radial way, i.e., following

the line to the point (0, 0). On the other hand, if we start from a point that is out

of the universal streaming region then we will move along the vector (βI1, βI2). This

means that in this case we always move in the same direction, i.e., all the movements

are parallel to the line t∗ : O1I2 = O2I1. In this manner there is no need to know the

bandwidth request of the other ISPs to choose its move (i.e., the Ij-s (for j 6= i)).

We must point out that with a similar iteration strategy the process will oscillate

around the effort-fair points and the size of this fluctuation interval depends on β. That

is, a small value of β yields smaller fluctuation interval but with lower convergency

speed, and a large value of β yields higher convergency speed but larger fluctuation

interval. To overcome this problem we can adopt a variable β, i.e., a value of β that

is function of s and of the stability of convergency process. We empirically derive a

suitable updating strategy for the values of β i.e., the value of B fluctuates less when

the value of Oi is close to the effort-fair point.

In the following we prove that the iterative method converges to the effort-fair

points. Each ISP converges to its own O∗
i

Proof. For the sake of readability we only present the proof only for the case n = 2 (the

proof for n > 2 follows the same ideas but with the use of a cumbersome notation).

102



7.3 Game Theory Formulation

[Part 1][] O1

O2
t∗

[Part

2][] O1

O2
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t
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Figure 7.6: (a) Vector field of the dynamic system (the symbol � denotes the point

(O∗

1
, O∗

2
)); (b) Evolution of the replicator dynamic
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First of all, we show that the line t∗ : O1I2 = O2I1 is a fixed line of the replicator

dynamic, i.e., if the staring point of the iteration, i.e., p(0) = (O0
1, O

0
2) is a point on the

line t∗ then for any other iteration step s we have that p(s) = (Os
1, O

s
2) ∈ t∗. If p(0) ∈ t∗

then

p(0) =

(

O0
1,

I2

I1
O0

1

)

.

now there are two cases:

• p(0) is in the universal streaming region and then

p(1) = p(0) − βp(0) =

(

O0
1(1− β),

I2

I1
O0

1(1− β)

)

,

so p(1) ∈ t∗.

• p(0) is not in the universal streaming region. In this case we have that

p(1) = p(0) + β(I1, I2) =

(

O0
1 + βI1,

I2

I1
(O0

1 + βI1)

)

,

and again p(1) ∈ t∗.

We can conclude that t∗ is a fixed line of the replicator dynamic.

We prove now that the line t∗ is an attractor of the dynamic system. Let p = (x, y) be

a generic point (see Figure 7.3.3) in the universal streaming region. In this case the

system will move in a radial direction along the line t until it falls out of the universal

streaming region, e.g., in the point p′ = (x′, y′). This point is not in the universal

streaming region, so the system will move along a new line, parallel to t∗, until it

returns into the universal streaming region. Let p′′ = (x′′, y′′) be the new point reached

by the system. The system will move along a new radial line t′, that is closer to t∗ with

respect to the previous line t. Going on we have that the radial line tends to t∗, so we

can conclude that t∗ is an attractor of the system.

Finally, we have that the system oscillates around the effort-fair point (O∗
1, O

∗
2). Indeed,

each Os
i will oscillate into the interval

[O∗
i − βO∗

i , O
∗
i + βIi].

This means that using an opportune function for decreasing β we obtain for each ISP-i

the convergence to its effort-fair point O∗
i .
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Figure 7.7: Numerical Experiment with k = 1, 000, r = 50 (cps), cs = 50 · r, mi ∈

Unif[100, 1000], and Ii ∈ Unif[r,mi · r]

Numerical Example. To show that the proposed numerical technique can be used

for ”realistic” system sizes we investigate its performance on the following system. We

assume that the streaming rate r is equal to 50 (cps)1 and the number of ISPs k is

equal to 1, 000. To compute the values Ii, for i = 1, . . . , k we use the following idea.

We choose the values mi, i.e., the number of peers in each ISP, by selecting them from

a uniform distribution in the interval [100, 1000]. From mi we derive the values Ii by

choosing them from a uniform distribution in the interval [r, mi · r] (these two values

correspond to the minimum and the maximum of Ii). The streaming server capacity is

cs = 50 · r.

To emulate the realistic scenario we assume that each ISP-i can use a ”black box”

function that receives as input the Ii and Os
i (s is the iteration step) and gives as output

the answer ”the ISP-i is providing universal streaming” or ”the ISP-i is not providing

universal streaming”. This function emulates the test that the ISP can perform by

using the measured incoming aggregate streaming rate.

1If we assume that a chunk is ∼ 1 KB then a streaming rate r = 50 cps corresponds to ∼ 400 kbps.
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Figure 7.7 shows the evolution of three values of O∗
i derived by applying our EGT

based approach. For each of the presented O∗
i the figure also shows the corresponding

theoretical values computed by using Equation (7.12).
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Figure 7.8: Two simulation traces reporting the values of O1 (computed and measured)

with the following parameters: λ1 = 1.0, for t = [0..4500], and λ1 = 1.5 for t > 4500,

λ2 = 1.0, µ1 = µ2 = 0.001, c1 = c2 = 2 · r, δ = 30 secs. The left upper and lower plots

report the traces in the interval [3500, 4400] and [4400, 4700]. The right upper and lower

plots report the simulation traces in the same interval with the same set of parameters but

when the super-tracker increases the Ii-s of 5%. The filled regions denote time intervals

where the system is not able to satisfy the ISP bandwidth demands
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7.4 A ISP Streaming Traffic Management Algorithm

7.4 A ISP Streaming Traffic Management Algorithm

In Section 7.3 we introduced a simple game-theoretic framework but in all the models

we present the equilibrium points can only be achieved via common knowledge. That

is, each ISP/peer needs to know the streaming server upload capacity and the Ii-s of

all the other ISPs. Obviously this hypothesis is not realistic! The models we developed

only allow us to investigate the existence and the peculiarities of the equilibrium points.

Nevertheless, by using the ideas presented in Section 7.3.3 we can define a distributed

algorithm that implements the EGT version of the game without the constraints that

the ISP must be aware of the Ii-s of all the other ISPs.

The proposed distributed algorithm could be implemented by means of a two tier struc-

ture of trackers (similar in the spirit to the tracker architecture proposed in (105) and

(102)). At the top level there is the super-tracker and at the lower level there is a collec-

tion of ISP-trackers (one for each ISP). Each ISP-tracker must be able to measure the

current values of i) the number of active peers in the ISP, ii) the number of peers that

receive the video at rate r, and iii) the values for the incoming and outgoing aggregate

rates. Furthermore, the ISP-tracker is able to modify the bandwidth request and the

bandwidth offered to the other ISPs. This could be done by increasing/decreasing the

locality parameter (e.g., the parameter αi of Equation (7.6)). The bandwidth offered

to the other ISPs could also be modified by using bandwidth throttling.

Each ISP-tracker periodically (e.g., each δ sec) sends the collected measures (i.e.,

the number of active peers, the number of peers that receive the video at rate r, and

the measured incoming and outgoing aggregate rates). With these measures the super-

tracker knows if the system is in a universal streaming region or not, and hence it is able

to play the EGT-game described in Section 7.3.3. In particular, the super-tracker sends

an appropriate message (e.g., universal-streaming or no-universal-streaming) to

the ISP-trackers asking them to change the values of the Oi-s according to Equation

(7.13).

In the basic schemata we introduced the super-tracker, that is the only agent accumu-

lating global knowledge. We assume that all ISP-trackers trust each others. Using this

architecture an ISP does not need to know the Ii-s of all the other ISPs. Moreover,

the super-tracker may cheat on purpose by increasing the values of Ii so as to make

the players contribute slightly more than needed to anticipate the effects of peer churn
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or mass arrival/departure phenomena. Obviously, we must say that many un-touched

important problems still remain. A non exhaustive list contains issues such as incentive

mechanisms to enforce the cooperation among the ISPs, control techniques to check

the ISP honesty, confidentiality of the communications between the super-tracker and

ISP-trackers, and so on.

Note that the two-tier architecture composed by the super-tracker and the collection

of ISP-trackers only aims at the ISP traffic management and does not replace the P2P

architecture but it only helps the ISPs in the traffic management. In other words, if

the P2P streaming architecture uses a tracker similar to the BitTorrent protocol to

assist the streaming distribution (e.g., to provide peer addresses) this tracker does not

interfere with the ISP traffic management.

A Simulation Study. To verify the effectiveness of the proposed schemata in a

realistic scenario , we develop a discrete time simulator that implements the proposed

strategy.

With the simulator we try to capture in an abstract manner the peculiarities of a

generic P2P streaming platform. In particular, the peers are grouped into k ISPs.

We assume that both the inter-arrival times and those of service (i.e. how much a

peer remains connected) follow a negative exponential distributions, with parameter λi

and µi. We also assume that a peer can immediatly join the network, without waiting.

Using a notation common in queueing theory we denote the number of peers in the

i-th ISP at time t with mi(t), and the i stochastic processes are independent M/M/∞

(mi(t), t ≥ 0, with i = 1, . . . , k).

In the simulator, we assume that the upload capacities can be shared among a

discrete number of peers, i.e., we do not use the fluid assumption. Hence each peer

(and also the streaming server) can forward the streaming to a limited number of other

peers.

The tracker keeps track of all active peers. When a (new) peer p joins the system it

contacts the tracker (the P2P tracker) to receive a list of peers that are already in the

overlay (possibly including the streaming server). The peer p contacts a subset of peers

of this list. For each contacted peer p′ if its upload capacity is not already saturated

then peer p establishes a link with p′. On the other hand, if the upload capacity of

p′ is already allocated the connection is refused. When the number of incoming links
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connecting peer p with other peers reaches a pre-defined threshold (i.e., b links) this

means that p receives the video streaming at rate r.

When a peer p leaves the system all the peers with incoming arcs from p must

re-wire the broken link towards another active peer having enough available upload

capacity. During this search for new partners the peer p does not receive the video

streaming at rate r.

On the top of this simple simulator we implement the distributed algorithm with a

super-tracker and k ISP-trackers (one for each ISP). Each δ secs each ISP-tracker sends

the measured metrics to the super-tracker (i.e., the number of active peers, the number

of peers that receive the video at rate r, and the measured incoming and outgoing aggre-

gate rates). The super-tracker plays the EGT-game described in Section 7.3.3 and sends

to the ISP-trackers the message universal-streaming or no-universal-streaming

to ask them to change the values of the Oi-s according to Equation (7.13). Note that

since the simulation does not use the fluid assumption the simulator implements a

discrete approximation of Equation (7.13).

The main goal of our simulation is to demonstrate that the game’s logic is still valid

in more realistic conditions. In particular, we show that the distributed algorithm

is able to play the EGT-game described in Section 7.3.3 even if the peer behaviors

dynamically change the available/requested bandwidth resources. Moreover, we note

that it is indeed possible to achieve the same results of those described in Section 7.3.3

without the model simplifications such as the fluid assumption, complete connectivity,

and in presence of discrete values of the upload capacities, the parameter β of Equation

(7.13), and so on.

In the following we present some qualitative results that allows us to illustrate the

some of the peculiarities of the proposed algorithm.

In particular, we perform experiments with two ISPs. The two stochastic processes

representing the arrival and the departure of the peers are two independent M/M/∞

with arrival rate λ = 1, and service rate µ = 0.001. The upload capacity of all nodes is

assumed equal to 2r, where r is the video streaming rate. We assume that the chunk

size is such that a peer may correctly reproduce the streaming video when it has at

least 10 incoming arcs, and each peer may have no more than 20 outgoing arcs towards

other peers. The super-tracker and the ISP-trackers exchange information each 30 secs.

109



7. P2P PROTOCOLS AND INTERNET SERVICE PROVIDERS: A
GAME THEORETICAL APPROACH

Figure 7.8 (upper left plot) shows a portion of a simulation trace that reports the

values O1 computed by using Equation (7.13) and the one measured by counting the

outgoing arcs from peers belonging to ISP-1 towars peers of the other ISP. In this plot

we emphasize the periods where the measured O1 is smaller than the computed value.

In these time intervals the amount of resources that ISP-1 is smaller than the requests

and the peers of the other ISP may not receive the streaming video at the required

rate. The right upper plot allows us to illustrate a simple and naive possible solution

to mitigate this problem. The basic idea is that the super-tracker receives the values of

the Ii but plays the EGT-game with increased values, say Îi (with Îi = Ii + 0.05 ∗ Ii).

In other words, the super-tracker cheats the ISP-trackers, and hence it injects in the

system spare capacity to smooth the effect of peer dynamics.

To evaluate the robustness of the algorithm to quick variations of the bandwidth re-

quests, e.g. because of mass arrivals, during the experiments, at time t = 4500, we

increase the parameter λ1 to 1.5. Figure 7.8 (lower left plot) reports the values of

O1 (computed and measured) during the time interval [4400 − 4700], i.e., during the

redoubling time interval. We do not report the behavior for t > 4700 because the

system stabilizes (even if λ1 = 2λ2). Figure 7.8 (lower right plot) shows the behavior

of the algorithm when the super-tracker uses increased values for Ii (i.e., it works with

Îi = Ii + 0.05 ∗ Ii).

We must point out that the presented preliminary simulation study only provides

some idea on the qualitative behavior of the proposed schemata. A deeper study must

be done to improve the knowledge of the phenomena under study. A non exhaustive

list of the issues that must be investigated includes the definition of metrics to measure

the time intervals where system is not able to satisfy the ISP requests, the evaluation of

the impact of peer dynamics (e.g., impact of statistical characteristics of the arrival and

departure processes), the impact of the parameter β, the relations among the amount

of spare capacity injected by the super-tracker (by cheating the ISP-trackers) and the

peer dynamics, and so on.

7.5 Conclusions

In this chapter we have presented a game theory framework that can be used for the

design of ISP strategies aiming at providing efficient and reliable support for P2P
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streaming application. Our framework allows us to illustrate the existence of equilib-

rium points, the role of possible strategies to refine these points, and how to use ideas

from the evolutionary game theory to derive techniques, that a player of the game can

use, to computed the (operational) points assuming only limited knowledge on the state

of the other players.

The presented simulation results show that the algorithm that implements the EGT-

game is able to face the impact of peer dynamics, and it can help the ISP traffic

management, also considering the modeling simplifying assumptions.
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Chapter 8

The impact of P2P protocols on

ASes network topology

In this chapter we investigate how the resources’ diffusion generated by a P2P file-

sharing overlay influence costs and rewards of Autonomous Systems (ASes) organized

in a network topology. First we briefly overview the Internet AS-level and BGP-4,

the external routing protocol used to exchange reachability information among ASes.

Then we introduce our model for both AS-level and P2P overlay. Finally we present

some experiments showing how our model is able to compute costs and rewards for

complex network topologies, taking into account several parameters like peering and

transit agreements, inter-AS routing and different AS size.

8.1 The Internet AS-level

A rigorous definition of AS is given in RFC 1930 (115), Section 3, that describes it

as a group of IP prefixes sharing a unique and clearly defined routing policy. Here

”prefix” is referred to a CIDR block, a group of one or more classful networks (A,

B or C networks). Usually routers that belong to the same AS are under the same

technical administration, share common metrics to route packets within the AS, and

use an inter-AS protocol to forward network messages to other. An AS appears to its

neighbors having a single coherent internal routing plan, and announces to them routes

that are reachable through it.

In Internet each AS is uniquely identified by an Autonomous System Number
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(ASN), a 32 bit integer as specified in RFC 4893 (126). ASN are assigned by the

Internet Assigned Numbers Authority (IANA) to Regional Internet Registry (RIRS).

RIRSs are responsible for specific geographic areas and in turn assign ASNs to organi-

zations that make request.

The protocol used nowadays to exchange routing and reachability informations is

the Border Gateway Protocol (BGP) (114, 122, 123, 125). The current version is BGP-

4. BGP-4 is an exterior gateway protocol used for intra-AS routing, in contrast to the

interior gateway protocols, like Routing Information Protocol (RIP) (116) or Interme-

diate System To Intermediate System (IS-IS) (121), used within the same AS. Each AS

runs some BGP-4 gateways that discover routes exchanging reachability informations

with the other gateway. Each one announces the destinations (i.e, other ASes), that

are reachable through it.

BGP is a Path Vector Protocol, so gateways exchange full AS-paths, according to

their routing policies. Policies determine what are the best paths to reach a specific

destination. A common parameter is the length of AS-path (124), preferring shorter

over longer ones, but the AS administration can specify more complex policies.

8.1.1 Traffic Agreements: peering and transit

According to the BGP Topological Model (cf. RFC 1655 (124), Section 2), a direct

connection between two AS is both a physical connection (i.e., a shared network formed

at least from one border gateway for each AS) and a BGP session running on the border

routers (gateways). A connection is demanding in terms of economic resources (hard-

ware, maintenance, technical administration), so commercial agreements are settled

between directly connected ASes.

The two established methods to exchange Internet traffic between directly connected

networks are peering and transit. In peering two networks do not charge any fees

to each other, while a transit accord occurs when an AS pays to another some fees to

reach other parts of Internet. In this case the traffic travel across the seller AS and is

forwarded to the next hop to destination.

Peering and transit agreements can influence the way messages are routed on the

ASes topology because BGP policies used from a network are based on economic and

commercial considerations (123). Indeed is convenient to an AS announces routes for

other networks it peers only to its customers. Usually traffic between two peering
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partners is not forwarded. In the same way it is not allowed to route traffic from

peering partners to seller ASes and vice-versa. The reasons behind these policies are

simple to understand: if an AS announces these kind of routes, it would be providing

free transit over its network for its peers or buy transit from another network and giving

it away freely to a peer. For sake of clarity we illustrate some allowed paths in Figure

8.1 (page 116):

• AS8 can see all the networks because networks AS5, AS6, AS7 buy transit from

it.

• AS1 can see AS2 and its customers directly, but not AS3 through network AS2.

• Traffic from AS4 to AS7 is routed by AS6 , but not through AS5.

• AS4 can see Network B through its peer AS5, but not via its transit customer

AS2.

Peering and transit accords also induce a hierarchy on ASes topology. At the top

there are Tier 1 networks (AS8 in the example in Figure 8.1), that sell transit traffic

to all its partners and can reach every other AS without pay any settlements or buy

transit traffic. A Tier 2 network (the other ASes in Figure 8.1) buys transit traffic but

has also some peering agreements. Finally sometimes is used the term Tier 3 to refer

to networks that only purchase transit traffic.

8.2 Modelling Autonomous Systems

We are interested in studying the costs that must be sustained, and the gains that can

be achieved from the agreements set among the ASes. In particular, starting from a

formal description of the network topology, we want to be able to estimate gains and

costs for each AS induced by a particular traffic scenario.

We consider a network composed by N ASes. We use a traffic matrix X to represent

the data flows between the ASes:

X =







x11 . . . x1N

... xij

...
xN1 . . . xNN






. (8.1)
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Figure 8.1: ASes topology used for experiments

Each element xij is the amount of traffic exchanged on the logical link between the

AS i and the AS j. A logical link between i and j is a BGP session over a physical

connection between two gateways. The physical connection might spread over several

physical links. The network topology is described by a graph G:

G = (V, Ep, Et, σ : (N× N)→ R). (8.2)

Element V = {AS1, . . . , ASN} contains the vertexes of the graph that corresponds

to the N ASes i.e., the list of ASes ids. Two type of agreements, pure peering and

transit, can be settled on a link. Two ASes connected with a peering link do not charge

any fee each other to communicate over that link. Instead in a transit agreement the

customer node i pays to the seller node j. To take this issue into account, edges of the

graph are defined as ordered pairs and grouped in two disjoint sets Ep and Et. For each

peering aggrement between ASes i and j, both the pairs (i, j) and (j, i) are inserted

in Ep, while a transit accord is represented from the pair (i, j) in Et, where i is the AS

id of the customer and j the seller’s one.

116

figures/8ASs_topology.eps


8.2 Modelling Autonomous Systems

Despite agreements are confidential, it is a reasonable assumption that cost is pro-

portional to the traffic carried on links. These costs are computed using the relations

σ. It associates to an ordered pair (i, j) the fee payed from ASi for a traffic unit carried

on the link from ASi to ASj . The relation returns this cost as a real number if there

is a transit aggrement between ASi and ASj with the first as customer, 0 otherwise.

Using the G representation of the ASes network we build a Cost Matrix Ck and a

Reward Matrix Rk for each AS. A value ck
ij 6= 0 means that the ASk is involved in the

communication between i and j, and ck
ij is the cost it paids for a traffic unit that travel

from ASi to ASj . In the same way the Reward Matrix Rk defines how much ASk gains

when two other ASes communicate.

The Algorithm 8.2.1 describes the function BuilCostRewardsMatrices() that com-

putes Ck and Rk from the network description G. In Algorithm 8.2.1 line (i) is used

the function DijkstraModified() (Algorithm 8.2.2) to find the shortest path between any

pair of ASes. This function is a modified version of the Dijkstra algorithm that solve

the all sources shortest path problem considering transit and peering aggrements to

eliminate not allowed routes (see Section ).

The purpose of Algorithm 8.2.2 is to build the predecessor matrix P . The element

P(i,j) of this matrix stores the predecessor of the ASj on the shortest route to it

from ASi. The funcion repeat the classical single source Classical Dijkstra algorithm

for all vertices using the AllowedNeighbors() (Algorithm 8.2.2 line (i)) to restrict the

neighborhood to the nodes that are on allowed paths. Algorithm 8.2.3 take into account

that an AS does not annouce routes between peering patners, between peering ASes

and transit seller or between two seller nodes (Algorithm 8.2.2) line (ii)). Instead it

will announce routes for all its neighbors to its customers nodes (Algorithm 8.2.2) line

(i)).

Once computed all the shortest allowed routes (Algorithm 8.2.1 line (i)), the matri-

ces Ck and Rk are built using the predecessor matrix P to retrieve the path among each

pair of ASes. If between two nodes that are on the route from ASi to ASj there is a

transit aggrement, the fees computed using the σ relation are stored in the Ck
ij element

of the customer ASk and in the Rs
ij reward matrix of the seller ASs (Algorithm 8.2.1
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lines (ii)(iii)).

Algorithm 8.2.1: BuildCostRewardMatrices(V, Ep, Et, σ)

P ← DijkstraModified(V, Ep, Et) (i)
for each (i, j) ∈ (V × V ), i 6= j

do



















































k ← j
while P (i, k) 6= NULL

do































p← P (i, k)
if (p, k) ∈ Et

do
{

Rk
ij = σ(p, k); Cp

ij = σ(p, k) (ii)

if (k, p) ∈ Et

do
{

Ck
ij = σ(k, p); Rp

ij = σ(k, p) (iii)

k ← p

Algorithm 8.2.2: DijkstraModified(V, Ep, Et, σ)

D(i, i)← 0,∀i ∈ V
D(i, j)←∞,∀(i, j) ∈ V × V, i 6= j
P (i, j)← NULL,∀(i, j) ∈ V × V
for each i ∈ V

do







































Q← V
u← arg min{D(i, j) : j ∈ Q}
while (Q 6= ∅) ∧ (D(i, u) <∞)

do















Q← Q \ {u}
S ← Q ∩AllowedNeighbors(Ep, Et, P (i, u), u) (i)
D(i, j)← min{D(i, j), D(i, u) + W (u, j)}, j ∈ S
P (i, j)← arg min{D(i, p) + W (p, j)} : p ∈ {P (i, j), u}, j ∈ S

return (P )

Algorithm 8.2.3: AllowedNeighbors(Ep, Et, p, u)

if (p ≡ NULL) ∨ ((p, u) ∈ Et)
do neighbors← {j : (u, j) ∈ (Ep ∪ Et)} ∪ {j : (j, u) ∈ (Ep ∪ Et)} (i)
else
do neighbors← {j : (j, u) ∈ Et)} (ii)

return (neighbors)

For sake of clarity, here we report an example releated to the network showed in

Figure 8.2. The topology is made of six ASes connected with six links. There are some

routes that are not allowed e.g, AS1
L1→ AS2

L4→ AS3 becouse AS2 does not announce

routes between its peering patners. As results of these forbideen paths AS3 is connected
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only to AS1, AS2 and AS4, but not with AS5 and AS6. AS2 case is particular inter-

esting in this network becouse it is directly connected to all ASes and involved in all

communications that originate from i ∈ {AS1, AS2, AS3} and ends in j ∈ {AS5, AS6}.

All routes that involve AS2 and a transit aggrement influence its cost and reward ma-

trices. In the following we enumerate all the route from AS1 to other that involve AS2:

Route12 : AS1
L1→ AS2

Route13 : AS1
L2→ AS4

L3→ AS2
L4→ AS3

Route15 : AS1
L2→ AS4

L3→ AS2
L5→ AS5

Route16 : AS1
L2→ AS4

L3→ AS2
L6→ AS6

E.g., when AS1 send a packet to AS6, it follows the Route12, so AS2 gain a quantity

σ(4, 1) from AS4 for the usage of the link L3 but pays σ(2, 6) to AS6 for the traffic that

travel on L6. In Figure 8.2 we report the C2 and R2 matrices computed for the AS2.

Once computed the Ck and Rk matrices for each AS, it is simple retrieve the total

cost Ck sustainded and the total reward Rk for the ASk simply using:

Ck = ~1 · (X ◦ Ck) ·~1′· and Rk = ~1 · (X ◦Rk) ·~1′·

where ◦ define the entry wise product between matrices and the · is the standard

row-by-column matrix product.

8.3 P2P Resource Diffusion

In this section we describe the probabilistic model of the P2P traffic travelling among

the considered ASes. We first define the peer-to-peer scenario (Section 8.3.1), then we

provide the analytical representation of peers (Section 8.3.2). In Section 8.3.3 we study

the evolution of the system in order to characterize the resource diffusion.

8.3.1 Network Scenario

We consider that peers are distributed across N different ASs. We assume that the

total number of peers in the system is a discrete random variable that follows a given
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Table 8.1: Model Notations

Notation Description

N Number of Autonomous Systems (AS)

si Probability that a peer belongs to the i-th AS

G(z) Generating function of the distribution of the number of peers in the network

αi Probability that a peer in the i-th AS holds the resource

βi Probability that a peer in the i-th AS wants the resource

γi Probability that a peer in the i-th AS holds the resource but do not share it

ξi Probability that a peer in the i-th AS does not share the resource after getting it

ni Number of peers holding the resource in the i-th AS

pi Number of peers requiring the resource in the i-th AS

qi Number of peers holding but not sharing in the i-th AS

ui Generating function of the number of peers holding the resource in the i-th AS

vi Generating function of the number of peers requiring the resource in the i-th AS

wi Generating function of the number of peers holding but not sharing in the i-th AS

probability distribution p(m). We express this distribution with its generating function

G(z):

G(z) =
∞

∑

m=0

p(m)zm (8.3)

We only take into account peers that can participate in the diffusion, i.e., peers that

either hold or request the resource. We denote by si the probability that a peer is in

the i-th AS. In each AS peers are divided into three different classes: a) peers holding

the resource and available for sharing it, b) peers requiring the resource, and c) peers

holding the resource, but not sharing it i.e., freeloaders. The class of each peer is

determined randomly, according to a given initial probability: αi for class a), βi for

class b) and γi for class c) (with αi + βi + γi = 1). The number of peers of the three

classes are respectively denoted by ni, pi and qi. We denote by ξi the probability that

a peer that gets the resource decides to not share it. Peers requiring the resource can

either get it from peers lying in the same AS or from peers belonging to others ASs.

All model notations are summarized in Table 8.1.
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8.3.2 The Model

We represent the P2P system by introducing the distribution of the number of peers

and its corresponding generating function.

We call Π(n1...nN , p1...pN , q1...qN ) the joint distribution of the number of peers in

each class, for each of the N ASs. The generating function g(·) of this distribution can

be computed from parameters G(z), si, αi, βi and γi as:

g(u1...uN , v1...vN , w1...wN ) = G
(

N
∑

i=1

si

[

αiui + βivi + γiwi

])

. (8.4)

An intuitive interpretation of Equation (8.4), is that each peer randomly chooses

both its AS and its class with probability siαi, siβi or siγi, which corresponds to

z =
∑N

i=1 si

[

αiui + βivi + γiwi

]

.

The marginal distribution corresponding to the i-th AS is defined as:

Πi(ni, pi, qi) =
∑

n1...ni−1, ni+1...nN ,

p1...pi−1, pi+1...pN ,

q1...qi−1, qi+1...qN

Π(n1...nN , p1...pN , q1...qN ) (8.5)

We call gi(ui, vi, wi) the generating function of Πi(ni, pi, qi). Using the properties

of the generating function and (8.4), we have that:

gi(ui, vi, wi) = g(1...1, ui, 1...1, 1...1, vi, 1...1, 1...1, wi, 1...1) =

= G
(

si

[

αiui + βivi + γiwi

]

+ 1− si

) (8.6)

where we set to 1 all the transformed variables except the ones corresponding to the

i-th AS.

We can compute the probability that a peer in the i-th AS holds the resource,

given that the AS is not empty (by empty we mean that there are no peers that can

participate in the resource diffusion as mentioned in Section 8.3.1) as:

ᾱi =
∑

ni+pi+qi 6=0

ni

ni + pi + qi
Πi(ni, pi, qi). (8.7)

It can be shown that ᾱi can be computed in the following way:

ᾱi =

∫ 1

0

[∂gi(ui, vi, wi)

∂ui

]

ui=y,vi=y,wi=y
dy. (8.8)
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Indeed we can show that we can obtain (8.7) from (8.8) by solving step by step the

right term of the equation (see Appendix A, Proof 2).

If we calculate (8.8) with the definition (8.6) we get:

ᾱi = αi(1− gi(0, 0, 0)) (8.9)

Hence we can write:

αi =
ᾱi

(1− gi(0, 0, 0))
=

ᾱi

(1−G(1− si))
(8.10)

The term 1−G(1−si) corresponds to the probability that the i-th AS is not empty.

The same computation can be made for β and γ:

βi =
β̄i

(1− gi(0, 0, 0))
, β̄i=

∫ 1

0

[∂gi(ui, vi, wi)

∂vi

]

ui = y

vi = y

wi = y

dy (8.11)

γi =
γ̄i

(1− gi(0, 0, 0))
, γ̄i=

∫ 1

0

[∂gi(ui, vi, wi)

∂wi

]

ui = y

vi = y

wi = y

dy (8.12)

8.3.3 System dynamics

We now study the evolution of parameters αi, βi and γi, and show how they char-

acterize the resource diffusion in the system. In particular, we model the resource

diffusion among the ASs with an embedded time process: time is not considered explic-

itly, instead is modeled by a discrete variable m that increases of one unit whenever

a resource transfer is completed. With this assumption we compute αm
i , βm

i and γm
i ,

that correspond to the values of parameters αi, βi and γi at time m.

Parameters α and β vary only due to a resource transfer. For sake of simplicity,

in this paper we neglect peers that give up requesting the resource and peers that

quit sharing it. However these assumptions could be easily removed by adding new

parameters and difference equations on α and β. We expect that as time tends to the

infinity, every requests will be satisfied, that is (for any i-th AS):

lim
m→∞

αm
i = α0

i + (1− ξi)β
0
i (8.13)

lim
m→∞

βm
i = 0 (8.14)

lim
m→∞

γm
i = γ0

i + ξiβ
0
i (8.15)
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where α0
i , β0

i and γ0
i represent the initial system parameters.We are interested in study-

ing the evolution of αm
i , βm

i and γm
i until all transfers are completed. Note that changes

in these parameters affect the joint distribution of the number of peers per class, i.e.

Πm(n1..nN , p1..pN , q1..qN ).

We can define ᾱm+1
i as function of the system parameters at time m:

ᾱm+1
i =

∑

(
∑

k
pk = 0∨

∑

k
nk = 0)

ni + pi + qi 6= 0

ni

ni + pi + qi
Πm(n1..nN , p1..pN , q1..qN ) +

+
∑

(
∑

k
pk 6= 0∧

∑

k
nk 6= 0)

ni + pi + qi 6= 0

[

ni + 1

ni + pi + qi

pi
∑

k pk

(1− ξi) +

+
ni

ni + pi + qi

(

1−
pi

∑

k pk

(1− ξi)

) ]

·

· Πm(n1..nN , p1..pN , q1..qN )

(8.16)

The first addendum on the r.h.s. accounts for the case in which no transfer occurs

since either all requests in the system have been satisfied and there are no more peers

requiring the resource (
∑

k pk = 0), or there are no resources in the system (
∑

k nk = 0).

The second addendum on the r.h.s. considers the case where a resource is actually

transferred. If the destination of the transfer is the i-th AS and the considered peer is

not a freeloader (with probability pi
∑

k pk
(1 − ξi)), ni is increased by one (first term in

square brackets), otherwise ni remains constant (second term in square brackets).

By developing (8.16) we obtain:

ᾱm+1
i =

∑

ni+pi+qi 6=0

ni

ni + pi + qi
Πm(n1..nN , p1..pN , q1..qN ) +

+
∑

(
∑

k
pk 6= 0∧

∑

k
nk 6= 0)

ni + pi + qi 6= 0

1

ni + pi + qi

pi
∑

k pk

.Πm(n1..nN , p1..pN , q1..qN )(1− ξi)

From (8.7) we can write:

ᾱm+1
i = ᾱm

i + ∆m
i (1− ξi) (8.17)
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where we define

∆m
i =

∑

(
∑

k
pk 6= 0∧

∑

k
nk 6= 0)

ni + pi + qi 6= 0

1

ni + pi + qi

pi
∑

k pk

Πm(n1..nN , p1..pN , q1..qN ) =

=
∑

∑

k
pk 6= 0

ni + pi + qi 6= 0

1

ni + pi + qi

pi
∑

k pk

Πm(n1..nN , p1..pN , q1..qN ) -

−
∑

∑

k
pk 6= 0

ni + pi + qi 6= 0

1

pi + qi

pi
∑

k pk

Πm(0..0, p1..pN , q1..qN ). (8.18)

∆m
i (1− ξi) represents the variation of ᾱi at time m. In the same way the evolution

of β̄i and γ̄i can be calculated as:

β̄m+1
i = β̄m

i −∆m
i (8.19)

γ̄m+1
i = γ̄m

i + ∆m
i ξi (8.20)

∆m
i can be computed exploiting the generating function representation of the num-

ber of peers in the system. We define p̄i =
∑

k 6=i

pk and we denote with v̄i its correspond-

ing transformed variable. It can be shown that (See Appendix A, Proof 3):

∆m
i =

∫ 1

0





∫ 1

0

[

∂

∂vi
ĝi(ui, vi, wi, v̄i)

]

vi = xy

v̄i = x

dx





ui = y

wi = y

dy. (8.21)

where

ĝi(ui, vi, wi, v̄i) = g(1...1, ui, 1...1, v̄i...v̄i, vi, v̄i...v̄i, 1...1, wi, 1...1)−
g(0...0, v̄i...v̄i, vi, v̄i...v̄i, 1...1, wi, 1...1) =

= G
(

1 + si

[

αi(ui − 1) + βi(vi − v̄i) + γi(wi − 1)
]

+ B(v̄i − 1)
)

−

G
(

1−A + si

[

βi(vi − v̄i) + γi(wi − 1)
]

+ B(v̄i − 1)
)

(8.22)

and A =
∑

k skαk and B =
∑

k skβk.
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By calculating (8.21) with (8.22) we obtain:

∆m
i =

∫ 1

0

siβi

siβi(y − 1) + B

[

G (1 + si(y − 1)) − (8.23)

−G (1 − B + si(1 − βi)(y − 1)) −

−G (1 − A + si(1 − αi)(y − 1)) +

+G (1 − A − B + siγi(y − 1))

]

dy.

Finally, from (8.17), (8.19), (8.20) and (8.23) we are able to compute αm
i , βm

i , γm
i for

any step m and for each AS i. Given the initial parameters α0
i , β0

i and γ0
i we have, by

applying (8.10), (8.11) and (8.12), that:

αm
i =

ᾱm
i

(1−G(1− si))
(8.24)

βm
i =

β̄m
i

(1−G(1− si))
(8.25)

γm
i = 1− (ᾱm

i + β̄m
i ) (8.26)

8.4 Traffic among Autonomous Systems

The goal is to define the traffic related to the resource across the N AS’s, hence we

define Xji as the probability that there is a resource transfer from the ASj to the ASi:

Xji =
∑

n1...nN , p1...pN , q1...qN :
∑

N

k=1
nk 6= 0,

∑

N

k=1
pk 6= 0

nj
∑N

k=1 nk

pi
∑N

k=1 pk

Π(n1...nN , p1...pN , q1...qN ). (8.27)

Note that conditions that allows a resource transfer from ASj to ASi are nj 6= 0 and

pi 6= 0. Since in Equation (8.27) nj and pi are both to the numerator, it is equivalent

to use
∑N

k=1 nk 6= 0 and
∑N

k=1 pk 6= 0.

It can be shown, using techniques similar to the proof of Equation(8.8), that:

Xji =

∫ 1

0

∫ 1

0

[

∂

∂uj

∂

∂vi
g(u1...uN , v1...vN , w1...wN )

]

u1...un = x

v1...vn = y

w1...wN = 1

dx dy. (8.28)

The complete derivation of Equation (8.28) is given in the Appendix A, Proof 1.

By calculating Equation (8.28) with Equation (8.4) we obtain:

Xji =
αjsj

A

βisi

B
[1−G(1−A)−G(1−B) + G(1−A−B)] (8.29)
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Note that
∑

i,j Xji is equal to the probability that there is at least one peer holding

the resource and one peer requiring it in the whole system.

8.4.1 Different Search Policies: internal search first

Let supposes the AS searches resources first among its peers and if it is not present it

will search in the others AS’s. Then the definition of X can be split in the following

two cases:

Xii =
∑

n1...nN , p1...pN , q1...qN :

ni 6= 0,
∑

N

k=1
pk 6= 0

pi
∑N

k=1 pk

Π(n1...nN , p1...pN , q1...qN ). (8.30)

to consider the internal search first, and

Xji =
∑

n1...nN , p1...pN , q1...qN :

ni = 0,
∑

N

k=1
pk 6= 0,

∑

N

h=1
nh 6= 0

nj

N
∑

k=1,k 6=i

nk

pi

N
∑

k=1

pk

Π(n1...nN , p1...pN , q1...qN ), i 6= j. (8.31)

to describe the external search. By using the generating function we can write:

Xii =
∫ 1
0

[

∂
∂vi

(

g(u1...uN , v1...vN , w1...wN )+

−g(u1..uj−1, 0, uj+1..uN , v1...vN , w1...wN )
)]

u1...un = x

v1...vn = y

w1...wN = 1

dx dy. (8.32)

Xji =

∫ 1

0

∫ 1

0

[

∂

∂uj

∂

∂vi
g(u1..uj−1, 0, uj+1..uN , v1...vN , w1...wN )

]

u1...un = x

v1...vn = y

w1...wN = 1

dx dy.

(8.33)

The derivations of the previous equations can be easily obtained using technique

similar to the one used in the appendix to prove Equation (8.28), and have been omitted

for brevity. By calculating Equation (8.32) and (8.33) with Equation (8.4) we obtain:

Xji =

{

αisi

A−αjsj

βjsj

B
[G(1− αjsj)−G(1−A)−G(1−B − αjsj) + G(1−A−B)] j 6= i

βjsj

B
[1−G(1− αjsj)−G(1−B)−G(1−B − αjsj)] j = i

(8.34)
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8.4.2 Different Search Policies: weighted search

Now instead suppose the AS associate a weight with each other AS and searches are

done with probability proportional to the assigned weight. This strategies can be useful

for example for preferring AS with peering aggrements over more expensive transit links.

Xji =
∑

n1...nN , p1...pN , q1...qN :
∑

N

k=1
nk 6= 0,

∑

N

k=1
pk 6= 0

σijnj
∑N

k=1 σiknk

pi
∑N

k=1 pk

Π(n1...nN , p1...pN , q1...qN ). (8.35)

It is possible to prove that:

Xji =

∫ 1

0

∫ 1

0

[

∂

∂ûj

∂

∂vi
[g(u1...uN , v1...vN , w1...wN )]

uk = ûσik

]

u1...uN = x

v1...vN = y

w1...wN = 1

dx dy.

(8.36)

Equation (8.36) can be derived with technique very similar to used in the Appendix

A, Proof 1, and as for Equation (8.32) and (8.33), the derivation has been omitted for

brevity. As in the previous cases, by applying Equation (8.36) to Equation (8.4) we

obtain:

Xji =
βisi

B

∫ 1

0
αjsjσijx

σij−1

[

G′(1−A +
N

∑

k=1

αkskx
σik)−G′(1−A−B +

N
∑

k=1

αkskx
σik)

]

dx

(8.37)

8.5 Considering more resources

To create a more realistic scenario we suppose that each peer holds more than one re-

source. We denote with Nmax the maximum number of resources available in the whole

system. Each one is characterized by a popularity level that describes the probability

that a peer has such a resource. We assume that the popularity of the resources follows

a Zipf Mandelbrot (119) distribution. The resource distribution is characterized by

three parameters: qZ , sZ and n̄Z(i). The first two parameters define the Zipf Mandel-

brot distribution and they are constant for the whole system, whereas n̄Z(i) represents

the mean number of resources per peer, and we allow it to depend on the autonomous
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system i. In particular, let us define fi(k) with 1 ≤ k ≤ NMax as the probability that

a peer in the i− th AS holds resource k, computed as:

fi(k) =
n̄Z(i) ·H

(k + qZ)sZ
(8.38)

with

H =
1

NMax
∑

l=1

1

(l + qZ)sZ

It is easy to show that with (8.38) and the above definition we have
∑NMax

l=1 fi(l) =

n̄Z(i). Note that since fi(k) is a probability distribution the following constraints must

hold:

n̄Z(i) ≤
(1 + qZ)sZ

H
.

8.6 Model validation

We validate our model using a discrete event simulation. In our simulated environ-

ment the P2P overlay is distributed among different autonomous systems. Peers seek

and exchange resources they need one another. We compare simulation’s results with

model’s outcome, showing how the first confirm the model.

We use PeerSim (117) to implement our simulation. PeerSim is a discrete event

simulator providing a collection of features that help the implementation and analysis

of network protocols or multi-agents simulations.

In our simulated set up the whole peers population is grouped into ASes of different

sizes. The number of resources types in the system is fixed to N . Resource’s popularity

is modeled according to the Zipf-Mandelbrot (119) discrete distribution.

Once established how many kinds of resources there are in the overlay, resources

and requested are assigned to peers according to 8.5. A peer owns a resource with

probability 0 ≤ β ≤ 1 or it need for it with probability 1 − β. A peer can supply to

others items it owns and requires those that it needs.

Simulation’s length is subdivided into rounds, and each round into time slots. A

round has exactly a number of time slots equal to the peers’ number active in the

overlay. In this way all peers are scheduled exactly once for one simulation round.

When scheduled, a peer makes a request to another for a specific resource.
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Table 8.2: Simulation parameters

Description Value

ntot 5000

n1, n2, n3 2500, 1800, 700

N 10

s 1

q1, q2, q3 0.5, 0.2, 0.7

The resource’s search is made according to the policy chosen. In our simulation

each peer can use both the uniform and the weighted strategy explained in Section

8.4.1.

We validate the model using the weighted strategy (Section 8.4.2). Indeed the

uniform strategy can be considered a special case where all weights are equals. Here

we present a comparison between the model and the simulation for the weighted case

with a P2P overlay distributed over three ASes. The connection between AS1, AS2 and

AS3 is shown in Figure 8.3. A fraction ni of the total peer population ntot is assigned

to each AS. A certain number of resources type N is distributed in the overlay.

The simulation’s most relevant parameters are reported in Table 8.2. α and q1, q2

and q3 are parameters of the Zipf-Mandelbrot distribution, respectively the skewness

factor and the plateau factors for the three ASes. This latter controls the plateau shape

near the lowest ranked objects i.e., the flatness of the distribution’s tail.

We assign the following weight matrix W :

W =





4 2 1
1 2 1
1 2 4





In W the element wij corresponds to the weight that the ASi assign to ASj . Ac-

cording to W , each peer seeks the needed resources with higher probability in its same

AS, and prefers shorter paths to longer ones when communicating with other ASes.

In Figures 8.4, 8.5 and 8.6 we show the comparison between the evolution over

time of both the model and simulator. The simulator’s outcomes are the mean of 50

runs and the 95% confidence interval is shown. We compared all the transfers among

all ASes: the model outcomes are always included in the 95% confidence interval of
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simulation results. Further confirmation comes from Figure 8.7 where we confronted

the final steady state for both simulation and model, confirming the previous results.

8.7 Experiments

We conduct several experiments using both the P2P resource diffusion model (Sections

8.3 and 8.4) and the AS-level network model (Section 8.2). In the following we present

the results changing model parameters. We compute costs and rewards for ASes in a

complex network topology, taking into account peering and transit accords, non trivial

routes and different ASes sizes.

In Figure 8.1 (page 116) the topology used for experiments is depicted. The network

is composed from eight different ASes, and nodes are connected with links with peering

or transit agreements. In the system there are N = 10 different resources types. To

each link is assigned a specific cost c for link usage.

8.7.1 Changing ASes size

We first conduct several experiments changing the size of ASes. Different sizes are

computed according to Zipf-Mandelbrot distribution with parameters N = [1 . . . 8],

s = [0 . . . 1.4] with a step of 0.2, and q = 2. Figure 8.8 shows how networks’ sizes

changes. When s = 0 all the ASes have the same dimension, while moving on higher

value of the s parameter the distribution becomes more skewed. Here we use the

uniform strategies for resources finding. We set c = 1 for all links. We compute rewards

(Figure 8.9) and the costs (Figure 8.10) for each AS. In Figure 8.11 we compute the net

profit, that is the difference between rewards and costs. Our results show how the profit

changes in function of the different AS size. We observe that in this particular topology

ASes AS1, AS2, and AS7 only pay for transit access or have peering agreements, so

their net profit is negative. AS8 always increase its profit, taking advantage from its

wider population when the distribution is more skewed. Note that for AS5 there is a

trend inversion when s = 0.6. We can conclude that the more skewed distribution has

a positive effect on AS from 1 to 3 and 8, negative for 4 to 7.
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8.7.2 Changing links’ weights

We use the weighted strategy to increase the weights on peering links. We set c = 1

for all links. The total profit for each AS is shown in Figure 8.12. The absolute value

of fees paid in the overall network globally decreases. AS1, AS2, AS3 and AS6 pay less

than using the uniform strategy and AS6 and AS8 have a lower profit.

Figure 8.13 shows the results if only the AS7 increases weights on its peering links.

The most important thing to note is that the changed policy of AS7 has effect on the

overall network. We report in the figure the results changing the weight from w = 0

to w = 7. Indeed for increasing value of w the total rewards of AS7 increase, while the

gains of AS5, AS6 and AS8 diminish. AS1, AS2, AS3 and AS4 benefit from the new

policy of AS7, that uses less their transit links preferring its peering partners.

8.7.3 Changing links’ costs

In this experiment we change the cost c for the links connected to AS8, from c = 1.1

to c = 1.4. The results are shown in Figure 8.14. Higher costs have affect only to the

direct connected ASes. Their profit diminishing but other networks are not affected.

8.7.4 Changing AS agreements

Finally we made some change to the agreements among networks. The results are

reported in Figure 8.13. With denote with M1 the old topology and with M2 the new.

We change the agrements in the following way: the links between AS1 and AS4, and

from AS2 to AS4 are now peering; from AS5 to AS7 is settled a transit agreement

where AS5 is the customer and the same for the connection between AS7 and AS6,

with AS7 as customer. Also here if we increase the weights to peering ASes we can see

that there is a gain for all networks. Also in this topology AS1, AS2, and AS3 only

pay. But AS4 and AS5 have now a positive profit because they do not route requests of

AS2. It is interesting note that here give up a transit agreements, which still generate

profit, is more convenient.

8.8 Conclusions

In this chapter we have presented a model able to compute costs and rewards for

Autonomous Systems (ASes) organized in a complex network topology. We take into
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accounts peering and transit agreements as well as inter-AS routing policy. We merge

an AS-level model with a new P2P resources diffusion model we have developed. Peers

are considered being spread among the ASes, each one having its own parameters in

terms of resource availability and demand. We were able to describe how a P2P protocol

impact on the underlying AS-layer. The main goal we achieved is providing the system

administrator a tool to minimize its cost related to the traffic produced by the users

of its network. Our model can easily compute costs and rewards distribution in the

ASes network that depending on different parameters (peering and transit agreements,

routing policy, different AS size etc.).
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Figure 8.2: Example topology of six ASes with the cost and reward matrices for

AS2
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Figure 8.3: ASes topology used to validate the model
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Chapter 9

Conclusions and future work

We state the conclusions of this thesis and discuss opportunities for further investiga-

tion.

9.1 Summary

The primary objective of this dissertation is the optimization of P2P protocols. The

issue has been considered from two points of view: protocol’s performance improvement

and network awareness. A particular attention has been given to file-sharing protocols.

Our main contribution with respect to performance improvements has been to develop

ad-hoc strategies that support LT codes in P2P file-sharing protocols. We develop

both a BitTorrent modification (Chapter 4) and a complete new protocol, ToroVerde

(Chapter 6), built around the digital fountain concept. Regarding network awareness

we propose both a game-theoretical approach to design IPS-aware policies in P2P

streaming networks and an analytical model for resource diffusion in P2P file-sharing

overlay distributed over Autonomous Systems topology. Other contributions of this

thesis are a new P2P simulator (Chapter 5), that achieves significant improvements

respect with GPS and a novel measurement strategy for P2P closed source network

protocols.

We started out by studying a popular P2P-TV streaming system: PPLive. Our aim

was to study a widely-used P2P application to obtain useful and meaningful informa-

tions about P2P protocols’ behaviour. We move around the closed source nature of the

PPLive protocol using a passive/active measurement technique. To this end, we use a
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distributed crawler to capture snapshots of PPLive overlay networks. We derive several

characteristics of the overlay network, such as topological informations, users behav-

ior and sessions length. Moreover we also point out the relations between bandwidth

(upload and download) and the crawling accuracy. Our work contribute also to show

limits and completeness of active measurements acquired crawling the PPLive overlays,

concluding that a simple crawling strategies is not able to get accurate snapshots. The

lesson that we can draw is that the derivation of accurate topological information for

PPLive (and possibly for similar P2P-IPTV applications) requires the setting of more

sophisticated measure methodologies.

In Chapter 4 we investigate how the introduction of LT codes in a well-known

protocol, BitTorrent, improve its performance. In particular we show by simulations

that in some network conditions i.e., when peers expose high dynamical behaviour (high

churn rates and flash crowds), and considering files of small size, better performance

can be achieved. In such conditions our proposed protocol yields a gain about of 10%,

in terms of downloading times. We also show how the standard protocol strategies

must be properly modified for rateless codes. These results demonstrate that the use

of some kind of network coding, in our case LT codes, can lead to improvements, and

these are mainly related to network conditions and peers’ behaviour.

In Chapter 6 we implemente a completely new P2P protocol, ToroVerde, a push-

based P2P content distribution application exploiting the digital fountain concept

through rateless codes. We provide a complete protocol specification and developed

both a detailed simulator and a complete prototype that we used to perform a fair

comparison between ToroVerde and BitTorrent. ToroVerde achieves less download de-

lays in several realistic scenarios for small-to-medium sized file and overlays composed

of a few hundred peers.

We presente several possible techniques for network awareness. We develope a

game theory framework (Chapter 7) that can be used for the design of ISP strategies

aiming at providing efficient and reliable support for P2P streaming application. Our

framework allows us to illustrate the existence of equilibrium points in the ISPs game

and the role of possible strategies to renew these points. We have also shown how to

use ideas from the evolutionary game theory to derive techniques that a player can use

to compute the (operational) equilibrium points assuming only limited knowledge on

the state of the other players.
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The analytical model we have presented in Chapter 8 is able to compute costs and

rewards for Autonomous Systems (ASes) organized in a complex network topology.

Peering and transit agreements as well as inter-AS routing policy are taken into con-

siderations to compute utility functions. Also in this case we have given particular

attention to file-sharing protocols. We merge an AS-level model with a new P2P re-

sources diffusion model we develop. The main advantage of the proposed probabilistic

model is that it exploits properties of the Z-Transform to consider very large models

with low computational cost. Peers are considered being spread among the ASes, each

one having its own parameters in terms of resource availability and demands. Using

both models we describe how a P2P protocol impacts on the underlying AS-layer. In-

deed the main goal is providing the system administrator some tools to minimize its

cost related to the traffic produced by the users of its network. In particular we show

how this can be achieved by either trying to settle different peering agreements with

other ASes or by applying intelligent routing schemes that can provide a cheaper use

of its resources.

In summary our work focuses on P2P file-sharing protocols. We have shown how

using network coding techniques lead to improvements. We have modified BitTorrent

and have implemented a new protocol from scratch. At the same time we have devel-

oped several techniques to optimize the interaction between P2P protocols and ISPs,

using both a game theoretical framework and a P2P diffusion model.

9.2 Topics for further investigation

There are several areas that are doubtless interesting and where we would perform

further researches to improve the contributions made in this dissertation. How network

coding can improve P2P protocols performance is a question still open and network

awareness promises to be a productive research topic in the near future, for the its eco-

nomical and commercial consequences. In the following we summarize several possible

improvements to the work presented in this thesis.

9.2.1 Network coding and P2P overlay

We have demonstrated that using coding techniques lead to improvement in P2P file-

sharing protocols. As a possible future development it would be interesting investigating
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the performance of Toroverde in different conditions from that already presented i.e.,

for larger files as well as for larger overlays. A challenging goal is also devise techniques

to reduce the communication overhead of the protocol: a possibility could be allowing

coded block to be forwarded more than once hence avoiding the need for Bloom filters

bits in each sent coded blocks. Another interesting topic is evaluate possibility for the

recombination of already coded blocks. The objective is improve blocks diversity in

the overlay network, reducing the possibility that the same block is received twice, and

consequently reducing the signaling overhead required for content reconciliation. It

would be interesting to explore the use of different coding techniques.

9.2.2 Applying network coding to other P2P protocols

While this thesis focuses main on file-sharing protocols, it would be interesting investi-

gate how other types of protocols like live-streaming or Video-On-Demand can benefit

from coding techniques.

9.2.3 Extend the game theoretical framework

The future developments of the research presented in Chapter 7 is following several

directions. One is to deepen the simulation based analysis investigating relation be-

tween peers dynamics and their effects on the fluctuation utility functions. Another

way we are currently investigating is developing more sophisticated payoff functions

that include information about the size of the ISP and the subscription fees it apply to

its subscribers. These model enhancements could explore other different interaction-

s/competitions among the ISPs e.g., competition for attracting users, and competition

on subscription fees. Furthermore, we can also investigate other fairness criteria, based

for instance, on function that accounts for the ISP rewards.

9.2.4 Improving the cooperation between Autonomous Systems and

P2P protocols

Our objective for further development is extend and generalize our model for different

kind of P2P protocols. Another interesting direction is study techniques that improve

the interaction between P2P application level protocol and external routing proto-

cols, like BGP. One solution, for example, could be include geographical information
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for packet routing, making protocols aware of optimal (e.g. shortest, less congested,

cheaper) paths.
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Appendix A

Here we report some proofs cited in Chapter 8

A.1 Proof 1

In order to simplify the notation, we denote

g(·) = g(u1...uN , v1...vN , w1...wN ) and Π(·) = Πm(n1..nN , p1..pN , q1..qN )

∂

∂vi
g(·) =
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n1...nN , p1...pN , q1...qN
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1 ..unN

N vp1
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A.2 Proof 2

♦ We can show that we can obtain (8.7 ) from (8.8) by solving step by step the right

term of the equation. Starting from explicit form of 8.5 we have:

gi(ui, vi, wi) =
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i Πi(ni, pi, qi)
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Equation (8.8) is proven by computing the integral between 0 and 1.♦

A.3 Proof 3

♦ By definition of generating function we have:
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Elaborating (8.22) we obtain:
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Comparing (A.7) with (A.6) we have:
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By using a technique similar to the one used in the proof of (8.8) we can compute from (8.21):
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∫ 1

0







∫ 1

0

[
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If we insert (A.8) into (Last) we obtain (8.21).♦
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