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Abstract

Erasure codes are a possible solution for the information reliability problem

in random networks. Novel encoding techniques, such as Random Network

Coding and Rateless Codes, are emerging in this field, but the introduction

of new ideas brings new challanges that must be addressed. For example,

encoding the information to be spread introduces delays caused by the time

required to decode the data upon receipt. These codes are also sub-optimal

because slightly more data is requested in order to retrieve the initial in-

formation. Moreover, the more they are near to the optimality bound, the

more their decoding complexity increases.

This thesis proposes a series of new encoding and decoding algorithms able

to diminish the complexity of these codes, while approaching the optimal-

ity bound. After a theoretical analysis of the proposed techniques, they

are analyzed in various applications for content distribution in peer-to-peer

networks, distributed storage systems and network management and moni-

toring.
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Introduction

Recent results have pointed out that rateless codes can be profitably exploited to im-

prove the performance (by avoiding the need for content reconciliation at the receiver)

and reliability (by providing robustness with respect to peers churning) of data distri-

bution in networks organized in random overlays, as peer-to-peer (P2P) networks or

Wireless Sensors Networks (WSN). The use of coding techniques increases the reliabil-

ity of content distribution applications such as distribution of bulk data, application

level multicast, P2P streaming applications (1, 2, 3, 4) and efficient broadcasting in ad

hoc wireless networks (5, 6), to name a few. Most cited results have been catalyzed by

the seminal promises of network coding (7, 8), where nodes in the network are allowed

to combine information. The deployment of network coding at the application level,

e.g., in the field of P2P file sharing or video streaming, has been limited. This is primar-

ily due to of the added computational cost associated with linear coding. Nowadays,

such complexity issues must be carefully reconsidered, as a novel class of erasure codes,

known as rateless codes (9, 10), designed for application level coding, is becoming a

practical tool for efficient coded data dissemination.

Rateless codes (also called Fountain codes) are a family of erasure codes where the rate,

i.e. the number of coded and transmitted symbols, can be adjusted on the fly. These

differ from standard channel codes that are characterized by a rate, which is selected

in the design phase. A rateless encoder can generate an arbitrary number of coded

symbols. This indicates that rateless codes perform well where the erasure probability

is not known as in multicast applications, where the encoder outputs into a shared

medium which cannot tune its transmissions to an individual receiver. The approach

used to transmit such codes is called Digital Fountain (DF), since the transmitter can

be viewed as a fountain emitting coded symbols until all the interested receivers (the

sinks) have received the number of symbols required for successful decoding.

1
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The encoding process of fountain codes is simple: given k input symbols (for simplic-

ity, we assume that the input and output symbols are bits) and a discrete probability

distribution P over [1,k] (called degree distribution), the encoder generates each out-

put symbol choosing a random degree d according to P , and then choosing uniformly

at random a set of d input symbols and XORing them. The classical decoding algo-

rithm for these codes is Message Passing (MP): given n output symbols, the decoder

selects one of degree one. The value of the corresponding input is set, and that input

is then cancelled out of all other outputs it is a part of. Decoding stops when there

are no degree-ones left. This algorithm is very fast, but usually needs a large number

of output symbols to enable decoding. The decoding process can also be seen as the

resolution of a system of equations, so Gaussian Elimination (GE) can be used. GE

requires less input symbols to execute the decoding. Moreover GE performance is far

less sensitive to the parameters chosen for the degree distribution, making the code

design simpler. Alternatively, if the cost of an algorithm is computed as the number of

operations needed to decode then GE complexity is larger then MP.

The degree distribution is a crucial component of the design of a Fountain code. Luby

Transform (LT) codes (9) are the first class of efficient rateless erasure codes that achieve

optimum performance as the data length increases. In (9) the Robust Soliton Distribu-

tion (RSD) τ(c, δ) is proposed. In the RSD, c is a suitable positive constant and δ is the

allowed failure probability at the decoder. It is demonstrated that the decoder fails to

recover the data with a probability of at most δ from a set of K = k+O(
√
k× ln2(k/δ))

coded symbols, which means that successful decoding is attained with K = k(1 + ϵ)

with limk→∞ϵ = 0, i.e., the code is asymptotically optimal.

Other known Fountain codes are Raptor codes (13), Windowed codes (11) and Growth

codes (12).

Rateless codes can solve the complexity problem raised by network coding, enabling

the creation of practical communication schemes that use linear encoding techniques.

However, many problems still remain. The overhead of rateless codes is usually only

asymptotically optimal: for small values of k, mainly used in real-time applications,

the overhead could be very high (larger than 10%). Conversely, some rateless codes can

maintain a small overhead even for small values of k, at the cost of an increase in the

decoding complexity. The tradeoff between overhead and complexity is a core point in

the design phase of an encoding scheme.

2
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An important property of Network Coding is the ability to construct a distributed en-

coding of the information. The information is not only encoded at the source, but also

all the nodes of the network support the encoding of the packets, thus obtaining a real

distributed encoding scheme. In rateless codes this is not completely possible. Many

authors faced this problem, proposing different solutions for various network configu-

rations, without really solving the problem ((50), (38), (49)): the encoding of rateless

codes is inherently centralized. The possibility of encoding the information using rate-

less codes in a distributed way is still a problem.

Another problem, common for network coding and rateless codes, is the delay of the

transmission due to the decoding of the packets. In classical distribution systems, when

the information is received, it is ready for use: conversely, encoded schemes add a fur-

ther delay in order to retrieve the plain information. Decoding algorithms that are able

to decode the packets early must be studied in order to address this issue. Incremental

Decoding and Partial Decoding are two paradigms created in order to decrease the

decoding delay.

Incremental Decoding. The MP algorithm (as it is usual for all decoding algo-

rithms) has to wait to receive the first k + ϵ output symbols to attempt the

decoding process. Moving forward, the decoder attempts decoding at a pre-

scribed set of times. In general, at every decoding attempt decoding algorithms

start ”from scratch” without using the soft information produced in the previous

decoding attempt. Alternatively, Incremental Decoding (ID) algorithms continue

from the decoding results of the last decoding attempt (14). This means that

the ID computational effort is distributed over all symbol receptions, because

they keep decoding while waiting for the next symbols. Classical decoding algo-

rithms spend almost all their computations after the required number of symbols

has been received, and the actual decoding time is the sum of the time spent to

receive the symbols plus the time spent to decode them.

Partial Decoding. The design of rateless codes has been optimized so that the low-

complexity decoder can recover all the inputs provided it starts with slightly more

outputs than inputs. Partial decoding concerns the intermediate performance of

the codes, i.e. the case when the number of received output symbols is less than

the number of input symbols. In this case it is not possible to fully recover all

3
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input symbols, but it is important to know the fraction of input symbols that

can be recovered as a function of the number of received output symbols and the

probability distribution used to generate the code.

In application, the intermediate performance of a code can be very important.

For example, consider a scenario where a data stream is to be transmitted to

multiple users over a shared channel. The stream needs to be decoded in real

time. If rateless codes are used for the transmission, the stream would have

to be broken into blocks of symbols, and each block would be encoded (and

decoded) separately. In this case, it is possible that some user may not receive

the requisite number of output symbols for some input block. It is reasonable,

however, that many real-time applications can be reliably played back from a large

enough fraction of the inputs. Thus it is of interest to optimize the intermediate

performance of a code. Sanghavi (17) has theoretically studied the intermediate

performance of rateless codes using the MP decoder.

This work is divided into two parts. In the first part, a theoretical solution for some

of the problems of network coding and rateless codes is presented. Specifically, we

propose an algorithm for decoding Fountain Codes using Gaussian Elimination called

On-the-fly Gaussian Elimination (OFG) (15). OFG is an incremental decoding algo-

rithm that builds a triangular matrix by exploiting every received symbol starting from

the very first one. This enables the OFG to halve the number of operations needed

to decode w.r.t. GE. We also propose the Optimal Partial Decoding (OPD) algorithm

(34). This algorithm is able to decode the maximum number of input symbols when

given an arbitrary set of output symbols. To date, no results exist for such an algo-

rithm; to the best of our knowledge, this is the first optimal partial decoding algorithm

for rateless codes.

Later we study the distributed encoding of rateless codes, and in particular the recod-

ing of pre-encoded packets by the nodes, as proposed in the Random Network Coding

(RNC) schemes. However, a blind combination policy leads to an increase in decod-

ing complexity: the degree of the packets tends to degenerate from the inital degree

distribution of the used rateless code to Dense Codes, a family of higher-complexity

rateless codes. To cope with this problem, we propose Band Codes, a new family of

rateless codes that are able to simultaneously maintain the decoding complexity and

4
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keep overhead under control.

Finally, we propose a general framework based on the Digital Fountain approach to

create regenerating codes (22) that is able to reconstruct the lost fragments by con-

tacting a number of storage nodes lower than the number of fragment used to retrieve

the message. Moreover, the proposed framework is able to increase the reliability of

the information creating new encoded fragments without retrieving the plain message.

In the second part we use the aforementioned theoretical tools to attack various

problems that involve the dissemination of data in a distributed network. Particu-

larly, we study the application of rateless codes in three subfields: content distribution,

distributed storage systems and network management and monitoring.

In content distribution, the objective is to explore how coding theory can provide

benefits to existing applications in terms of performance, resilience and efficiency. We

also emphasize hostile environments with frequent node mobility and communication

errors such as isolated mobile internet worlds and wireless mesh networks. Existing

state-of-the-art employing coding for content distribution is abundant, particularly in

peer-to-peer networks. The nature of such networks makes them particularly suitable

for coding, as their ability to operate in a distributed fashion and scale, and self-organize

in the presence of a highly transient population of nodes, computer and network fail-

ures. Data is usually divided in packets. In this field, one of the main problems is

content reconciliation due to the high probability to receive duplicated packets.

Content distribution solutions provide a mechanism for distributing content on the In-

ternet in order to maximize bandwidth usage and to improve accessibility and reliability

(18, 19). A typical content distribution solution relies on placing dedicated equipment

at certain places inside or at the edge of the Internet. These Content Distributed Net-

works (CDNs) improve network performance by maximizing the resource utilization

through content replication, caching, request routing, server-load balancing, etc (20).

While they have the advantage of good maintainability of the system, they are often

vulnerable to single points of failure. Techniques such as content replication, caching

and mirroring are widely used by centralized CDNs to alleviate these problems (19).

Peer-to-peer networks facilitate the formation of autonomous networks by being more

flexible to the dynamic changes in the network. The network can thus spontaneously

adapt to the demand by taking advantage of the resources provided by every node.

The system capacity theoretically grows at the same rate as the demand, creating

5
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limitless scalability for a fixed cost (21). P2P distributed computer architectures are

designed for the sharing of computer resources (content, storage, CPU cycles) by di-

rect exchange, rather than requiring the support of a centralized server or authority.

P2P architectures are characterized by their ability to adapt to failures and to accom-

modate transient populations of nodes while maintaining acceptable connectivity and

performance. In a traditional P2P content distribution scheme, the server splits the

file of interest into blocks; next, peers download the blocks from the server and also

collaborate to distribute downloaded blocks among themselves. Each node can recover

the original file after downloading all the components. Such approaches are sensitive

to sudden departures of nodes, and their performance is affected by the policy used to

determine which block to forward. Nonetheless, using codes in a P2P system reduces

these problems and increases the robustness to losses.

We develope a protocol that is able to significantly improve the performance of coded

data dissemination obtaining low average delays and efficient utilization of upload and

download peer bandwidths. Low average distribution times and high bandwidth utiliza-

tion are simply obtained by letting peers saturate their upload bandwidth, forwarding

useful coded packets as soon as possible. Of course,a forwarding activity that is too

aggressive may result in an unacceptable high overhead due to the amount of dupli-

cated packets received from neighbors. To reduce the amount of duplicated packets,

we first evaluate the effect of throttling the speed used by peers to saturate the avail-

able upload bandwidth. We then show that combining useful packets with packets

accumulated during the decoding process results in a lower probability of forwarding

duplicated packets, reducing the overhead.

However, this policy leads to an increase of the decoding complexity. In large networks,

the system tends to degenerate from the inital degree distribution of the used rateless

code to Dense Codes. We propose a recoding algorithm to the nodes that, when applied

to Band Codes, permits a strict control on the complexity of the decoding to cope with

this problem.

In the field of distributed storage systems, our objective is to study the impact

of Fountain Codes in distributed storage, video and other content for their ability to

provide maximum throughput and minimum latency. Existing works show that tradi-

tional distributed storage techniques, such as erasure codes, achieve good reliability, by

optimizing the trade-off between reliability and redundancy. In practical distributed
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storage systems, however, (22) shows that other considerations enter into play, such as

network bandwidth consumption. In such settings, (23) shows that traditional schemes

alone do not suffice.

Distributed storage systems are becoming the de-facto method of data storage for the

new generation of applications. As an example, modern cloud applications developed

by companies like Amazon, Google and Yahoo! that require terabytes of data, need

to rely on distributed computing and storage to meet availability, scalability and per-

formance demands. Compared to traditional relational database systems, distributed

storage networks increase storage efficiency and data availability by providing shared

storage access to computers and servers in multiple locations (24). Distributed storage

systems provide reliable access to data through redundancy spread over individually

unreliable nodes. The geographic distribution of resources also results in a lower ob-

served latency, and resources can be placed closer to clients. A distributed storage

system consists of a set of storage elements placed into nodes, which function inde-

pendently of each other and thus exhibit independent failure patterns. These nodes

are often connected through a network with arbitrary topology, and the information

objects are stored in specific nodes according to a mapping function. Typically, one

wants to reliably recover the information in a distributed storage system with the low-

est communication cost possible, and also by requiring the lowest possible aggregated

storage.

A distributed storage system can be easily conceived as the process of dissemination

and recovery of information taking place across several nodes, and thus it is a good

candidate to employ some form of coding. By encoding information, distributed storage

systems increase reliability over former non-coded methods. We develope an encoding

protocol for a distributed storage system using rateless codes.

Finally, we explore network management and monitoring, a crucial tool to monitor

the health of a network where network coding has been extensively used with great

success. The ability to control and to infer network characteristics accurately and effi-

ciently, without incurring in significant use of costly network infrastructure, is critical.

This is particularly true in volatile wireless environments where resources and infras-

tructure support are very limited.

A critical network engineering functionality is to monitor the health of a network and

7
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adapt its use to the demands of the end users. In order to perform this network mon-

itoring, control mechanisms are needed to infer network characteristics efficiently and

accurately, without significant use of costly network measurement infrastructure. This

process is referred to as network tomography. We develope a multicast protocol that is

able to spread the information owned by a peer to all the other peers in the network.

Using a C++ simulator, we studied how rateless codes can improve the distribution of

information about the health of a peer in the network.
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Chapter 1

Rateless Codes

1.1 Erasure Channel

Many channel models exist in the information theory field. The model we want to focus

on is the Packet Erasure Channel (PEC), an extension of the Binary Erasure Channel

(BEC) where the binary alphabet is extended to strings of bits, i.e. a BEC where the

transmission is performed on a per packet basis instead of per bit.

The communication scheme of an erasure channel is showed in Fig.1.1. A symbol

(generally expressed with 0 and 1) has to be transmitted from a sender X to a receiver

Y . The channel loses the symbol with probability pe, called the erasure probability, or

transmits the symbol correctly with probability 1−pe. In other words, the transmitted

symbol can get lost through the channel, or can arrive at the receiver unchanged. This

communication channel model can be used to model transmissions in an IP network;

the best effort strategy of these networks, where the correctness of the content of a

packet is assured by the lower-level protocols but the packets are discarded due to

routing or congestion problems, is the practical application of a PEC channel.

A solution for the transmission problem over a PEC is the use of a feedback channel

from the receiver to the sender, wich is used to inform the sender about lost packets.

Alternatively, a system of acknowledgements can be used: every time a packet is re-

ceived, the receiver sends a message to the sender. However, these messages travel over

the same PEC channel, and hence can get lost; a protocol like TCP can manage this

problem, provinidg a good solution to the transmission problem over a PEC. The main

problem of TCP is its high transmission overhead, i.e. the large number of acknowledge
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1. RATELESS CODES

Figure 1.1: Binary Erasue Channel (BEC) model

messages that need to be sent at every packet transmission.

Another solution to the transmission problem is to use an erasure code, that is a for-

ward correcting code specifically designed for BECs. An erasure code transforms a

message m of k symbols (bits or packets) into an encoded message of n symbols. The

ratio k
n is fixed and depends on the code used. It is called the rate of the erasure code.

The n symbols are sent over the BEC and the receiver receives n′ ≤ n of them. In an

erasure code, it is called overhead of the code the number k′ ≥ k of symbols required to

recovery m; k′ can depend on the subset of the received symbols. An optimal erasure

code has the property that k = k′; in coding theory, such a code is called a Maximum

Distance Separable (MDS) code. The classic MDS codes are Reed-Solomon (RS) codes.

The main disadvantage of RS codes is their high computational complexity, which only

makes them practical for small values of k and n.

Another problem with RS codes, which is common to all the classic erasure codes,

is the fixed rate. The rate of the code must be chosen by the sender according to the

erasure probability. This assures that the required number of symbols will be received

with a certain probability. However, it is possible that the erasure probability of the

12



1.2 Fountain Codes

Figure 1.2: Broadcast transmission model

channel is unknown or may change during the transmission. Hence, the number of

symbols received by the receiver is lower than k. In this case, the receiver needs more

symbols in order to recover m. These new symbols cannot be created on-the fly, and a

new erasure code must be used. Another problem associated with the fixed rate erasure

codes is the broadcast transmission (Fig. 1.2). If a message has to be transmitted by

broadcasting to a certain number of receivers, and each receiver is connected to the

sender through an erasure channel with different erasure probability, the sender should

use a different erasure code for each channel, not using the broadcast property. As an

alternative, the sender could encode the message using an erasure code for the worst

channel and send the same encoded symbols to all the receivers. However, this is not

an optimal solution because high rate codes would be used for low erasure probability

channels.

To face these problems, Luby et al. (33) propose a new approach: the Digital Fountain.

1.2 Fountain Codes

The idea behind Fountain Codes is simple: the encoder is seen as a (digital) fountain

that emits a continuous stream of drops, the encoded packets. When a receiver wants

to receive the message, he metaphorically holds a bucket under the fountain, collecting

a number of drops a little larger than k. The receiver can ask for any subset of size

13



1. RATELESS CODES

a little larger than k in order to recover m. The other name of fountains codes is

derived from this characteristic: these codes are also called rateless codes (RC). This

name comes from their ratleless nature: in fact, the rate, which is dependent on the

number of encoded packets created by the code, is theoretically equal to zero. This is

because the stream of packets emitted by the fountain is endless. Using these codes,

it is possible to create new encoded packets on the fly, solving the main problem of

fixed rate erasure codes. However, these codes are suboptimal, as a certain overhead

k′ = (1 + ϵ)k is requested in order to recover the message.

Rateless codes are a good idea, and it is possible to build them. The most simple

version we can create are Dense Codes (DC).

Consider a message m divided into k packets m1, . . .mk, where a packet is a data unit

composed of l bits that can be transmitted over a PEC. The total size of m is k · l bits.
At every transmission possibility, the sender creates an encoded packet cn as follows:

first, a random element en of GF (2)k, called equation, is extracted. This is a random

string of bits of length k where every bit is a 1 or a 0 with a probability of 1
2 . The

encoded packet is generated as the exclusive-or (xor) of the packets of m that lay in a

position i for which en has a 1 in that position:

cn =

k∑
j=1

en,j ·mj

where ei,j is the j-th element of equation ei and the summation is performed in GF (2),

i.e. modulo 2. The generating matrix E of the code can be created from the equations,

as the matrix formed by the equations as rows. Therefore, the encoding matrix is a

random k×n binary matrix. The encoded packets are transmitted to the receiver along

withtheir equations. The packets can get lost during the transmission: let us suppose

that the receiver receives n′ packets among the packets sent by the sender. If G is

the k × n′ matrix formed by the received equations as rows, G is a sub-matrix of the

generating matrix E. In order to recover the plain message, if c is a vector formed by

the received packets, the receiver has to solve the system of equations

G ·m = c.

This system is solvable if G contains k linearly independent rows. This means that if

n′ < k the system is unsolvable and the receiver needs more packets in order to recover

14



1.2 Fountain Codes

Figure 1.3: Performance of Dense Codes (from (10))

m. This is not a problem for a rateless code: the sender can create new encoded packets

on the fly and send them to the receiver until the plain message is completely recovered.

On the contrary, if n′ ≥ k, the system can be solved by inverting G (in particular, the

sub-matrix of G formed by k linearly independent rows). Now a new problem arises,

concerning the probability pl(n) that a random k × n′ binary matrix will contain k

linearly independent rows. In the case of a random k × k matrix, this problem has a

simple solution; pl(k) is the product of k − 1 probabilities. The first factor is given by

the probability that the first row is not the all-zero row, that is (1− 2−k). The second

factor is the probability that the second row is different from both the first row and

the all-zero row, given by (1− 2−(k−1)). In general, factor i is the probability that row

i is linearly independent from the first i − 1 rows and different from the all-zero row;

this means that row i has to be different from set of 2i−1 equations given by all the

possible linear combinations of i−1 equations plus the all-zero row. Such a probability

is (1− 2−(k−i+1)). Finally,

pl(k) =
k∏

i=1

(1− 2−i).

This probability is approximately 0.289 for k = 100. If n′ > k, the calculus is more

complex. In figure 1.3 the failure probability pd(n) is plotted for k = 100. This

probability can be over-bounded by the function 2k−n, represented in the figure by the

dotted line. From the figure it is possible to note that even if Dense Codes are not
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1. RATELESS CODES

optimal, they are near-optimal: the failure probability decreases exponentially with

the number of extra packets received. This means that the expected overhead of the

code, i.e. the expected number of extra packets required for the recovery, is about∑∞
i=1

i
2i

= 2, which is a very low number.

However, the main problem of Dense Codes is the large computational complexity of

their decoding; the expected decoding cost depends on the inversion of a random binary

matrix, which takes about O(k3) operations. For large values of k, this complexity turns

out to be too computationally expensive. Similarly, their encoding complexity is O(k2).

A solution with lower computational cost would be preferred: this solution is provided

by the LT codes (9).

1.3 LT Codes

LT codes are the first family of low-complexity rateless codes. The main idea of the LT

codes is to maintain the generating matrix as sparse as possible; indeed, many studies

on the invertibility of binary random matrices show that it is possible to maintain

high probability of inversion even with sparser matrices. Moreover, in (9) the author

proposes a low complexity decoder for his code, thus solving another problem posed by

Dense Codes.

The encoder is similar to the encoder of DC: the main difference is the generation of the

equations. For LT codes, the degree dn of the equation en is chosen first; this degree is

chosen randomly from an appropriate degree distribution ρ(d). After that, the equation

is chosen at random among the degree-dn equations in GF (2)k. The degree distribution

of LT codes is the crucial point of the process, and it will be discussed later. As an

example, a DC can be seen as a rateless code with a binomial distribution B(k, 12) as

the degree distribution. The remainder of the encoding process is the same for the DC:

the encoded packet cn is calculated as

cn =

k∑
j=1

en,j ·mj .

The decoder is especially designed for decoding low-density codes. In fact, the decoding

process can be reduced in the resolution of a system of equations G · m = c, where,

for LT codes, G is a sparse matrix. In this case, Luby proposes to solve the system
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1.3 LT Codes

using the Message Passing (MP) algorithm. This algorithm is very simple and fast:

it is performed when at least k packets have been received by the receiver. At every

cycle, a row Gu that contains a unique 1 in column j (i.e. an already decoded packet)

is found. The column j is then checked: every time a 1 is found at row i, that row

and the corresponding element of c are xored with Gu and cu respectively, obtaining

Gi = Gi ⊕ Gu and ci = ci ⊕ cu. This elimination is performed for all the rows that

contain a 1 in column j: at the end, column j will have a unique 1 in correspondence of

row u. That row and its correspondent element of c are considered decoded, obtaining

mj = cu, and Gu and cu are then substituted by all-zero vectors. After that, the cycle

terminates and a new cycle can begin. This algorithm ends in two cases: when G turns

out to be all zero, hence the decoding process is successful, or when no degree-one rows

are found, and in this case the decoding attempt fails.

The possibility of always finding new degree-one rows during the process is of paramount

importance for the MP algorithm. The degree distribution of LT codes is designed to

keep the expected number of degree one rows equal to 1 at every iteration. In (9) the

author proves that, theoretically, the best distribution is the Ideal Soliton Distribution,

which is defined as:

ρ(d) =


1
k if d = 1

1
d(d−1) if 1 < d ≤ k

0 otherwise

Unfortunately, this distribution performs poorly in practice because of the large vari-

ance for the probability of finding degree-one rows during the MP decoding process. To

solve this problem, Luby proposes the Robust Soliton Distribution (RSD), originated

by Ideal Soliton Distribution with two parameters added.

The Robust Soliton Distribution uses the parameters c and δ in order to ensure that

the expected number of degree-one rows during the MP decoding process is about

S = c loge(k/δ)
√
k. Using these parameters, the auxiliary function

τ(d) =


S
kd if 1 ≤ d ≤ ⌊ kS ⌋ − 1
S
k loge(

S
δ ) if d = ⌊ kS ⌋

0 otherwise

is calculated. Finally, the RSD µ(d) is calculated as

µ(d) =
ρ(d) + τ(d)∑k
i=1 ρ(i) + τi

.
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1. RATELESS CODES

Figure 1.4: Comparison between ISD and RSD(0.1,0.1) for k = 100
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Figure 1.5: Average overhead using RSD(c, 0.01) distribution
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In fact, the RSD is similar to the Ideal Soliton distribution with the exception of a

peak for d = ⌊k/S⌋, that ensures a larger connection between rows (see Fig. 1.4).

Finally, Luby proves that the overhead of LT codes is vanishing for large values of k;

in particular, he proves that k′ = k + 2 loge(S/δ)S received packets can recover the

message with a probability of at least 1 − δ; if k′ = k(1 + ϵ), and ϵ is the overhead

of the code, ϵ → 0 for k → ∞. However, the convergence speed also depends on the

employed decoding algorithm. As seen earlier, the LT decoding process can be viewed

as the resolution of a system of equations, and the classic algorithm for the resolution

of this problem is the Gaussian Elimination (GE) algorithm. In Fig. 1.5, the overhead ϵ

is shown versus k for GE and BP decoders for a LT code with δ = 0.01 and c = 0.01. It

can be noted that, for GE, the overhead converges faster than for BP; in general, GE-

like algorithms requires fewer encoded packets to decode. Moreover, GE performance

is far less sensitive to the parameters chosen for the degree distribution, making the

code design simpler. On the other hand, if we compute the cost of an algorithm as the

number of row xor and swap operations needed to decode, then BP complexity, that is

O(k log k), outperforms GE complexity, that is approximatively O(k2).

1.4 More Rateless Codes...

The coding and decoding computational complexity of LT codes scale as k log k; how-

ever, many other rateless codes were created after the Luby’s seminal paper.

The most known rateless codes apart from the LT codes are the Raptor codes (13).

These codes have surprising linear coding and decoding computational complexity.

This property is obtained through a pre-encoding step. The initial message, divided

into k packets, is initially encoded, using an excellent fix-rate outer erasure code, in

k′ = k/(1− f) pre-encoded packets. These k′ pre-encoded packets are then encoded a

second time with a weak LT code. This ensures, with high probability, that it is possible

to recover (1− f)k′ = k packets when slightly more than k packets are received; these

packets are now decoded using the outer code decoder, recovering the initial message.

Lesser known rateless codes are Windowed codes (WC) (11), that will be very useful in

this thesis. The main idea of these codes is to create equations in which the ones are con-

centrated in a window of length w. In particular, the authors recommend the creation

of equations of degree σ = ⌈2logek⌉odd and window length w = 2(
√
k−1)(σ−1)/(σ−2).
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In fact, the sender chooses a random integer m ≤ k, that is the initial position of the

window. After that, the equation is created by putting a 1 in position m and σ ones

among the w positions that follow m; if the bottom of the equation is reached, the

window will wrap back to the top. The decoding algorithm of these codes is Gaussian

Elimination, instead of MP, due to the absence of degree-one equations.
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Chapter 2

Incremental Decoding of Rateless

Codes

2.1 Introduction

The ”on the fly” nature of the encoding process of rateless codes is not reproduced

in the decoding phase: typically, the receiver attempts to recover the plain message

m only after the reception of k packets. If the decoding fails, the next attempt will

be performed from scratch after a certain number τ of new packets are received. In

fact, all the partially decoded packets obtained during decoding attempts are deleted

and the process is repeated from the beginning every time. This is a waste of time

and computation resources. It should be of interest to maintain the partially decoded

information from one decoding attempt to the next. This is the basic idea of incremental

decoding. In particular, we say that a decoding algorithm is incremental if the decoding

process is spread during all the packets reception, i.e if, in case a decoding fails, the

algorithm waits for new encoded packets, restarting the decoding process at the point

where the previous attempt failed. In the case of LT codes, the most known incremental

algorithms are derived directly from MP and GE. The one used more frequently is

the incremental version of BP, called IBP (26). However, the Incremental Gaussian

Elimination (IG) algorithm (25), which contains an incremental way to compute the

triangularization step in GE without repeating it in case of decoding failure, could be

used. In summary, these algorithms work as follows:

IBP algorithm: A row i0 of G that contains only one 1 in column j0 (a degree-one
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2. INCREMENTAL DECODING OF RATELESS CODES

row) is selected; it follows that mj0 = yi0 , all the 1s in column j0 are canceled and

their yi are xored with yi0 . The above process is iterated until the matrix G becomes

an all-0 matrix (decoding success), or until no more degree-one rows can be found

(decoding failure). In case of decoding failure, a new encoded packet is received, the

1s in the known positions of the corresponding equation are canceled and decoding is

reattempted.

IG algorithm: The GE triangularization step is performed only once after k encoded

packets (and their corresponding equations) are received. In case of failure, G is only

partially triangular; IG tries to fill the “bad” rows (rows without a 1 on the diagonal)

using new coded packets and the corresponding equations. This process is incremental

in the sense that rows of G and the new equations are xored and swapped without

repeating an expensive GE step on the whole matrix. As soon as G turns into triangular

form, back substitution is performed to complete the decoding.

2.2 On the Fly Gaussian Elimination

On the Fly Gaussian Elimination (OFG) is a GE-like algorithm that does not wait

for the first k packets to attempt the GE triangularization as in (25); rather it builds

a triangular matrix G by exploiting every received packet starting from the very first

one. Moreover, OFG employs a swap heuristic that yields a sparse triangular matrix

reducing the cost of row xor and swap operations and the final back substitution. The

main idea is to write matrix G in a triangular form as soon as possible by deleting

redundant equations on the fly. Informally, OFG works as follows (all the details are

presented in Algorithm 1): assume G is a partially triangular k × k-matrix, i.e., either

a row has leftmost 1 on diagonal or it is all-zero. Upon receiving an encoded packet yi

along with equation bi we find the position of the leftmost 1 in bi that we denote as si. If

the row G[si] is all-zero then we can replace G[si] by bi; otherwise, we xor bi and G[si],

as well as yi and ysi . We then obtain a new equation b′i and a new coded packet y′i. The

new equation is such that the s′i > si. The row finding and xoring are iterated until the

equation is either placed into G or all 1s in the equation are cancelled, i.e., the equation

is discarded. The number of iterations depends on the probability of a collision with a

full row, that increases as the matrix is being populated. We experimentally observed

that keeping a sparser G markedly decreases the number of iterations required to find

22



2.2 On the Fly Gaussian Elimination

1 0 0 1 0
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0 0 1 1 0
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0 0 0 0 0
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1 0 0 1 0
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0 0 0 1 1
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(b)

1 0 0 1 0
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0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(c)

1 0 0 1 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

(d)

Figure 2.1: triangularization step in the OFG algorithm.

the correct row in G for a given received packet, especially when G fills up. To this

end we define the following swap heuristic that can be applied at any iteration: if the

row G[s] is full, i.e., it has its leftmost 1 on diagonal, but the equation to be inserted

has a lower degree than G[s]; then the equation and G[s] are swapped along with the

corresponding coded packets.

After this triangularization phase, the source packets are computed by means of simple

back-substitution. Ffor the sake of brevity this step is not included in Algorithm 1.

We provide a concept of how OFG works by considering a simple example. G is the

partially triangular matrix in Fig. 2.1(a) and b1 = [01100] is the new received equation.

In this case s1 = 2, so we check if the G[2] is full or not: it is not, so we can insert

b1 in that row, thus obtaining matrix G in Fig. 2.1(b). G is still not triangular (G[5]

is all zeros), therefore we need a new equation. Equation b2 = [11010] is received at

this point. We get s2 = 1, but G[1] is already full; in this case b2 and G[1] are xored,

obtaining the new equation b′2 = [01000]. We should insert this equation in G[2], but it

is full, so we should xor that row and b′2. However, note that G[2] has degree 2 while b′2

has degree 1: according to the proposed heuristic, we swap the row and the equation.
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2. INCREMENTAL DECODING OF RATELESS CODES

As a consequence we get G[2] = [01000] and b′2 = [01100]. Now xoring G[2] and b′2, we

obtain b′′2 = [00100] which should go in G[3]. This latter is already full, but its degree

is greater than the degree of b′′2. Therefore, we repeat the swap and xor operations.

The iteration of the algorithm operations leads to matrix G as depicted in Fig. 2.1(c).

Note that without using the swap heuristic, we could triangulate G anyway, obtaining

the matrix in Fig. 2.1(d). It is easily observed that the swap heuristic we devised yields

a sparser triangular matrix. To summarize, the OFG algorithm triangulates G on the

fly, by using row xoring and swap operation, while maintaining the sparsity of G.

Algorithm 1 On the Fly Gaussian Elimination

Initialize k × k-matrix G to 0

Initialize k-vectors Y and NumOnes to 0

Initialize EmptyRows = k

while EmptyRows > 0 do

receive k-vector NewEq and encoded packet NewY

s← LeftmostOne (NewEq)

EqOnes← Degree(NewEq)

while G[s][s] = 1 do

if EqOnes ≥ NumOnes[s] then

NewEq ← NewEq ⊕G[s]

NewY ← NewY ⊕ Y [s]

s← LeftmostOne(NewEq)

PackOnes← Degree(NewEq)

else

Swap(NewEq,G[s]), Swap(NewY, Y [s])

end if

end while

if s < k then

G[s]← NewEq and Y [s]← NewY

NumOnes[s]← EqOnes

EmptyRows← EmptyRows− 1

else

delete NewEq

end if

end while
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Figure 2.2: Complexity of triangularization step.

2.3 Simulation Results

We experimented with IBP, IG and OFG algorithms for several values of k using an

LT code with δ = 0.01 and c = 0.01. All the techniques have been implemented in

C language using the same level of optimization in order to obtain fair comparisons.

We ran 1000 encodings/decodings for each algorithm, and we presented averages of the

relevant performance indexes.

In Fig. 2.2 we show the complexity of the triangularization step, which is computed by

counting the total number of row xor and swap operations, for OFG, IG and IBP vs. k.

For comparison, the cost of an ideal GE triangularization (performed only once as soon

as G turns to full rank) is also reported. As shown in (25), the cost of IG is equal to that

of a single GE triangularization, hence their curves in Fig. 2.2 are almost overlapped.

Using OFG one halves the number of operations w.r.t. IG and GE while guaranteeing

the same overhead. IBP is still faster than OFG because of its O(k log k) complexity.

Furthermore, Fig. 2.3 shows the number of 1s in G after the triangularization phase

vs. k for OFG, IG and GE. It can be noted that the proposed swap heuristic yields a

sparser G in the OFG case. Moreover, OFG computational effort is distributed on all

packet receptions. This feature turns out to be of paramount importance when taking
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Figure 2.3: Number of 1s in the triangular matrix (excluding diagonal).

into account the packet reception delay. IBP and IG spend almost all the computations

after the required number of packets has been received and the actual decoding time

is the sum of the time spent to receive the packets plus the time spent to solve the

system. On the contrary, OFG continues to triangulate the matrix while waiting for

the next packets. This enable OFG to decode almost immediately after the last packet

arrival, while IBP and IG are only beginning most of their decoding operations. Since

the complexity to insert a row in G is O(k), the total complexity of OFG is O(k2).

In Fig. 2.4 we report the normalized (over k) number of operations per packet as a

function of the percentage of received packets. It can be noted that the maximum

value in Fig. 2.4 is about 0.2, equivalent to only k/5 operations per packet. Clearly,

the row insertion cost increases with the number of received packets, since the number

of empty rows is reduced. Finally, we measured the real decoding time with a multi-

threading and concurrent implementation of the receiving and decoding tasks. The

experiments have been worked out on a 2.66 GHz Intel Core Duo CPU equipped with

2 GB RAM. In Fig. 2.5 we show the CPU usage (%) as a function of the time, when

the receiver downloads 1000 byte coded packets at 1Mbps. LT coding with k = 10000

is used. We observe that OFG allows for a 12.5% reduction in the overall decoding
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Figure 2.4: Normalized operations per packet vs. percentage of received packets.

time w.r.t. IBP and a more remarkable 28.9% w.r.t. to IG. IBP requires more packets

to start decoding due to the larger overhead (ϵ = 0.06). On the other hand, OFG is

able to decode almost immediately after the arrival of the last packet, thus taking full

advantage of the reduced overhead (ϵ = 5 · 10−4) and exhibiting less intensive use of

the CPU. IG has a limited overhead as well, but performs most of its operations at

the end, making it the slowest solution in this scenario. In fact, the large peak for IG

appears at T = 80 s, which corresponds with the time needed to download the first k

coded packets, and it is mainly due to the first and unique GE.
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Figure 2.5: CPU usage (%) as a function of the time for 1Mbps transmission.
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Chapter 3

Partial Decoding of Rateless

Codes

3.1 Introduction

Rateless codes are designed to decode all the input symbols when enough coded sym-

bols have been received. On the other hand, a receiver may have to decode the stream

when an insufficient number of symbols has been received: in this case, it is not possible

to recover all the transmitted information. However, it is possible to recover some of

the information contained in the received coded symbols: this process is called partial

decoding (26). In partial decoding, given an insufficient number of coded symbols, the

decoder attempts to decode the maximum number of input symbols (the number of

recovered input symbols is termed the intermediate performance of the code). Clearly,

improving the intermediate performance is of paramount importance, especially when

rateless codes are used to deliver multimedia content that exhibits graceful degrada-

tion in the presence of partial decoding. Indeed rateless codes are beginning to be

exploited in several multimedia applications, e.g. MBMS in 3GPP and peer-to-peer

video streaming (4).

To date, the decoding algorithm used for partial decoding of rateless codes is Message

Passing (MP) (26). However, the MP decoder is designed for the decoding of rateless

codes when the required number of coded symbols has been received, not for partial

decoding. Previous work on this topic studied the following problem: how can we cre-

ate a rateless code with good intermediate performance using the MP decoder? We
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3. PARTIAL DECODING OF RATELESS CODES

reverse that question and provide an answer to the following: given a certain rateless

code, what is its optimal intermediate performance? Is there an efficient algorithm

achieving such optimal performance? In particular, we introduce the concept of an

optimal partial decoding algorithm. We propose the Optimal Partial Decoder (OPD)

that, to the best of our knowledge, is the first optimal partial decoding algorithm for

rateless codes. We also analyze its decoding complexity.

3.2 Intermediate Performance of Rateless Codes

All decoding algorithms are designed to attempt a complete decoding of rateless codes(e.g.

to decode when a certain number n̄ of coded symbols have been received). This bound,

called the overhead of the rateless code, depends on the decoding algorithm used (29).

What happens when this lower bound is not reached? In this case, it is of interest

to know the intermediate performance of a code, i.e. the number of input symbols

that can be retrieved from the received coded symbols. We call partial decoding the

decoding process when the number of received coded symbols n is not enough to permit

a complete decoding. We are interested in defining a optimality criterion for partial

decoding algorithms. We say that a partial decoding algorithm is optimal if it is able

to retrive the maximum number of input symbols, i.e. to maximize the intermediate

performance, for every n.

The study of the intermediate performance of a rateless code can be viewed as the study

of the linear space generated by the equations linked to the received coded symbols.

Indeed, if we call En the linear space generated by the n < n̄ received equations, the

partial decoding problem can be recast as the search of degree 1 equations in En: if we

call ui the equation with a unique 1 in position i, an input symbol xi can be recovered

iff ui ∈ En. A partial decoding algorithm can be seen as an algorithm that performs

this search. Hence we can say that a partial decoding algorithm is optimal if, when

given a linear space En, it is able to find all the degree 1 equations in En. I.e. it must

be able to recover the maximum number of input symbols from an insufficient set of

coded symbols, for every n.

The intermediate performance of rateless codes was initially studied in (17). In this

crucinal paper, the author found an upper bound for the fraction of input symbols that

can be recovered for any rateless code using the MP decoder. As shown in Fig. 3.1,
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3.2 Intermediate Performance of Rateless Codes

Figure 3.1: asymptotic fraction z of recoverable inputs as a function of the normalized

number r of received packets (form (17))

The author divides the space of the percentage of received symbols into three regions.

The asymptotic degree distributions that yield the better intermediate decoding perfor-

mance are found in the first and second. The optimal degree distribution for the third

region is unknown, but an upper bound is presented. However, the proposed degree

distributions are asymptotic, so they are not always usable in a practical scenario. For

example, the best degree distribution for the second region is P (2) = 1 (i.e. all the

equations must have degree 2), but is not possible to decode this code. The xor of two

even degree equations is again an even degree equation: it is not possible to obtain

odd-degree equations from a set of even-degree equations, therefore it is not possible

to obtain degree-one equations from such a set.

To solve this problem in (27) the authors use Pareto optimization to find practical

optimal degree distribution. Weighted distributions are also proposed to obtain codes

with good intermediate performance in all regions.

In (12) Growth Codes are presented: these codes, originally developed to maximize

the data persistence (i.e. to maximize the probability of retrieving data) in sensor

networks, are designed to optimize the intermediate performance of the MP decoder

in a point-to-point scenario. A periodical feedback is required in these codes because
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3. PARTIAL DECODING OF RATELESS CODES

the degree distribution is tuned according to the number of symbols received by the

receiver. The work in (28) studys the performance of a similar code, andshows that

this feedback can be negligible.

All the works presented above seek to identify rateless codes with good intermediate

performance when decoded with MP. Instead, we want to do something different: we

want to find an algorithm able to maximize the intermediate performance of any rate-

less code.

In this chapter we present two optimal decoding algorithms for rateless codes and prove

their optimality. The first one is very simple but computationally expensive. For this

reason, it is used to derive the second one.

3.3 Naive Algorithm

An optimal partial decoding algorithm can be derived by classical Gaussian Elimina-

tion. If n < n̄ coded symbols were received, it is possible to insert their linked equations

in a k× k matrix M using GE. After the insertion, M will be an upper triangular ma-

trix with up to k full rows. A row is full if it contains at least a 1, i.e. if it is not an

all-zero row. Even if M is not full, we perform the back substitution of each row. If

row i is full, we check the i-th column of M : when a 1 is found, it is canceled out by

xoring that row with row i. At the end of the back substitution, M will have some

rows of degree 1: these rows correspond with the decoded symbols. These are all the

symbols that can be decoded starting from the n received symbols, i.e. GE with back

substitution (GEB) is an optimal partial decoding algorithm. In this section we prove

this claim.

We call ei a generic k-symbols equation, rj the equation corresponding to the j-th row

of M and lei the position of the leftmost 1 in the equation ei.

Lemma 1. given n equations {e1, . . . , en} such that ∀i, j, lei ̸= lej then the xor of the

equations e1 ⊕ · · · ⊕ en has the position of the leftmost 1 le1⊕···⊕en = min(lei).

Proof. If the positions of the leftmost 1 of the equations are all different, we can find

an order of the equations. This can be done by sorting them by their lei . Without loss

of generality, let us assume that le1 < le2 < · · · < len so that le1 = min(lei). If we xor

the equations, the 1 of e1 in position lei cannot be canceled out by any other equation.

32



3.3 Naive Algorithm

This happens because no equation has a 1 in that position. Otherwise that equation

ej should have le1 = lej . For this motivation, le1⊕···⊕en = le1 = min(lei).

Lemma 2. Denoting as ui an equation with a unique 1 in position i, ui can be obtained

as a sum of a subset of n equations e1, . . . , en such that le1 < le2 < · · · < len only if ∃j
such that lej = i.

Proof. ui has the leftmost 1 in position i, and following lemma 1, it is possible to obtain

an equation with the leftmost 1 in position i only if ∃j such that lej = i.

We denote as En the linear space generated by the equations {e1, . . . , en} and we

denote as liej the position of the i-th 1 of equation ej .

Proposition 1. Given n ≤ k equations e1, . . . , en, ui ∈ En iff at the end of the GEB

execution ri = ui.

Proof. If at the end of the GEB execution there exist some i such that ri = ui then

ui ∈ En. We need to prove that GEB finds all ui, i.e. that the procedure is optimal.

Let l exists such that ul ∈ En; we have to prove that, at the end of the procedure,

rl = ul. At the end of the GE, some of the rows of M will be full, and all the full

rows have a different position for the leftmost 1: hence it is possible to apply Lemma

2, stating that since ul ∈ En then the l-th row must be full. If rl = ul, the proposition

is proven. Otherwise, rl is to be xored with the other rows to cancel out its 1s. Let us

find the position p = l2rl of the second 1 of rl: following Lemma 1, it can be canceled

without adding a 1 on its left only if rp is not empty. Hence, we have to prove that

rp is not empty: indeed, since ul ∈ En and the rows of M form a basis for En then ul

can be obtained as a linear combination (i.e. xor) of the rows of M . Following Lemma

2, rl must be used in the linear combination, so ul = rl + q, where q is obtained as a

linear combination of the remaining rows. Obviously, lq = p and a row with a leftmost

1 in p exists for Lemma 1. Therefore, rp is not empty. Row rp can then be xored to

rl, and the result is stored as the new rl. If rl = ul the proof is done. Otherwise, the

procedure can be repeated with the new l2rl until rl = ul.

Proposition 1 proves that GEB is an optimal partial decoding algorithm. However,

GEB needs to perform a Gaussian Elimination, which is a high-complexity algorithm,

for each partial decoding attempt. For this reason, in the next section we propose an

incremental optimal algorithm for the partial decoding of rateless codes that is based

on GEB but has a lower decoding complexity.
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3. PARTIAL DECODING OF RATELESS CODES

3.4 An Incremental Algorithm

Algorithm 2 Optimal Partial Decoder (OPD)

Initialize the k × k-matrix M to 0

Initialize the k-vector y to 0

Initialize EmptyRows = k

while EmptyRows > 0 do

receive a k-vector e and encoded symbol c

for i from 1 to k do

if e[i] = 1 and M [i][i] = 1 then

e = XOR(e,M [i][·])
c = XOR(c,y[i])

end if

end for

find position l of leftmost 1 in e

if l ≤ k then

M [l][·] = e

y[l] = c

EmptyRows = EmptyRows− 1

for i from 1 to l − 1 do

if M [i][l] = 1 then

M [i][·] = XOR(M [i][·],M [l][·])
y[i] = XOR(y[i],y[l])

end if

end for

else

delete e, c

end if

end while

The proposed Optimal Partial Decoder (OPD) is presented using pseudo code in

Algorithm 2. The OPD is an incremental decoding algorithm, which is an algorithm

in which the computational effort of the decoding process is distributed on all symbol

receptions starting from the very first one. Initially, an all-zero k × k matrix M is

created. According to this iterative procedure, when a new coded symbol c is received,

the corresponding equation e is inserted in M . The position l of the leftmost 1 of e
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3.4 An Incremental Algorithm

Figure 3.2: The evolution of matrix M during an OPD run

is found; if the l-th row rl of M is full, the row and the equation are xored, obtaining

e = e ⊕ rl. The corresponding coded symbols are also xored, resulting in c = c ⊕ yl

where yl is the coded symbol of the l-row. Now the decoder finds the next 1 of e starting

from l, and the equation and the corresponding row of the matrix are xored again, if

full. The process is iterated until the end of the equation is reached. At this point,

the new position l of the leftmost 1 of the equation is found and the equation is stored

in the l-th row of the matrix (which was originally empty), i.e., rl = e, and yl = c.

In the opposite case the equation gets discarded and OPD waits for the next received

symbol. After the row insertion, a back substitution is performed: the l-th column of

the matrix is checked, and when a 1 is found in row i, the l-th row is xored to row i,

i.e. ri = ri ⊕ rl and yi = yi ⊕ yl. After the back substitution, the algorithm waits for

the next received symbol. The algorithm ends when all the rows of M are full.

As an example, let us assume that the receiver had the matrix in Fig. 3.2(a) and

received the equation e = 11101. The equation has a leftmost 1 in the first position, so

the decoder has to check if the first row is full. Since the first row is full, it is xored to
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3. PARTIAL DECODING OF RATELESS CODES

e obtaining e = 11101⊕ 10110 = 01011. The next 1 is in the second position, and the

second row of the matrix is full, therefore both row and equation are xored, obtaining

e = 01011 ⊕ 01100 = 00111. Now the third and the fourth rows of the matrix are

empty, thus the equation does not change. The fifth row is full, and after xoring it to

the equation we obtain e = 00111⊕ 00001 = 00110. This equation has to be stored in

the third row, as shown in Fig. 3.2(b), and the back-substitution step is performed:

the first and the second rows have a 1 in the third column, ergo they will be xored

to the third row obtaining the matrix in Fig. 3.2(c). Note that the first row now has

degree one, so the first input symbol was decoded. Also note that if the i-th row of the

matrix is full, then the i-th column has a unique 1 in the i-th row.

Proposition 2. OPD performs an optimal partial decoding of rateless codes.

Proof. We want to prove that OPD is an incremental version of the GEB algorithm;

indeed, the insertion step of the algorithm is an incremental version of GE, in which GE

is performed at each coded symbol arrival. When the received equation is inserted in

the matrix, M is upper triangular. Moreover, the insertion step partially performs the

back substitution procedure by xoring the equations among them canceling out some

1s. The rows of the matrix (the previously received equations) are used to cancel out

the 1s of the new equation (the new row of the matrix) during the insertion, but the

new equation is not used to cancel out the 1s of the previously received equations. The

back substitution procedure is then completed by the second part of the algorithm,

where the new equation (the new row) is used to cancel out 1s from the previously

received equations (the old rows), as stated by the GEB algorithm. In this way, GEB

is performed on the fly at each coded symbol reception. The optimality of the algorithm

can also be noted by the fact that, at the end of back substitution phase, if the row i

has a 1 in column j > i; then that 1 cannot be canceled using the row j because row j is

empty. As previously discussed, this happens because, as already discussed, the column

j has a unique 1 in the row j if row j is full. This means that at this point it is impossible

to perform the GEB algorithm again using the rows of the matrix. Consequently, all

the degree 1 equations are known and stored in their proper rows.

3.5 Performance Evaluation of OPD with LT Codes

The performance of the proposed OPD algorithm in decoding LT codes is presented

in this section. All the evaluations of the OPD will be performed using the values
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Figure 3.3: Partial decoding performance of LT codes.

c = 0.05 and δ = 0.01 for the RSD distribution. As previously mentioned, we are not

interested in comparing the partial decoding performance of MP and OPD algorithms.

This would be an unfair comparison because, as proved in (29), a GE-based algorithm

(such as OPD) has a lower overhead than MP algorithm. Instead, we wish to focus our

attention on the effective intermediate performance of LT codes, using an algorithm

that is able to reach the theoretical limit. In Fig. 3.3 the percentage of recovered

input symbols is computed as a function of the percentage of received coded symbols.

Both percentages are computed with respect to the total number of input symbols k.

Recalling that OPD achieves optimal partial decoding, the only way to further improve

the percentage of retrieved input symbols is to change the degree distribution, e.g. to

use a different rateless code. In particular, note that the all or nothing behavior of LT

codes; we can observe that the decoding transition gets sharper for larger block sizes.

Finally, it is worth noting that when k coded symbols are received more than 50% of

the input symbols can be retrieved independently on the value of k. In Fig. 3.4 the

number of operations required by OPD to retrieve all the input symbols, computed

with respect to the number of input symbols k, is shown. An operation is a row xor

or a row swap. OPD complexity is compared to that of a single GE run, computed

when k linear independent coded symbols are received. Since GEB needs a GE run per
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Figure 3.5: OPD complexity distribution per symbol reception.
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received symbol, OPD is ultimately far less complex than GEB.

Another interesting feature of OPD is that it is an incremental algorithm, therefore

the decoding complexity is spread over all the coded symbols received. In Fig. 3.5

the percentage of the operations, computed with respect to k, computed at each coded

symbol arrival is shown with respect to the percentage of received coded symbols.

This percentage can be viewed as the number of operations needed to insert and back

substitute new coded symbols in M computed with respect to the the number of input

symbols k. In Fig. 3.5 it can be noted that for each coded symbol reception less than

k/3 operations are needed. Since the coded symbol reception time can be far larger

than the time the CPU takes for an operation, it is possible to spread the decoding

process along all the time used to collect the coded symbols. It is theoretically possible

that, at each coded symbol arrival, all the previous received coded symbols were already

processed and inserted in the matrix; this means that, at each symbol arrival, the OPD

algorithm has already recovered the maximum number of input symbols.
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Chapter 4

Rateless Codes and Network

Coding

4.1 Network Coding Overview

Network coding (NC), initially proposed in (83), is a technique where the nodes of a

network, instead of simply relaying the received packets, combine several packets before

transmission in order to reduce the transmission cost. The essential concept is best

explained with an example. Source S has access to packets b1 and b2 and has to send

them to two sinks D1 and D2. The network is the so-called butterfly network shown in

Fig. 4.1. All links have a capacity of one bit per unit time. The network problem can

not be satisfied directly but only by forwarding the packets at the intermediate packet

nodes. On the contrary, allowing the intermediate nodes to combine the packets can

solve the problem, as shown in figure.

The main problem of NC is that the structure of the network must be known (and should

belong to a certain family of topologies). To address this problem, the authors in (31)

propose to combine the packets randomly. This strategy is called Random Network

Coding (RNC). In fact, the sender creates a new packet via a linear combination, in

GF(q), of its input symbols, where q is a sufficiently large integer. The other nodes

in the network create new encoded packets through a linear combination in GF(q) of

the previously received packets. However, in the paper it is proven that q should be

larger than the number of the peers in the network. That makes this strategy hardly

applicable in a real scenario, due its computational complexity, as stated in (32). In
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4. RATELESS CODES AND NETWORK CODING

Figure 4.1: The Butterfly network

fact, in the case of q = 2 (and indirectly for q > 2), the RNC technique uses Dense

Codes to create the packets to be forwarded by the peers. Dense Codes maintain a lower

overhead, but conversely impose a high decoding complexity. Use of rateless codes in

their place can solve this problem. In chapter 6 we will show a possible application of

this idea using LT codes. However, in the following section we will prove that, whatever

the initial degree distribution used to create the packets, the limiting distribution of

the degree of the equations linked to the packets is the degree distribution of the Dense

Codes.

4.2 Limit Degree Distribution

We want to study the expected degree distribution of a packet generated by the xor

of a packet created following a certain degree distribution. We model this problem as

follows. Our network is a complete binary tree of height h, as shown in Fig. 4.2. The

transmission is directed from the bottom to the top of the tree, i.e. from the children

to their parent. Every parent receives two packets, one from each child, and creates a

new packet by xoring them. The leaves encode packets according to a certain degree

distribution Ω0, i.e. create packets of degree d with a probability of Ω0
d. We call Ωj the
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4.2 Limit Degree Distribution

Figure 4.2: Network model

degree distribution of the packets in the system at level j, i.e. the degree distribution

of a packet generated by a node of level j. This means that Ω0 is the initial degree

distribution of the packets. The probability Ωj
i can be seen as the probability that the

sum of two strings randomly chosen at level j − 1 is i, therefore

Ωj
i = sk(d1, d2, i) ∀ d1, d2, (4.1)

where sk(d1, d2, dF ) is the probability that the sum of two randomly chosen strings of

length k of degree d1 and d2 is a string of degree dF . Using the law of total probability

the equation becomes

Ωj
i =

k∑
d1=0

k∑
d2=0

sk(D1, D2, i/D1 = d1, D2 = d2)P(D1 = d1)P(D2 = d2) =

=

k∑
d1=0

k∑
d2=0

sk(D1, D2, i/D1 = d1, D2 = d2)Ω
j−1
d1

Ωj−1
d2

.

Now we focus our attention on sk(d1, d2, dF ). This probability can be calculated by

checking the number of the common ones of the two initial strings. In fact, if X is

the random variable that counts the number of positions in which both the strings

have a one, it is possible to show that X follows the Hypergeometric Distribution,

X ∼ H(k, d1, d2). On the other hand, dF = d1 + d2 − 2X, hence

sk(d1, d2, dF ) = sk(d1, d2, d1 + d2 − 2X) =
= P(2X = d1 + d2 − dF ) =

= P(X = d1+d2−dF
2 ) =

=
(

d1
d1+d2−dF

2
)(

k−d1

d2−
d1+d2−dF

2
)

( k
d2
)

.
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Figure 4.3: Evolution of the degree distribution with Ω0 = RSD(0.1, 0.1) and k = 100

We recall that
(
k
r

)
= 0 when r /∈ N.

For h → ∞, the limiting distributions Ω∞ of the system depends on Ω0; solving the

equations 4.1, the limiting degree distribution converges to one of the following stable

points, depending on the initial degree distribution Ω0:

• If Ω0
0 = 1 or Ω0

k = 1 (i.e. the packets have always degree 0 or k) then Ω∞ does

not exist.

• If Ω0
2i+1 = 0 (i.e. the packets have always even degree) or Ω0

i = 1 for i = 1 . . . k

(i.e. the degree is constant) then

Ω∞
i =

{
(ni)
2n−1 if i is even
0 if i is odd

• Otherwise

Ω∞
i =

(
n
i

)
2n−1

.

In Fig. 4.3 the evolution of the degree distribution in the case Ω0 = RSD is shown. It is

of interest to note that the convergence to the limit distribution is rapid. The expected

degree distribution of the system, excluding the limiting cases Ω0
0 = 1 and Ω0

k = 1, can

be calculated as the average of the limiting distribution. Both the limiting distributions

presented have E(Ω∞) = k
2 , making the choice of the initial degree distribution virtually

useless. In practice, whatever the initial degree distribution, the system converges to
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the degree distribution of Dense Codes. Hence the encoding code will become a DC.

However, as seen previously, the use of Dense Codes, even in a low-order Galois Field,

makes RNC practically unusable, due the large complexity of the operations needed

to decode packets. Therefore, it is evident that a higher control of the creation of the

packets by node, and in particular their degree, is needed in order to prevent increasing

of the complexity of the system. However, the RNC criterion, which gives excellent

results in maintaining low overhead, should be maintained. These two conditions,

degree control and use of RNC, would seem incompatibles. On the contrary, we prove

that it is partially possible to match these two conditions. In our proposal, the degree

control problem is solved through a new family of rateless codes, that we called Band

Codes. These codes permit one to work in an RNC-like system while maintaining low

overhead and high control on the degree distributions of the transmitted packets.

4.3 Band Codes

Band Codes (BC) share their primary concept with that of with Windowed Codes

(WC). The idea is to create encoded packets by xoring only a subset of the set of

the k blocks the message x is divided into. This subset is chosen to be the set of

a certain number W of contiguous blocks. In fact, the encoder initially chooses the

position m of the first block of the window; how m is chosen will be explained later.

Then the encoder creates the encoded packet by xoring some of the W blocks in the

window. Each block is xored with a probability of 1
2 . Band Codes can be decoded using

Gaussian Elimination or, as we will see later, the OFG decoding algorithm, maintaining

an interesting property.

4.3.1 Encoding

A Band Code, BC(k,W ), has two parameters: k, that is the number of input symbols,

and W , the dimension of the window (hence W ≤ k). In fact, to create a new encoded

packet yn the encoder chooses an element randomly fn = {fn
1 , . . . , f

n
W } of GF (2)W and

an integer m ∈ [1, k −W + 1] with a certain probability. If the message x is divided

into k blocks {x1, . . . , xk} then

yn =
W∑
i=1

fn
i · xm+i−1.
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Figure 4.4: The horn probability density function

In fact, the encoding vector en of yn is generated by fn and m and has zeros in all

the positions axcept in the window; it is called a band vector. The band vector is the

main difference between Windowed Codes and Band Codes. In Windowed Codes, m is

choosen randomly in [1, N ] and if mn > k−W +1 the window wraps. On the contrary,

in Band Codes the window never wraps; if the window does not wrap, however, the

probability that a block is used in the creation of an encoded packet is not uniform.

This should imply that the overhead of the code is too high because a decoder has

to wait to receive the low probability blocks. To overcome this problem, m is chosen

following a particular distribution, called horn distribution HD:

HD(m) =


W+1
2K if m = 1 or m = k −W + 1
1
k if 1 < m < k −W + 1
0 otherwise

The horn distribution is plotted in Fig. 4.4. Later we will see that, by using the HD

to choose m, we ascertain that the overhead of the code can be controlled and keep

very low.

4.3.2 Decoding

We created BC despite the existence of WC because of the particular shape that the

decoding matrix maintains during the decoding process.

Band Codes are Rateless Codes, thus they can be decoded using the classical decoding

algorithms used to decode rateless codes. As shown in (29), however, the overhead of

the code also depends on the decoding algorithm. Due to the low expected number
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of degree one packets, the overhead of Band Codes using the BP algorithm will be

very high. Hence the decoding algorithm used for BC should be a GE-like algorithm.

However, if the OFG algorithm is used, the decoding matrix G maintains an useful

property:

Proposition 3. If the OFG decoding algorithm is used to decode a Band Code

BC(k,W ) then the decoding matrix G is a band matrix with a lower bandwidth equal

to zero and an upper bandwidth equal to W − 1 for each packet arrival.

Proof. The proof is made by mathematical induction on the number of received packets.

Basis: at the first packet arrival G is empty, therefore the packet will be inserted in a

certain row r of the matrix. After the insertion, the matrix has a unique non-zero row

r, that is equal to the received packet. That packet was generated using a BC(k,W ),

proving the proposition.

Inductive step: we suppose that the proposition holds for the first k−1 received packets,

i.e. G is a band matrix after the reception of k − 1 packets. The packet p is received,

and OFG algorithm attempts to insert it into the matrix. If l is the position of the

leftmost 1 of p, we have two cases:

• If G[l][l] = 0 (i.e. the l-th row of G is empty) then p can be immediately inserted

in G. After the insertion, G is a band matrix for the same reason shown in the

Basis step.

• If G[l][l] = 1 (i.e. the l-th row of G is already full) then a xor between the row

G[l] an p has to be performed (after a potential swap between G[l] and p, after

which G is still a band matrix for the precedent assertion). If we call p′ = p⊕G[l],

we have that if p′ is still a band vector then the proposition holds.

The position l′ of the leftmost 1 of p′ is greater than l; G[l] and p have the leftmost

1 in the same position l, which will be cancelled out by the xor operation. If we

call r and rG the positions of the rightmost 1 of p and G[l] respectively, because

of the xor operation we have that the inequality p′ ≤ max{r, rG} holds for the

position r′ of the rightmost 1 of p′. This means that r′ − l′ ≤ r − l ≤ W , ergo p′

is still a band vector.

This proposition will be very useful for the creation of a practical RNC system in

chapter 7.
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Figure 4.5: Overhead of Band Codes in end-to-end transmission

4.3.3 Code Analysis

In this subsection we want to analyze the performance of Band Codes in an end-to-end

scenario, where the packets are transmitted to the receiver directly from the sender;

the case of the use of BC in a RNC scenario will be expamined further in chapter 7,

where we will use BC to create a video streaming protocol on a network that permits

RNC .

Band Codes belong to the family of rateless codes, therefore the overhead is one of the

performance indeces to be studied. In the previous sections we mention that the Horn

distribution assures a low overhead. In fact, the overhead depends on the dimension of

the window W . If W = k, BC collapse to DC, i.e. BC(W,k) → DC(k) for W → k.

The more the window decreases, the more the overhead augments. However, as shown

in Fig. 4.5 the overhead still remains very low even if W ≪ k. Due to a particular

property of random matrices presented in (35), there is a high probability that a binary

random k×k matrix composed of rows of average degree d is full-rank until d > 2 log k.

However, in this instance, the random matrix is not a band matrix. In the case of

random band matrices of band W , the authors in (11) propose the conjecture that if

W > 2
√
k, then the full-rank property still holds. This conjecture is confirmed by the

low overhead of BC in the case of W > 2
√
k; however, further analysis needs to be
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Figure 4.6: Relative error of the proposed model in the calculation of the complexity of

the decoding process

done.

From the computational complexity point of view, the number of operations needed to

decode Band Codes also depends on W . The decoding cost CD is defined as the average

number of XOR operations performed by the OFG algorithm in order to decode. The

OFG algorithm is composed of two distinct stages; for this reason, we need to separately

model the computational cost of each stage. The cost of the first OFG stage, CD,I ,

grows by one unit every time a received packet collides with a row of G during the

execution of the OFG. Collisions take place with a probability that depends on the

number of rows of G, i.e. as G fills up, collisions are more likely. Given that, after

receiving i packets, G has approximately a rank equal to i, the maximum number of

collisions that the decoding of a packet can generate is i. In turn, the probability that

the algorithm iterates depends on the average degree of the packet and of the rows of

G. In the case of Band Codes , these turn out to have the same value of d = W
2 . If

we suppose that a collision happens with probability d
k and that ϵ ≃ 0, we are able to

calculate an upper bound to the expected cost of the first stage of the OFG algorithm

as:

CD,I =
k−1∑
i=0

i
d

k
=

d(k − 1)

2
≃ dk

2
=

W

4k
.
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The cost of the second OFG stage CD,II is equal to the number of 1s in G, i.e. it

depends on the average degree of the rows of G at the moment of diagonalization. As

already seen, the OFG algorithm ensures that G is a band matrix, hence we assume

that the expected degree of a row is W
2 . Thus the computational cost of the second

OFG stage is:

CD,II =
W − 1

2
k ≃ Wk

4
.

Finally, we write that the total decoding cost is

CD = CD,I + CD,II ≃
WN

2
. (4.2)

Fig. 4.6 shows the relative error committed by the model of Eq. 4.2 in the calculation

of the complexity of the decoding process. It is possible to note that our model is

very close to the effective complexity, in particular for W ≃ 2
√
k. The large error for

W → 0 is due to the larger overhead. Fig. 4.5 indicates that the hypothesis ϵ ≃ 0 is no

longer valid in this case. On the other hand, the good adherence of the error model for

W ≃ 2
√
k enables evaluation of the complexity of the decoding algorithm as O(k

√
k).

The low overhead and the controlled computational complexity suggest W ≃ 2
√
k be

imposed as a parameter for Band Codes.
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Chapter 5

Rateless Regenerating Codes

5.1 Introduction

In recent years, erasure codes have been used in distributed storage systems to increase

the reliability. The original information is encoded in a number of fragments such that

every subset of these fragments (of size k) is sufficient to retrieve the initial information.

Afterwards, these fragments are distributed to the nodes of the system, usually one per

node. Because of the use of coding schemes, however, a new problem arises: when a

node fails or the overall reliability must be increased, a new encoded fragment must be

created. In this case, the use of conventional erasure codes is an obstacle: in fact, to

create a new encoded fragment, it is mandatory to use the original information. Hence

this information must be retrieved. As a consequence, the maintenance cost of the

system, in terms of bandwidth usage and computational complexity, could overwhelm

the advantages of increased reliability.

Regenerating codes were created to face the problem of error repair, i.e. to recreate

the fragments lost in a node failure. A key feature of these codes is that they are able

to minimize the bandwidth necessary to repair a failure. After the seminal paper of

Dimakis et al. (23), many regenerating codes schemes were proposed. When a node

fails, all the remaining nodes send a part of the information they store to a newcomer

in order to recreate the lost fragment. In all the schemes, however, the number of

nodes involved in the process is fixed and larger than k. Usually they solve only the

case of a unique failure. Moreover, these schemes do not solve the reliability increase

problem: when a new fragment has to be added to the system, all the fragments must
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5. RATELESS REGENERATING CODES

be recalculated.

We propose a scheme that solves both these problems using fountain codes.

5.1.1 Regenerating Codes

The model of the distributed storage problem is as follows. A message x of size M has

to be stored across n storage nodes. The owner of the message, called source, encodes

the message through an erasure code E into n fragments of size α such that any k

out of the n fragments are able to retrieve the initial message - termed reconstruction

property - and sends each fragment to a storage node. When a node fails after leaving

the network, a newcomer joins the system; d out of the remaining n − 1 nodes, with

d ≤ k fixed a priori, send a fragment of size β ≤ α to the newcomer. That newcomer

can recreate the lost fragment of size α using the received fragments.An important

parameter of a regenerating code is its repair bandwidth. The repair bandwidth γ is

defined as the total size of the information flows in the network to repair or recreate

an encoded fragment. If d nodes send information of size β to the newcomer, γ = d · β.
Obviously, the system is efficient if γ ≤M; otherwise it would be better to decode the

information in order to create a new encoded fragment.

In (23) the authors prove the existence of an optimal tradeoff curve between the size

of the stored fragment α and the repair bandwidth γ; in particular, the authors focus

their attention on the two extremal points of the curve, which correspond to minimum-

storage regenerating (MSR) codes and minimum-bandwidth regenerating (MBR) codes.

In (36) a survey of the topic is presented, including the explicit construction of many

regenerating codes.

Nevertheless, all the results are obtained in the case of d ≥ k. On the contrary, the

authors say it would be inevitable to download (and retrieve) all of the message in

order to recover the lost fragment. In this chapter we also show that, relaxing the

reconstruction property through Fountain Codes (10), it is possible to disprove this

conclusion.

5.1.2 Rateless Codes: a Remark

A message of size M is encoded into a theoretically infinite stream of fragments of

size α = M
k , that are sent to the receiver through an erasure channel. A relaxed

reconstruction property holds for Rateless Codes: any k(1 + ϵ) fragments are sufficient
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to retrieve the initial message with high probability, with ϵ→ 0 for k →∞. In fact, the

decoding of a Rateless Code can be performed when k linearly independent fragments

are collected; these codes are designed such that any subset of k(1 + ϵ) fragments

contains k linearly independent fragments with high probability (that directly depends

on ϵ). Another important property of Rateless Codes is the low encoding and decoding

complexity due to the structure of these codes.

In (10) a survey of Rateless Codes is presented; after the paper by Luby (9), which

introduces LT Codes, many Rateless Codes were created with various features. For our

proposal, however, the most important feature, common to all Rateless Codes, is the

relaxed reconstruction property, along with the possibility of creating new fragments

on the fly.

5.2 Encoding

The encoding of a Rateless Regenerating Code (RRC) works as follows. The message is

divided into k < n parts x = {x1, . . . , xk} and encoded through a fountain code F in a

stream of encoded fragments c = {c1, . . . , cn}. Every encoded packet is obtained as the

Xor of input fragments ci =
∑k

j=0 gi,jxj , where the encoding vectors gi,. depends on the

fountain code chosen for the encoding. We call G the encoding matrix that contains

the encoding vectors as rows, i.e. G · x = c. We assume that the first k encoded

fragments c′ = {c1, . . . , ck} are linearly independent, i.e. that the first k rows of G are

linearly independent; otherwise it is possible to permute the rows of G in that way.

We call G′ the submatrix of G obtained by the first k rows of G and G′′ the remaining

part of the matrix; obviously, c′ = G′ · x. Because of the linear independence of the

firsts k encoded fragments, it is possible to invert G′ by solving the system, obtaining

x = (G′)−1 · c′ = M · c′, with M = (G′)−1. We call the rows of G′ basis vectors, and the

corresponding fragments of c′ basis fragments. Now each encoded fragment ck+l can be

obtained as a linear combination of the basis fragments of c′ in such a way that:

ck+l =

k∑
i=1

gk+l,ixi =

k∑
i=1

gk+l,i

 k∑
j=1

mi,jcj

 =

=
k∑

j=1

(
k∑

i=1

gk+l,imi,j

)
cj =

k∑
j=1

vl,jcj
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We call vk+l,. the recoding vector of the encoded fragment ck+l, named as recoded

fragment. The recoding vector of the basis fragment cl, l ≤ k, is a vector that has a

unique 1 in position l. In general, the encoding vector gl,. can be transformed in the

recoding vector vl,. using M as vl,. = gl,. ·M , hence vl,. is obtained Xoring the rows of M

for which the encoding vector has a 1. If we call V the matrix formed by the recoding

vectors as rows, obviously V = G ·M . The upper part of V is hence the identity matrix

Ik.

After the encoding, the fragments are distributed among the n storage nodes, one for

each node. The source stores the position of each fragment in the network.

5.3 Decoding

The decoding of a RRC can be performed in two ways: using either the encoding or

the recoding vectors.

In fact, if the encoding vectors that form the matrix G, are stored along with the

fragments, it is possible to retrieve the message x decoding the rateless code F through

the usual decoding algorithm of that code. The source collects k + ϵ fragments and

uses their encoding vector to decode the code normally.

As we will see in the next section, however,in order to repair the lost fragments, the

recoding vectors have to be used. Hence matrices V and M have to be stored (at least

by the source). In order to reduce the spatial complexity of the system, it is desirable

to use these matrices also in the decoding phase instead of using G. G could hence be

cancelled.

In fact, if the source is able to collect all the basis fragments, matrix M can be used

to recover the initial message calculating x = M · c′. However, it is not mandatory

to collect directly the basis fragments. Given any subset of k linearly independent

fragments (containing some recoded fragment or not), it is possible to recover all the

basis fragments. Let us suppose that the source collected the k linearly independent

fragments {cl1 , . . . , clk} = r. We call R the matrix formed by their recoding vectors as

rows; R is a submatrix of V . Following the definition of recoded vectors, the equation

R · c′ = r holds. Solving this system, it is possible to retrieve the basis fragments c′.

Also in this case, for the relaxed reconstruction property, it is sufficient to collect k+ ϵ

fragments in order to assure that an invertible matrix R is found.
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5.4 Errors repairing

Using RRC it is possible to compute a distributed encoding of new encoded fragments

as well as the recovery of an encoded fragment without decoding the entire message.

When a newcomer joins the system and a new encoded fragment cn+1 must be created,

the source generates the encoded vector gn+1,. through the fountain code F . Now

the recoded vector vn+1,. is generated from the encoded vector as vn+1,. = gn+1,. ·M .

The nodes that own a basis fragment involved in the encoding of that fragment (i.e.

a basis fragment cj such that vn+1,j = 1) are asked to send their fragment to the

newcomer. The newcomer receives the fragments and Xors them to obtain the new

encoded fragment, then the received fragments are deleted.

When an encoded fragment is lost, it can be recovered in a similar manner. If a fragment

cl is lost, with l > k, it is possible to recreate it following the procedure of creation

of a new encoded fragment. In this case, however, it is not necessary to re-create the

same encoded fragment, and a new encoded fragment can be created instead. If the

lost fragment cl is a basis fragment, hence l ≤ k, the lost fragment is crucial for the

creation of new encoded fragments. Therefore it must be recreated. To recover cl, a

recoding vector vk+s,. is searched such that ak+s,l = 1, i.e. an encoded fragment ck+s

obtained by an Xor that involves cl. In fact, if vk+s,l = 1, then:

ck+s =
k∑

j=1

vk+s,jcj = cl +
k∑

j=1
j ̸=l

vk+s,jcj ,

and inverting this equation, we obtain that

cl = ck+f +
k∑

j=1
j ̸=l

ak+f,jcj .

To recover cl it is possible to ”cancel out” from ck+s all the encoded fragments involved

in its creation but cl. All the basis fragments involved in the creation of ck+s (but cl,

obviously) and ck+s are sent to a newcomer that Xors them in order to recover cl.

5.5 Repair Bandwidth

We want to calculate the repair bandwidth of the system. In the system we present,

the nodes send all their information to the newcomer. This information is created
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using a Fountain Code, therefore β = M
k . The system is efficient if d ≤ k, i.e. the

efficiency depends on the number of nodes involved in the recoding process. For each

encoded fragment, this number is given by the number of 1s in its recoding vector,

that is the degree of the vector: for the fragment ck+l the number of nodes involved

is d =
k∑

i=1

vk+l,i (a similar property holds for the fragments in c′), therefore d ≤ k. In

particular, a recoding vector is obtained as a linear combination of rows of M , that is

the inverse of the encoding matrix G of the code. As long as G is a sparse random

matrix, M is a random matrix with high probability, where on the average each row

contains k
2 ones. A recoding vector is then obtained as the xor of rows of a random

matrix; therefore, recoding vectors are random vectors of expected degree d = k
2 . This

means that, in average, for RRC, the repairing bandwidth is

γ = d · β =
k

2
· M
k

=
M

2
< M.

5.6 Conclusions

We propose a general framework to create regenerating codes able to reconstruct the

lost fragments under the bounds proposed in (23), i.e. contacting less than k storage

nodes. Moreover, the proposed framework solves the reliability increase problem, un-

solved for the classical regenerating codes. These results are obtained by relaxing the

reconstruction property of regenerating codes, enabling the use of sub-optimal codes as

rateless codes. The use of rateless codes, along with a novel point of view on the prob-

lem, permits one to create and repair fragments in a distributed fashion. The proposed

Regenerating Rateless Codes also assure an unexpectedly low repair bandwidth.

From the repair bandwidth point of view, MSR codes (23) can achieve better perfor-

mance with the same fragment size α; however, that result holds for d > k, while for

d ≤ k the repair bandwidth should be larger. Moreover, MSR codes do not solve the

reliability increase problem.
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Chapter 6

Practical Random Network

Coding using Rateless Codes

6.1 Introduction

Several recent results pointed out that the use of coding techniques increase the ef-

ficiency of content distribution applications such as the reliable distribution of bulk

data, the application level multicast, P2P streaming applications (1, 2, 3, 4) or efficient

broadcasting in ad hoc wireless networks (5, 6), just to mention a few. Most of the

cited results have been catalyzed by the seminal promises of network coding (8, 37),

where nodes in the network are allowed to combine information packets instead of sim-

ply forwarding them. In particular, in Random Network Coding (RNC) (31) each peer

transmits linear combinations of incoming packets, where the coefficients are chosen

randomly over some finite field. The deployment of network coding at theapplication

level, e.g., in the field of P2P file sharing or video streaming, has been limited primar-

ily because of the added computational cost due to linear coding. Nowadays, such a

complexity issue must be carefully reconsidered; indeed, rateless codes, designed for

application level coding, is turning out to be a practical tool for efficient coded data

dissemination. From the point of view of the added computational cost, rateless codes

are required to perform simple xor operations among the original packets on the en-

coder side, and to solve a sparse linear system in a Galois field of order 2 on the decoder

side.

In most of the deployed P2P applications, a peer concurrently downloads contents from
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multiple peers and uploads towards multiple peers. Although this improves the band-

width utilization and allows one to counteract network dynamics, content reconciliation

policies are required. The potential advantage of coding, however, is the simplification

of the content reconciliation problem, since every piece of coded information is equally

useful regardless of the peer who has contributed it. If one uses coding, in principle,

there is no limit to the number of uniquely encoded packets generated from the original

set of packets, thus relaxing the content reconciliation issue. Therefore, a simpler ap-

proach can be adopted to propagate the information. Nonetheless, coding poses novel

issues, as well. In particular the information flow has to be divided into coding blocks;

the computational complexity needed to encode and decode such blocks could make

this approach unfeasible in practice.

For these motivations, we propose a practical Random Network Coding strategy in

GF(2) using rateless codes. Our goal is to design a more efficient exploitation of DF in

principle for both fast propagation of the information and low communication overhead.

This eliminates the transmission of an excessive amount of redundant coded packets.

We use LT codes (9) to pre-encode the source information. In general, when a node that

has not decoded yet has the possibility to send a packet, it sends a linear combination

of the previous received packets, calculated in GF(2). We propose a low-complexity

strategy to calculate such a linear combination. Moreover, we propose to throttle the

initial bandwidth of the peers to decrease the number of duplicated packets. The result

is that the information is spread over the network while maintaining a low number

of duplicated packets and an acceptable complexity in encoding and decoding, even

though we use a RNC-like strategy.

A huge literature is present in this field. In (1) an in depth analysis of the reconciliation

issues in conjunction with packet encoding is shown. A set of reconciliation algorithms

trading off accuracy and complexity is proposed. Ref. (1) designs a family of reconcil-

iation techniques, which have also been tested in a real test-bed in (2), through which

the peers participating in the overlay attempt to coordinate the content downloading

by means of both original packet coding and recoding of already coded data.

The authors in (38) follow a complementary approach. They avoid the need for recon-

ciliation based on the optimal design of a distributed rateless code, i.e., coded packets

are guaranteed by construction to be independent and equally useful. Nevertheless the

solution proposed in (38) is limited to the case of a single network topology with a
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common relay node, that can be generalized only assuming perfect knowledge of the

overlay connections. This latter assumption is clearly unfeasible in a real dynamic

overlay. Moreover, the optimization algorithm complexity increases with the size and

the number of the connections in the overlay. In (39) another optimal coding approach

is proposed. This solution is based on re-encoding, where several coding stages are cas-

caded while moving from hop to hop. Besides being asymptotically optimal, recoding

comes at a significant computational expense in intermediate nodes, and may lead to

excessive coding overhead in a real scenario with several hops and limited code block

length.

A simpler approach which is able to cancel the reconciliation phase is used in (4),

where P2P streaming application adopting rateless coding and optimal peer selection

is presented. In (4) the DF approach is applied on every peer-to-peer connection and

peers are not allowed to propagate coded information before the complete decoding of

a block. Therefore, at the expense of an additional delay, every peer waits for complete

decoding of a block of original packets and then starts sending independent LT encoded

packets. This strategy has low decoding and decoding complexity due the performance

of LT codes, but the time needed to spread information in a network is large because

the nodes have to wait to decode a whole block before starting to relay. The proposed

push approach is coupled with an optimal overlay formation strategy aiming at con-

structing high quality streaming topologies so that end-to-end latencies are minimized.

In (31) the authors propose to combine packets to achieve better performance: this

strategy is called Random Network Coding (RNC). In fact, the node that owns the

information to be spread, called the seeder, creates a new packet by a linear combina-

tion, in GF(q), of its input symbols, where q is a sufficiently large integer. The other

nodes in the network create new encoded packets by a linear combination in GF(q)

of the previously received packets. The paper proves that q should be larger than the

number of the peers in the network. That makes this strategy hardly applicable in a

real scenario due its computational complexity, as stated in (40). To face this problem

in (40), a peer waits to relay packets until it has received a certain number of packets.

Using this parameter it is possible to decrease the information spreading time, even if

the performance of RNC is still considered poor. In fact, the computational complexity

of encoding and decoding in GF(q) increases with the increasing of q, and is still too

costly.
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The lesson we learn from (40) is that RNC is not feasible in a real scenario because all

the encoding and decoding operations are made in a large-order Galois Field. There-

fore, we propose strategies to increase the performance of RNC in low-order Galois

Fields. We use LT codes as a source pre-code for two motivations: they have a low

decoding complexity, and they are generated in GF(2), i.e. with the lowest possible

value of q. Similarly, we use the OFG decoding algorithm to decode received packets

because it permits one to decrease the time needed to create new packets thorough the

combination of previously received packets (i.e. what in RNC is called encoding time).

This is possible because, using OFG, the rows of the decoding matrix are random linear

combinations of received packets; when a node needs a linear combination of packets

to encode a new packet it can to use these rows rather than calculate a new linear

combination. In addition, OFG yields a low overhead ϵ even if the degree distribution

is not RSD, thus allowing one to exploit linear combinations of LT encoded packets

within an RNC delivery approach.

The performance of RNC improves with the number of received packets: when a node

has received few packets, the encoding process (i.e. to create new packets by a linear

combination of the previously received packets) is less useful. In opposition to (40),

which proposes to block the recoding process, we propose instead to limit the number

of linear combinations injected by a node depending on the number of received coded

packets.

6.2 System description

In this section we describe the behavior of the various peers in the network and the

relaying strategies they can follow.

We consider a distributed application whose components have organized in a peer-to-

peer overlay network T. We make no hypothesis on how T is formed therefore multiple

paths between pair of peers and cycles may be allowed. There is a single peer that

holds valuable information for all the others (the original source). At startup all other

peers are interested in retrieving the information and cooperate to obtain it. Every

peer stores the coded packets that turn out to be useful in the buffer OB. By a useful

coded packet we mean a received packet that is not linearly dependent on the previously

received ones. Each peer is allowed to combine and forward packets from its buffer OB.
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Peers are characterized by their upload (Bu) and download (Bd) bandwidth expressed

in bps. In the sequel we also need to express the peer bandwidths in pps (packets per

second) for a given packet size; in this case we denote the peer bandwidths as Nu and

Nd.

6.2.1 State of the peers

Each peer in T can be in one of the following states:

• WAIT: the peer is waiting for the reception of the first coded packet. As soon as

the peer receives the first packet, it changes its state to DECODER.

• OFF: the peer is not cooperating to obtain or distribute the data. This state is

assumed when the peer and all its neighbors have already received and decoded

all the k packets.

• SEEDER: the peer has already received and decoded the k information packets

but some of its neighbors are still in the DECODER state. In this case, the peer

generates new LT coded packets, saturating the upload towards its neighbors. As

soon as all its neighbors have decoded the original information, the peer changes

its state to OFF.

• DECODER: the peer has not received enough information data to decode the

original information. The relaying strategy followed by peers in state DECODER

will be discussed in Section 6.2.2. As soon as the peer receives enough packets to

decode the information data, the peer signals such event to all its seeding nodes

in order to stop them from pushing more coded packets and changes its state to

SEEDER.

At the beginning, the source state is set to the SEEDER state while all the other peers

are set to WAIT state. All peers in the SEEDER state encode the original data and

send it to their neighbors in the DECODER state using the RSD. All peers in the

DECODER state run the OFG decoding algorithm and progressively construct their

generator matrix G, based on the generating equations of the received coded packets.

At the same time, these peers insert only their useful packets in an output buffer OB

from which packets are selected for relaying.
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6.2.2 Protocol description

Throttling peers in DECODER state and combining packets before relaying to neigh-

bors in DECODER state are effective strategies to reduce the amount of duplicated

packets while retaining the capability of spreading received packets as soon as possible.

This allows us to define and compare several strategies for the relaying of coded packets

while in the DECODER state:

• Store and Recover (SR): a peer does not forward any of the received coded packets

that are used to recover the k original blocks. This means that a peer starts to

forward packets only when it switches to the SEEDER state. This is the strategy

used in rStream (4).

• Relay (RE): at every transmission opportunity, a peer selects a packet in OB and

forwards it. Such a packet is deleted from OB in order to relay it only once.

The procedure is repeated until OB is empty or the upload capacity is saturated.

This strategy is used in (41).

• Random Relay (RR): a peer at every transmission opportunity randomly draws

from OB enough packets to fully use its upload capacity and sends them to its

neighbors.

• Random Relay with Combinations (RRC): at every transmission opportunity the

peer randomly draws from OB enough packets to fully use its upload capacity,

it xors them with a randomly chosen row of the decoding matrix G and sends

them to its neighbors. This amounts to combining the selected packet with a set

of previously received packets at the cost of a single packet xor operation.

The aim of the RR and RRC strategies is to send as much information as possible:

the high utilization of upload bandwidth reduces the information data spreading time.

These strategies may be too aggressive, i.e. they could fill the network with too many

duplicate packets. For this reason we consider two variants of previous strategies,

namely TRR and TRRC, where the upload bandwidth of RR and RRC is throttled. In

particular, at any transmission opportunity the number of relayed packets is limited to

min(N(t)/α,Nu).
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6.3 Simulator description and implementation

All the distribution strategies described previously have been implemented in a C++

simulator. As already mentioned, the simulator builds an overlay network topology

where a single peer (called the source) begins sending its information data, divided

into k packets, to all the other peers. At the beginning, the source state is set to

SEEDER while all the other peers are set to WAIT. The simulator operates on a time

slot basis. During each time slot all the network nodes run the selected distribution

protocol. Each node is characterized by a maximum upload Bu and download Bd

capacity, which determines the maximum number of coded packets that a node can

upload/download in a single time slot. The simulator does not assume any form of rate

control, thus each node behaves independently, aiming at saturating all its upload ca-

pacity. The packets are uploaded with a round-robin scheduling without any feedback

from the recipients. On the receiver side, each node can download packets up to the

saturation of its download bandwidth; the packets received in excess of the Bd limit

are simply dropped.

The simulator is based on a complete implementation of the LT encoding and decod-

ing procedures. As a source, each node has its own random generator for the RSD

distribution and can generate the required number of coded symbols in each time slot,

based on linear combinations of the original k information packets. As a receiver, each

node progressively decodes the received packets. Both the standard BP decoder and the

OFG algorithms are available. In the OFG case, each node progressively constructs the

generator matrix G, based on the generating equations of the received coded packets.

The OFG decoder is run in every time slot to retrieve the maximum number of source

packets xi, given the currently received coded symbols. As soon as a node successfully

decodes the original k information packets it signals such event to all its seeding nodes

so as to stop them from pushing more coded packets.

The simulator goal is the measurement of the following performance indexes for each

node p that is reachable from the source in d hops:

• tF (p, d): time slot of the first packet arrival, i.e. transition from WAIT to DE-

CODER;
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• tD(p, d): time slot when LT decoding is fully accomplished (the k information

packets are recovered), i.e. when a node state switches from DECODER to

SEEDER.

• tS(p, d): time slot when a SEEDER turns OFF, i.e, all of its neighbors completed

decoding;

• ϵ̄(p, d): LT code overhead estimated at node p, i.e. percentage of packets in excess

of k downloaded while in the DECODER state. In other words, the number

of downloaded packets is expressed as (1 + ϵ̄)k. Originally, the term overhead

has been introduced in the rateless coding literature to identify the penalty due

to random linear coding; with abuse of notation we use it to sum up the sub-

optimality of both the LT encoding and the distribution strategy.

Previous indexes are then averaged on all peers at given distance d from the source,

allowing us to analyze the behavior of the different distribution strategies. From tD(p, d)

we obtain tD(d) = 1
|Td|
∑

p∈Td tD(p, d) where Td is the subset of nodes in T d hops

away from the source. As a performance index for all the overlay we can compute

tD = 1
N

∑
d

∑
p∈Td tD(p, d) where N is the number of nodes in the graph T. tD(d) and

tD are termed absolute decoding time and represent the average delays between the

instant of time when the source has initiated the data distribution and the retrieval of

the information. In the case of a P2P live video streaming application, such an index

determines the play-out delay. Analogous averages can be computed on tF (p, d) and

tS(p, d). In particular, as pointed out in the next section, it is interesting to analyze

the behavior of tD(d) − tF (d), termed the relative decoding delay, which represents

the average time between the reception of the first coded packet and the complete LT

decoding, i.e., the time spent in the DECODER state at d hops from the source.

All protocols have been evaluated on static topologies T, based on the representation

of the set of N active nodes in a P2P network as a finite graph of size N , where a

vertex represents a peer and application-level connections between peers are modeled

as edges.
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Figure 6.1: tD(d) for PPLive when source has Bu = 256 kbps (a) and Bu = 10 Mbps (b).

67



6. PRACTICAL RANDOM NETWORK CODING USING RATELESS
CODES

1 2 3 4
0

20

40

60

80

100

120

140

160

180

d

t D
(d

)−
t F

(d
)

 

 

SR
RR
TRR
RRC
TRRC

1 2 3 4
0

5

10

15

d

t D
(d

)−
t F

(d
)

 

 

(a)

1 2 3 4
0

2

4

6

8

10

12

d

t D
(d

)−
t F

(d
)

 

 

SR
RR
TRR
RRC
TRRC

(b)

Figure 6.2: tD(d)− tF (d) for PPLive, Bu = 256 kbps (a) and Bu = 10 Mbps (b) source.
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6.4 Simulation results

In this section the SR (41), RE (4), RR, TRR, RRC and TRRC strategies are analyzed

and compared. The goal of this analysis is twofold. On one hand, the advantages

offered by relaying and combining coded packets are shown. On the other hand, the

experiments contribute to get a deeper understanding of the behavior of protocols based

on rateless codes in a complex random network. The simulator described in Sect. 6.3

has been used to simulate the temporal behavior of the system with a time slot equal

to 30 ms. Information packets of 1000 bytes and LT coding with k = 100, c = 0.05 and

δ = 0.01 are used. When testing the TRR and TRRC strategies the parameter α = 2.0

is used, unless otherwise stated.

For the generation of the network topology T we considered several instances of Erdős-

Rényi (ER) random graphs (42), which are described by a Poisson probability distribu-

tion for both the outgoing and incoming degree whose average is equal to z. Another

set of experiments has been worked out on real topologies obtained from PPLive video

streaming application (44). PPLive peers organize in an overlay to receive and relay

multimedia content for a particular channel. We used the crawler (43) to gather topo-

logical information of PPLive channels. Because of the overlay dynamics, the accuracy

of the captured snapshots depends on the crawling speed. The crawler in (43) reduces

the crawling time by using a distributed approach that allows one to capture snap-

shots of the overlay supporting a PPLive Cartoon channel in times ranging from 5 to

8 minutes. The size of captured snapshots varies according to a daily behavior ranging

from 4000 to 8000 peers. We selected 25 snapshots with an average size of 6300 nodes

with an average number of neighbors per peer equal to 46. In order to compare the

results with those obtained on random graph we used 25 ER graph instances with the

same average size and z = 46. All the performance indexes reported in the following

are obtained by averaging the results of independent simulations on the available 25

graphs. In each simulation the source is randomly chosen among the nodes from which

it is possible to reach all the other N − 1 nodes. The bandwidth distribution shown

in Tab. 6.1 has been used to randomly allocate the peer bandwidth capacities Bu, Bd.

The selected bandwidth figures are representative of a realistic scenario with a major-

ity of peers with limited capacities, e.g. accessing through ADSL links, and a small

percentage of high capacity institutional nodes. As already mentioned, in this work we
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Table 6.1: Bandwidth classes.

Bu Bd Percentage

10 Mbps 10 Mbps 5%

256 kbps 2 Mbps 15%

256 kbps 4 Mbps 60%

512 kbps 8 Mbps 15%

1 Mbps 20 Mbps 5%

Table 6.2: Comparison between OFG and BP using SR on ER graphs: source with

Bu = 10 Mbps.

tF tD tS ϵ̄

BP 17.75 31.23 32.86 0.35

OFG 14.90 25.71 26.97 0.07

propose to use OFG to decode LT codes. This algorithm has a number of important

features, the most important being the possibility of incrementally solving the system

of linear equations determined by LT coding, its lower overhead for short block lengths

k and its limited sensitivity to the degree distribution of the coded packets. In Tab. 6.2

the average performance indexes tF , tD, tS and ϵ̄, obtained when using the SR strategy

and a source node with Bu = 10 Mbps on ER graphs, are shown for BP and OFG.

As opposed to OFG, BP is very sensitive to the RSD parameters; in the BP case we

noticed that using c = 0.05, δ = 1.0 yields the best performance for k = 100, shown in

Tab.6.2. Note that while the BP decoder requires a significant overhead ϵ̄ = 0.35, which

means that about 135 coded packets are needed to retrieve the original 100 packets,

OFG needs only 107 coded packets. Clearly, the lower overhead positively impacts on

all the other indexes, reducing by about 18% the average decoding delay. Moreover,

the BP algorithm is not usable in a scenario where LT encoded packets are combined:

indeed, the degree distribution of received packets is different from RSD, making BP

algorithm unusable. Therefore, all the experimental results reported in the following

are worked out with OFG. After this preliminary comparison, we pass to the most

important result of this work, i.e. the performance evaluation of the proposed random

relay strategies. In Tab. 6.3 the average performance indexes obtained with SR, RE,
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Table 6.3: Average performance indexes as a function of the upload capacity Bu of the

source.

Bu = 256 kbps Bu = 1 Mbps Bu = 10 Mbps

tF tD tS ϵ̄ tF tD tS ϵ̄ tF tD tS ϵ̄

E
R

gr
ap

h
s SR (4) 170.95 183.20 184.48 0.07 50.99 62.21 63.48 0.07 14.90 25.71 26.97 0.07

RE (41) 78.33 123.06 126.86 0.08 20.76 35.48 37.66 0.08 2.89 7.57 8.27 0.08

RR 0.20 5.41 5.54 4.45 0.18 2.92 3.12 1.93 0.15 1.77 2.04 0.82

TRR 2.86 5.94 6.12 1.55 1.23 3.04 3.29 0.50 0.67 2.13 2.41 0.27

RRC 0.20 3.77 3.84 2.74 0.18 1.83 2.06 0.82 0.15 0.99 1.31 0.08

TRRC 2.85 4.11 4.40 0.09 1.23 2.41 2.71 0.07 0.66 1.84 2.14 0.07

P
P
L
iv
e

SR (4) 173.92 181.39 182.72 0.07 49.08 55.58 56.90 0.07 11.47 17.65 18.97 0.07

RE (41) 15.79 77.12 77.38 0.08 4.76 22.94 23.19 0.08 1.10 5.61 5.86 0.08

RR 0.36 6.09 6.49 3.74 0.32 3.49 3.98 1.51 0.29 2.50 3.06 0.68

TRR 5.43 8.53 9.08 0.61 1.47 3.92 4.48 0.38 0.86 2.95 3.56 0.20

RRC 0.36 4.75 5.10 2.52 0.32 2.86 3.35 0.93 0.28 1.81 2.41 0.12

TRRC 5.38 7.49 8.08 0.08 1.43 3.29 3.90 0.09 0.84 2.68 3.29 0.09

RR, TRR, RRC, TRRC are shown as a function of the source upload capacity for both

the ER graphs and the PPLive snapshots. It can be noticed that all the proposed

RR, TRR, RRC and TRRC strategies, being able to increase the exploitation of the

upload bandwidth, reduce tremendously all the delays. On the other hand, random

coded packet forwarding can be heavily penalized in terms of overhead, due to the high

probability to create duplicated packets in the overlay. In particular when the source

upload is limited, RR turns out to be practically unusable with ϵ̄ ≫ 1. As expected,

using packet combinations in RRC significantly improves both in terms of decoding

delay tD and ϵ̄. This is clearly due to the lower probability of forwarding duplicated

packets. It can be observed that in all the reported experiments, RRC is the algorithm

achieving the lowest tD, shown in bold face in Tab. 6.3. RRC turns out to be efficient

in terms of ϵ̄ only when the source has Bu = 10 Mbps. The performance impairment

in the case of a source with limited upload capacity can be overcome by throttling the

upload resorting to TRRC, which consistently yields the best ϵ̄ (boldface in Table).

This advantage is paid in terms of slightly larger delays. TRR, i.e. the same upload

reduction but without combinations, still yields large delays and overhead even if it

performs better than RR.

To get a better insight into the behavior of the various strategies, we analyze the av-
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erage tD(d) and tF (d), i.e. the delays as a function of the number of hops separating

a node from the source. From this point on all the reported results refer to the case

of PPLive snapshots. ER graphs show very similar behavior and they are omitted

for conciseness. In Fig. 6.1 tD(d) is shown as a function of d when the source upload

bandwidth is Bu = 256 kbps (a) and Bu = 10 Mbps (b). As already observed in terms

of average tD, RRC is the strategy yielding the lowest decoding delay at any distance

from the source and independently of the source upload.

In Fig. 6.2 the relative decoding time tD(d)−tF (d) is shown as a function of d when the

source upload bandwidth is Bu = 256 kbps (a) and Bu = 10 Mbps (b). In Fig. 6.2(a) it

can be noted that SR is heavily conditioned by the limited upload of the source when

d = 1. Indeed, in the SR case, nodes at distance d = 1 are directly served by the unique

source; the other strategies, being based on relay of coded packets, let the information

flow as soon as possible, thus reducing the LT decoding time. This advantage becomes

less evident for higher distances since in such a case both SR and the other techniques

rely on the presence of a number of nodes in the SEEDER state, that act as a set

of independent sources. The number of such source nodes clearly increases with the

distance d. In the reported results, such source propagation effects diminish for d = 4

because of the particular topological structure of the PPLive overlay. Indeed PPLive

snapshots are formed by very well connected nodes (average degree is 46) when d ≤ 3.

Nodes with d > 3 form low connected chains where packet upload can be limited by a

single bottleneck. In Fig. 6.2(b) we show the same indexes when the source has a large

upload; in such a case the SR relative delay for d = 1 is less penalized by the single

source, whereas the values for d > 1 are the same as in 6.2(a). In the case of RR, TRR,

RRC and TRRC the larger upload capacity of the source yields a relevant reduction of

the relative decoding delays for all values of d (except for d = 4 due to the mentioned

topological issues).

Furthermore, TRRC achieves a high utilization of the upload capacities defined as

ηu(p, d) = Ru(p,d)
Bu[tS(p,d)−tF (p,d)] , where Ru(p, d) is the total amount of data uploaded by

peer p placed at d hops from the source, averaged over all peers belonging to the same

bandwidth class. In all the simulated scenarios TRRC exhibits an average ηu above

0.8 for ADSL links, and ηu of about 0.5 for the institutional nodes. As a reference, SR

achieves ηu around 0.2 for all bandwidth classes.
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6.5 Conclusions and future works

The performance of data distribution in P2P networks can be improved tremendously

at a very reasonable cost using rateless codes and RNC. In particular, we propose to

perform the linear combinations of information packets in GF(2), to reduce the com-

putational complexity, and to use LT codes to pre-encode the information packets. We

let nodes propagate encoded packets as soon as possible, thus increasing the utilization

of the upload capacity and reducing the delay after which a node is able to accom-

plish the decoding, thus retrieving the original information. We show that letting a

node relay linear combinations, even if in GF(2), of the coded packets accumulated

during the decoding process is very likely to reduce the amount of useless information,

thus improving the overall system performance in terms of both delay and bandwidth

utilization. The simple random relay approach is potentially dangerous because it is

very likely to saturate the upload bandwidth with duplicated packets. To solve this

problem, we propose to initially throttle the upload bandwidth. The results are promis-

ing: the improvement of the system performance is shown by means of a very detailed

simulation of an overlay network of nodes running encoding and decoding stages. The

overlay networks we considered are both random graphs and snapshots of PPLive. The

proposed distribution strategy yielded very low decoding delay, thus sustaining a larger

throughput, while not flooding the overlay network with useless coded packets.

The RNC evaluation of Chap. 4, however, showed that the complexity of the pro-

posed system should be carefully controlled: in fact, the proposed system has a lower

computational complexity compared to RNC, but for larger values of k this advan-

tage could vanish. In order to cope with the complexity issue, we propose in the next

chapter a novel streaming protocol that uses Band Codes to control the computational

complexity.
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Chapter 7

Band Codes for

Controlled-Complexity RNC

7.1 Introduction

Network coding (NC) was originally proposed for the purpose of improving the network

throughput in multiple-source, multiple-receiver scenarios. The distinctive feature of

network coding is that the intermediate nodes output linear combinations of received

packets rather than just forwarding them. Once the receiver has collected enough lin-

early independent packets, the receiver solves a system of linear equations to recover

the original message (54). The seminal work of Ahlswede inspired and fostered further

research that explored both the theoretical and the applicative aspects of network cod-

ing. Chou was the first to propose a scheme (55) that made network coding feasible

also on realistic packet networks while avoiding the need to know the network topology

and the coding functions at the nodes. The authors of (6) addressed the case of wireless

communications by proposing a scheme where the network nodes mix packets origin-

ing from different sources. This demonstrated that network coding actually improves

the throughput of the network. Network coding also found application to the case of

peer-to-peer content distribution, because it enabled the design of simple yet effective

protocols that overcame issues typical of peer-to-peer systems. Designs such as R2 (3)

showed that the benefits of the network coding for peer-to-peer video architectures are

higher quality and lower startup video delays.

The advantages of network coding come, however, at the price of additional compu-
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tational complexity, which develops into an issue when power-constrained applications

are considered. Battery operated equipment such as mobiles and sensor network nodes

just lack the computational resources required to perform full-fledged network coding,

while the amount of energy stored in the site battery limits the operational lifetime.

An experimental investigation with high-end mobile phones (56) demonstrated that

the computational requirements of network coding resulted in throughput bottlenecks

compared to the bandwidth achievable by wireless protocols. The study also confirmed

that network coding dramatically increased the average energy consumption, hence

shortening the battery life.

Previous research in the field of error correction codes resulted in the design of rateless

codes that are suitable for reducing the complexity of network coding. Rateless codes

such as the Luby Transform (LT) (9) or the Raptor codes (13), for example, are known

to achieve good performance together with low decoding complexity. We recall that

the key to attaining low decoding complexity is that all the coding operations are per-

formed on a binary Galois field GF(2), which avoids having to perform computationally

expensive multiplications. Furthermore, the degree distribution Ωd, i.e. the probability

that the encoder creates a packet combining d blocks of data, is carefully selected so to

control the decoding complexity.

When rateless codes are employed in a network coding framework, however, the recom-

bination of the packets at the nodes alters the packet degree distribution and therefore

low decoding complexity cannot be guaranteed any longer. To overcome this issue, the

P2P streaming application in (4) uses LT codes but avoids recombinations at inter-

mediate nodes. In (38) it is proposed to modify the degree distribution so that the

RSD can be enforced at the output of a relaying node combining packets from several

sources. Unfortunately, such an approach cannot be easily extended to general relay

topologies.

Because nodes with asymmetric computational capabilities should be able to coexist

within the same network, the even more challenging question arises of how to modulate

the complexity of network coding and to share it among the nodes. It is desirable

that the complexity of network coding be controlled independently at each node, so

that the complexity can be diverted to nodes with higher computational capabilities.

To this end, one must to realize that the computational complexity of network coding

stems both from the decoding and the recoding of the packets at the nodes. A possible
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approach to the problem is to place the burden of packet recoding on a few ad-hoc de-

ployed nodes, while low complexity nodes simply forward packets without recoding (57).

Such an approach addresses only the issue of controlling the packet recoding complex-

ity, however, and enables one to control the complexity with only coarse granularity

due to the simple recode-or-forward approach. The problem of jointly controlling both

the complexity of the decoding and the recoding is addressed in (58). In particular, the

decoding complexity was centrally controlled at the encoder by selecting an appropriate

packet encoding degree. An issue with packet recoding at the nodes, however, is that it

modifies the selected degree distribution. Hence the average decoding complexity tends

to increase hop by hop to an asymptotic value, as shown in Chap. 4. We show in this

chapter how the complexity of network coding can be independently controlled at each

network node thus avoiding the issues related to packet recoding using Band Codes.

This preserves the packet degree distribution through recoding at the nodes. Band

Codes boast the further property that their decoding complexity grows linearly with

the size of the encoding window, hence with the average degree of the decoded pack-

ets. This property enables us to accurately model their decoding complexity so that

it can be controlled at each node given a budget for the computational resources. The

computational complexity due to packet recoding is further reduced by exploiting the

decoder as a prerecoding stage that feeds linearly independent packets to the recoder

for better integration of the transmitted packets. We experiment with Band Codes

in a peer-to-peer video streaming framework based on network coding. We show that

its computational complexity can be controlled to permit operating the network nodes

over a wide range of computational complexity levels. Furthermore, we experiment

with a scenario where resource constrained nodes (e.g.: battery operated devices) are

also considered. We show that controlling the computational complexity of the nodes

makes it possible to extend their lifetime.

7.2 Network Coding with Rateless Codes

In this section we present an overview of the functioning of a network coding architec-

ture designed around rateless codes operating on GF(2). We demonstrate that packet

recombination at the intermediate nodes results in packets with high decoding com-

plexity that nullifies the advantages offered by rateless codes.
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We consider a network scenario where one source node holds the original content and

multiple receiver nodes need to receive it. The source node, also known as the en-

coder, distributes the content in chunks of data called generations. Each generation

is a sequence (M0, ...,MN−1) of N data blocks of identical size Bs, where N is the

generation size. For each packet to be transmitted, the encoder selects a subset of d

blocks, where d is known as the packet degree. The set of indices of the selected blocks

is known as the encoding vector and, in the case of GF (2), it is represented as the bit

array g = (g0, ..., gN−1), where the number of non-zero elements is d. The encoding

vector and its degree are chosen according to the distribution of Band Codes. The

encoder linearly combines the selected blocks and produces the encoded data block

X =
∑N−1

i=0 Mi ⊕ gi, where the sum operator is the bitwise XOR. Every transmitted

packet P (g,X) thus contains the encoded block X as a payload plus the corresponding

encoding vector g as header (55).

The other nodes of the network encompass the functionalities of a decoder for the pur-

pose of reconstructing the original content and the funtionalities of a recoder to share

the content among them. The decoder processes the received packets by inserting them

in a decoding matrix G using the OFG decoding algorithm (15). Once N linearly in-

dependent packets are received, it is able to solve the corresponding system of linear

equations and rebuild the generation. The received packets are stored inside the input

buffer and fetched by the decoder.

The recoder periodically recombines the packets stored in the input buffer, producing

new packets that are transmitted to the other nodes. Packet recoding serves the pur-

pose of increasing the likelihood that the transmitted packets are linearly independent

from those already received by the recipient and thus help it to decode the generation.

In the case of GF(2), recoding two packets amounts to separately XOR the payloads X

and the encoding vectors g. The recoding algorithm will be examined in the following

sections.

7.3 Network Coding with Band Codes

In this section we present a streaming protocol that uses Band Codes (BC) to implement

a RNC-like system through packet recombination using a novel recombination strategy.

Peer nodes are designed around the architecture shown in Figure 7.1(a), which enables
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(a) Complexity-Adaptive Node Architecture.

(b) Traditional RNC Node Architecture.

Figure 7.1: Node Architetcure: the difference between the proposed solution and RNC)

.

each node to independently adjust its recoding complexity CR by selecting the number

Nr of packets recombined at each transmission, according to its own computational

capabilities. As the linear independence of the recoded packets depends onNr, however,

such a parameter cannot be reduced without impacting on the encoding overhead.

The problem of reducing Nr without compromising the linear independence of the

recoded packets hence arises. Thus the recoder in the figure recombines rows of the G

matrix for the purpose of exploiting the Gaussian Elimination process as a pre-recoding

stage. Using OFG algorithm, rows of G represent independent linear equations for the

corresponding generation, thus recombining rows of G produces packets that are still

linear combinations of the original data blocks. Rows of G undergo a recombination,

however, every time a collision happens during the execution of OFG. Because rows

of G are recombined at each collision during packet decoding, it is possible to reduce

Nr at the encoder without causing bloating of the encoding overhead. Recombining

packets from G also enables one to simplify the RNC traditional node architecture,
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shown in Figure 7.1(b), dropping the input buffer, as it is not necessary to store the

received packets.

The recoder recodes the received packets and produces new packets that are transmitted

to the other nodes. At each transmission, the recoder recombines Nr received packets

selected from the input buffer Bin, recombines the packets through repeated XOR

operations and transmits the recoded packet. We propose a design where the recoder

has an option to recombine rows of the G matrix rather than the received packets

(packet precoding). Each row of G is in fact either a received packet or the result

of an XOR between received packets. Combining rows of G produces packets that

are still linear combinations of the original data blocks. They help the receiver to

decode the generation. Because OFG already performs several XORs between the rows

of G, however, recombining rows of G increases the likelihood that a recoded packet

is innovative (or, conversely, smaller Nr is required to produce innovative packets).

Finally, because we already demonstrated in prop. 3 that rows of G are band codes,

these rows could be used in the recoding process. In fact, the packet recoding algorithm

implemented at the nodes is formalized as Algorithm 3. It operates as follows. Given

Nr and W as external inputs, one of the N − W + 1 possible encoding windows is

randomly selected according to the HD distribution. Ψ represents the set of rows of G

that are BC(N,W ) and whose first index is found at position f . The elements of Ψ are

then randomly sorted and the first Nr elements are recombined together into packet

P that is transmitted over the network. Following this procedure, the combination of

received packets and rows of G produces new BC packets. This permits controlling the

average degree of the packets in the system; indeed, from proposition 3 it follows that:

Corollary 1. Using Band Codes and the OFG decoding algorithm in a RNC system

where the nodes perform the recoding technique proposed in Alg. 3, the average limit

degree distribution of the system is E(Ω∞) = W
2 .

Proof. During the re-encoding process, packets are xored among them if they share the

same window. In practice, the operations are made in windows of length W . However,

eq. 4.1 still holds: the degree distribution of the packets will collapse to Dense Codes.

The difference is that the collapse is concentrated in the window. Only the degree

distribution in the window converges to DC, and in particular to DC of length W ; this

is exactly the definition of the encoding vectors of Band Codes, hence the re-encoded
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packet is indirectly generated following the degree distribution of BC. The expected

degree of a BC of window size W is W
2 .

Algorithm 3 The Packet Recoding Algorithm

select Nr,W

cnt← 0

P ← NULL

select f with the Horn Distribution

Ψ← rows of G that are BC(N,W ) and first index = f

randomly sort Ψ

while cnt < Nr do

P ← P ⊕Ψ[cnt]

cnt++

end while

transmit P

7.3.1 Complexity Model

We analyze the performance of a network coding architecture designed around band

codes and we show that there is an inherent tradeoff between encoding overhead and

computational complexity. We already showed that the complexity of decoding Band

Codes with the OFG algorithm grows linearly with the window sizeW , which enables us

to propose a precise model of the computational complexity of the proposed architecture

under the assumption that the recoding algorithm generates new BC packets.

The computational cost CT of a node is defined as the total number of packets XORed

in a second by the decoder (decoding cost CD) and the recoder (recoding cost CR) of

a node. In the following, we assume that the encoder processes one generation of data

per second, so that the cost of decoding or recoding one second of data is equal to the

cost of decoding or recoding one generation.

The complexity model in Chap. 4 showed that the cost of decoding band codes with

the OFG algorithms linearly grows with the encoding window size. We make the

assumption that the recoded vectors belong to BC, and are innovative for the system.

We validate this hypothesis by experimenting with different values of generation size

N and encoding window size W and comparing the results with the model proposed in
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eq. 4.2 for the exact encoding of BC. For the purpose, we encode packets that are fed

to the decoder and the actual CD is measured and compared with the figures predicted

by the exact model. Figure 7.2 shows the results of the experiments: a comparison

between the curves shows that the exact complexity model can accurately predict the

decoding cost of band codes in our re-encoding scenario, supporting our assumption.

The recoding cost CR corresponds to the average number of XOR operations between
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Values and as Predicted by the Model.

packets performed per second by the recoder. Assuming that a node transmits Ntx

packets per second and each packet is the result of the recoding of Nr packets, the

recoding cost is

CR = (Nr − 1)Ntx. (7.1)

The recoding cost is obviously zero if Nr = 1, that is if a node forwards the packets

without recoding. Thus, the total computational cost of a node is the sum of the
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decoding and recoding cost as follows:

CT = CD + CR =
WN

2
+ (Nr − 1)Ntx. (7.2)

7.4 Experimental Results

We experimentally evaluate the performance of band codes in a network coding enabled

peer-to-peer video streaming framework. Video streaming is a challenging application

due to the constraints on bandwidth and delay that have to be satisfied. To this end,

network coding enables the design of simple yet effective push protocols that guarantee

high throughput and reduced buffering time and thus better perceived video qual-

ity. The experiments are performed using the simple peer-to-peer protocol presented

in (58). Previous experimental evidence showed that this protocol performs compara-

ble to state-of-the-art competitors despite the simple packet scheduling mechanism it

implements thanks to the inherent advantages offered by network coding. While we

refer the reader to (58) for a thorough description of the protocol, we overview its main

functional aspects and the amendments we introduced to achieve controlled decoding

complexity.

A central tracker listens for requests from nodes that want to join the network and

replies with a list containing the addresses of the other nodes in the network. The

tracker may also assign a specific budget of XOR operations to each node, forcing the

node to operate as a complexity-limiting device. The node calculates the corresponding

maximum encoding window size W according to Equation 4.2 given the maximum CD

the node intends to bear. Nodes that operate without constraints on the computa-

tional complexity specify an encoding window of the same size as the generation. The

node starts a handshake procedure with the nodes in the list during which the nodes

communicate with each other the selected encoding window size. After the handshake,

nodes start exchanging packets using the simple random-push scheduler that serves one

packet to one randomly selected node in the network at each transmission opportunity

until the bit budget for that generation is consumed. Packets are recombined as shown

in Algorithm 3 and transmitted to the selected neighbor. Encoded packets are trans-

mitted using the connectionless User Datagram Protocol (UDP), as network coding is

inherently robust to packet losses.
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7.4.1 Performance Evaluation of Band Codes in RNC
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Figure 7.3: Computational Cost CT and Encoding Overhead ϵ Tradeoffs as a Function

of the Encoding Window Size W and the Number of Recombined Packets Nr.

We explore the cost-overhead tradeoffs our proposed architecture can achieve and

we show how packet precoding improves the performance of the network coding system.

For this purpose, we set up a network composed of 100 nodes that we use to experiment

with video streaming. An H.264/AVC video signal encoded at 1 Mbit/s is streamed

from the seeder to the peer nodes. Each second of video is encoded as a generation of

size N = 100, resulting in encoded video packets of 1250 bytes. We experiment with

different, setups covering a wide range of cost/overhead tradeoffs. We consider differ-

ent recoding window sizes w ∈ [N/4, N/2, N ] to control the decoding cost and different

numbers of packets recombined at every transmission Nr ∈ [2, 4, 8, 16] to control the

recoding cost. First we experiment with packet precoding, that is we configure the
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nodes to recombine packets from the G matrix. Then we compare with a reference

strategy where the nodes recombine the packets stored in the input buffer Bin. For

each experimental setup, we measure the average computational cost of the nodes and

the corresponding encoding overhead. The results of the experiments are shown in

Figure 7.3 in the form of four graphs, one for each Nr value. Each graph contains two

curves, one for the strategy that recombines rows of the G matrix, the other for the

reference strategy (Bin,) while each point on a curve represents a different size of the

encoding window. Each graph shows the total cost CT on the horizontal axis and the

corresponding encoding overhead ϵ on the vertical axis.

The figures show that tuning the encoding window size W enables one to effectively

control the tradeoff between encoding overhead and the computational cost of band

codes. For example, figure 7.3(c) shows that the encoding overhead drops from 20% to

below 5% when the window size increases from N/4 to N . Conversely, the computa-

tional cost decreases from 5000 XOR/s to nearly half such figure when the window size

is narrowed from N to N/4. Moreover, the figures show that the computational cost

increases linearly with the encoding window size as predicted by the model in Eq. 4.2.

A comparison of the two curves contained in each subfigure confirms that packet pre-

coding reduces not only the encoding overhead but also the decoding cost as follows.

Precoding achieves low overhead because the rows of the G matrix are linearly inde-

pendent and hence the higher probability that the recoded packets are innovative. The

reduced encoding overhead means that the decoder has to process a lower number of

packets to decode, hence resulting in lower CD.

The figures show that the number of recombined packets Nr should be carefully selected

according to the considered packet recoding scheme. If the recoder recombines packets

from the input buffer, it is necessary to recombine at least eight packets to achieve

an encoding overhead of 5.3%: the more packets that are recombined, the higher the

chance that the recoded packet is innovative. On the other hand, recombining two rows

of G is enough to achieve a similar encoding overhead (6.7%) at a much lower com-

putational cost. Moreover, increasing Nr to 16 packets does not reduce the encoding

overhead in either case, while the total cost grows unnecessarily. Our experiments sug-

gest hencethat the optimum Nr value depends on the considered packet recombination

strategy and further research will lead to an analytical formulation.
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7.4.2 Resource-Constrained Network Coding

We show that controlling the complexity of network coding extends the lifetime of net-

work nodes in a scenario where power-constrained nodes take part in the communica-

tion. We consider a hybrid network composed of two classes of nodes: high complexity

(HiC) and low complexity (LoC) nodes. HiC nodes are equipment connected to the

power grid such as desktop computers, while LoC nodes represent battery operated

terminals like mobiles. In a typical battery-operated system, every packet coding op-

eration draws some energy from the battery until it is exhausted. Clearly, the amount

of energy stored in the battery limits the total number of packet coding operations a

node can afford and thus the nodes lifetime. We model the level of battery charge as an

initial budget of XOR operations that is set at the node startup. Every time the node

performs an XOR, the budget counter is decremented by one until it reaches zero and

the node leaves the network. We experiment with a network composed of 100 nodes,

where a part of the nodes are of the HiC type and the rest are LoC nodes. We stream

a 1000 second H.264/AVC video sequence encoded at 1 Mbit/s and we measure the

average lifetime of the network nodes, i.e. the average time between a node joining

and leaving the network. HiC nodes operate on an unbounded XOR budget, so they

recode packets from the input buffer with Nr = 8 and with a recoding window size

equal to the generation size. Previous experiments showed that such a configuration

enables an encoding overhead around 5% for a total cost of about 5000 XOR/s. LoC

nodes operate with a limited energy budget that we have set to 2500 XOR/s, that is

half the budget the HiC nodes are expected to use.

We evaluate three different complexity adaptation strategies for LoC nodes. The first

strategy (No−Adapt) is a baseline reference where both LoC and HiC nodes recombine

eight packets per transmission (Nr = 8) and the encoding window size is equal to the

generation size (W = N). The second strategy (Adapt−Cr) consists in enabling packet

precoding for the LoC nodes and reducing Nr from eight to two: such a strategy is

expected to reduce the packet recoding cost and corresponds to the approach proposed

in (58). The third strategy (Adapt−Cr−Cd) improves the previous one as LoC nodes

also select an encoding window size equal to N/2 rather than N in order to reduce

the decoding cost too. Figure 7.4 shows the average node lifetime as a function of

the percentage of LoC nodes present in the network. The reference strategy results in
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the lowest node lifetimes and the LoC nodes are never able to watch the entire video

streaming session. As expected, LoC nodes leave the network roughly at 50% of the

streaming time as their XOR budget is half the required budget. The Adapt−Cr strat-

egy increases somewhat the average node lifetime due to the reduced cost of packet

recoding. However, the adaptation of the sole recoding cost does not reduce the total

computational cost enough to extend the node’s life any closer to the total stream-

ing duration. Finally, the joint adaptation of recoding and decoding cost delivers the

best results and enables even low complexity nodes to decode almost entirely the video

sequence.
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7.5 Conclusions

We addressed the problem of controlling the complexity of network coding to meet the

asymmetric computational capabilities of different classes of nodes in heterogeneous

networks. The computational complexity of network coding is modeled and indepen-

dently controlled at each node because of a new class of codes, called Band Codes.

Band Codes preserve the packet degree distribution selected at the encoder despite the

recoding of the packets at the nodes. They thus enable one to control the average

decoding cost by appropriately selecting the encoding window size. Furthermore, the

computational complexity of packet recombination can be reduced by exploiting the

On-the-Fly Gaussian Elimination algorithm to prerecode the packets to be transmit-

ted. We evaluate the performance of the proposed network coding architecture in a

peer-to-peer video streaming scenario. This proposed architecture enables a node to

operate over a wide range of levels of computational complexity. Hence, it enables

nodes with different computational capabilities to partecipate in the network. Finally,

we show that controlling the computational complexity of network coding enables one

to extend the lifetime of resource-limited devices.
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Chapter 8

Broadcast of Multiple Sources of

Local Information in Distributed

Systems

8.1 Introduction

Data gathering and data aggregation in distributed systems is a challenging problem

that has been tackled with several techniques and from different points of view. For

instance, in wireless sensor networks sink nodes must have a global view of all or at

leat most of the information retrieved and stored by the sensing nodes. In peer-to-peer

applications, a global view of the system state may be required by rendez vous points

and by ordinary peers to monitor, control and optimize system performance. Research

has been succesfull in devising distributed algorithms to provide summaries of global

system properties on data that is assumed to be static during certain time interval,

so that thw number of properties or the data size is never regarded as an issue, e.g.,

(45, 46, 48).

In this chapter, we study the more difficult problem of allowing participants to a dis-

tributed application to obtain a local view of global system properties. In particular,

we assume that each node holds a piece of that information and that any node may

require access to the values of the data of all the other nodes periodically at a rate of λ

accesses/sec. The goals to be achieved are manifold: first, one wants to guarantee that

every node can collect the complete global information in a timely fashion. Moreover,
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the communication overhead to accomplish this must be kept as limited as possible to

avoid congesting the network. Finally, the processing power of each node must be used

parsimoniously.

We propose to use a practical form of network coding based on rateless codes using

simple XOR operations that are more computationally efficient than previous attempts

based on random network coding in large Galois fields. The proposed approach is

based on a continuous flow of control packets being exchanged among the nodes using

the random walk principle. Each node is allowed to start a limited number of control

packets, thus limiting the overall number of random walkers traveling in the network,

i.e. thus limiting the communication overhead of the proposed technique. Every node

enriches any incoming packet with its local information according to the rateless cod-

ing principle and forwards it randomly to one of its neighbors. As a consequence, a

continuous flow of packets carrying coded information is spread around the network

and any node can use them to recover the global data.

Using network coding in a dynamic scenario where the information varies asynchronously

is an issue, since the information combined by each node has to be the same for all

random walks to guarantee the inversion of the linear system of equations. Usually

this issue is circumvented by constraining the nodes to change the information syn-

chronously, i.e. the information is kept static over a period of time called a generation.

In this chapter we present a novel decoding mechanism coping with asynchronous in-

formation updates. In particular a novel rateless coding and decoding algorithm is

proposed which takes into account the variation of the combined information.

Finally, we show that the efficiency of the proposed solution grows as the size of the

data held by each node increases. This occurs in a scenario where communication

among nodes is constrained by a limit on the size of the MTU.

The performance of the proposed solution is evaluated both analytically and experimen-

tally by simulation. The analytical analysis proves that the design strategy guarantees

a significant reduction in the time required to spread the information among all partic-

ipants. Moreover, the analytical model proves that the solution scales even better with

the increasing size of the network. The simulator shows that the proposed solution is

able to cope with a dynamic scenario where the node alternates between active and

idle states and the state information varies asynchronously.

The problem of data gathering in a distributed system has been attempted with many
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different tools and approaches. The first class of techniques are based on probabilistic

gossiping (45, 46). Probabilistic gossiping is generally used to compute a function of

the global information, e.g. system averages, and not to actually spread the whole

information across a network of N nodes as in this case. Moreover, such techniques

rely on a set of assumptions that are difficult to guarantee in practice (47).

Algebraic Gossip, proposed in (48), is the first algorithm addressing data gathering

with Network Coding (NC). In this chapter a gossip algorithm based on NC is pre-

sented, and we prove that the spreading time of this algorithm is O(K) where K < N

is the number of nodes having some information to spread. This algorithm is similar

to classical NC: at every transmission opportunity, each node sends to another node a

linear combination of the previously received packets computed in Galois Field GF (q)

with q ≥ K. NC exhibits a high computational complexity (40), however, due to the

cost of the coding and decoding operations performed in high-order GF. Moreover,

each packet requires a padding of additional Klog2(q) > Klog2(K) bits. Such padding

turns out to be infeasible for large networks. As an example, if K = 1000 each packet

needs more than 104 padding bits. Finally, the authors suggest that the message size

m should scale with the size of the network, since it is required that m >> log(q).

A different approach is to store and create packets using rateless codes. In (49) dis-

tributed fountain codes are proposed for networked storage. To create a new encoded

packet, each storage node asks for information from a randomly selected node of the

network. The receiver answers the caller by sending its information. That information

will be used by the caller to encode a new packet. A similar algorithm is proposed in

(50), where the coded packet formation mechanism is reversed. In this case, the node

that stores the information sends random walkers containing the information. The stor-

age nodes store this information and create encoded packets XORing the information

they already received. At the end of the process, each storage node stores an encoded

packet, and it is possible to retrieve the initial information by querying any K + ϵ

randomly chosen storage nodes.

Growth codes, proposed in (12), use a similar technique but propose a particular degree

distribution for the rateless codes to maximize the data persistence in the presence of

a single data collector node.

In all the presented papers, the creation of the codes is node-centric, i.e. the nodes cope

with the information gathering and the encoding operations. In (51) this responsibility
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is assigned to the packets. The aim of this work is to use particular random walks,

named as rateless packets, for distributed storage of information in Wireless Sensor

Networks (WSN). Each node creates a number of rateless packets that are initially

empty packets but that travel across the network as random walks. The goal in (51) is

to use packets encoded in a distributed fashion that will be stored at random locations

in the network to maximize data persistence in the WSN. Each rateless packet is associ-

ated with a degree chosen following the standard LT degree distribution; τ , the mixing

time of the graph, is supposed to be known. Each rateless packet performs a random

walk across the network and any novel information is combined only one every τ hops.

When new information is added, the packet degree is reduced by one. When the degree

becomes zero, the random walk performs τ supplementary hops to hit the node that

will store the coded packet. The focus of the paper is to increase data persistence. The

time required for the distribution of the rateless packets hss not been studied.

Note that in all previous studies, the information to be spread is assumed to be static

or alternatively it is divided into generations. Only when a new generation is initi-

ated the nodes are allowed to update their information. The concept of generation

represents a significant limitation for practical distributed application since it requires

synchronization. The size of the information to be spread, however, is not considered

an important parameter of the system.

Finally, another technique adopted for spreading data across a distributed system is

based on recent results in the area of compressive sensing (52, 53). These approaches

rely on the compressibility of the information and do not apply in the general case

when no prior statistical knowledge of the data is available.

8.2 System Description

We model a generic distributed system as graph G(V,E), where V and E are the set

of nodes and edges connecting them, respectively. Each node of the network is unam-

biguously identified by an identifier ID. The ID can be assigned by a fixed rendez

vous node, e.g. a tracker, or can be represented by the IP, port address of the node.

Each node vj ∈ V owns m-bits of information x
tj
vj , where tj is a time-stamp or an

integer that is incremented each time the information in vj changes. To simplify the

notation, in the rest of the chapter we assume that vj coincides with the ID of node; tj
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is usually referred to as the generation number. In our settings, a node can update its

information asynchronously with respect to the rest of the network by increasing the

generation number associated with the information.

The goal of the nodes is to communicate to one another their respective information

so as to realize a concurrent broadcasting of all the information collected by all the

nodes in the network. This must be done at an arbitrary rate λ by each node. This

observation rules out any centralized solution where all nodes report to a common

monitoring node that in turn must propagate the collected data to all the participants.

This approach is clearly unfeasible because it imposes a huge amount of traffic towards

and from the monitoring node, not to mention the issues related to the election and

vulnerability of a centralized sink.

Therefore, we propose a fully distributed solution based on random walks. Each node is

allowed to start a limited number w of packets that are the random walkers propagat-

ing the information in the network. The parameter w clearly allows one to control the

amount of traffic injected in the network. On every reception by a node, the random

walk is forwarded to a random neighbor, thus realizing a simple form of probabilistic

gossiping. It is well known that network coding solutions, e.g. carrying a linear combi-

nations of the collected information rather than the list of information collected during

the random walk, increases the performance in terms of throughput, robustness and

persistence (48, 51). On the other hand, coding approaches exhibit two main short-

comings. The first and most studied issue is represented by the added computational

complexity. A possible solution that has already been proposed in the literature (51) is

to simplify the original random network coding approach, that requires one to combine

the data blocks in a high order Galois Field with systems based on simple binary com-

binations, e.g. XOR. Our work copes with the complexity issue by using LT codes (9).

The second most relevant shortcoming of NC is the fact that a node cannot update

asynchronously the information it combines without catastrophically impacting on the

decoding capability of all the other nodes. Indeed, the nodes keep collecting linear com-

binations of a set of unknowns until they successfully invert the corresponding system

of equations. Clearly, the system of linear equations is meaningful if one keeps com-

bining the same information. On the contrary, we propose a novel decoding approach

for LT codes that is resilient to asynchronous changes of the information. We let each

node propagate a fixed number of packets carrying coded information of the nodes that
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Figure 8.1: Packet format

the packets have hit performing a random walk along G(V,E). All the nodes use the

received packets to solve a system of linear equations allowing them to retrieve the data

associated with all the information collected by the network in a timely, complete and

robust way.

In the following, the details of the proposed random walk coding strategy and the

design of the novel LT decoding algorithm are presented.

8.2.1 Random walk LT coding

In this section, we describe the structure of the packet spreading the coded information

using a random walk approach. The packet format is shown in Fig. 8.1. Each packet

is composed of a header followed by a set of equations {eq1, . . . , eqk}. Note that one

packet carries multiple coded information at a time. An equation eqi, i = 1, . . . , k, is

characterized by the degree di, a set of di pairs vj/tj , j = 1, . . . , di, and an encoded

m bits message ci. The degree di of the equation corresponds to the number of nodes

that have encoded their information x
tj
vj in ci. The message ci corresponds to all the

information that has been progressively XORed by the nodes hit by the packet. In fact,

we have

ci =

di∑
j=1

x
tj
vj ,

where the summation is performed in GF (2).

The coding strategy follows the standard LT approach (9), where the degree of the
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equations is constrained to follow the probability density function known as the Ro-

bust Soliton Distribution (RSD). That in turn guarantees asymptotically optimal cod-

ing performance. In other words, using RSD, it is very likely that each node can recover

N coded bits of information, from any set of N ′ ≥ N equations, with an N ′ that is

arbitrarily close to N in the limit N →∞. This property holds for any information of

size m. RSD depends on N , that should be known by the nodes. A weak approximation

of N is sufficient, however, to compute RSD without a great loss of performance if a

decoder based on Gaussian Elimination is used (25, 34). This approximation could be

calculated from the nodes by observing the IDs of the nodes contained in the previously

received equations. To cope with the creation of the equation according to the RSD,

each packet carries in the header part of the signalling of the degree dF that must be

achieved by the equation under formation in the packet (that in our settings is the first

equation written in the packet body from left to right). When a node vj at generation

tj receives a packet, it checks if the degree of the first equation stored in the packet

has reached the requested degree. If dF > d1, hence the target degree has not yet been

reached, the node performs 3 operations: it XORs its information to the term c1, i.e.

c1 = c1⊕x
tj
vj . Then the degree d1 of the equation is incremented and the corresponding

field in the packet is updated. Finally, the node vj and the information timestamp tj

are appended to the equation. On the other hand, if dF = d1, the first equation has

already achieved the requested degree. Hence a new equation is created and stored as

the new first equation, while the other equations are shifted, e.g. eqi becomes eqi+1 for

i = 1 . . . k. To create a new equation eq1, a node draws a random degree from RSD

and stores it in the dF field of the packet header. Then d1 = 1 is set, its vj , its actual

timestamp tj and the information c1 = x
tj
vj are written in the proper fields. Finally, the

equation is stored in the packet as the first equation, shifting all the other equations

(if present). Every packet created or updated by a node is then forwarded to a node,

randomly selected among the local neighbors.

The number of hops globally taken by a packet is not limited in our system. The only

limitation is represented by the maximum packet size DIM , that is generally imposed

by the maximum transfer unit allowed by the underlying communication technology

at the physical layer. When a packet approaches the maximum dimension DIM , the

eldest equation carried by it is deleted since it is very likely to carry old or already

known information.
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In the case of a dynamic network where nodes can randomly join and leave the graph

G(V,E) and in the presence of unreliable links that turn into packet losses a mech-

anism to acknowledge the presence of a given random walk in the network must be

devised. To this end it is possible to insert supplementary control information in the

header of the packet. As an example, one can signal in the header the address of the

originator and an acknowledgement timer (ACK). The ACK is an integer that repre-

sents the number of hops preceding the generation of the next acknowledgement to the

originator. The ACK field is initialized to a constant value upon the packet creation,

then each node decrements it. The node that is hit by a random walk with ACK= 0 is

responsible for signaling to the originator that its random walk is still alive. The ACK

is initialized back for the next acknowledgement period. The originator of the random

walk uses a timer to detect packet losses. When a timer expires before the reception

of the corresponding ACK message, the node is allowed to regenerate the random walk.

8.2.2 Decoding

The information spread by the random walkers can be straightforwardly recovered by

any node in the network as soon as a sufficient number of packets has been collected to

run a standard LT decoding algorithm (9, 25, 34). Since our goal is to reconstruct the

information as quickly as possible, all the equations carried by each packet, including

one that is still under formation, are buffered by the nodes. If we assume that the

number of nodes |V | in the network is equal to N , the decoder task can be formulated

as the solution of the following system of linear equations

Gx = c,

where G is an N ×N binary1 matrix whose rows represent the N possible independent

equations collected by the node, x and c are N × 1 column vectors representing the

N unknown pieces of information and the corresponding buffered linear combinations

carried by the packet payloads. Both x and c contains m-bits elements. The node can

recover all the information x using a progressive form of Gaussian Elimination (34) to

solve the system of equations. Clearly, this will require all the nodes in the network to

1The matrix is binary since LT coding is performed in GF(2) and it is analogous to the code

generation matrix of standard forward error correction linear block codes.
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keep their information constant to avoid perturbing the solution of the system.

To circumvent this strong limitation, we propose a novel decoding strategy that does

not assume that the N pieces of information x be constant. We assure that the vector x

is extended to the 2N × 1 vector x̃, where the bottom N elements refer to the updated

information, e.g. the most recent timestamp for each information block, whereas the top

N elements are related to the previous generation. In other words, vector x̃ represents a

snapshot of the information collected in the network with a sliding window mechanism

including the two most recent generations of the information for each node. Clearly,

this strategy can be generalized to cover more than two generations at the cost of

a higher computational cost and memory requirements. To actually implement the

sliding window mechanism, two auxiliary vectors are used; an N × 1 vector a, whose i-

th element is the ID of the node associated with the information in position i and i+N ,

and anN×1 vector t containing the timestamps of the most recent information collected

for each node. According to the previous description, it follows that x̃[i] = x
t[i]−1
a[i] and

analogously x̃[i+N ] = x
t[i]
a[i], where square brackets are used to index a single element

of a vector. Adopting this extended notation, the decoding task can be formulated as

G̃x̃ = c̃, (8.1)

where G̃ is a 2N × 2N matrix specifying the linear combinations among the two most

recent versions of information circulated in the network. This keeps the decoding as

updated as possible, aiming at reconstructing the last N elements of x̃. Nonetheless,

the equations referring to the previous version of a given node are not invalidated, but

are stored in the upper part of the matrix to enable the exploitation of new incoming

equations still involving the older version of the information. In fact, this outdated

information can still be present in some random walkers hitting the node.

The objective of the decoder is twofold. First, given all the equations extracted by

the random walkers we want to obtain the maximum number of information items.

Moreover, this needs to be done in an incremental way. Second, we propose a strategy

to manage the extended decoding matrix G̃ which makes the decoding process robust

to asynchronous updates of the information. In general terms the idea is as follows.

An incremental version of the Gaussian Elimination algorithm is used to insert the new

equations collected in the random walkers, while guaranteeing that G̃ is an upper tri-

angular matrix and that the maximum number of x
tj
vj are known. This latter condition
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corresponds to rows of G̃ with a single 1 on the diagonal, and can be obtained by the

incremental back substitution strategy shown in (34). As soon as a node detects an

information update by retrieving an equation using a new timestamp for an informa-

tion block, the data in the linear system of Equation 8.1 are rearranged to reflect the

changes.

The detailed decoding operations are now discussed. When a new packet is received,

the equations collected by the packet during the random walk are iteratively processed

and inserted in the matrix G̃. Each equation eqi is used to create a new row vector gnew

(of length 2N) and a new element of c̃ called cnew = ci. Each pair (vl, tl), l = 1, . . . , d

in eqi is checked to determine whether the node vl is already known or not. If not, the

number of known nodes N is incremented. The new node vl and the timestamp of the

information are appended to vectors a and t, respectively. G̃, x̃ and c̃ are enlarged

to make room for the new node. In particular, two new all zero rows are inserted as

the N -th and 2N -th rows of G̃. Finally we set c̃[N ] = c̃[2N ] = 0. On the contrary,

if vl is already known and therefore listed in the k-th position of a, the timestamp tl

is compared with the most recent observation stored in vector t. If t[k] = tl, then

the information XORed by the node vl in ci is updated for the receiving node; as a

consequence we set gnew[k+N ] = 1. If tl = t[k]−1 then the information of the node vl

is older than the last observation but still useful; as a consequence it is stored in the left

part of G̃ by setting gnew[k] = 1. If tl < t[k]− 1, the information carried by eqi is con-

sidered obsolete. Hence this information is discarded and the process restarts using the

following equation. If tl = t[k] + 1, the information combined in the eqi by vl has just

changed, and the decoding structures must be updated. Still the information referring

to xtl−1
vl

that was stored in the right part of the matrix should be useful if not already

decoded. In this case, the function Update_decoder(k+N) (described in the following)

is used to move the information from the right to the left part of G̃ thus making room

for the new generation tl. Moreover, we set t[k] = tl and gnew[k +N ] = 1. Finally, if

tl > t[k] + 1, then all the information that was collected previously about vl is obsolete

and can be removed from the system. This is done using Update_decoder(k+N) and

Update_decoder(k). In this case we set t[k] = tl and gnew[k +N ] = 1.

Processing all the pairs (vl, tl) of eqi a vector gnew with di 1s and (2N − di) 0s is ob-

tained. This gnew along with the corresponding linear combination cnew is then inserted

in Equation 8.1 using the LT optimal partial decoding algorithm (34). In particular,
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gnew is used to update the j-th row of G̃, where j is the position of the leftmost 1 in

gnew.

The purpose of Update_decoder(j) is to remove the obsolete information which the

j-th column of G̃ is referring to if j ≤ N . Otherwise, if j > N the goal is to up-

date the system so that column j is shifted leftwise taking the place of column j −N .

Update_decoder(j) determines the row gF (the F -th row of G̃) that contains the first

1, starting from the bottom, in column j. Since the decoding algorithm keeps G̃ in

upper triangular form, the other 1s of the j-th column can only be found in some of the

rows preceding gF . The function Update_decoder(j) cancels all previous 1s of column

j by XORing gF to any row gl with a 1 in the j-th column. To this end, the operations

gl = gl⊕gF and c[l] = c[l]⊕c[F ] are performed. If j < N , row gF (and the correspond-

ing c[F]) are removed from system (substituting them with all 0s). Otherwise, the

information is moved to the left part of G̃. This requires rewriting row gj−N ; if gj−N

is not empty, its contents are removed by running Update_decoder(j −N). To create

the new row gj−N , the 1 in the j-th column of gF is moved to position (j −N). Then,

we set c[j −N ] = c[F ], and clean up row rF and the corresponding linear combination

c[F ].

8.3 Recovery Time Model

In this section we provide an analytical analysis of the time required to spread all the

local information to all the participants in the network. We define that as the recovery

time. In particular, we are interested in modeling the recovery time as a function of

the size of the local information m, the number of random walks generated per node w

and number of nodes in the network N , given the constraint on the maximum size of

the random walk packets DIM . Moreover, the proposed analytical model permits one

to compare the coded approach versus an analogous system without coding, i.e. when

the information is gossipped explicitly. In fact, the proposed approach degenerates into

an uncoded system if one uses a constant equation of degree equal to one; the packet

format of Fig. 8.1 can hence be changed, removing the di and dF fields, that become

useless.

Given the size of the transmission packet DIM (in bits), we assume that a packet is

divided into two parts: the header and the free space, of sizes h and f = DIM − h
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respectively. From now on, we refer to the memory size of an object in bits. In every

equation, we call g the size of the pair (vl, tl) and m the size of the combined message ci.

Following the packet specification in Fig. 8.1, we have that the size of a single equation

becomes eC = di · g + m, where di is the degree of the equation. In the following

derivation, we perform a mean value approximation assuming that all equations have

the same degree di = d, where d = 2 lnN (9) is the average degree of LT codes.

In previous approximation, we also considered the cost of signaling the value of d as

negligible. Analogously, the size of the message gossipped by an uncoded system is

simply eU = g+m, i.e. on every hop a new identity along with the corresponding local

information is added to the payload of the packet. If we call nU and nC the maximum

number of equations storable in an uncoded and encoded packet respectively, we have

that

nU =

⌊
f

eU

⌋
=

⌊
f

g +m

⌋
, nC =

⌊
f

eC

⌋
=

⌊
f

d · g +m

⌋
.

If we set g = 2 log2N , i.e. twice the number of bits required to mapN unique identifiers,

both nU and nC turns out to be functions of m and N .

We are interested in finding the cumulative number of equations distributed by every

packet as a function of the number of hops T , termed as NU (T ) and NC(T ) for the un-

coded and the encoded case, respectively. Both functions also depend on the number

of equations stored in the packet. In fact, the number of collected equations saturates

to a maximum number that depends on the maximum packet size DIM . When this

limit is reached, the packet is full and the number of equations remains constant (on

average for the encoded case).

For an uncoded packet, NU (T ) = 1 + 2 + · · · + T = T (T+1)
2 if T < nU , i.e. so long as

the packet is not full. This happens because a new piece of information is added at the

packet at every hop until the packet is full. When the packet is full,

NU = 1 + 2 + · · ·+ nU − 1 + nU + · · ·+ nU︸ ︷︷ ︸
T−(nU−1)

=

= nU (nU−1)
2 + (T − (nU − 1)) · nU =

= nU · (T · nU−1
2 ).

The previous derivation is less trivial in the case of an encoded packet: in fact, an

equation is completed only once every d hops on the average. Hence the packet is full

after T = (nC − 1) · d hops. By setting h = ⌈T/d⌉ and taking into account that in our
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proposal partially formed equations are collected by the nodes, when T < (nC − 1) · d
we have:

NR = 1 + · · ·+ 1︸ ︷︷ ︸
d

+ · · ·+ (h− 1) + · · ·+ (h− 1)︸ ︷︷ ︸
d

+

+h+ · · ·+ h︸ ︷︷ ︸
T−d(h−1)

=

= dh(h−1)
2 + h(T − d(h− 1)) =

= d ⌈T/d⌉⌊T/d⌋
2 + ⌈T/d⌉(T − d⌊T/d⌋) =

= ⌈T/d⌉
(
T − T ⌊T/d⌋

2

)
,

The coded packet is full when T = (nC − 1) · d; in this case we have,

NR = 1 + · · ·+ 1︸ ︷︷ ︸
d

+ · · ·+ (nC − 1) + · · ·+ (nC − 1)︸ ︷︷ ︸
d

+

+nC + · · ·+ nC︸ ︷︷ ︸
T−(nC−1)·d

=

= d · nC(nC−1)
2 + (T − (nC − 1) · d) · nC =

= nC · (T − d · nC−1
2 ).

We can summarize the results as follows:

NU =

{
T (T+1)

2 if T < nU

nU

(
T − nU−1

2

)
otherwise

NC =

{
⌈T/d⌉(T − d⌊T/d⌋

2 ) if T < (nC − 1)d

nC

(
T − dnC−1

2

)
otherwise

(8.2)

Taking into account that every node creates w packets, it turns out that the global

number of equations spread in a network ofN nodes after T hops on average w·N ·NC(T )

(w · N · NU (T ) in the uncoded case). If the G(V,E) is regular, i.e. the distribution

of the outgoing (and incoming) edges is peaked around the average, the equations

hit any node with the same probability. Therefore each node receives on the average

RC = w·N ·NC(T )
N = w ·NC(T ) equations (RU = w ·NU (T ) in the uncoded case).

Summarizing, we get

RU =

{
w T (T+1)

2 ≃ w T 2

2 if T < nU

wnU

(
T − nU−1

2

)
otherwise

RC =

{
w⌈T/d⌉(T − d⌊T/d⌋

2 ) ≃ w T 2

2d if T < (nC − 1)d

wnC

(
T − dnC−1

2

)
otherwise

(8.3)

where we introducde some linear approximations to simplify the following analysis.

Using these approximations, it is possible to reverse the functions obtaining the number
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of hops needed to distribute a certain number of equations, i.e. T as a function of RU

and RC :

TU =

{ √
2RU
w if RU < nU (nU−1)

2
RU
wnU

+ nU−1
2 otherwise

TC =

{ √
2dRC
w if RC < dnC(nC−1)

2
RC
wnC

+ dnC−1
2 otherwise

(8.4)

Our objective is to estimate the number of hops (i.e. the time) needed by any node

to retrieve all the information present in the network. Equations 8.4 can be used to

calculate such a recovery time. For the encoded case, in a network of N nodes it

is theoretically sufficient to receive RC = N equations to enable decoding. For the

uncoded case, however, the number of equations turns to be higher; in fact, this can

be recognized as an instance of the coupon collector’s problem. In the case of equally

distributed coupons, every node needs about RU = N ·(lnN+ 1
2) equations to collect all

the information. In this system, however, the probability of receiving a certain equation

is not uniform, but rather depends on the length and the number of paths that connect

the nodes. In Sect. 8.4 we show that the coupon collector’s approximation is a lower

bound for the actual performance of an uncoded system. Substituting RC and RU in

(8.4) one obtains the recovery time as a function of w, DIM , N and nC (or nU ). We

recall that in turn nC and nU depend on m and N . In Fig. 8.2(a) the recovery time

evaluated according to (8.4) is reported as a function of m for the case DIM = 1500

bytes, i.e. a typical value for the maximum size of a UDP packet for a network with

N = 1000 nodes. The proposed approach is able to spread the information much faster

than the uncoded counterpart and that the gap increases for larger information size. In

Fig. 8.2(b) the recovery time is shown when m is fixed to 128 bytes and we increase the

network size. This results point out that the coded approach scales much better with

the network size, making the proposed solution very attractive for large distributed

systems.

Finally, the recovery time model can be used to fix the value of the parameter w (the

number of packets created per node). Reversing (8.3) it is indeed possible to calculate

the minimum value of w that guarantees retrieval of all the information within a time
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Figure 8.2: Recovery time as a function of m in bits (a) and N (b).

interval T . Such a minimum value turns out to be:

WU =

{
2RU

T (T+1) if T < nU
2RU

nU (2T−nU+1) otherwise

WC =

{
2RC

⌈T/d⌉(2T−d⌊T/d⌋) if T < (nC − 1)d
2RC

nC(2T−d(nC−1)) otherwise

(8.5)

for the uncoded and coded approaches respectively. Equations 8.5 are shown in Fig.

8.3 as a function of m and T under the hypothesis that N = 1000 and DIM = 1500

bytes. Again, for large values of m, the advantage of the encoded system is apparent,

i.e. the same performance requires much less network traffic in terms of recovery time.

8.4 Simulation results

In this section we present the results obtained through a simulator of the proposed

approach and the corresponding uncoded counterpart. The system is simulated by

means of an ad-hoc C++ simulator. The simulator creates a random network of N

nodes; each node connects to a fixed number of neighbors Nneigh, randomly spread

among all the participants. The information xti=1
vi at each node is initialized to a

random value that can be updated asynchronously by incrementing the corresponding

timestamp ti. The simulation time is slotted. At startup, each node initiates w new

random walks, sending w packets to a set of randomly chosen neighbors. In each time

slot T , the packets received by any node at time T −1 are updated with a local piece of
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(a) WU (b) WC

Figure 8.3: WU and WC as a function of m and T .

information and forwarded randomly. The maximum packet size is fixed at 1500 bytes

in all simulations. As predicted by the analytical model of Section 8.3, the parameter

w has the effect of only to changing the time scale of the results. For conciseness we

perform all the simulations for the case of w = 1. The network remains static if nodes do

not leave or join the network. In the opposite case of a dynamic network, the nodes can

join and leave randomly, thus changing the irrespective neighborhood. To simulate a

dynamic network, the number of nodes is fixed at N as in the stable case, but the nodes

alternate between on and off periods. Nodes in the off state leave the network, causing

their neighbors to replace them, thus changing the topology dynamically. Moreover,

a node that turns off in time slot T does not forward any packet, received at time

T −1 eventually. To keep the overall number of random walks in the network constant,

ideal singnalling is assumed, so that the originators of the lost packets can restart

new random walks at time T + 1. It is clear that both the replacement of neighbors

and the acknowledgement mechanism would be implemented according to a practical

distributed protocol, although this adds delay with respect to the ideal behavior of the

simulator. Nonetheless, since the goal of our analysis is a relative comparison between

the performance of coded and uncoded systems, we are not interested in adding a

suboptimality of an actual implementation that would equally affect both approaches.
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The system performance is measured in terms of the amount of information that can

be gathered by the nodes and the time required to achieve the result. In particular,

for each node vl we calculate the percentage of information retrieved by that node as

a function of time T :

pl(T ) =

N∑
j=1

tj(T )∑
i=1

decl(i, j)


N∑
i=1

ti(T )

, (8.6)

where ∀j, tj(T ) is the timestamp achieved by node vj at time T , and decl(i, j) is a

logic variable identifying the pieces of information currently decoded by node vl. In

particular, decl(i, j) = 1 if vl has recovered the generation i ≤ tj(T ) of node vj , i.e. if

x
tj=i
vj is known by vl at time T , and equals 0 otherwise. Since

∑N
i=1 ti(T ) sums to the

overall number of data items disseminated in the network from the beginning of the

simulation the metric in (8.6) represents the percentage of overall information collected

by vl at a given instant of time. As an index of the performance of the whole network,

we use

P (T ) =

∑
l∈A(T )

pl(T )

|A(T )|
, (8.7)

that is the average value of the previous index computed on the set of nodes A(T )

that are active, i.e. in the on state at time T . In the case of a stable network with a

constant information rate, P (T ) can be used to calculate the recovery time defined in

Section 8.3. Indeed, the recovery time can be computed as {min(T )|P (T ) = 1}, i.e.
the first instant of time when all the nodes of the network know the overall information.

Finally, we recall that all the numerical results based on the previous definitions have

been averaged over 30 independent trials in order to compute a confidence interval

and guarantee statistically meaningful values. Every trial uses a different seed for the

random generators, thus resulting in statistically independent outcomes for both the

network topology and the behavior of the nodes. We start comparing the coded

(C) and uncoded (U) approaches in the simplest configuration, characterized by a

stable network of N = 1000 nodes with Nneigh = 50 and constant information. In

this case every node has to collect N − 1 pieces of information owned by the other

nodes. This particular case allows us to validate the analytical model presented in
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(b) C system

Figure 8.4: Experimental recovery time and analytical model for the coded and un-

encoded systems as a function of m (stable network with constant information).

Section 8.3. In Fig. 8.4 we compare the experimental average recovery time for 5

values of information size m = 100, 500, 1000, 2000, 3000 bits and compare them with

the analytical model of equation (8.4). The experimental results are shown as error

bars reporting the 95% confidence interval whereas the full and dash lines represent the

exact and approximated version of equation (8.4), respectively. First of all, it can be

observed that the analytical model is quite accurate in the C case (right graph), with the

exception of the smallest values of m. As anticipated the analytical results represent a

lower bound for the performance of the U system (left graph). This is due to the coupon

collector approximation adopted for the U model, that assumes that all data xtlvl can be

gathered by a certain node with equal probability. This assumption is clearly violated

for large values of m, since a piece of information is soon shifted out of the packet body

to make room for new information. In other words, every piece of information takes

very few hops in this case. Under this circumstance, node vl is not able to sample the

pieces of information randomly and the coupon collector approximation does not hold.

Another way to explain this phenomena is that the number of hops performed by a

given piece of information is less than the mixing time of the graph. In conclusion this

first set of experimental results on the one hand validates our analytical model. On the

other hand, it confirms the significant advantage of C in terms of recovery time. As

already noted the gap between the two approaches increases for larger information m,

or equivalently when decreasing the maximum transfer unit (DIM). As an example,
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Figure 8.5: P (T ) as a function of time for some values of m (stable network with constant

information)

for m = 2000 bits, the U solution exhibits a recovery time of 1653 ± 48 hops whereas

the C solution achieves the same results in 237± 12 hops.

For the same scenario, in Fig.8.5 the value of P (T ), i.e. the average percentage of

collected information, is shown for various values of m. Looking at this index, observe

how the information propagates into the network as a function of time. The U system

initially collects a great number of innovative pieces of information, but takes a long

time to find the last bit of information. On the contrary, the C system, that is initially

penalized by the observation of coded messages that do not allow it to know the actual

information, is able to recover the whole information much earlier.

In the following, we investigate some system configurations characterized by a dynamic

network topology and asynchronous information updates. In this case it is not possible

to define the full recovery time. As a consequence, in this case our analysis will be

based on the simulator results, and in particular on the behavior of the index P (T ).

The first case that we are interested in is that of a stable network where the nodes

can change their information. In this scenario, we suppose that every tc time slots

nc randomly chosen nodes update their information. The system performance clearly

depends on the rate of the information update rc =
tc
nc
: if the information changes very

frequently it is not possible to retrieve all the information on time unless we increase
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Figure 8.6: P (T ) for different rc, with N = 1000 nodes, Nneigh = 50 and m = 1000

(stable network and dynamic information)

the network traffic, i.e. the value of w. In Fig. 8.6 P (T ) is shown for various values

of the rate rc, in a network of N = 1000 nodes, Nneigh = 50 and m = 1000. Note

that the C system is more robust to the information updates than the U one for all the

investigated rates rc. As an example, in the case rc = 2/1, i.e. every 2 time slots a node

changes the information, the C system approaches a 100% recovery of the information

in about 200 time slots; on the contrary, the U counterpart not only takes almost double

the time to saturate to its maximum performance, but the achieved recovery is limited

to slightly more than 90%.

Let us now investigate the effect of network dynamics. In this case we create a G(V,E)

with N = 1000 nodes broadcasting their local information. A randomly chosen set of

il nodes is started in the off state; every tl time slots nl nodes pass from the off to the

on state, i.e. they join the overlay, and the same number of nodes do the opposite,

thus keeping constant the number of active nodes |A(T )| = N − il. In all the following

simulations we let the rate of network dynamics, defined as rl =
tl
nl
, vary and we fix

il = 5nl. In Fig. 8.8, 8.7 P (T ) is reported, showing that the proposed system is also

robust to network dynamics. Note that when rl = 25/20 and m = 2000, the recovery

times for C and U are about 500 and 1000 hops, whereas increasing the network dynamic

to rl = 50/20 we get 750 and 1250 hops, respectively. As in all scenarios, the advantage
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Figure 8.7: P (T ) for various values of m and rl = 25
20 with N = 1000, Nneigh = 50

(dynamic network and constant information)

.

of the C approach is more significant for larger m.

Finally, in Fig. 8.9-8.10 network dynamics and asynchronous information updates are

considered jointly. In figure 8.9 P (T ) is shown for the case of m = 2000 for various

ratios rl and fixing the information change rate to rc =
50
20 . As expected, the more the

information in the network changes, the more the system has difficulty in retrieving the

complete information. However, the C system consistently outperforms the U system.

In figure 8.10, rc =
50
20 and rl =

1
1 are fixed, and we let m vary. As already noted the

gain of C over U increases for larger values of m.

8.5 Other approaches

In the following we argue that alternative approaches to allow nodes of a distributed

application to obtain a local view of some global system property are less effective and

efficient.

The simplest solution to this problem is to have nodes report their local data to a well-

known central repository node. Access to the global system property defined on all

local data is obtained by sending queries to the repository that provides the requester
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Figure 8.8: P (T ) for various values of m and rl = 50
20 with N = 1000, Nneigh = 50

(dynamic network and constant information)

.

node with one or more responses. This solution is neither scalable nor resilient: the

aggregate request load is equal to λ ·N and if we view the repository node as a server

whose service capacity is equal to µ responses/sec, we obtain a load factor ρ = λ·N
µ

that quickly becomes greater than 1 leading to loss of queries and unbounded delays. A

similar analysis must be done for the load generated by asynchronous data updates: the

load factor for this service is ρc =
λc·N
µ . Using the notation adopted in our simulations

we have λc =
1

Nrc
.

Decentralized solutions might work better. Each node may spread its locally updated

information by means of flooding or gossipping. In flooding, each node sends update

messages to its neighbors containing the local data and the current generation number.

These neighbors propagate the update messages to their neighbors up to a maximum

number of hops (based on the message Time-to-Live). In gossipping, activity is or-

ganized in rounds: each node stores a maximum number of update messages. Each

message is forwarded a maximum number of times, and each time a node forwards a

message it randomly selects a subset of recipient nodes (the number of selected recipi-

ents is called the fanout). To spread the current generation version of the local data, a

node starts a gossipping round. It is proved that atomic reliable broadcasting, i.e., all
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Figure 8.9: P (T ) in the case m = 2000, rc =
50
20 for various values of rl (Dynamic network

and information)

nodes receive the data disseminated by a round initiator, is achieved with high proba-

bility if the fanout is on average O(logN) and taking O(logN) rounds to complete (45).

Flooding and gossipping introduce high redundancy, i.e., the same update message can

be received several times by the same node, especially by those with a large number

of incoming connections. This translates into the possibility of nodes saturating their

processing and communication capacities. Indeed, it is easy to show that in the best

case the load factor at each peer is ρc = λc·N
µ , the same as the centralized solution.

Furthermore, this and other issues in gossipping were discussed in (47) where the au-

thors explicit numerous hidden assumptions that are necessary to ensure robustness of

gossip-based protocols. These assumptions thus make gossipping not a viable option

in the context we consider.

8.6 Conclusion

In this chapter we have shown that the recent advances in rateless coding and decoding

can be profitably exploited to achieve a robust and timely distribution of local infor-

mation to all participants of a distributed application. A major feature of the proposed

approach lies in the fact that we are able to exploit the network coding principle in
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a scenario where local data can be updated asynchronously. Moreover as opposed to

some forms of distributed storage proposed in the literature, our proposal realizes a

continuous update of the global information across the whole distributed system while

keeping the amount of traffic under control.

From the algorithmic point of view, the major contribution is the design of a novel

decoder for rateless codes that is robust to asynchronous updates of the information.

Another result is that we developed a simple analytical model for the estimation of the

time required to spread the information as function of the network and information

sizes, given a constraint on the MTU allowed by the available transmission protocol.

The model can be exploited for the estimation of the performance and for the selec-

tion of important parameters of the system. The analytical analysis shows that the

proposed coded approach reduces the time required to communicate all the informa-

tion with respect to an analogous system without coding. Furthermore we prove that

such a reduction increases with the size of the information to be spread, or analogously

when the MTU shall be very limited. Another paramount result is that the coded

system scales better than the uncoded one when the number of nodes increases in the

distributed system. The simulator shows that the system is very efficient in many

scenarios characterized by network dynamics and information updates that cannot be
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analyzed with an analytical approach.
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Chapter 9

Distributed Virtual Disks for

Cloud Computing

9.1 Introduction to Cloud Computing

Cloud Computing applications, especially data intensive ones, typically need storage

services that provide the illusion of infinite storage whose lifetime is not bound to that

of the virtual machines (VMs) that use them. In many cases, applications or system-

specific functions require the availability of raw block devices, for instance when a

specific file system is necessary or when the application needs to directly access physical

storage (e.g., in the case of a Database Management System).

Virtualized Block Devices (VBD) (like the Amazon Elastic Block Store (EBS) (65), the

Eucalypts Block Storage Service (BSS), and the Virtual Block Store System (VBS) (66))

provide the abstraction of persistent block storage devices (henceforth referred to as

virtual disks), whose lifetime is independent from the VM they are attached to, and

whose size can be dynamically extended at anytime.

In general, VBD systems are implemented by coupling a back-end system that provides

physical storage (typically a Networked Attached Storage (NAS) device) with a front-

end that provides mechanisms and protocols to access and manage virtual disks. NAS-

based solutions, however, are appropriate when the resources of the Cloud are located in

a single datacenter, but may prove inadequate when storage resources are spread across

different datacenters, or when the virtual disks must be accessible from the resources of

an InterCloud (67) (i.e., a Cloud composed by a set of independent Clouds). In these
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situations, the following issues arise:

• Data availability : if the datacenter where the NAS is located becomes unaccessible

(i.e., because of a network component failure), the storage devices it provides to

the VBD system become unavailable to externally-located users or applications;

• Data confidentiality : usually, the NAS keeps data private by means of encryption.

That, however, introduces potentially very high computation overheads that may

adversely affect the performance of a virtual disk;

• Remote access performance: if a given virtual disk must be accessed from a virtual

machine located outside the datacenter where the corresponding NAS resides,

performance is usually limited by the single network path used to transport data.

In order to cope with the above issues, we propose ENIGMA (84), a distributed in-

frastructure that abstracts the storage resources provided by a set of physical nodes,

and exposes a set of virtual disks that can be used either directly by the individual

virtual machines hosted on a Cloud infrastructure or as a back-end for VBD systems.

ENIGMA is designed to provide a set of features tailored to Cloud Computing plat-

forms, namely large storage capacity, high availability, strong confidentiality, high data

access performance, and the ability to tune all these characteristics to the specific needs

of the user or of the application, even at run-time.

ENIGMA achieves these goals by exploiting erasure-coding techniques, where each sec-

tor of a virtual disk is encoded as a set of n fragments independently stored on a set

of physical storage nodes, and a minimum number k of fragments (k ≤ n) is required

to reconstruct a given sector.

Data confidentiality is ensured by encoding each sector in such a way that the number

of fragments k needed to reconstruct the sector is large, and by keeping private both

the coding function and the addresses of the storage nodes where fragments are stored.

Instead data availability is ensured by properly choosing the total number n of frag-

ments per sector, and by properly spreading them over the storage nodes. Data access

performance is achieved by simultaneously fetching many fragments belonging on the

same sector from the corresponding storage nodes, and by dynamically increasing or

decreasing the value of n for specific sectors.
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In general, cloud storage systems can be classified according to the interface they pro-

vide to users, applications and virtual machines. Cloud file systems (e.g., the Google

File System (68) and the Hadoop Distributed File System (69)) provide a file system

interface, while digital object stores, either targeted to Cloud systems (e.g., Amazon’s

S3 (70), Sector (72), Comet (73), and Depot (71)) or to general-purpose uses (e.g.,

Oceanstore (74, 75), Total Recall (76) and Storage@Home/Storage@Desk (77, 78)),

provide a key-value interface in which generic “digital objects (values) are associated

with a key, and are stored and retrieved by using that key. Compared to these sys-

tems, ENIGMA is placed at a lower abstraction layer since it provides a virtual disk

abstraction.

Virtualized Block Device systems (e.g., Amazon’s Elastic Block Store (EBS) (65), the

Eucalypts Block Storage Service (BSS), and the Virtual Block Store System (VBS) (66))

provide a standard disk interface instead, i.e. they expose individual disk sectors to

the operating system. These systems are more focused on providing higher-level func-

tionalities like snapshotting, user authentication and storage sizing, while ENIGMA,

by providing the abstraction of a virtual disk, complements them and can be used as

their back-end in place of the traditional NAS-based solutions they usually rely upon.

In addition to ENIGMA, other systems provide the abstraction of virtual disks, namely

Petal (80), FAB (79), and Parallax (81). These systems, unlike ENIGMA, are able to

aggregate only storage resources located in the same data center, and do not provide

specific mechanisms to treat the issues arising in geographically-distributed storage sys-

tems (as opposed to ENIGMA).

In addition to the differences outlined above, ENIGMA is (to the best of our knowledge)

the only storage system providing virtual disks that directly incorporate confidentiality-

ensuring mechanisms. Privacy-ensuring mechanisms are also provided by Pasis (82), a

distributed storage system that uses a threshold scheme for coding to ensure availabil-

ity and confidentiality, but at the cost of larger storage overhead than ENIGMA and

without providing a disk-like interface.

9.2 Architecture

As already anticipated in the Introduction, ENIGMA provides the abstraction of a

virtual disk by aggregating a set of geographically sparse storage resources. Virtual
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disks consisting of a sequence of sectors, independently addressable, that are suitably

encoded and stored on storage nodes in order to achieve availability, confidentiality,

and performance. ENIGMA uses erasure codes, in particular rateless codes, to achieve

its design goals.

The architecture of ENIGMA, schematically shown in Fig. 9.1, provides for two distinct

logical entities, namely the storage node (that provides access to its local storage to store

sector fragments) and the proxy (that coordinates the usage of storage nodes to provide

virtualized disks). In an ENIGMA implementation, there may exist at any given time

several proxies that use a set of storage nodes. A given virtual disk, however, is handled

exclusively by a single proxy. To ensure scalability, storage nodes are organized into a
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Figure 9.1: System architecture

set of clusters, each one coordinated by a cluster head. The proxy stores the individual

fragments of each sector by sending each one of them to two or more cluster heads (for

redundancy), and each cluster head autonomously decides which of the storage nodes

it controls will actually store the fragment.

In the following, we first describe sector encoding, and then discuss the proxy level and

the storage node.
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9.2.1 Sector Encoding

Erasure coding techniques work by splitting a given sequence of bytes into a set of

independent fragments in such a way that, in order to reconstruct the sequence, only

a subset of these fragments are required.

In ENIGMA, coding is applied to the sectors of a virtual disk. More specifically, the

encoding of a virtual disk V D, composed of m consecutive sectors si of identical size,

is performed as follows. Each sector si is first divided in k fragments s1i , . . . , s
k
i and,

subsequently by applying LT codes (9), it is transformed into a sequence of n fragments

ci,l, l = 1, 2, . . . , n with n > k, computed as an exclusive-or (XOR) of the fragments of

sector si (which amounts to linear coding in the Galois Field of size 2, GF(2)) as:

ci,l = bi,l · si =
k∑

j=1

bji,ls
j
i ,

where bi,l = b1i,l, . . . , b
k
i,l ∈ GF(2)k is called the bitmap of the encoded fragment ci,l.

In practice, the bitmap is a random vector of length k in which each element is a 0

or 1. The number of 1s of a bitmap is called its degree. According to the relaxed

reconstruction property of LT codes, any K = k(1 + ϵ) fragments taken from the n

coded fragments can reconstruct the original sector. Thus up to n−K failures of the

nodes can be tolerated. The bitmaps are produced sequentially by a standard random

generator initialized with a given seed zi. The random outcomes leading to the bitmap

bi,l can be reproduced by knowing zi and the sequential number of the coded fragment

l. The couple (zi, l) can be interpreted as a key, required to correctly interpret and

decode the coded fragment. On the Fly Gaussian Elimination (OFG) (15) decoding

algorithm is used in order to decode the fragments.

Sector encoding provides the basic mechanism for simultaneously achieving availability,

confidentiality, and performance.

• Availability : the availability of a virtual disk can be set to a given level by properly

choosing the values of k and n; moreover, the availability can be increased using

a particular redundancy increase policy.

• Confidentiality : storage nodes are unable to reconstruct any sector since (a) the

coding seed zi of a sector is unknown, and (b) far less than K coded fragments

are stored per each node.
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• Performance: the fragments of a given sector being stored on different storage

nodes can be retrieved in parallel, thus reducing the time required to retrieve a

sector compared with respect to the case in which the whole sector is stored on

a single node.

9.2.2 The Proxy

The Proxy provides each client with access to a virtual disk that can be used by that

client only, and manages the redundancy of its sectors in order to satisfy the availabil-

ity, confidentiality, and performance requirements set for that disk.

In order to ensure data confidentiality, all the encoding and decoding operations for

individual sectors are performed on the proxy, where the encoding seed of each sector

is securely stored. We postulate that the proxy is placed on the premises of each client,

that is responsible for its security. Furthermore, within the storage network, each sector

si of a virtual disk V D is anonymously identified by means of its hash id h(si), which

is computed as function of the pair (V D, si) in such a way that it cannot be inverted

to determine the V D and si, so that an attacker who successfully decodes a sector

does not know to which other sectors it relates (and thus the attacker is not able to

reconstruct the entire disk).

When a sector si is written for the first time, the proxy determines the set chi1, . . . , chin

of cluster heads in charge of storing its encoded fragments, and the proxystores this

information (together with h(si) and its encoding seed zi) into a table, whose structure

is shown in Table 9.1, plus anyadditional information needed for its operation. The

Table 9.1: Proxy table for virtual disk V D

sector id hash id cluster list CRC seed

1 hash id1 ch11, ch12, . . . CRC1 z1
...

...
...

...
...

m hash idm chm1, chm2,,... CRCm zm

CRC field in the proxy table stores a cyclic redundancy code (CRC ) used to identify

possible inconsistencies in the sector data, that might be caused (for instance) by data

pollution attempts. More specifically, when a sector is written, its CRC is computed

and stored by the proxy before it is encoded. When a sector is read, after it has been
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decoded, the proxy recomputes its CRC proxy and compares it with the one stored

before the write operation: if the two values coincide, the proxy deduces that no data

corruption occurred (due to either normal events or malicious actions).

Upon receiving a read or write request for a given sector si of virtual disk V D, the

proxy computes h(si) and, by looking up the proxy table for that disk, determines the

addresses of the heads of the clusters where si’s fragments have been stored.

When the proxy receives a write request for sector si, it encodes si and sends the re-

sulting fragments to the cluster heads stored in the corresponding row of the proxy

table. Each fragment ci,l of si is stored as a tuple < h(si), l, ci,l >, where l represents

the sequential identifier of the coded fragment and ci,l is the actual data. The sector

content can be retrieved only by the proxy from any K tuples < h id, l, ci,l >. For each

fragment of si the proxy chooses at random, with uniform probability, two or more

clusters that will store it. In this way we avoid that a failure of a single cluster head

compromises the entire sector. If the sector is empty (that is, it has never been written

since the creation of the virtual disk), then the proxy considers the write operation to

be complete. If, instead, the sector is not empty (that is, itcontains data that must

be overwritten as result of the write operation), then all the fragments of si that are

stored on the storage nodes must be overwritten before the write operation can be

considered complete. If this were not done, a read operation for sector si could overlap

with a write of the same sector and thus could lead to consistency problems in case

some of the old fragments are retrieved and combined with some new ones. To avoid

this problem, the proxy keeps the just-written sector si a local cache until the write

operation is terminated (that is until all the fragments of si have been committed on

the respective clusters), and sends to each cluster head an invalidate command together

with the list of fragments assigned to that cluster head. Upon receiving this message,

each cluster head eliminates the old fragments, stores the new ones and, when these

operations have been completed for all the fragments, sends an acknowledgment back

to the proxy.

When the proxy receives a read request for sector si, it sends a read request to every

cluster head in charge of holding the fragments of si. The cluster head, by using the

fragment retrieval protocol (described in the next section), forwards the request to all

the storage nodes of the cluster that actually store fragments associated with h(si).

When the proxy has received K fragments, it decodes si and discards all the additional
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fragments received after the CRC has been successfully computed.

In order to improve performance, the proxy provides for overlapped operations, where

an operation can be performed as soon as its request arrives, without having to wait

for the completion of another operation that has been issued previously. This behavior

is different from the one exhibited by physical hard disks, where the presence of me-

chanical components that may need to be repositioned each time a new sector must

be accessed imposes the completion of a pending request before a new one can be per-

formed.

In addition to the basic read and write operations, the proxy dynamically manages

the redundancy of selected sectors by increasing the redundancy of the most requested

sectors (in order to reduce their retrieval time). In a dual way, it decreases the redun-

dancy of sectors that are rarely used. In any case, the redundancy value of a given

sector never goes below the threshold n that is set, for the whole virtual disk, to a

value that guarantees a given availability level. This dynamic modification of sector

redundancy also provides the basic mechanism that can be used to keep virtual disk

performance at a given level in the face of migration of a Virtual Machine accessing it:

the relocation of its sector can be performed by first expanding its redundancy and by

placing the corresponding extra fragments in places “closer” to the new location of the

Virtual Machine, and then by bringing back the redundancy to its original value and

removing fragments located “far away”.

Redundancy increase is accomplished by the proxy in the following way. After choos-

ing which sector si has to undergo a redundancy increase, the proxy sends an increase

command to two of the cluster heads storing fragments of si. These two cluster heads

combine and code the fragments in their possession (as detailed in Sec. 9.2.3), and then

send the newly generated fragments to another cluster head that will store them in its

storage nodes. In this way, redundancy is increased without requiring the intervention

of the proxy, that has only to update the table of the corresponding virtual disk in

order to update the list of cluster heads managing si.

Redundancy reduction for sector si is instead performed by having the proxy ask every

cluster in charge of handling fragments of si to delete a given number of fragments

(determined by the proxy) sufficient to bring redundancy back to its standard value n.
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9.2.3 The Storage Nodes

The Storage Nodes are a federation of heterogeneous machines, distributed geographi-

cally and possibly belonging to different organizations. To accommodate a potentially

unlimited number of storage nodes, the storage nodes are organized into a hierarchical

overlay network in which nodes are grouped into clusters (each node belongs to a single

cluster). Each one is coordinated by a cluster head that is responsible for orchestrating

across the nodes in the corresponding cluster the execution of the operations issued by

the proxy. Cluster heads form a peer-to-peer network whose topology is irrelevant for

the purposes of ENIGMA. Many of the overlay networks published in the literature

(59)fit our needs.

Clusters and cluster heads are in charge of off-loading some of the work from the proxy,

and of reducing the burden of managing the storage infrastructure. More specifically,

as discussed below, the clusters take care of the diffusion and retrieval of the sector

fragments, and of the increase and decrease of sector redundancy:

• Fragment diffusion: when a virtual disk V D is created, each one of its sectors

is assigned to a specific cluster head. When sector si must be stored, the proxy

sends to each one of the cluster heads responsible for si some of si’s fragments.

If sector si is written for the first time, the cluster head places the fragments on

suitable storage nodes picked at random among the components of the cluster.

Conversely, if si has been already written, the message sent by the proxy contains

both an invalidate command and the new fragments to be stored in the cluster.

In this case, before storing the new fragments, the old ones are deleted. After

these operations have been completed, an acknowledgment is sent to the proxy

that, as already discussed, can then discard the locally-cached copy.

• Fragment retrieval : upon receiving a retrieval request for a specific sector si (i.e.,

for the corresponding h(si)) value, the cluster head sends a broadcast message to

all the members of its cluster requesting all the fragments associated with h(si).

Each storage node in that cluster reacts to that message by directly sending to

the proxy all the fragments associated with h(si).

• Redundancy increase: when the proxy decides to increase the redundancy of sec-

tor si, it sends a message increase(h(si) to two cluster heads chx and chy. These
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cluster heads are asked to combine their fragments associated with h(si) and

store them in a third cluster (which could also be one of the former two), with

a standard write operation. Either one of chx and chy could act as a leader and

start the coding protocol. In order to enable individual nodes to recode fragments

without exposing to them the encoding seed zi (to preserve confidentiality), and

without requesting the intervention of the proxy (in order to avoid a potential

performance bottleneck), a second level of coding is used. A given storage node

may increase the redundancy of sector si by recombining, by means of pairwise

XOR operations, a subset of fragments ci,l of sector si locally stored. The recom-

bination of two fragments ci,l1, ci,l2 of si corresponds to creating a new combined

fragment ci,l1,l2 by XORing them, i.e. ci,l1,l2 = ci,l1 ⊕ ci,l2. The new fragment

ci,l1,l2 is stored as a tuple < h(si), l1, l2, ci,l1,l2 >. The recombined fragments can

be used by the proxy to decode the sector content; its bitmap is the result of the

XOR of the bitmaps of packets l1 and l2. When the redundancy increase opera-

tion is finished, the leading cluster head sends a message to the proxy containing

the identifier of the cluster head responsible for storing the new fragments. The

proxy updates the entry in the disk table for that sector.

• Redundancy decrease: the redundancy decrease command is sent by the proxy

to each cluster head in the list for that particular sector si. Upon receiving the

command decrease(h(si)), only the cluster heads that store recombined fragments

perform the operations. They send a broadcast message to all the storage nodes

in their cluster asking them to delete the recombined fragments of the sector.

Each cluster head that deleted some fragments sends a message to the proxy that

updates the disk table.

Another duty of the overlay of storage nodes is to periodically check the status of its

participants. This could be used by the proxy as a keep alive function that is necessary

in order to monitor the availability of sectors. The proxy periodically sends a keep

alive message to each cluster head that stores fragments of a particular sector and the

proxy evaluates the responses. The cluster heads that receive the keep alive message

monitor in turn the storage nodes of their cluster. When storage node availability falls

below a guaranteed threshold, the proxy can issue an increase redundancy command,

restoring the original availability. If the number of original ci,l fragments decreases too
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much, the second level of coding would not suffice to reconstruct the sector (recall that

it encodes only a subset of fragments) and the original redundancy has to be restored.

This operation is performed every time a write occurs. If write operations are scarce

the proxy periodically, takes care of collecting the fragments and reconstructing the

sector, coding it again and spreading the fragments.

9.3 Data Confidentiality Assessment

In ENIGMA the confidentiality of the data is guaranteed by three major means, namely

the fragment dispersion, the disk addressing policies and the linear coding of fragments.

According to the distributed nature of ENIGMA, the list of clusters hosting a given

sector is not available in the clear and is secured in the proxy. Therefore both the

cluster head and storage nodes cannot retrieve all the coded fragments of a sector. At

the addressing level, each sector is identified through the anonymous hash id, that is

meaningful only for the proxy owning the disk. In this way, cluster and storage nodes

are neither able to associate a coded fragment to a given V D nor do they know the

sector sequential order.

Note the confidentiality related to the dispersion and addressing policies is not robust to

malicious nodes able to mimic the proxy requests. In fact, an attacker could conceive of

a malicious node implementation that sniffs the protocol signalling from a proxy, tries

to reconstruct the association between the hash id and (V D, si), and then attempts

to retrieve at least K coded fragments by flooding the cluster head nodes with read

requests. Nonetheless, this weak level of confidentiality is complemented by the high

degree of security provided by the usage of the LT codes as detailed in the following.

The use of LT codes provides two levels of confidentiality. A first level of confidential-

ity is guaranteed by the fact that every storage node hosts a limited amount of coded

fragments from which it is very unlikely one can reconstruct the sector content, even

assuming that all the private information stored in the corresponding proxy has been

hijacked. We refer to this kind of attack as a single storage node attack. The second

form of protection that we analyze is related to the confidentiality of the coding seed zi

that prevents a malicious node able to collect at least K coded fragments from gaining

any knowledge of the sector content. We call this attempt to violate the confidentiality
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of the data as a sector read attack.

9.3.1 Single storage node attack

In this case the attacker is a modified storage node that attempts decoding the frag-

ments of a sector she holds for local storage. In this case, we can show that ENIGMA

is very secure even in the unlikely case that the attacker has come into possession of

the coding seed zi of the sector under attack.

Checking the hash ids of the fragments, an attacker is able to collect all the fragments

that belong to a certain sector, even if she is not able to know which sector that is. To

decode the fragments, the attacker needs to have the bitmaps linked to the fragments.

As already seen, these bitmaps are collected (and encoded) in the proxy table: storage

nodes have no information about the bitmaps of the fragments they store. Assume

that a modified storage node is able to obtain such information. Even if she knows

the bitmaps of the stored fragments, the attacker still can not decode the fragments to

obtain the sector. In fact, the number of fragments of the same sector (i.e. fragments

labeled with the same hash id) stored in a single storage node are not sufficient to

perform a complete decoding: at least K fragments are needed to decode, but each

storage node contains far less than K fragments of the same sector.

It is possible, however, to attempt to decode at least the fragments owned by a storage

node. The process of decoding fountains codes with an insufficient number of fragments

is called partial decoding (17). As already seen in Chapter 3, in a partial decoding pro-

cess the decoder attempts to decode the maximum quantity of information using the

limited number of owned fragments. The OPD algorithm (34) should be used to per-

form partial decoding. Fig. 9.2 shows the results of the partial decoding of LT codes

for k in the range (64,1024). The percentage of decoded fragments is reported as a

function of the percentage of coded fragments owned by the node. Both percentages

are calculated with respect to k. In Fig. 9.2 we can see that if a (modified) storage

node owns a number of fragments far smaller than k, she is not able to decode a large

number of fragments even if she knows their linked bitmaps.
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Figure 9.2: Percentage of decoded fragments vs. percentage of owned fragments.

9.3.2 Sector read attack

In the sector read attack, we assume that a malicious node has gained sufficient knowl-

edge of the distributed storage system to retrieve a set of K coded fragments of the

sector si. As already pointed out, such fragments allow the owner of si to run the

LT decoder and reconstruct the sector content. This is possible because the owner

has access to the seed zi that corresponds to the knowledge of the K bitmaps bi,l,

l = 1, . . . ,K. The attacker, on the contrary, has no chance to decode the sector in

absence of the bitmap. Indeed, the attacker could perform a brute force search among

all the possible combinations of the bitmaps. For each combination, LT decoding can

be attempted, but the attacker has no means of recognizing if the obtained sector is

the correct one, making the attack impracticable.

This brute force attack turns out to be conceivable only if the CRC of the sector, re-

tained by the proxy, has been leaked. In this case, the attacker can detect the correct

sector by means of the CRC. The large number of required decoding attempts, however,

makes the attack unfeasible. Indeed an exhaustive search amounts to testing all possi-

ble configurations of K bitmaps, each composed of k bit strings. In the most general

case, the number of trials required turns out to be K2k . Since we can assume that the

attacker knows the degree distribution P (d = k) = µ(k) used for LT coding, a smarter
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search can be designed. Instead of testing all possible bitmaps, the attacker would limit

the search to the most likely outcomes of the bitmap degree. The sequence constituted

by K outcomes of the bitmap degree can be seen as independent and identically dis-

tributed random variables d1, d2, . . . , dK . According to the asymptotic equipartition

property (60) we can define the typical set of degree outcomes. It is well known that

the typical set has a probability close to 1, all elements of the typical set are nearly

equiprobable, and the number of elements in the typical set is nearly 2KH(µ), where

H(µ) is the entropy associated to the RSD. From the point of view of the attacker,

the typical set represents the set of the most likely degree sequences to be tested in

order break the code. Since the RSD is a peaked distribution where only a limited set

of the possible k degrees have non negligible probability, H(µ) is typically small. As

an example, setting the parameters of the RSD (c, δ) = (0.01, 0.001) (9) one obtains

H(µ) ≈ 3. It turns out that the typical degree sequences are approximatively 23K .

For each degree sequence there are
∏K

j=1

(
k
dj

)
possible combinations of the K bitmaps

to be tested. Taking into account the properties of the binomial and that the most

likely degree yielded by the RSD is d = 2 we can use the following lower bound on the

number of combinations

K∏
j=1

(
k

dj

)
≫

K∏
j=1

(
k

2

)
=

(
k(k − 1)

2

)K

We thus conclude that the number of decoding attempts that an attacker needs to

perform to break the code is larger than

23K
(
k(k − 1)

2

)K

(9.1)

with K = k + ϵ. Clearly, the exponential complexity of the search makes it practically

unfeasible. As an example in Fig. 9.3 the lower bound of Equation (9.1) is reported as

a function of k in the range (64, 2048).

9.4 Availability Evaluation

In this section we evaluate the availability level that ENIGMA provides for its virtual

disks by first devising an analytical model of availability, and then using it to quanti-

tatively compute the availability for specific values of n and k. We assume that each
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Figure 9.3: Lower bound on the trials required to break the LT code as a function of k

for RSD with (c, δ) = (0.01, 0.001).

sector is split into k fragments, that are subsequently encoded as n fragments, that

are stored on n independent nodes. Consequently, when a proxy wants to recover a

sector, it asks all the n storage nodes to forward the fragments of that sector. We also

assume that all the storage nodes are characterized by the same reliability p (i.e., the

probability of successfully providing a sector fragment to the requesting proxy).

Under these assumptions, the probability p(r) for the proxy to receive r encoded frag-

ments is given by

p(r) =

(
n

k

)
pk(1− p)n−k.

As already seen in earlier sections, the proxy is able to decode the fragments (i.e. to

recover the sector) only if r ≥ k. In particular, if the proxy receives r ≥ k fragments

it has a probability σ(r) to decode the fragments. This probability depends on the

rateless code and the decoding algorithm used: in (28) a theoretical study of σ(r) for

LT codes and a Gaussian Elimination-like decoding algorithm is presented. Finally,

using the law of total probability, it is possible to calculate the probability that the

proxy decodes the requested sector, i.e. the availability, as

Pk =

n∑
i=k

p(i) · σ(i).

In Tab.9.2 Pk is evaluated as a function of the storage node’s reliability p for several

values of n and for some values of the code block length k = 64, 128, 256. As expected,
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Table 9.2: Pk as a function of p for several values of k and n.

p

k = 64 k = 128 k = 256

Pk Pk Pk

n = 83 n = 96 n = 128 n = 166 n = 192 n = 256 n = 333 n = 384 n = 512

0.70 0.015 0.302 0.932 0.004 0.500 0.993 0.009 0.923 1.000

0.75 0.091 0.570 0.964 0.085 0.845 0.998 0.325 0.996 1.000

0.80 0.294 0.760 0.981 0.462 0.945 0.999 0.919 0.999 1.000

0.85 0.558 0.860 0.989 0.827 0.977 0.999 0.993 1.000 1.000

0.90 0.741 0.915 0.995 0.931 0.990 1.000 0.998 1.000 1.000

0.95 0.829 0.941 0.996 0.967 0.995 1.000 1.000 1.000 1.000

the availability increases if more coded fragments are stored in the system, i.e. if one

increases the storage overhead. In Tab.9.2 the values of n corresponding to a storage

overhead of 30%, 50% and 100% respectively have been selected. Tab.9.2 also shows

the dependency of Pk on the value of k. It can be observed that, given a certain value

of p, the required level of availability can be guaranteed for increasing k, i.e. cutting

each sector into more fragments. This amounts to using an LT code with a larger block

size and therefore closer to the channel capacity bound.

The above considerations allow one to derive the basic rules for the fulfillment of a

service level agreement that, in the most general case, can be varied on a per sector

basis. This great flexibility is empowered by the usage of rateless codes where the

sector fragmentation k and the number of coded fragments stored in the system n can

be changed adaptively, e.g. in response to the migration of a virtual machine using the

cloud disk.

9.5 Performance Evaluation

In order to show that ENIGMA is able to provide adequate performance, we performed

a simulation study (carried out by means of a discrete-event simulator we developed)

in which we compared the time taken by a client to retrieve a sector when using, re-

spectively, ENIGMA and a virtual disk located on a single storage server (the baseline

system).

In our experiments, we consider a virtual disk consisting of about 30 million 40 KB
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Figure 9.4: Comparison of ENIGMA performance w.r.t. the baseline system.

sectors. We considered an ENIGMA configuration consisting of 2000 perfectly reliable

storage nodes, whose proxy-to-node end-to-end latencies were extracted from the data

published by the Meridian project (61); the average latency L of the ENIGMA config-

uration was L = 32 msec. For each sector, we set k = 100, and we performed several

experiments in which we increased n from k to 3k with a size step of 0.1. The resulting

fragments were randomly distributed, with uniform probability, over the 2000 storage

nodes. The workload used in our experiments consisted of a stream of sector requests

contained in a trace, downloadable from the SNIA trace repository (62), and described

in (63).

The results obtained for the scenarios involving ENIGMA have been compared with

those obtained by the baseline system for different values of its service time S (the

time taken to serve a single sector request). In particular, we performed experiments

for S ∈ L,L/2, L/4, L/8.

The results of our experiments are reported in Fig. 9.4 (for all of them, we computed

95% confidence intervals with 2.5% relative error). As can be observed from this figure,

the larger n, the smaller the sector retrieval time. This is not unexpected, as a sector is

considered to be retrieved when k+ ϵ fragments out of n are received, and the larger n,
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the larger the probability that the required fragments are shipped by the faster nodes.

From Fig. 9.4, we can also observe that:

• for n > 140 ENIGMA performs better than the baseline system when S = L (i.e.,

S = 32 msec. in our case);

• for n > 220 ENIGMA performs better than the baseline system when S = L/2

(i.e., S = 16 msec);

• for n ∼ 300 ENIGMA performance are very close to that of the baseline system

when S = L/4 (i.e. S = 8 msec.).

These results can be considered promising, given that typical access time of virtualized

disks has been measured to be in the range 15 − 20 msec (64). Furthermore, we

expect that, by adopting proper caching strategies (based on redundancy increase and

decrease) that are part of our future work, performance should significantly increase,

thus making ENIGMA competitive for smaller values of n.

9.6 Conclusions and Future Works

ENIGMA is a distributed infrastructure that provides virtual disks that can be used

either directly by the VMs hosted on a Cloud infrastructure, or as the back-end for

VBD systems. We exploited rateless coding techniques to encode each sector of a vir-

tual disk as a set of fragments independently stored on a set of physical storage nodes

to achieve tunable large storage capacity, high availability, strong confidentiality, and

high data access performance.

We described the ENIGMA architecture based on proxy nodes that coordinate the

usage of storage nodes providing access to their local storage to store encoded sector

fragments. Storage nodes are organized in clusters and each cluster is coordinated by

a cluster-head. The set of cluster-heads forms a logical peer-to-peer network with ar-

bitrary topology.

We demonstrated that ENIGMA is resilient to attacks by a single malicious storage

node attempting to decode fragments of disk sectors as well as by a more sophisticated

attacker that has gained sufficient knowledge of the distributed storage system to re-

trieve a set of K coded fragments of a particular sector. Furthermore, we developed
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analytical models to derive design criteria to obtain a desired availability level and we

also discussed how to obtain high data access performance by letting the proxy manage

overlapped operations, by simultaneously fetching many fragments from the same sec-

tor, and by dynamically increasing or decreasing sectors redundancy (this last feature

also provides the basic mechanism that can be used to keep virtual disk performance at

a given level in the face of migration of the VM accessing it). The performance results

we obtained via simulation, albeit preliminary, can be considered encouraging.

Future work includes the development of suitable fragment distribution policies (in

place of the random one adopted in this paper), of sector caching strategies, and of

fragment migration techniques supporting the migration of the VM accessing the corre-

sponding virtual disk. In particular, ENIGMA can be used as a framework for Rateless

Regenerating Codes, presented in Chap. 5.
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