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Abstract

In recent years a new technological paradigm has emerged in the computer
science research community. This paradigm is referred to as Cloud Com-
puting, a new computing paradigm whose aims are to allow users to utilize
computing infrastructure over the network, supplied as an on-demand ser-
vice. There are already many commercial solutions based on this approach,
as well as many academic research projects that are especially focused on re-
source management of an infrastructure that comprises computational power,
storage space and communication networks.

In particular, the demand of storage capacity is increasing, determined
by, for example, scientific (e.g. physics experiments) and commercial (e.g.
e-commerce sites, search engines) applications, that produce huge quantity
of data. Building a data storage service that is pervasive, available, scalable
and that can handle massive quantities of data has always been a priority
for every distributed system paradigm and infrastructure. Cloud Computing
has different goals and characteristics and thus poses new challenges in this
area of research.

Cloud Computing applications, especially data intensive ones, typically
need storage services that provide large amount of storage capacity and the
ability of retrieving stored data at any time and in any condition (e.g., in-
frastructure component failures). Moreover, services are hosted and data are
located on third-party resources, a condition that poses a threat to data con-
fidentiality. In many cases, applications or system-specific functions require
the availability of raw block devices, for instance when a specific file system
is necessary, or when the application needs to directly access physical storage
(e.g., in the case of a DBMS).

In this Thesis we propose ENIGMA, a distributed infrastructure that
provides virtual disks by abstracting the storage resources provided by a set
of physical nodes and exposing to Cloud Computing users, applications, and
Virtual Machines a set of virtual block storage devices, that can be used
exactly as standard physical disks. The important aspect of the work in
this thesis is that we would like to make maximum use of resources while
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providing each virtual machine the illusion of using a single resource. The
system is split in two levels; at the logical level every virtual machine sees
its disks as if they were a single local resource, whereas at the data level
disks are distributed across the infrastructure. ENIGMA is designed to pro-
vide large storage capacity, high availability, strong confidentiality, and data
access performance comparable to that of traditional storage virtualization
solutions. To achieve all these design goals, ENIGMA exploits erasure-coding
techniques, whereby each sector of a virtual disk is encoded as a set of n frag-
ments, that are independently stored on a set of physical storage nodes, k of
which (k ≤ n) are sufficient to reconstruct that sector. The thesis goals are
to present the ENIGMA architecture and show how the coding of sectors of
a virtual disk ensures high availability in spite of failure of individual stor-
age nodes as well as confidentiality in face of several types of attacks. Since
the architecture is designed to allow ENIGMA to operate on production in-
frastructures and networks, we studied techniques to optimize performance.
We use caching and prefetching mechanisms applied to ENIGMA in order
to increase throughput and decrease average retrieval time of sectors. The
performance metrics are obtained by studying ENIGMA with simulation
techniques.



Chapter 1

Introduction

In recent years a new technological paradigm has emerged in the computer
science research community. This trend is referred to as Cloud Computing,
a term that relates to past concepts while introduces new advantages and
new research challenges. The definition of Cloud Computing is yet to be
found, and each one that is proposed it not broadly accepted. According to
a recent ontology [70] “Cloud computing can be considered a new comput-
ing paradigm that allows users to temporarily utilize computing infrastruc-
ture over the network, supplied as a service by the cloud-provider”. In [32],
the authors give the following definition “A large-scale distributed computing
paradigm that is driven by economies of scale, in which a pool of abstracted,
virtualized, dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external customers over the
Internet”. Another definition is given by NIST [71] “Cloud computing is
a model for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction”.

There are already many commercial solutions for Cloud Computing, as
well as many academic research projects. All of these provide computational
power as a service to the customers for running their applications. The
first company that has proposed solutions based on the Cloud technology
is Amazon [3] with its Amazon Elastic Compute Cloud (EC2); other exam-
ples of Cloud system are: Eucalyptus [54], Microsoft’s Windows Azure [15]
and Google App Engine [7], to name a few. In practice the infrastructure
(computational resources connected via a network) is made available to the
users for executing applications that are no longer provided by the service
provider but rather it is the infrastructure itself that is made available, via
an intermediate software layer, to execute users’ software.

13
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Cloud Computing provides several features, that makes it attractive and
popular: is a low cost solution since it provides a pay-as-you-go pricing model,
computational power is increased on-demand if users need more resources and
it is highly scalable (resources can be easily added).

There are aspects that have to be solved for harnessing the full potential of
the Cloud infrastructure, one of the most important is resource management.
As in standard distributed computing, resources can be software or hardware,
especially computational, storage and communication. Historically scientific
(e.g., physics experiments) and commercial (e.g., e-commerce site, search en-
gine) applications started to produce huge amount of data and determined
an increasing demand of storage capacity. For this reason building a data
storage service that is pervasive, available, scalable and that can handle mas-
sive quantities of data has always been a priority for every distributed system
paradigm and infrastructure. Much effort has been done in other branches
of distributed computing to deal with these issues. Given the novelty of
the approach, proposed solutions may not be well suited for the new Cloud
computing paradigm and should be tuned or completely changed in order
to obtain the same results in the new scenario. Moreover new challenges
regarding data storage requirement may arise for the new Cloud paradigm
that were not previously considered.

1.1 Cloud Computing

Cloud computing is a term that hides a variety of different solutions and
techniques. We will briefly sketch the main technologies behind a typical
Cloud infrastructure.

The increasing availability of hardware resources (both computational
and storage) at low cost and the high speed of modern network lead the
companies that own large datacenters, to lease their resources to the users
in an on demand fashion.

A way to provide the execution of applications over an infrastructure is
through virtualization technology. It provides execution of virtual machines
that run over a virtualized hardware of a real machine. A Virtual Machine
(VM) is a replication of a computer system that is isolated and provides all
the facilities of a real computer, like the operating system and all the envi-
ronment and libraries needed by the applications. Virtualization enables us
to create new instances of virtual machines, stop them at will and specify
virtual hardware characteristics used by each instance based on the compu-
tational resources that underlying real hardware can provide. One of the
key features of virtualization is migration. It is a facility that allows the
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transfer of VM instances across distinct physical hosts. By using this tool,
it is possible to move a VM to another host for increasing VM performances
or tolerate failures of components. Moreover it is possible to rearrange the
assignment of VM to hosts in the infrastructure, in order to maximize the
resources utilization. Several solutions that offer virtualization technology
are available, such as: Xen [22], KVM [9] and VMware [14].

Besides virtualization, there are other means for decoupling applications
from hardware components. Remote storage access protocol, like iSCSI or
IDE over Ethernet, allows an operating system (also a VM) to connect to
a remote drive and provides access to it as if it were a local device. The
device can be accessed from everywhere within the network, in a way that is
independent from the location of the operating system.

A Cloud is a complex system, typically composed by a huge number of
resources, thus it needs a way to take full advantage from the available power
and automatically manage it. The most common way to do it is through an
platform layer, whose primary duty is to automatically manage resources in
order to optimize their utilization and provide the user with the illusion of
a homogeneous system. Another purpose of the platform layer is to avoid
the difficulties to deploy the applications into the VM and thus it could also
provide the API to support directly applications directly into the Cloud (like
for example Google App Engine).

From this point of view Cloud Computing can be seen as a collections
of services, structured in layers. The top layer is called SaaS (Software as a
Service) and offers to the users the possibility to run applications remotely.
The layer just below SaaS is called IaaS (Infrastructure as a Service), that of-
fers virtualization computers with guaranteed processing power and reserved
bandwidth. Platform as a Service is similar to IaaS but it offers the possibil-
ity to specify a given platform, that is, it includes a custom software stack for
the application. At the bottom layer the dSaaS (data Storage as a Service)
provides storage for the consumers.

There are three types of cloud computing: public cloud, private cloud
and hybrid cloud. In the public cloud the resources are provisioned over the
internet from a cloud provider. The users application run inside the provider
infrastructure and different users applications are mixed together. Private
cloud refers to the cloud computing inside private infrastructure where the
only applications are those belonging to one client. Hybrid clouds combine
public and private clouds and have the additional complexity of choosing
how to distribute the applications across the private and the public cloud.

A system that provides services should possess a way to establish the
amount of resources that the consumer can use(and the price of utilization,
in commercial systems) by the use of Service Level Agreement (SLA). SLA
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is a mechanism for defining service utilization policies, stipulated between
the user and the cloud provider. The SLA defines constraints over resources
utilization (i.e., bandwidth utilization, application response time, throughput
and so on) and metrics for calculating the cost of provisioning. Once the
application is started and the system is working properly, there can be peaks
in resources utilization or requests for starting a new virtual machine. In
these cases there could be SLAs failures and there should be a redistribution
of the Virtual Machines over the physical infrastructure in order to bring
again the system to a stable state, where no SLA violations occur. Current
research trend is to use migration for accomplishing the task of dynamically
changing the virtual machines assignment to physical hosts, in response to
changes of the workload. By using this tool, Virtual Machines can move
to less loaded hosts in order to reduce the risk of violating the SLAs or
maximize the resource utilization. Recent works applied these techniques also
to reduce energy consumption, grouping VMs together and turning off unused
hardware resources (server consolidation). An example of the utilization of
SLA and SLA management can be found in [25].

1.2 The need of virtual private disks for cloud

infrastructure

Cloud Computing applications, especially data intensive ones, typically need
storage services that provide the illusion of infinite storage devices whose
lifetime is not bound to that of the virtual machines (VMs) that use them. In
many cases, applications or system-specific functions require the availability
of raw block devices, for instance when a specific file system is necessary, or
when the application needs to access directly to physical storage (e.g., in the
case of a DBMS).

Virtualized Block Devices (VBD) systems (like the Amazon Elastic Block
Store (EBS) [2], the Eucalyptus Block Storage Service (BSS), and the Virtual
Block Store System (VBS) [35]) provide the abstraction of persistent off-
instance block storage devices (henceforth referred to as virtual disks), whose
lifetime is independent from the VM instances they are attached to and whose
size can be dynamically extended at anytime.

In general, VBD systems are implemented by coupling a back-end sys-
tem that provides physical storage (typically a Networked Attached Storage
(NAS) device) with a front-end that provides mechanisms and protocols to
access and manage virtual disks. NAS-based solutions are appropriate when
the Cloud resources are located in a single data center, however may result
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inadequate when storage resources are spread across different data centers,
or when the virtual disks must be accessible from the resources of an Inter-
Cloud [26] (i.e., a Cloud composed by a set of independent Clouds). As a
matter of fact, in these situations, the following issues arise:

• Data availability : if the data center where the NAS is located be-
comes inaccessible (i.e., because of a network component failure), the
storage devices it provides to the VBD system become unavailable to
externally-located users or applications;

• Data confidentiality : usually NAS keep data private by means of en-
cryption that, however, introduces potentially very high computation
overheads, that may significantly adversely affect the performance of a
virtual disk;

• Remote access performance: if a given virtual disk must be accessed
from a virtual machine located outside the data center where the cor-
responding NAS resides, performance is usually limited by the single
network path used to transport data.

1.3 Contribution of this thesis

In order to cope with the issues outlined in the previous section, in this thesis
we propose ENIGMA, a distributed infrastructure that abstracts the storage
resources provided by a set of physical nodes and exposes a set of virtual disks
that can be used either directly by the individual virtual machines hosted
on a Cloud infrastructure or as a back-end for VBD systems. ENIGMA
is designed in such a way to provide a set of features tailored to Cloud
Computing platforms, namely large storage capacity, high availability, strong
confidentiality, high data access performance and the ability of tuning all
these characteristics to specific needs of the user or of the application (even
at run-time). As anticipated in the previous section, VBD system offers the
ability to be independent from a particular file system optimization and can
be used as a back end for many applications. Moreover, ENIGMA is, as far
as we know, the first VBD system that incorporates privacy mechanisms and
the ability to improve performance, features that are provided by the use of
LT codes.

The virtual private disk will be accessed by standard interfaces, for ex-
ample iSCSI or IDE over Ethernet. Every virtual machine could attach one
or more disks as if they were normal devices, but a disk could only belong to
a single virtual machine. The management of such an environment is done
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through a middleware. The thesis goal is to study policies and algorithms
that such a middleware should possess in order to make such a disk available
to users.

The most important aspects of the work in this thesis is that we would
like to make maximum use of resources while providing each virtual machine
the illusion of using a single resource. We will stress a bit about this aspect.
The system is split in two levels; at the logical level every virtual machine
sees its disks as if they were a single local resource, whereas at the data level
the sectors of the disks are distributed across the infrastructure.

ENIGMA achieves the goal of providing large storage capacity, high avail-
ability, strong confidentiality, and high data access performance, by exploit-
ing Luby Transform (LT) codes [49]; in ENIGMA each sector of a virtual disk
is encoded as a set of n fragments independently stored on a set of physical
storage nodes, in such a way that a minimum number k (k ≤ n) of fragments
is required to reconstruct a given sector.

Data confidentiality is ensured by encoding each sector in such a way
that the number k of fragments needed to reconstruct it is large enough,
and by keeping private both the coding function and the addresses of the
storage nodes where fragments are stored. Data availability is instead en-
sured by properly choosing the total number n of fragments per sector, and
by spreading them on the storage nodes thoughtfully. Data access perfor-
mance is achieved by simultaneously fetching several fragments of the same
sector and many sectors at once, up to the bandwidth limits of the channel.
Moreover the performance are increased by means of caching techniques and
by dynamically increasing or decreasing the total amount of fragments per
sector, for specific sectors.

In this thesis we define the architecture and functionality of ENIGMA
and the mechanisms to provide reasonable performance. ENIGMA to the
best of our knowledge, is the first virtual disk for Cloud Computing that
exploits LT codes. The use of LT enables novel features:

• provable ability to ensure data confidentiality in face of various types
of attacks;

• low encoding/decoding costs for on-the-fly operations;

• flexible and adaptive redundancy mechanism that provides availability
and resilience in face of individual failure of storage nodes;

The thesis is structured as follows. After a discussion of related works
(Chapter 2), we describe the architecture of ENIGMA and the mechanisms
it employs to provide its functionality (Section 3), discussing the usage of
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coding mechanisms (Chapter 3.2) in distributed storage pointing out how
they differ from LT codes and how they are used in ENIGMA. We then
evaluate ENIGMA’s availability and performance (Chapter 4). In Chapter 5
we describe standard chaching mechanisms present in the literature and how
they are applied to ENIGMA. Finally, we draw our conclusions and outline
future research work (Chapter 6).
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Chapter 2

Related Work

Storing large amounts of data in a secure, reliable, scalable and efficient way,
has always been a key aspect of computer systems. The solution to this
problem provided by a distributed data storage has been extensively studied
in various areas of research.

The areas of research that are close to the approach adopted by ENIGMA
are mainly two: traditional distributed system approaches and solutions
based on Cloud Computing.

In the following paragraphs we will briefly review the main contribution
of the distributed storage approach to the problem of storage.

At a higher level of abstraction, there is the file system. Various Dis-
tributed File System (DFS) have been developed through years, starting from
NFS, Coda and others. The key aspect of such systems is that they provide
remote access to files rather than access to blocks of data. Much research
has been done over DFS in order to provide scalability, reliability and fault
tolerance. Despite this effort, DFS are not suitable for a highly dynamic
environment such as the one considered in this thesis.

Several approaches have been developed for providing distributed access
at the block level. Commercial solutions are available, such as those based on
proprietary technology for Storage Area Networks (for example IBM). Other
approaches that provide similar facilities without using commercial products
are those based on an approach called clustered storage. This approach is
adopted by systems such as Petal [47], FAB [58], Parallax [66] and Ursa Mi-
nor [17], that provide the abstraction of virtual disks. In these systems data
is divided into blocks and replicated or erasure coded in order to increase reli-
ability and availability. Blocks of data are stored in a cluster and a standard
interface is provided (for example iSCSI). These systems, unlike ENIGMA,
are able to aggregate only storage resources located in the same data center
and do not provide specific mechanisms able to deal with the issues arising

21
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in geographically-distributed storage systems (as opposed to ENIGMA).
Another approach for the problem of distributed storage is the one based

on peer-to-peer systems. Those systems (for example Oceanstore [1,55], Total
Recall [46] and Storage@Home/Storage@Desk [23, 41])) provides persistent
data stores designed to scale to billions of users. They provide a consistent,
highly-available, and durable storage utility atop an infrastructure comprised
of untrusted servers. In this case the system is geographically distributed,
but they do not provide an interface to a standard disk. As for the clustered
storage solutions they do not make considerations about performance. They
assume that if the source of the request change it can look for the “best”
fragment to improve performance. Finally, ENIGMA is – at the best of our
knowledge – the only storage system providing virtual disks that directly
incorporates confidentiality-ensuring mechanisms. Privacy-ensuring mecha-
nisms are provided also by Pasis [34], a distributed storage system that uses
a threshold scheme for coding (thus not using LT codes) to ensure availability
and confidentiality, but without providing a disk-like interface.

In the next paragraphs we will review the Cloud Computing perspective
on distributed storage. Cloud storage systems can be classified according to
the interface they provide to users, applications and virtual machines.

Cloud file systems (e.g., the Google File System [37] and the Hadoop Dis-
tributed File System [68]), provides a file system interface, like traditional
DFS. Those systems share the same interface of DFSs, but the data is repli-
cated across the servers rather than available at a specific server (like DFSs
do). In this case replication is used to provide fault tolerance.

Digital object stores, targeted to Cloud systems (e.g., Amazon’s S3 [12],
Sector [39], Comet [36], and Depot [50]) have been developed to provide
Data-Storage as a Service (DaaS). Amazon was one of the first companies
that provided its Daas system, Amazon S3 ( [3], [30]). Systems like Amazon
S3 provide a simple web service interface rather than a standard access to
a block device and the storage is basically managed as a large pool of key-
value objects of big size. Key-value is an interface in which generic “digital
objects” (values) are associated with a key, and are stored and retrieved by
using that key. Compared to these systems, ENIGMA is placed at a lower
abstraction layer since it provides a virtual disk abstraction.

Virtualized Block Device systems (e.g., Amazon’s Elastic Block Store
(EBS) [2]), the Eucalyptus Block Storage Service (BSS), and the Virtual
Block Store System (VBS) [35])) provide instead a standard disk interface,
i.e. they expose to the operating system individual disk sectors. These sys-
tems are focused on providing higher-level functionalities like snapshotting,
user authentication, storage sizing, while ENIGMA – by providing the ab-
straction of a virtual disk – complements them and can be used as their
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back-end in place of the traditional NAS-based solutions they usually rely
upon.

Commercial Cloud storage solutions are already available (for example
Windows Mesh [16], box [4], dropbox [5] and Jungle Disk [8] to name a few),
but they mainly provide an object based distributed store, rather than a
disk abstraction; moreover they claim to use fixed rate erasure codes (such
as Reed Solomon) or simple replication and not LT codes

Finally a good source for discussion and projects about research in the
field of Cloud, and in particular of data service in the Cloud environment, is
Vision Cloud [6].
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Chapter 3

The ENIGMA system

In this chapter we will describe the ENIGMA architecture in details. In
section 3.1 we introduce the general idea of the architecture with a brief
explanation of the functionality and the role of each component. Successively
in section 3.2 we will briefly review basic coding theory and how it is applied
to ENIGMA. Finally (section 3.3) we will explain the operations of ENIGMA
system as well as the mechanisms and protocols used by the system.

As already anticipated in the Introduction, ENIGMA provides the ab-
straction of a virtual disk by aggregating a set of geographically sparse stor-
age resources. Virtual disks consist in a sequence of sectors, independently
addressable, that are suitably encoded and stored on storage resources in
order to achieve availability, confidentiality, and performance.

3.1 Architecture

The architecture of ENIGMA, schematically shown in Fig. 3.1, provides for
two distinct logical entities, namely the storage node (that provides access to
its local storage to store sector fragments) and the proxy (that coordinates
the usage of storage nodes to provide virtualized disks). In an ENIGMA
instantiation there may exist, at any given time, several proxies that use a
set of storage nodes. However, a given virtual disk is handled exclusively
by a single proxy. At the moment we assume that the functionalities of the
proxy are guaranteed and no failure or loss of data occurs.

To ensure scalability, storage nodes are organized into a set of clusters,
each one coordinated by a cluster head. The cluster head is a particular kind
of storage node, choosen among the storage nodes that compose the cluster. If
it fails it is replaced by another storage node choosen with standard algorithm
of leader election. The proxy stores each fragment of each sector by dividing
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Figure 3.1: System architecture

them between two or more cluster heads (in order to avoid that the failure of
a single cluster head makes the sector unavailable for a long period of time.
The client depicted in the figure is not part of the ENIGMA architecture,
but rather, uses the interfaces provided by the proxy to access the virtual
disk. The client could access the disk via:

• standard Block Device Protocols: like for example iSCSI or AoE (Ata
over Ethernet)

• Cloud Storage front end: Amazon clouds services are the defacto stan-
dard in this area

• device driver: they should be developed ad hoc to support ENIGMA
(for either VMs or real machines)

In the next paragraphs we will briefly outline the purpose and functionality
of each component of the infrastructure, then in section 3.3 we will describe
the protocols and mechanisms of ENIGMA.
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sector id hash id cluster list CRC seed
s1 h(s1) ch11, ch12, . . . CRC1 z1
...

...
...

...
...

sm h(sm) chm1, chm2, . . . CRCm zm

Table 3.1: Proxy table for virtual disk V D

3.1.1 The Proxy

The Proxy provides each client with access to a virtual disk that can be used
by that client only, and manages the redundancy of its sectors in order to
satisfy the availability, confidentiality, and performance requirements set for
that disk.

All the information concerning a specific virtual disk VD is stored in
a data structure called proxy table, whose composition and data fields are
depicted in Table 3.1. In the remaining of this section we will describe the
purpose of each entry in the proxy table as well as the basic operations
provided by the Proxy.

In order to ensure data confidentiality, all the encoding and decoding
operations for individual sectors are performed on the proxy, where the en-
coding seed of each sector is securely stored (we postulate that the proxy
is placed on the premises of each client, that is responsible for its security).
Furthermore, within the storage network, each sector si of a virtual disk
V D is anonymously identified by means of its hash id h(V D, si), which is
computed as function of the pair (V D, si) in such a way that it cannot be
inverted to determine V D and si, so that an attacker who successfully de-
codes a sector does not know to which other sectors it relates (and thus it is
not able to reconstruct the entire disk).

As it will be explained in section 3.2, each sector is encoded in fragments
that are stored on two or more clusters (each cluster is a disjoint subset of the
storage nodes). Upon receiving a read or write request for a given sector si of
virtual disk V D, the proxy computes h(si) and, by looking up the proxy table
for that disk, determines the addresses of heads of the clusters chi1, . . . , chin,
where si’s fragments have been stored.

The proxy forwards the read and write requests to the cluster heads in
the cluster list and leave them in charge of completing fragments retrieval
and fragment diffusion respectively (the complete sequence of events will be
discussed in details in section 3.3).

In addition to the basic read and write operations, the proxy dynamically
manages the redundancy of selected sectors, by increasing the redundancy



28 CHAPTER 3. THE ENIGMA SYSTEM

of the most requested sectors (in order to reduce their retrieval time) and,
in a dual way, by decreasing the redundancy of sectors that are rarely used.
In any case, the redundancy value of a given sector never goes below the
threshold n that is set, for the whole virtual disk, to a value that guarantees
a given availability level.

3.1.2 The Storage Nodes

The Storage Nodes are a federation of heterogeneous machines, distributed
geographically and possibly belonging to different organizations.

In order to accommodate for a potentially unlimited number of storage
nodes, they are organized into a hierarchical overlay network, in which nodes
are grouped (as already anticipated) into clusters (each node belongs to a
single cluster), each one coordinated by a cluster head that is responsible for
orchestrating, across the nodes in the corresponding cluster, the execution of
the operations issued by the proxy. Cluster heads form a peer-to-peer network
whose topology is irrelevant for the purposes of ENIGMA (for instance, many
of the overlay networks published in the literature [20] fit our needs).

Clusters and cluster heads are in charge of off-loading some of the work
from the proxy, and of reducing the burden of managing the storage infras-
tructure. More specifically, they take care of the diffusion and retrieval of
the sector fragments, and of the increase and decrease of sector redundancy,
as we will discuss in section 3.3.

3.2 Coding

As anticipated in the introduction, ENIGMA features are enabled by the use
of coding techniques. In this chapter we will introduce the key concept of
coding theory and more specifically LT codes. Next we will describe how
coding is applied to traditional distributed storage systems and afterward
how LT codes are used in ENIGMA. The evaluations of the performance and
feature of LT codes applied to ENIGMA are given in Chapter 4, sections 4.1
and 4.2.

3.2.1 Coding theory

Coding theory ( [19]) was developed for the need of reliable transmission of
information over noisy channels. In this case transmission is intended both
as transmission in space (e.g. over a network) and transmission in time, by
storing information on storage media (in this case coding is used to make
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information available for a long period of time, copying with failures of the
hard drives).

Erasure coding techniques work by splitting a given sequence of bytes into
a set of independent fragments in such a way that, in order to reconstruct
the sequence, only a subset of these fragments is required. In practice, codes
split the original object in a sequence of k fragments of fixed size and encode
such fragments in a longer sequence of fragments n such that any k subset of
the coded fragments suffices to reconstruct the original object (Figure 3.2).
Such code allows the receiver to recover up to (n − k) losses in the group
of n fragments. The fraction r = k/n is called code rate; if more fragments
(k

′
) are used to reconstruct the original object, the fraction k

′
/k is called the

efficiency of the code.

Figure 3.2: Coding

Optimal erasure codes have the property that strictly any k out of n
fragments are sufficient to recover the object and that the rate r is fixed, that
is, the values we choose for k and n could not be changed, otherwise we have
to recode the object. Traditional optimal codes such as Reed-Solomon have
been successfully applied in various contexts, but decoding time quadratic in
n makes them expensive for large files (unless k is kept fixed), that is, as n
grows the cost of coding introduces too much computational overhead. To
cope with this issue, researchers have proposed a new class of erasure codes
with faster decoding times.

Near-optimal erasure codes are a class of codes with sub-quadratic decod-
ing times. Codes like, for example, Tornado codes [27], LT codes [49], Raptor
Codes [60] and Online Codes [51], produce coded fragments that are simple
xor of the original fragments in which the object is first divided. That is, the
object F is composed of fragments f1 through fk and the coded fragment c1
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might be computed as f1 + f2, for example. The linear relationship between
original fragments and encoded fragments vary with the scheme. The price
we have to pay for fast decoding is that this family of codes are not optimal,
that is, they require o · k, where o is the overhead factor that is greater than
one, but has the property to approach to one when k approaches infinity.
The overhead defines the number of fragments, beyond the k, that have to
be obtained to reconstruct the original object. These additional fragments,
that represent the ovehead value, are called ε. This family of codes (except
Tornado Codes) have also the property to be rateless, which means that the
rate r is not fixed a priori and thus this codes could encode a given sequence
of fragments into a theoretically infinite stream of coded fragments.

The idea behind this particular family of erasure codes comes from the
concept of digital fountain [53]. Digital fountain is an abstraction of erasure
coding that has properties similar to a fountain of water: “when you fill your
cup from the fountain, you do not care what drops of water fall in, but only
want that your cup fills enough to quench your thirst”( [53]). With digital
fountain a receiver obtains encoded fragments from one or more sources, and,
once enough packets are obtained, the receiver can reconstruct the original
object with high probability, regardless which packets has obtained and how
many packets get lost in the transmission. An idealized digital fountain
should be able to generate a potentially infinite number of encoded fragments
and the receiver should be able to reconstruct the original object with any k
encoded fragments received.

LT codes [49] belongs to the class of rateless codes (the digital fountain
approach), where the encoder can generate on the fly novel coded fragments
without the need to fix the rate in advance as for classical linear block codes.
LT codes are asymptotically optimal, i.e. the overhead ε vanishes (i.e. ap-
proaches to 0) for large k, and both the encoding and decoding algorithms
have a low computational cost.

In LT codes, an encoding symbol is generated by choosing a degree d
according to the Robust Soliton Distribution (RSD) and then choosing d
distinct symbols uniformly at random and set the encoded symbol to be
exclusive-or of these d symbols. LT codes have an implicit graph structure
formed by the d symbols (the neighbors) of each encoded fragment. Each
encoded symbol must have associated the list of its neighbors. This is accom-
plished by additional information such as packet identification number used
to seed a pseudorandom generator. Each implicit graph is represented by a
bitmap, that is a sequence of 1s and 0s that represents the neighbors of the
coding fragment. In practice, the bitmap bi,l is generated by choosing the de-
gree d according to the RSD P (d = k) = µ(k), then d out of the k fragments
of the sector are chosen uniformly and combined to form the coded fragment.
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In practice (Figure 3.3), the bitmap could be seen as a sparse graph where
each position represents one of the original fragments in which the object is
first divided. If a given position of the bitmap is set to “1” its corresponding
fragment is connected to the graph. The encoded fragment is the result of
XORing all the connected fragments of a given graph. Each graph (and thus
each encoded fragment) is generated from a sequence of random numbers
starting from a common seed.

Figure 3.3: LT codes: overview

3.2.2 Coding and Distributed Storage

Storage systems have always used some form of fault tolerance. The easiest
way to tolerate failures in distributed storage systems, is to replicate data and
distribute them into the infrastructure. Replication works by partitioning an
object into n blocks of fixed size and replicate each block (i.e. make m exact
copies of the original block) with a predefined replica factor, for example
replicate each block twice, with m = 2. This simple method provides both
fault tolerance and improved performance over non-replicated systems, but at
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the cost of higher storage space. A block that is replicatedm time can tolerate
the failure of m − 1 of nodes holding a replica of a particular block. In the
example before we doubled the storage space used to tolerate the loss of only
one replica per block. Erasure coding schemes improve both fault tolerance
and access performance of replicated systems. In the field of distributed
system is still debated if erasure coding techniques are better than replication
to provide fault tolerance and access performance ( [67], [48] and [56]). In
the context of ENIGMA the use of erasure codes, and in particular LT codes,
is motivated by the requirement and the features that ENIGMA offers.

Traditional hard drives, for example, use Reed-Solomon for RAID sys-
tems. As discussed previously (section 3.2.1) Reed-Solomon codes do not
scale well if k is high (in order to keep k low we have to increase fragment
size). In [46] both replication and erasure coding are compared. Given a
specified amount of redundancy and replication the authors calculate the de-
livered availability. As expected, for the same level of availability, an erasure-
code mechanism requires a lower storage overhead compared to that needed
by replication. Many other systems in the literature use erasure coding tech-
niques ( [34] and [17] for example), but they tend to use a fixed rate of
redundancy for a given failure model, in order to provide the desired avail-
ability level. ENIGMA, on the other hand, increases and decreases the rate
of selected sectors for both performance and availability improvement.

Surprisingly, modern Cloud Storage system, like for example Amazon S3
( [3], [30]), use simple replication instead of erasure coding. This could be
explained by the computational overhead of erasure coding large files (the
size of S3 objects is up to 5 Terabytes) and by the relative ease of managing
replicas instead of erasure coded fragments.

3.2.3 Coding in ENIGMA

In ENIGMA coding is applied to the sectors of a virtual disk. Each sector
is the basic object to which coding function is applied and it has its own
availability level, chosen by generating a suitable amount of encoded frag-
ments. We use LT codes to create the encoded fragments. In the following
section we will explain in details how coding is applied to sectors and we will
introduce a second level of coding used for improving performance.

Sector encoding

The encoding of a virtual disk V D, composed of m consecutive sectors si
of identical size, is performed as follows. Each sector si is first divided in k
fragments s1i , . . . , s

k
i and, by subsequently applying a coding function, it is
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transformed into a sequence of n fragments ci,l, l = 1, 2, . . . , n with n > k,
computed as an exclusive-or (XOR) of the fragments of sector si (which
amounts to consider linear coding in the Galois field of size 2, GF(2)) as:

ci,l = bi,l · si =
k∑
j=1

bji,ls
j
i , (3.1)

where bi,l = b1i,l, . . . , b
k
i,l ∈ GF(2)k is the bitmap of the encoded fragment ci,l.

In practice, the bitmap is a random vector of length k in which each element is
either 0 or 1. The number of 1s of a bitmap is called degree. Any K = k + ε
fragments taken from the n coded fragments can reconstruct the original
sector, and thus up to n − K failures of the nodes can be tolerated. The
bitmaps are produced sequentially by a standard random generator initialized
with a given seed zi. The random outcomes leading to the bitmap bi,l can be
reproduced by knowing zi and the sequential number of the coded fragment l.
The couple (zi, l) can be interpreted as a key, required to correctly interpret
and decode the coded fragment. On the Fly Gaussian Elimination (OFG) [24]
decoding algorithm is used to decode the fragments.

Second level encoding

In order to increase the redundancy level of a given sector, its key must be
used to generate other encoded fragments (in the potentially infinite sequence
of fragments). If we wish to keep the encoded sector private, thus not reveal-
ing the key, we have to devise another method for the redundancy increase
operation (we use coding because its computational overhead is less than
that of encryption). For this purpose we use a second level of coding that
combines encoded fragments to obtain new encoded fragments that could be
used as normal encoded fragments. This method could be used by a third
party for increasing the redundancy level of a given sector without knowing
the secret key.

A third party may increase the redundancy of sector si by recombining, by
means of pairwise XOR operations, a subset of fragments ci,l of sector si in its
possession. The recombination of two fragments ci,l1, ci,l2 of si corresponds
to create a new combined fragment ci,l1,l2 by XORing them, i.e. ci,l1,l2 =
ci,l1 ⊕ ci,l2.

In Figure 3.4 we can see a simple example of how this second level of
coding works. We suppose that a given sector is divided into 2 fragments
and encoded in 3 fragments, namely C1, C2 and C3. Any two out of the
encoded fragment suffice in reconstructing the original sector, thus this simple
coding can tolerate a single failure. If we want to increase the fault tolerance
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Figure 3.4: Second level of coding: example

of this configuration, we can apply the second level of coding, as explained
before, and combining the fragments to create two new encoded fragments.
The fragments called C1, 2 and C2, 3 in the figure are obtained by XORing
fragments C1, C2 and C2, C3 respectively. Those fragments could be used
as any other encoded fragment because the rule that any two fragments can
reconstruct the original still holds. For example if we get fragments C1 and
C1, 2 we can XOR them and obtain fragment C2. Then the decoding process
could continue as in the standard case.

Sector encoding (along with second level coding) provides the basic mech-
anism for simultaneously achieving availability, confidentiality, and perfor-
mance in the following way:

• Availability : the availability of a virtual disk can be set to a given level
by properly choosing the values of k and n (and correspondingly ε);
furthermore, the encoding technique we use allows one to dynamically
change any of these values for individual sectors, without having to do
the same for all the other sectors of the disk.

• Confidentiality : storage nodes are unable to reconstruct any sector
since (a) the coding seed zi of a sector is unknown, and (b) far less
than K coded fragments are stored per each node. Plain text attack
are not feasible because data inside fragments is arbitrary. Even if the
attacker can see ASCII text inside a fragment it is not sure if it is a
real text or an ASCII visualization of arbitrary data. In ENIGMA,
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coding provides confidentiality and not autentication or criptographic
properties. It is however possible to provide such functionalities, for
example with standard techniques as discussed in [29] and [65].

• Performance: the fragments of a given sector, being stored on different
storage nodes, can be retrieved in parallel, thus reducing the time re-
quired to retrieve a sector with respect to the case in which the whole
sector is stored on a single node.

Sector encoding is the basic building block of ENIGMA and it provides
the functionalities to perform read and write operations of the virtual disk.
This operation are provided by the architecture that will be described in the
next Chapter.

3.3 Operations

As anticipated previously, this section is devoted to the explanation of the
details of each operation performed by the infrastructure. In addition to the
standard operation of a disk drive, namely read and write, ENIGMA infras-
tructure has to provide other functionality in support of the aforementioned
operations.

One of the peculiarities of ENIGMA is the ability (provided by the proxy),
to perform overlapped operations, where an operation can be performed as
soon as its request arrives, without having to wait the completion of another
operation that has been issued previously. This behavior (used to improve
performance) is different from the one exhibited by physical hard disks, where
the presence of mechanical components that may need to be repositioned each
time a new sector must be accessed imposes, in practice, the completion of a
pending request before a new one can be performed. The only limitation for
the number of operations performed in parallel, is the amount of bandwidth
that the proxy is able to provide, meaning that the number of operations
times the size of the sector should not exceed the available bandwidth, in
order to prevent congestion.

In the next sections we will explain each operation in details.

3.3.1 Write

When a sector si is written for the first time, the proxy determines the set
chi1, . . . , chin of cluster heads in charge of storing its encoded fragments, and
stores this information – together with h(si) and its encoding seed zi – into
the proxy table.
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Figure 3.5: Sequence diagram for write request

The CRC field in the proxy table stores a cyclic redundancy code (CRC )
used to identify possible inconsistencies in the sector data, that might be
caused – for instance – by data pollution attempts. More specifically, when
a sector is written, its CRC is computed and stored by the proxy before
it is encoded. When a sector is read, after it has been decoded, the proxy
recomputes its CRC proxy and compares it with the one stored before the
write operation: if the two values coincide, then the proxy deduces that no
data corruption (due to either normal events of malicious actions) occurred.

In figure 3.5, we can see the sequence diagram for the write command,
involving client, proxy and cluster head (we draw two cluster head for clarity).
When the proxy receives a write request for sector si, it encodes si and sends
the resulting fragments to the cluster heads stored in the corresponding row
of the proxy table. Each fragment ci,l of si is stored as a tuple < h(si), l, ci,l >,
where l represents the sequential identifier of the coded fragment and ci,l is
the actual data; in the picture “< data >” represent a group of fragments
that a cluster head has to store inside its cluster. The sector content can
be retrieved only by the proxy from any K tuples < h(si), l, ci,l >. For each
fragment of si the proxy chooses at random, with uniform probability, two or
more clusters that will store it; in this way we avoid that a failure of a single
cluster head compromises the entire sector. If the sector is empty (that is, it
has been never written since the creation of the virtual disk), then the proxy
considers the write operation to be completed.

Instead, if the sector is non empty (that is, it contains data that must
be overwritten as result of the write operation), then all the fragments of si
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Figure 3.6: Sequence diagram for write request(invalidate command)

that are stored on the storage nodes must be overwritten before the write
operation can be considered complete (3.6). If this was not done, a read
operation for sector si overlapped with a write of the same sector could
lead to consistency problems in case some of the old fragments is retrieved
and combined with some new ones. We will clarify this statement with an
example. Assume sector si has been just written and shortly after it has been
requested again by the client. At this time there are two kind of fragments in
the system that belong to sector si: the original fragments and the fragments
created with the last write. The system is not able to distinguish the two kind
of fragments and thus opunt the read request for sector si it will retrieve a
mix of old and new fragments. During the encoding phase the reconstructed
sector will not match the CRC stored at the proxy (infact the combination
of different fragments will pollute the code, resulting in a useless sector).

To avoid this problem, the proxy keeps the just-written sector si into a
local cache until the write operation is terminated (that is all the fragments of
si have been committed on the respective clusters), and sends to each cluster
head an invalidate command together with the list of fragments assigned to
that cluster head. Upon receiving this message, each cluster head eliminates
the old fragments, stores the new one and, when these operations have been
completed for all the fragments, sends an acknowledgment back to the proxy.

In both figures 3.5 and 3.6, we depicted the course of events from the
client-proxy-cluster head perspective. When a cluster head receives a group
of fragments it has to store them on suitable storage nodes. This operation
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Figure 3.7: Sequence diagram for fragment diffusion

is accomplished by the fragment diffusion protocol.

Fragment diffusion

When a virtual disk V D is created, the cluster list of each sector is empty
and it is filled when the sector is written for the first time. When sector si
must be stored, the proxy sends to each one of the cluster heads responsible
for si (see Sec. 3.1.1) some of si’s fragments. If sector si is written for the first
time, the cluster head places the fragments on suitable storage nodes picked
up at random among the components of the cluster (Figure 3.7). Conversely,
if si has been already written, the message sent by the proxy contains both
an invalidate command and the new fragments to be stored in the cluster
(Figure 3.8). In this case, before storing the new fragments, the old ones are
deleted. After these operations have been completed, an acknowledgment is
sent to the proxy that, as already discussed, can discard the locally-cached
copy.

3.3.2 Read

When the proxy receives a read request for sector si, it sends a read request to
every cluster head in charge of holding the fragments of si. In Figure 3.9 we
can see the sequence diagram of the read protocol. The cluster head, by using
the fragment retrieval protocol (described in the next section), forwards the
request to all the storage nodes of the cluster that actually store fragments
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Figure 3.8: Sequence diagram for fragment diffusion(invalidate command)

associated to h(si). In Figure 3.9 cluster is a graphical shortcut to avoid
drawing each storage node, but it should be interpreted as the collection of
storage nodes that form a cluster. When the proxy has received K fragments,
it decodes si and discards all the additional fragments received after the
CRC has been successfully computed. If all the N fragments of a sector are
sent simultaneously, or in a short period of time, the proxy could become a
bottleneck. We plan to investigate as future work whether to adopt PULL
methods that request only k fragments (plus an arbitrary epsilon) to reduce
the load at the proxy.

Fragment retrieval

Upon receiving a retrieval request for a specific sector si (i.e., for the cor-
responding h(si)) value, the cluster head sends a broadcast message to all
the members of its cluster requesting all the fragments associated with h(si).
Each storage node in that cluster reacts to that message by directly sending
to the proxy all the fragments associated to h(si).

3.3.3 Redundancy increase

Redundancy increase is accomplished by the proxy that, after choosing which
sector si has to undergo redundancy increase, sends an increase command
to two of the cluster heads storing fragments of si. These two cluster heads
combine and code the fragments in their possession, and then send the newly
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Figure 3.9: Sequence diagram for read request

generated fragments to another cluster head that will store them in its storage
nodes. In this way, redundancy is increased without requiring the interven-
tion of the proxy, that has only to update the table of the corresponding
virtual disk in order to update the list of cluster heads managing si.

Figure 3.10 depict the redundancy increase protocol, that we will discuss
in detail. When the proxy decides to increase the redundancy of sector si,
it sends a message increase(h(si) to two cluster heads chx and chy. These
cluster heads are asked to combine their fragments associated with h(si) and
store them in a third cluster (which could also be one of the former two),
with a standard write operation. Either one of chx and chy could act as a
leader and start the coding protocol. As explained in Chapter 3.2 Section
3.2.3, the second level of coding enables individual nodes to recode fragments
without exposing them the encoding seed zi (to preserve confidentiality), and
without requesting the intervention of the proxy (in order to avoid a potential
performance bottleneck). The leading cluster head combine its fragments
with that of the other cluster head the proxy has recommended. For example
the combination of two fragments ci,l1, ci,l2 of si creates a new fragment ci,l1,l2
that is stored as a tuple < h(si), l1, l2, ci,l1,l2 >. The recombined fragments
can be used by the proxy to decode the sector content by XORing bitmaps
corresponding to the combined l1 and l2 packets.

When the redundancy increase operation is finished, the leading cluster
head sends a message to the proxy, containing the identificator of the cluster
head responsible for storing the new fragments. The proxy, then, updates
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Figure 3.10: Sequence diagram for redundancy increase

the entry in the disk table for that sector.

3.3.4 Redundancy decrease

Redundancy reduction for sector si is instead performed by having the proxy
ask, to every cluster in charge of handling fragments of si, to delete a given
number of fragments (determined by the proxy) sufficient to bring redun-
dancy back to its standard value n.

In Figure 3.11 we can see the redundancy decrease protocol in action. Re-
dundancy decrease command is sent by the proxy to each cluster head in the
list for that particular sector si. Upon receiving the command decrease(h(si)),
only the cluster heads that store recombined fragments perform the opera-
tions (decreasing is done in order to avoid wastage of storage resources when
further redundancy is not nedeed). They send a broadcast message to all the
storage nodes in their cluster asking to delete the recombined fragments of
the sector. Each cluster head that deleted some fragments send a message
to the proxy that updates the disk table.
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Figure 3.11: Sequence diagram for redundancy decrease

3.3.5 Maintenance operations

Another duty of the overlay of storage nodes is to periodically check the
status of its participants. This could be used by the proxy as a keep alive
function that is necessary in order to monitor availability of sectors. The
proxy periodically sends a keep alive message to each cluster heads that store
fragments of a particular sector and it evaluates the responses. The cluster
heads that receive the keep alive message monitor in turn the storage nodes
of their cluster. When storage nodes availability falls below a guaranteed
threshold, the proxy can issue an increase redundancy command, restoring
the original availability.

If the number of original ci,l fragments decreases too much, the second
level of coding could not suffice to reconstruct the sector (recall that it en-
codes only a subset of fragments) and original redundancy has to be restored.
This operation is performed every time a write occur. If write operation are
scarce, the proxy, periodically, takes care of collecting the fragments recon-
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structing the sector, coding it again and spreading the fragments.
In this chapter we described the ENIGMA architecture and the opera-

tion that it provides in order to give to the users a virtual disk, capable of
performing the same tasks of a regular disk. In the next chapters we will
describe caching techniques used to improve access performance and we will
discuss the results achieved by ENIGMA.
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Chapter 4

Availability assessment and
performance evaluation of
ENIGMA

In this chapter we evaluate the characteristics of the ENIGMA system. As
pointed out in section 3.2, the use of rateless codes allows ENIGMA to pro-
vide confidentiality, availability and remote access performance. In sections
4.1 and 4.2 we provide a quantitative evaluation (theoretically and via simula-
tion) of, respectively, confidentiality and availability. In the following sections
we evaluate the performance of ENIGMA. Typically disks and distributed
storage systems are evaluated with regard to two measures of performance:
latency and throughput. In order to study the feasibility of our approach we
opted to study ENIGMA performance with simulation techniques. In sec-
tion 4.3.1 we first describe the simulation methodology used, then we study
the relationship between redundancy and latency, and, in section 4.3.3 we
quantitatively examine the throughput that ENIGMA could provide. In all
the experiments we suppose that the nodes composing ENIGMA are per-
fectly reliable, in section 4.3.4 we will discuss how performance are affected
by using unreliable nodes.

4.1 Data Confidentiality Assessment

In ENIGMA, data confidentiality is guaranteed by three major means, namely
fragment dispersion, disk addressing policies and the linear coding of frag-
ments. According to the distributed nature of ENIGMA, the list of clusters
hosting a given sector is not available in the clear and is secured in the
proxy. Therefore both cluster head and storage nodes cannot retrieve all the

45
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coded fragments of a sector. At the addressing level each sector is identified
through the anonymous hash id, that is meaningful for the proxy owning the
disk only. In this way cluster and storage nodes are neither able to associate
a coded fragment to a given V D nor they know the sector sequential order.

It is worth pointing out that the confidentiality related to the dispersion
and addressing policies is not robust to malicious nodes able to mimic the
proxy requests. In fact, an attacker could conceive a malicious node imple-
mentation that sniffs the protocol signalling from a proxy, tries to reconstruct
the association between the hash id and (V D, si), then attempts to retrieve
at least K coded fragments by flooding the cluster head nodes of read re-
quests. Nonetheless, this weak levels of confidentiality are complemented
by the high degree of security provided by the usage of LT codes (LT are
exposed in Chapter 3.2) as detailed in the following.

The use of LT codes provides two levels of confidentiality. A first level of
confidentiality is guaranteed by the fact that every storage node hosts a lim-
ited amount of coded fragments from which it is very unlikely to reconstruct
the sector content, even assuming that all the private information stored in
the corresponding proxy has been hijacked. In the following we refer to this
kind of attack as single storage node attack. The second form of protection
that we analyze is related to the confidentiality of the coding seed zi that
prevent a malicious node, able to collect at least K coded fragments, to gain
any knowledge of the sector content. We call this attempt to violate the
confidentiality of the data as sector read attack. In the next sections we will
go through each attack separately.

4.1.1 Single storage node attack

In this case the attacker is a modified storage node that attempts decoding
the fragments of a sector she holds for local storage. We can show that
ENIGMA is very secure even in the unlikely case that the attacker has come
into possession of the coding seed zi of the sector under attack.

Checking the hash ids of the fragments, an attacker is able to collect
all the fragments that belong to a certain sector, even if she is not able to
know which sector is. To decode the fragments, the attacker should have the
bitmaps linked to the fragments. As already seen, these bitmaps are collected
(and encoded) in the proxy table: storage nodes have no information about
the bitmaps of the fragments they store.

We can suppose that a modified storage node should be able to obtain
such an information. However, even if she knows the bitmaps of the stored
fragments, the attacker still can not decode the fragments to obtain the
sector. In fact, the number of fragments of the same sector (i.e. labeled with
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Figure 4.1: Percentage of decoded fragments vs. percentage of owned frag-
ments.

the same hash id) stored in a single storage node are not sufficient to perform
a complete decoding: at least K fragment are needed to decode, but each
storage node owns far less than K fragments of the same sector.

However, it is possible to attempt to decode at least the fragments owned
by a storage node: the process of decoding fountains codes with an insuffi-
cient number of fragments is called partial decoding [59]. In a partial decoding
process, the decoder attempts to decode the maximum quantity of informa-
tion using the limited number of owned fragments. Gaussian Elimination
should be used to perform partial decoding. Figure 4.1 shows the results
of the partial decoding of LT codes for k in the range (64,1024); the per-
centage of decoded fragments is reported as a function of the percentage of
coded fragments owned by the node. Both the percentages are calculated
with respect to k.

In Figure 4.1 we can see that if a storage node owns a number of fragments
far smaller than k, she is not able to decode a large number of fragments,
even if she knows their linked bitmaps.

4.1.2 Sector read attack

In the sector read attack we assume that a malicious node has gained suffi-
cient knowledge of the distributed storage system to retrieve a set of K coded
fragments of the sector si. As already pointed out, such fragments allow the
owner of si to run the LT decoder and reconstruct the sector content. This is
possible because the owner has access to the seed zi that corresponds to the
knowledge of the K bitmaps bi,l, l = 1, . . . , K. On the contrary, the attacker
has no chance to decode the sector in absence of the bitmap. Indeed, the
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attacker could perform a brute force search among all the possible combina-
tions of the bitmaps. For each combination LT decoding can be attempted
but the attacker has no means to recognize if the obtained sector is the cor-
rect one making the attack impracticable (the attacker does not have context
information, the fragments are arbitrary sequence of bits).

This brute force attack turns out to be conceivable only if the CRC of
the sector, retained by the proxy, has leaked. In this case the attacker can
detect the correct sector by means of the CRC. She could try all the possible
combinations and for each one calculate the corresponding CRC, until it
matches the correct CRC. However, the large number of required decoding
attempts makes the attack unfeasible. Indeed an exhaustive search amounts
to test all the possible configurations of K bitmaps, each composed of k
bits strings. In the most general case the number of trials turns out to be
K2k . Since we can assume that the attacker knows the degree distribution
P (d = k) = µ(k) used for LT coding a smarter search can be designed.
Instead of testing all the possible bitmaps the attackers would limit the search
to the most likely outcomes of the bitmap degree. The sequence constituted
by K outcomes of the degree can be seen as independent and identically
distributed random variables d1, d2, . . . , dK . According to the asymptotic
equipartition property [28] we can define the typical set of degree outcomes. It
is well known that the typical set has probability close to 1, all elements of the
typical set are nearly equiprobable, and the number of elements in the typical
set is nearly 2KH(µ), where H(µ) is the entropy associate to the RSD. From
the point of view of the attacker the typical set represents the set of the most
likely degree sequences to be tested in order break the code. Since the RSD is
a peaked distribution where only a limited set of the possible k degrees have
non negligible probability, H(µ) is typically small. As an example, setting
the parameters of the RSD (c, δ) = (0.01, 0.001) [49] one obtains H(µ) ≈ 3.
It turns out that the typical degree sequences are approximately 23K . For
each degree sequence there are possible combinations of the K bitmaps to
be tested. Taking into account the properties of the binomial and that the
most likely degree yielded by the RSD is d = 2 we can use the following lower
bound on the number of combinations
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We can thus conclude that the number of decoding attempts that the attacker
shall perform to break the code is larger than
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with K = k + ε. Clearly, the exponential complexity of the search makes
it practically unfeasible. As an example in Figure 4.2 the lower bound of
Equation (4.1) is reported as a function of k in the range (64, 2048). It is
worth pointing out that for k = 64 the number of trial is lower bounded by
10300. This implies that the number of decoding attempts, even for lower
values of k, is too high to exploit this type of attack. Moreover, ENIGMA
uses values of k ≥ 100, that are even higher than the aforementioned lower
bound.

Figure 4.2: Lower bound on the trials required to break the LT code as a
function of k for RSD with (c, δ) = (0.01, 0.001).

4.2 Availability Evaluation

In this section we evaluate the availability level that ENIGMA provides for
its virtual disks by first devising an analytical model of availability, and
then by using it to quantitatively compute the availability for specific values
of n and k. We assume that each sector is split into k fragments, that
are subsequently encoded as n fragments, that are stored on n independent
nodes. Consequently, when a proxy wants to recover a sector, it asks all the
n storage nodes to forward the fragments of that sectors. We also assume
that all the storage nodes are characterized by the same reliability p (i.e.,
the probability of successfully provide a sector fragment to the requesting
proxy).
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p
k = 64 k = 128
Pk Pk

n = 83 n = 96 n = 128 n = 166 n = 192 n = 256
0.70 0.015 0.302 0.932 0.004 0.500 0.993
0.75 0.091 0.570 0.964 0.085 0.845 0.998
0.80 0.294 0.760 0.981 0.462 0.945 0.999
0.85 0.558 0.860 0.989 0.827 0.977 0.999
0.90 0.741 0.915 0.995 0.931 0.990 1.000
0.95 0.829 0.941 0.996 0.967 0.995 1.000

p
k = 256 k = 512
Pk Pk

n = 333 n = 384 n = 512 n = 666 n = 768 n = 1026
0.70 0.009 0.923 1.000 0.001 0.990 1.000
0.75 0.325 0.996 1.000 0.357 1.000 1.000
0.80 0.919 0.999 1.000 0.989 1.000 1.000
0.85 0.993 1.000 1.000 1.000 1.000 1.000
0.90 0.998 1.000 1.000 1.000 1.000 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.1: Pk as a function of p for several values of k and n.

Under these assumptions, the probability p(r) for the proxy to receive r
encoded fragments is given by

p(r) =

(
n

r

)
pr(1− p)n−r.

As already seen in Chapters 3.2 and 3, the proxy is able to decode the
fragments (i.e. to recover the sector) only if r ≥ k. In particular, if the
proxy receives r ≥ k fragments it has a probability σ(r) to decode the frag-
ments. This probability depends on the rateless code and the decoding al-
gorithm used: in [57] a theoretical study of σ(r) for LT codes and Gaussian
Elimination-like decoding algorithm is presented. Finally, using the law of
total probability, it is possible to calculate the probability that the proxy
decodes the requested sector, i.e. the availability, as Pk =

∑n
i=k p(i) · σ(i).

In Tab. 4.1 Pk is evaluated as a function of the storage nodes reliability
p for several values of n and for some values of the code block length k =
64, 128, 256, 512. As expected, it can be noted that the availability increases
if more coded fragments are stored in system, i.e. if one increases the storage
overhead. In Tab. 4.1 the values of n corresponding to a storage overhead of
30%, 50% and 100% respectively have been selected. Tab. 4.1 also shows the
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dependency of Pk on the value of k. It can be observed that, given a certain
value of p, the required level of availability can be guaranteed increasing k,
i.e. cutting each sector into more fragments. This amounts to using an LT
code with a larger block size and therefore closer to the channel capacity
bound.

The above considerations allow one to derive the basic rules for the fulfill-
ment of a certain service level agreement that, in the most general case, can
be varied on a per sector basis. This great flexibility is empowered by the
usage of rateless codes where the the sector fragmentation k and the number
of coded fragments stored in the system n can be changed adaptively, e.g. in
response to the migration of a virtual machine using the cloud disk.

4.3 Performance Evaluation

In this section we provide an evaluation of access time performance of ENIGMA.
In the following section we will introduce the simulation techniques that we
adopted in order to evaluate the performance of ENIGMA, namely through-
put and sector retrieval time. Firstly we suppose that the nodes never fail,
then, in section 4.3.4, we will study configurations in which nodes fail with
a given probability.

4.3.1 Simulation

As stated in the introduction, we studied the system with simulation tech-
niques. We developed a discrete-event simulator in C++ trying to capture
the essential characteristics that correctly describe the system. In order to
study the behavior of the system we have to correctly represent the coding
process, the network (including the end-to-end latency between the nodes of
the infrastructure as well as the end-to-end capacity of the channels in terms
of bandwidth) and the behavior of the input process (i.e. the disk workload).

In the remaining of this section we will describe the key features of the
simulation design, outlined above.

Sector encoding and decoding simulation

LT codes have an overhead factor ε that is related to the number of fragments
k. In section 3.2 we discussed that this parameter depends on the fragments
(the k chosen among the total number of fragments n) used for the decoding
process and it could vary slightly every time the decoding takes place. In
order to avoid the development of the decoding process directly inside the
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simulator (that could lead to slower simulation time) we decided to draw ε
from a distribution. Using the technique in [24] we performed several coding
and decoding rounds and we collected the values of ε; from the data-set
collected we extracted the empirical distribution of ε for several values of k.
Each time we simulate the decoding operation of a given sector, we sample
the empirical distribution by extracting a random number between 0 and 1
with uniform probability. In this way we generate the corresponding random
variate. The number obtained is the overhead ε associated to that particular
decoding process.

Latency and Bandwidth distribution

Our system is designed to be deployed on wide area networks and, as already
anticipated, we need a method for simulating the key features of a network.
We choose to describe the network used by the entity composing the system
by means of two characteristics: the end to end latency between each couple
of components and the bandwidth.

To get an accurate measurement of the latency we relied on the Meridian
distribution [69]. Meridian is a project of the Cornell University that has
the goal of building a “peer-to-peer overlay network for performing location-
aware node and path selection in large-scale distributed systems”. One of
the project’s feature is the Meridian data set, that is a matrix of latencies
measured between 2500 × 2500 nodes. For each couple of nodes a measure-
ment of the nodes end-to-end latency was performed during a period of time
of a week. Each value reflects the median of the latency of the collected
values. The matrix obtained reflects the average latency of a typical wide
area network that, in this case, connects the storage nodes, the cluster heads
and the proxy.

In order to give an accurate measure of the system performance we char-
acterized the bandwidth of each node with an estimation that is obtained by
samples taken from [44]. In the article the authors conducted an extensive
study of the bandwidth measured between PlanetLab [10] nodes. Planet Lab
is a globally distributed network with hundreds of nodes spanning over 25
countries and it gives an accurate estimation of bandwidth characteristics of
network paths. In the article an end-to-end capacity distribution is provided
with an average bandwidth between hosts of nearly 64MBps.

Disk Workload

In this chapter’s introduction we mentioned that we use real word disk traces
for the simulations. We motivate this choice by noting that synthetic work-
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loads, whereas more flexible, have the inconvenient that they must be ex-
tracted from real-world traces, synthesized and then generalized. The draw-
back is that it is difficult to prove that the most accurate model captures
all the important properties of a given set of traces. For these reasons we
opted for trace-driven simulation with workload traces chosen accordingly
to their characteristics described in [45] and available at [11]. We choose
four different workload traces, namely: CFS, RAD-BE, WBS and DAP-DS.
The traces’ statistical measure are described in detail in the article and have
different characteristics:

• CFS: captured on a server that stores metadata for MSN protocol. The
trace has a disk access pattern characterized by accesses to multiple files
with a high I/O rate (I/O operations per second).

• WBS: captured on a production system that build a complete version
of the Windows Server operating system. This trace has a moderate
I/O rate, but it is longer in time and transfers more data.

• RAD-BE: captured on a Radius authentication server. It accesses few
files with relative high frequency and it has a varying I/O rate.

• DAP-DS: captured at a data server used for caching files for the front-
end. It has a low I/O rate and it requests most of the time the same
file.

Simulation design details

The first performance metric we wanted to test was average latency of sector
retrieval. We modeled this simple setting by creating an entity called storage
node and we associated to each storage node a latency chosen uniformly at
random from the Meridian data set. The proxy and the cluster heads were
part of the infrastructure and they had a latency drawn from Meridian as
well. Each fragment belonging to a sector was assigned to a specific storage
node with the constraints that a storage node could not store fragments of
the same sector. In this way we modeled the request and the retrieval of
sectors. This simple simulation environment did not take into account the
end-to-end bandwidth of the storage nodes and the proxy, but was accurate
to determine the average latency of sectors retrieval.

With these settings, the high number of events generated and the memory
requirements for all the data structures, resulted in a slow simulation. For
this reason we chose another method for generating sectors retrieval time,
so we used order statistics [40]. Given a sample of n variates X1, ..., XN ,
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reorder them so that Y1 < Y2 < ... < YN . Then Yi is called the ith order
statistic. If we set Xi as the time for retrieve fragment i of a sector, the Yk
order statistic is the time of retrieval of the whole sector. The sector retrieval
time is determined by the time the kth fragments arrives at the proxy.

We then sampled the Meridian data set and the bandwidth distribution
to retrieve an empirical continuous distribution that we used to construct the
kth order statistic. We used the obtained order statistic to draw a random
variate that represent the sector retrieval time, without the need of simulating
the retrieval of all the fragments.

In all the simulations we computed the average sector retrieval time with
95% confidence intervals and 2.5% relative error.

In the remaining of this section we compare the performance evaluation
in [73] with that of our new simulator. As pointed out in [73] we compared the
time taken by a client to retrieve a sector when using, respectively, ENIGMA
and a virtual disk located on a single storage server (the baseline system).
Although very simple, the baseline system can be considered representative
of those (very common) scenarios in which the virtual disk must be accessed
by the corresponding VM through a production network (e.g., the Internet).

In our experiments, we consider a virtual disk consisting of about 30 mil-
lions of 40 KB sectors. We considered an ENIGMA configuration consisting
of 2000 perfectly reliable storage nodes, organized into 20 clusters compris-
ing 100 randomly-chosen nodes each; the average latency L of the ENIGMA
configuration was L = 32 msec. For each sector, we set k = 100, and we per-
formed several experiments in which we increased n from k to 3k with step
0.1. The resulting fragments were randomly distributed, with uniform prob-
ability, over the 2000 storage nodes. The workload used in our experiments
is CFS described in section 4.3.1.

The results obtained for the scenarios involving ENIGMA have been com-
pared with those obtained by the baseline system for different values of its
service time S (the time taken to serve a single sector request). In particu-
lar, we performed experiments for S ∈ L,L/2, L/4, L/8. The results of our
experiments are reported in Figure 4.3.

As can be observed from this figure, the larger n the smaller the sector
retrieval time. This is not unexpected, as a sector is considered to be retrieved
when k + ε fragments out of n are received, and the larger n, the larger the
probability that the required fragments are shipped by faster nodes.

Figure 4.4 represent the results of the new simulator with the order statis-
tic method. We can observe that the results are similar to that of figure 4.3.
The difference in the two figures is due to the delay introduced by the nodes-
to-proxy end-to-end bandwidth and the channel capacity of the proxy, as
well as a statistical error introduced by the approximation.
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Figure 4.3: Comparison of ENIGMA performance w.r.t. the baseline system.

Figure 4.4: Simulation of ENIGMA with order statistic

4.3.2 Sector Access Time Evaluation

In this section we evaluate the disk access performance of read and write
operations. Figure 4.5 has the same settings of figure 4.4. As we can see the
read access time decreases when we increase the number of fragments per
sectors. This is expected because increasing the number of fragments per
sector, increases the probability that more fragments will be placed on faster
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storage nodes. Since the k fragments needed to recontruct the sector can be
on any of the n total fragments, the faster nodes that respond sooner will
decrease the sector access time.

On the other hand the write access time (that is the time needed by a
write operation to complete) steadily increases. This is expected because
the write operation is conservative, meaning that a single write has to wait
until all the n fragments are placed on the storage nodes. A less conservative
approach is to wait until only a portion of the fragments is stored. For
example we could decide to wait until only k fragments plus an arbitrarily
chosen epsilon are stored. The other fragments are stored in an asynchronous
way, and the write is considered completed before the total n fragments are
stored.

Figure 4.5: Average data access time varying redundancy

4.3.3 Throughput Evaluation

The data transfer rate (throughput) of disk drive (both for read/write) is
usually measured by writing a large file to the disk and successively read it.

In the contest of ENIGMA we are interested in the maximum throughput
that the infrastructure of storage nodes can provide. For this reason we
created two synthetic workloads that request a single file of size o = 10GByte
at once (we suppose that the file is allocated on contiguous sectors). In
contrast from regular hard disk, whose throughput is limited by the rotational
speed and density of the disk drive, ENIGMA throughput is provided by the
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network capacity of the infrastructure and by the bandwidth of the proxy.
The network capacity of the infrastructure is given by the aggregate network
bandwidth of the nodes that store the disk. We measured the throughput of
the disk, simulating a read and a write request for the synthetic trace of size
o, varying the bandwidth of the proxy, for values ranging from 100MBps to
15GBps. In the next section we will discuss the results for the read and for
the write throughput.

Figure 4.6: Throughput of the disk

Read

As can be seen in picture 4.6, the bandwidth of the proxy is the bottleneck
that limits the read throughput of the disk. For bandwidth values up to ap-
proximately 8GBps the aggregate bandwidth of the infrastructure is able to
saturate the proxy channel capacity. Clearly there is a limit in the aggregate
network capacity that the infrastructure can provide. This limit arises for
values of bandwidth greater than 8GBps and is around 7.762GBps. In the
remaining of this section we will provide an explanation for such limit.

A single request is dispatched in parallel by k out of the n nodes that
store the fragments of the sector. Two concurrent requests s1 and s2 are
served in parallel if n1 and n2 are two disjoint subsets of nodes composing
the infrastructure. But this is not always the case, since the n fragments
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of a sector are spread uniformly at random over the infrastructure and thus
the two subsets are not disjoint with a certain probability. The real measure
of how they overlap is not simply captured by the simulation settings (as
described in 4.3.1), specifically by the order statistic method used.

Given this observation we can still determine a lower limit for the band-
width provided by the infrastructure and show that, even in the worst case,
it is sufficient to saturate the bandwidth of the proxy for reasonable values.
In the worst case all the sectors are spread on the same n nodes of the infras-
tructure and thus the amount of capacity is that of such nodes in parallel.
Even in this scenario, the aggregate bandwidth of the nodes is able to provide
a throughput of 7.762GBps as can be seen in figure 4.6.

Write

In picture 4.6 we can see that the throughput of the write operation is always
half of the read throughput. This could be explained by noting the particular
settings used for this set of simulations. In the simulation we used k = 128
and n = 256. Since ENIGMA has to wait that all the n fragments are stored
in order to consider the operation completed, the available throughput is
halved (3.874GBps).

4.3.4 Fault tolerance Evaluation

In this section we show the results of a series of simulation with a config-
uration in which the nodes can fail. A failure means that, upon receiving
a request for a fragment, the storage nodes does not reply to that request.
Each node has a uniform at random probability p of responding to a request
(a perfect reliable node has a probability of response p = 1). We performed
the simulations varying p (p = 0.5, p = 0.7 and p = 0.9) as well as the
redundancy of each sector, with fixed k = 100 and varying n = 100, . . . , 200
with an incremental step of 10 fragments. Similar to real disk drives, we set
a fixed timeout for the read request. After a sector is requested we wait until
either the sector is retrieved or the timeout occurs. In the latter case we re-
quest again the fragments of the sector that have not yet been retrieved (due
to a storage node failure) and we wait for another timeout. If the timeout
occurs again we have a failure and the infrastructure is not able to deliver the
sector (in practice we give a second chance to a request after the first time
occurs). The results follow what was anticipated theoretically in section 4.2.
If redundancy is proportional to the failure rate ENIGMA is able to deliver
the sector correctly.
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Figure 4.7: average latency when varying redundancy with probability of
response p = 0.5

Unreliable nodes (p = 0.5)

In Figure 4.7 we can see how latency varies with varying redundancy and a
set of nodes that have a probability of response p = 0.5. When redundancy
is low, the response time is low, because we expect an high failure rate of the
nodes and so the timeout occurs for almost all the sectors requested. Only a
small percentage of sectors (Figure 4.8) is retrieved and corresponds to the
sectors with fragments placed on faster nodes. As redundancy increases (form
10% to 40% of fragments), the response time increases, because more sectors
are correctly delivered. In this case, the redundancy can handle the failure of
the nodes, but at the cost of a higher average latency, that is determined by
the high number of timeouts that still occurs. When redundancy increases
further (from 50% to 100% of fragments), the failure rate of requests drops to
zero and, conversely, the requests successfully delivered become 100% of the
total requests. This is somewhat expected because, intuitively, a redundancy
of 50% is able to tolerate a failure rate of 50%. It is worth noting that, even
if all the sectors are delivered (100% of responses), we still observe an high
number of timeouts (50% of the responses), because the fragments in excess
are used to cope with node failures and they do not decrease sectors access
time.
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Figure 4.8: percentage of responses timeouts and failures with probability of
response p = 0.5

Moderately reliable nodes (p = 0.7)

In this scenario, we evaluate the latency of sector retrieval when the response
probability of the set of storage nodes is moderately high p = 0.7. As we
can see in Figure 4.9 and 4.10 an increment of redundancy of 30% can cope
with failures and succeed in delivering the 100% of sectors requested. From
this point on, the average sector retrieval time constantly decreases when
redundancy increases. The decrement of sector retrieval time is not as fast
as we expect though, because node failures still introduce errors that cause
timeouts. The percentage of timeouts drops to 0 when redundancy is greater
than 70% of increment (Figure 4.10).

Highly reliable nodes (p = 0.9)

Figure 4.11 and 4.12 correspond to a scenario in which nodes reply to requests
with high probability. Such a scenario could correspond, for example, to a
reliable set of nodes located on a controlled datacenter. In this case, even a
low redundancy (10%) is able to provide enough reliability and, as we can
see, in all cases we have a 100% of successful replies. Differently from the
previous cases, an increase of redundancy brings immediately an increase of
the average sector retrieval time, because the fragments are used to decrease
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Figure 4.9: average latency when varying redundancy with probability of
response p = 0.7

access time. In particular we observe the absence of timeouts that would
have slowed down the sector retrieval time.
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Figure 4.10: percentage of responses timeouts and failures with probability
of response p = 0.7

Figure 4.11: average latency when varying redundancy with probability of
response p = 0.9
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Figure 4.12: percentage of responses timeouts and failures with probability
of response p = 0.9
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Chapter 5

Caching architecture and
policies in ENIGMA

In this chapter we describe the caching mechanisms for the ENIGMA system.
Caching techniques are a standard mechanism used for decreasing data access
time and increasing throughput. They have been widely adopted in various
contexts, such as disk drives, processors, databases, web servers, file systems,
operating systems and distributed systems. A cache is a memory that can
store a limited amount of data, but guarantees better access time than the
primary storage. Storing the most accessed data items in cache allows per-
formance benefits, but the limited amount of space raises the problem of
choosing which elements hold and which eliminate.

5.1 Caching in Enigma

In this section we provide an exposition of caching mechanisms and policies
that will be used in ENIGMA as a mean to improve performance.

Two aspects characterize a caching system: its size and the replacement
algorithm (that chooses which element keep in cache and which erase). A
large body of literature has extensively studied replacement algorithms, but
the distinctive features of our system do not allow to determine a priori if the
results achieved by those algorithms for traditional systems are valid applied
to ENIGMA. ENIGMA, unlike real hard disk drives, has a different notion
of sector contiguity; in traditional disks contiguous sectors are allocated in
the same track and in the same cylinder, and operating systems tries to ex-
ploit this peculiarity by storing files in contiguous sectors, in order to reduce
seek time and the repositioning of mechanical parts of the disk drive. This
assumption, on which file systems are based, has lead to the development of

65



66CHAPTER 5. CACHING ARCHITECTURE AND POLICIES IN ENIGMA

caching and prefetching strategies that work well on real systems. ENIGMA
on the contrary does not have a notion of proximity based on mechanical
parts, hence apparently close sectors may in fact be stored on different stor-
age nodes. In this context the miss penalty (i.e. the cost of retrieving a
sector from the storage nodes, in case it is not in cache) varies significantly
and is related to the placement of the fragments over the infrastructure.
Traditional caching policies are applied in a context (disk drives) where the
response time has a predictable pattern, that depends only on the geometry
of the disk and the stream of requests. In a network the response time varies
dynamically (and with higher variance) not only due to the workload, but
also for external factors (such as for example network congestion, load on
the servers and nodes failure). For these reasons we will study each policy
applied in the context of ENIGMA. In the next sections we will describe the
architecture and the policies of Enigma caching system.

Figure 5.1: Enigma caching architecture

5.1.1 Caching architecture

Enigma caching architecture is structured in two levels (Figure 5.1). A first
level cache, called Explicit Cache (EC for short), is a classical software cache
and is located on the proxy; it has the task of storing decoded sectors. When
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a client issues a request, the proxy first looks into EC cache and, if the sector
is present, delivers it to the client (in that case we have a cache hit). If the
sector is not present in EC, the proxy retrieves it from the storage nodes and
subsequently stores it into the cache. The amount of storage assigned to this
cache is limited by the storage capacity of the proxy. If the cache is full, a
“victim” is chosen to be evicted and leave room for the sector just retrieved.
The second level cache, called Implicit Cache (IC for short), is not a proper
software cache, but it exploits the power of coding techniques in order to
decrease sectors’ retrieval time. In practice IC cache increases selectively the
redundancy of some sectors with the consequence of decreasing retrieval time
(increasing redundancy decreases access time, as pointed out in [73]). The
sectors with augmented redundancy constitute the IC cache. In this case
the sectors are not stored in the proxy, but rather the proxy maintains a list
of references to the sectors that form the IC cache. The dimension of the
cache is the number of sectors present in the list. In this case the amount
of storage dedicated to the cache is that of the storage nodes, that have
to store the additional fragments of the “cached” sectors. When the proxy
decides to put a sector in IC, the redundancy of that particular sector is
increased; conversely, if IC is full (i.e. the number of sector in the list equals
the predefined dimension of the cache), a sector is chosen to be expelled
and, consequently, its redundancy is decreased to the standard level. The
mechanisms for increasing and decreasing sectors redundancy are described
in details in section 3.2.

In the remaining of this section we will describe caching policies (i.e.
replacement algorithms) and redundancy mechanisms in order to implement
the caching system of Enigma. In section 5.2 we will evaluate these policies
by simulation.

Two classes of algorithms are used in the context of caching: caching
algorithms and prefetching algorithms. Caching tries to capture temporal
locality of sectors requests, while prefetching tries to capture spatial locality.
Locality of references is a principle that correlates subsequent accesses to
storage locations. Temporal locality refers to the concept that a storage
location that is referred at some time, will be likely referred again in the
near future. Spatial locality, conversely, refers to the likelihood of accessing
data items in close storage locations. In the context of ENIGMA we apply
traditional caching algorithms to EC while we use prefetching in IC. The
rationale behind this choice is that the cost of read ahead is higher if we fetch
the sector rather than if we increase its redundancy. That is, fetching a sector
to the cache needs an higher time than increasing the sectors’ redundancy
level. In practice, when a request arrives for sector si, the time for retrieving
subsequent n sectors has a certain value, say tf . If we choose to increase the
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redundancy of the n sectors instead, the time for completing the operation
(considering that is performed by the infrastructure and not by the proxy) is
tr, with tr < tf on average (remember that only a portion of the fragments
is needed to increase redundancy and not all the fragments as in the case of
reconstructing the whole sector). In case prefetching is too much aggressive,
for example because the workload shows low spatial locality, the cache is
polluted with useless sectors (i.e. sectors that will not be requested in the
future). If we fetched the sectors to the cache we would have wasted precious
resources and time; if conversely we increase redundancy the disadvantage of
useless prefetch is diminished. Prefetching with the mechanism of increasing
and decreasing redundancy could be a good trade off between increasing
performance and use of storage resources. Moreover if we decide to fetch
sectors contiguous to the one requested, the time needed for the operation
will be likely greater than the time when the sectors will be referenced.

For these reasons, in order to gain an advantage from the prefetching
mechanism, we choose to increase the redundancy of sectors instead of fetch-
ing them to the cache. Other algorithms tries to combine caching and
prefetching in a single cache. We applied these algorithms to the IC in
situations where an EC cache could be not available (for example when the
disk is accessed with a tablet pc).

In the next paragraphs we will describe caching and prefetching algo-
rithms considered for ENIGMA.

5.1.2 Explicit Cache algorithms

As already mentioned, several caching algorithms are known in the literature.
An overview and a comparison study of such algorithms is given in [72]
and [52]. All the algorithms listed below exploit the principle of temporal
locality of data, according to which it is likely that a requested sector will be
referenced again in a relatively short amount of time. The various algorithms
are variations of the classical Least Recently Used (LRU) algorithm, that tries
to capture recency, and the Least Frequently Used (LFU) algorithm that tries
to capture frequency of accesses. In practice LRU always replace the least
recently used item in the cache. The cache is seen as a list of items, so every
time a reference is made to an element, this one is placed on the head of
the list while the last element (the least recently used) is evicted. Conversely
LFU counts references to the elements in the cache and removes the one with
the lowest value. Most of caching algorithms are variation of these two, we
will evaluate the most recent ones found in the literature. The algorithm
that we choose for comparison are: LRU, 2Q [43], LIRS [42], ARC [52] and
CAR [21].
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7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1

Table 5.1: List of requests

In the next paragraphs we will explain the key ideas of each caching
algorithm. We will use a simple example to illustrate the inner working of
each algorithm. The example is a stream of sector requests, depicted in Table
5.1. Each cell in the list is a request for the sector that is contained in the cell;
the sectors in the list are requested from left to right. For each algorithm we
will explain how the algorithm behaves in response to this stream of requests.

LRU

LRU maintains a list, managed as a stack, of references to the sectors. The
head of the stack represents the most recently used (mru) element of the list.
When an item is accessed it is placed on the mru section of the list and when
the list is full, the algorithm evicts the sector at the tail of the list, that is
the least recently used (lru) sector. Table 5.2 depicts a working example of
LRU. The list of requests (table 5.1) is depicted in the top row of table 5.2.
In 5.2a through 5.2o it is shown the behavior of a LRU cache of size 3 (the
symbol (∗) marks a cache hit). Each column represents the content of the
cache at the time the corresponding request arrives. The top cell of each
column represents the most recently used element in the cache, whereas the
bottom cell represents the least recently used element. Table 5.2a represents
the first three steps of the algorithm, each element is placed at the top of
the cache and no other action is performed, because the cache is empty and
there is room for storing the requested sectors. When the fourth request
arrives the cache is full (Table 5.2b) and the algorithm performs the first
eviction. The lru element (bottom of the cache) is evicted and sector 2 is
placed in the mru position of the list. The fifth requests is a hit (Table 5.2c),
because 0 is already an element of the cache, hence it is moved to the mru
position of the list. The next request (Table 5.2d), for sector 3, is a miss.
The sector is not in cache and thus the lru element of the cache is selected
for eviction and sector 3 is moved to the mru position. Subsequent request
(Table 5.2e) is a hit again (sector 0 is still in cache). The next four requests
(Table 5.2f to Table 5.2i) are all misses, thus the lru element (bottom) of the
list is evicted and the requested sector is placed in the mru position (top)
of the list. Successively we have two hits, because requested sectors 3 and 2
are present in the cache (Table 5.2j and Table 5.2k). The remaining requests
are in order, a hit (Table 5.2l), a miss (Table 5.2m), a hit again (Table 5.2n)
and another miss (Table 5.2o).
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Cache references:

7 0 1

7 0 1
7 0

7

(a)

2

2
1
0

(b)

0
(∗)
0
2
1

(c)

3

3
0
2

(d)

0
(∗)
0
3
2

(e)

4

4
0
3

(f)

2

2
4
0

(g)

3

3
2
4

(h)

0

0
3
2

(i)

3
(∗)
3
0
2

(j)

2
(∗)
2
3
0

(k)

1

1
2
3

(l)

2
(∗)
2
1
3

(m)

0

0
2
1

(n)

1
(∗)
1
0
2

(o)

Table 5.2: LRU example

LRU algorithm is really simple and we will use it for comparison purposes
only.

2Q

Figure 5.2: 2Q algorithm

LRU works well because tends to remove “cold sectors” (i.e. sectors that
are not accessed for longer time) to make space for the requested sector. If,
however, the requested sector is cold, LRU may remove “warmer sectors”
(i.e. sectors that are supposed to be accessed in the near future) from the
cache to store the requested (cold) sector, that will remain in the cache for a
long period of time. 2Q improves upon LRU, because it uses a main buffer
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Cache references:

Am(2)
A1in(1)

A1out(2)

(a)

7

7

(b)

0

0
7

(c)

1

1
0,7

(d)

2

2
1,0

(e)

0

0
2
1

(f)

3

0
3

2,1

(g)

0
(∗)
0
3

2,1

(h)

4

0
4

3,2

(i)

2

2,0
4
3

(j)

Am(2)
A1in(1)

A1out(2)

(k)

3
(∗)
3,2
0
4

(l)

0
(∗)
3,2
0
4

(m)

3
(∗)
3,2
0
4

(n)

2
(∗)
2,3
0
4

(o)

1

2,3
1

0,4

(p)

2
(∗)
2,3
1

0,4

(q)

0

0,2
1
4

(r)

1
(∗)
0,2
1
4

(s)

Table 5.3: 2Q example

in which only warm sectors are stored and a special buffer to place sector
referenced for the first time.

This algorithm uses special queues: A1 and Am. A1 is further divided
in two queues A1in and A1out. Am is managed as an LRU list, and is used
to store the elements that have a steady frequency of accesses (i.e. they are
requested regularly over time). A1in, instead, is used to keep the sectors
that are accessed with high frequency, probably due to correlation in the
references (a correlated reference is a close in time access to the same sector,
probably made by the same process). The elements from A1in not accessed
for a longer time are placed in a temporary ghost queue, A1out. A1out
maintains only the reference to the sectors, not the sectors themselves. It
is used to detect sectors with long-time access rates. The size of the two
queues, A1in and A1out, must be chosen carefully, in an off-line fashion.
This could be potentially a difficult task and, for this reason, the authors
suggest two typical values that performs well in most of the situations. In
a typical setting, given a cache of size c, A1in should be 25% of c, leaving
the remaining space to Am. A1out instead should be as large as 50% of the
cache size c. In Figure 5.2 we can see the detailed algorithm for 2Q.

In Table 5.3 we can see the sample list of sector requests and how 2Q act
in response to these requests (the symbol (∗) indicates a cache hit). Table
5.3a represents each queue described in the previous paragraph. Each cell,
corresponding to a particular queue, represents the list of sectors present
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in the queue at a particular time. It is a comma separated list of sectors,
and, as a rule, the head of the queue is the leftmost sector, while the tail
of the queue is the rightmost one. When the cache is empty each request
is served by the A1in queue and the requested sector is placed in the head
position of A1in. When A1in is full (after the first request in this example
because the size of A1in is one) the tail of A1in is evicted and an identifier
is placed at the head position of A1out. This behavior is depicted in Tables
5.3b to 5.3e, in which all the requests are miss (the requested sectors are
not already cached). In Table 5.3f we have another miss, but this time the
requested sector is present in the A1out queue, which means that we have a
long time reference correlation. Sector 0 is then moved to the head of Am
queue. The next request 5.3g is a miss, sector 3 is placed in A1in and an
identifier is added to A1out with a reference to the sector in the tail of A1in
(sector 2 in this case, that is removed to make room for the requested sector).
Next reference, depicted in Table 5.3h, is a hit, because sector 0 is in Am
queue. The sector is moved at the head of Am (in this case nothing happens
because it is the only sector present). For the request of sector 4 (Table 5.3i)
the algorithm places the sector in A1in and an identifier is added to A1out (a
reference for the sector in tail position of A1n). In Table 5.3j the requested
sector is reference in A1out (sector 2), and it is promoted to the Am queue.
The subsequent four requests (Table 5.3l through 5.3o) are all hits to the Am
queue, which means that the referenced sector is moved to the head of the
queue. Successive request is a miss (Table 5.3p) and sector 1 is placed in the
A1in queue (sector 0 is evicted from the cache and a reference is placed in
A1out), then we have a hit for sector 2 (Table 5.3q), that leaves the cache
unchanged. The next request is a miss, sector 0 is not in cache, but it is
referenced in A1out. For this reason the sector is moved in the mru position
of Am (Table 5.3r). Finally, the last request is for sector 1 (Table 5.3s), that
is present in A1in (hit).

LIRS

2Q is an attempt to cope with LRU inability to deal with access patterns
with weak locality, but a the cost of increasing the algorithm complexity
and with the addition of parameters that have to be carefully tuned. LIRS
tries to address the limits of LRU and 2Q, by using recency to evaluate
Inter-Reference-Recency (IRR) for making a replacement decision. The IRR
is the recording information associated to each sector and represents the
number of other sectors accessed between two consecutive references to the
sector; conversely, recency is the number of requested sectors between the
last reference and the current time. LIRS uses this information in order to
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Cache references:

stack S

list Q(1)

(a)

7 0 1

7(l) 0(l) 1(h)
7(l) 0(l)

7(l)

1(h)

(b)

2

2(h)

1(h)
0(l)
7(l)

2(h)

(c)

0
(∗)
0(l)
2(h)

1(h)
7(l)

2(h)

(d)

3

3(h)
0(l)

2(h)

1(h)
7(l)

3(h)

(e)

0
(∗)
0(l)
3(h)

2(h)

1(h)
7(l)

3(h)

(f)

4

4(h)
0(l)

3(h)

2(h)

1(h)
7(l)
4(h)

(g)

2

2(l)

4(h)
0(l)

7(h)

(h)

stack S

list Q(1)

(i)

3

3(h)
2(l)

4(h)
0(l)

3(h)

(j)

0
(∗)
0(l)
3(h)
2(l)

3(h)

(k)

3
(∗)

3(h)
0(l)
2(l)

3(h)

(l)

2
(∗)
2(l)
3(h)
0(l)

3(h)

(m)

1

1(h)
2(l)

3(h)
0(l)

1(h)

(n)

2
(∗)
2(l)
1(h)

3(h)
0(l)

1(h)

(o)

0
(∗)
0(l)
2(l)

1(h)

(p)

1
(∗)

1(h)
0(l)
2(l)

1(h)

(q)

Table 5.4: LIRS example



74CHAPTER 5. CACHING ARCHITECTURE AND POLICIES IN ENIGMA

decide which sector evict. The algorithm distinguishes between sectors with
low IRR (denoted as LIR) and sectors with high IRR (denoted as HIR), the
recency is used only to determine the LIR or HIR status of each sector. LIRS
maintains a LIR set and a HIR set, and manages to limit the size of the LIR
set so that all the sectors belonging to the set fits the cache. The HIR set,
conversely, resides on a small portion of the cache and its sectors can be
evicted at any recency.

LIR set is completely contained in the cache whereas HIR sectors could be
either in cache (resident HIR sector) or not (non resident HIR sectors). LIRS
divides the cache in two parts, the largest part (of size Llirs) is used for storing
LIR sectors, and the smallest part (of size Lhirs) used for storing resident HIR
sector (Llirs+Lhirs equals cache size). The authors suggest Lhirs to be 1% of
total cache size. The ability of LIRS is to maintain and dynamically adapt
the LIR set and HIR set. This is accomplished by switching the sectors
status between LIR and HIR, based on the comparison of the IRR of each
sector. If a HIR sector is referenced, it gets a new IRR status that is equal to
its recency. If the IRR is smaller than the recency of a LIR sector it means
that the next IRR of the LIR sector will be greater than that of HIR sector.
This assumption holds because the recency of the LIR sector is part of its
incoming IRR and no greater than the IRR. Once LIRS has found that the
maximum recency of a sector in the LIR set is greater than the IRR of the
HIR sector, it switches the status of the two sectors.

In order to avoid the burden of maintaining the information relative to
the IRR and recency of each sector, LIRS algorithm is implemented using a
lru stack, namely stack S, that records the recency using the position in the
stack as the lru algorithm does. Stack S has varying size and records the LIR
or HIR(either resident or non-resident) status of sector that are pushed into
it. The resident HIR sectors are further recorded in a list, called listQ, with
maximum size Lhirs. In stack S the bottom sector is always a LIR sector
and, if it is removed (because its status is swapped with a HIR sector), LIRS
perform an operation of stack pruning, that removes all the elements in the
stack until a LIR sector is found. This operation is performed because HIR
sectors above the bottom LIR sector have a recency lower than the other LIR
sector in the stack and thus they will never get the chance to switch their
status to LIR.

When the cache is empty, to all the referenced sectors is given the LIR
status, then, when the cache is full (the number of LIR sectors equals Llirs),
the algorithm performs as follows:

• access to a LIR sector X: this is a hit, the sector is moved to the
mru position of stack S and pruning is performed if needed.
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• access to a HIR resident sector X: this is a hit, the sector is moved
to the mru position of stack S and two cases are possible: (1) the sector
is in stack S and thus its status becomes LIR (then the LIR sector in
the lru position of stack S becomes a HIR sector). Stack pruning is
performed if needed. (2) X is not in stack S, its status is set to HIR
and it is placed in list Q.

• access to a HIR non-resident sector X: this is a miss, the sector
is moved to the mru position of stack S and the HIR sector in mru
position in listQ is removed. Two cases are possible: (1) the sector
is in stack S and thus its status becomes LIR (then the LIR sector in
the lru position of stack S becomes a HIR sector). Stack pruning is
performed if needed. (2) X is not in stack S, its status is set to HIR
and it is placed in list Q.

The working example of LIRS is depicted in Table 5.4. We will provide
a step-by-step description of the algorithm applied to the list of requests of
Table 5.1. Each column (Tables 5.4b to 5.4q) corresponds to a step of the
algorithm and the requested sector is provided in the corresponding cell atop
of each column. In table 5.4a, the “stack S” reading direction is from top to
bottom and has varying size; “list Q” is of size one. When the cache is empty,
the new sectors are assigned the LIR status (an (l) next to the sector number),
until the LIR set is full (2 sectors in this case); at that point, to the new
requested sectors is given the HIR status (an (h) next to the sector number).
The first three steps in the example (table 5.4b) depict this situation; sector
1 (the last sector requested) is on top of stack S with status HIR (and at
the same time is referenced in list Q). The former requested sectors, 0 and
7, are of LIR type and are placed in the bottom position of stack S. The
successive request (sector 2) is a miss, 2Q evicts the HIR sector from the
cache (sector 1 becomes a non-resident HIR sector in stack S, marked as
1(h) in table 5.4c) and 2 becomes the new resident HIR sector. The next
request, for sector 0, is a hit and the sector is moved to the top position of
stack S (table 5.4d). Successive request for sector 3, is a miss and the sector
becomes the HIR resident sector (table 5.4e). The request for sector 0 is a
hit again and the sector is moved to the top position of the stack (table 5.4f);
the successive request for sector 4 is a miss and the sector become the new
HIR sector (table 5.4g). The next request is more interesting from the point
of view of the algorithm (table 5.4h), because sector 2 is a non resident HIR
sector (sector 2(h) in stack S). Accessing a HIR sector (that is present in the
stack) means that its recency is lower than the recency of the LIR sector that
resides at the bottom of the stack. The algorithm then switches the status
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of the two sectors and move the former LIR sector (now HIR sector) to the
tail position of list Q. Then it moves the new LIR sector to the top of the
stack and perform a stack pruning in order to ensure that the bottom sector
of stack S is a LIR sector. Request for sector 3 is a miss, it becomes the new
HIR sector and is placed on top of stack S and in the head position of list
Q (table 5.4j). The next three requests are all hits to a LIR sector (tables
5.4k, 5.4l and 5.4m); in all three cases the requested sector is moved to the
top of stack S with its status unchanged and stack pruning is performed if
needed. Request for sector 1 is a miss and the sector becomes the new HIR
sector (table 5.4n). The next request is a hit and sector 2 is moved to the
top of stack S (table 5.4o). Successive request (sector 0) is a hit, but this
time the sector is the bottom sector of stack S; in this case the algorithm
moves the sector on top of stack S and performs a stack pruning, deleting
from the stack sectors 1 and 3 (table 5.4p). Finally in the last request the
sector has the HIR status (thus we have a hit) but the sector is not present
in stack S. For this reason the algorithm does not have any notion of the
recency associated to the sector (the sector is treated as if it were accessed
for the first time) and no status change is performed (table 5.4q).

ARC

ARC algorithm is an attempt to dynamically adapt the caching policy to the
evolving and continuously changing access patterns of the workload. This
algorithm uses a learning rule to dynamically balance between recency and
frequency patterns in an on line and self-tuning fashion and it tries to avoid
the use of user-defined parameters (used for example in 2Q). ARC maintains
two lists (managed as lru lists): one that stores sectors accessed only once
recently, while the other list stores sectors that have been requested at least
twice recently. In practice one list tries to capture recency, while the other
tries to capture frequency. The size of the two lists together can reference
exactly twice the number of sectors that the cache can store and, at any time,
ARC chooses a variable number of sectors taken from the most recently used
portion of the two list. The amount of sectors that ARC chooses from each
list is a parameter that is adaptively inferred from the recent history of
accesses.

In Figure 5.3 we can see the details of the ARC algorithm. ARC maintains
4 lru lists: T1, B1, T2 and B2. The real cache is formed by the sectors
contained in lists T1 and T2. The algorithm dynamically decides, based on
the observed requests it receives, which item replace and in which list. On
a cache miss, ARC dynamically decides whether to replace lru sector in T1
or lru sector in T2, depending on the value of the parameter p. The general
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Figure 5.3: ARC algorithm

idea of the algorithm is that if the p tends to 0 the algorithm tends to favor
T2 over T1; if, conversely, p tends to the maximum size of the cache, ARC
tends to favor T1 over T2. The lists B1 and B2 maintain a reference to the
sectors (the referenced sectors are not in cache) evicted from respectively T1
and T2, and are used in the adaptation process.

The policy continuously adapt the parameter p on each request. Intu-
itively, if there is a hit in B1 the size of T1 should be increased; conversely
if there is a hit in B2 the size of T2 should be increased. Hence, on a hit
in B1 the parameter p (that represent the target size of the list) is increased
and, on a hit on B2 is decreased (if c is the total size of the cache p − c is
the target size of list T2). The amount of increment (or decrement) of p is
the learning rate of the algorithm and depends on the size of lists B1 and
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B2. On a hit on B1 the increment is proportional to the relation between
the size of B1 and B2. The smaller B1 the larger the increment (up to the
capacity of the cache). Conversely, on a hit on B2, the smaller B2 the larger
is the decrement (p lower bound is 0). If the size of the two lists could not
be compared (either of the two the is 0) the increment is set to 1 by default.

In Table 5.5 we can see the working example of ARC; each column repre-
sents a step of the algorithm corresponding to a sector request (visible atop of
each column) and each row represents a particular status of the correspond-
ing ARC list (Table 5.5a). Each ARC list is a comma separated sequence of
sectors, with the head of the list (mru position) represented by the leftmost
number, while the tail of the list (lru position) is the rightmost number. In
this example we suppose a cache of size three as in the previous examples. In
Table 5.5b the first three steps of the algorithm are depicted; when a sector
is referenced is placed at the head of list T1. The parameter p that is the
desired T1 list size, is set to 0 at the beginning. When the cache is full and a
new request arrives (table 5.5c), the lru sector of list T1 is evicted and sector
2 is placed at the mru position of list T1. The next reference (table 5.5d) is a
hit and sector 0 is moved to the mru position of T2. The successive request
(sector 3) is a miss (table 5.5e), sector 3 is placed in the mru position of list
T1 and, since the list’s size exceed the parameter p, ARC evicts the lru sector
of T1 (and place a reference at the head position of list B2). Request for
sector 3 is a hit (table 5.5f) and the sector is moved to the mru position of
list T2. Successive request (table 5.5g) is a miss and sector 4 is placed in the
mru position of list T1 with sector 2 evicted from the cache and referenced in
the head position of B1. Since the size of lists T1 +B1 contains a number of
sectors that equals the total size of the cache, the sector referenced in the lru
position of B1 is removed. The next request (table 5.5h) is a miss, because
sector 2 is neither in list T1 nor in list T2, but it is referenced in list B1. ARC
places this sector to the head position of T2 and increases the target size p
of list T1 by one (p = 1), then it removes the lru sector of list T1 because it
exceed the target size p. The steps performed for the successive request are
the same (table 5.5j), but this time the size of list T1 is less than p (p = 2)
and the sector is evicted from list T2; the former lru sector of T2 (that was
sector 0) is placed (as a reference) in the mru position of list B2. The request
depicted in table 5.5k, shows a hit to list B2 (but a miss for the cache). In
this case the parameter p is decreased by one (p = 1), the requested sector
is placed in the mru position of list T2 and the lru sector of T1 is evicted (a
reference to the evicted sector is placed in the mru position of list B1). The
two successive requests (tables 5.5l and 5.5m) are two hits that simply move
the requested sectors to the mru position of list T2. Request for sector 4
(table 5.5n) that is referenced in list B1 has the effect to increase the target
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Cache references:

T1
B1
T2
B2

(a)

7 0 1

7 0,7 1,0,7

(b)

2

2,1,0

(c)

0
(∗)
2,1

0

(d)

3

3,2
1
0

(e)

0
(∗)
3,2
1
0

(f)

4

4,3
2
0

(g)

2

4
3

2,0

(h)

T1
B1
T2
B2

(i)

3

4

3,2
0

(j)

0

4
0,3,2

(k)

3
(∗)

4
3,0,2

(l)

2
(∗)

4
2,3,0

(m)

1

1

2,3
0

(n)

2
(∗)
1

2,3
0

(o)

0

1
0,2,3

(p)

1

1

0,2
3

(q)

Table 5.5: ARC example

size p by one (p = 2) and place the sector in the mru position of T1. This
time the candidate for eviction is the lru sector of list T2. Request for sector
2 (table 5.5o) is a hit to the list T2. Sector 0 in the successive request (table
5.5o) is referenced in list T2 and parameter p is decreased by one (p = 1);
sector 0 is placed in the mru position of list T2. Finally the last request is
for sector 1 that is referenced in list B1. In this case the sector chosen for
eviction is the one in lru position of T2 and the requested sector is placed in
the mru position of T1.

CAR

The problem of lru list management (like for example the lists of ARC) is
that on a hit the cache page must be moved to the mru position of the list.
In a typical multithreaded environment, the cache is protected by a lock to
ensure consistency and correctness, that cause a great amount of contention.
Moreover, with large caches, the overhead of continually moving the accessed
sector to the mru position of the list, on every hit, is not acceptable. CAR
is inspired by ARC and it tries to avoid the problem of a typical lru list
based implementation described above, while maintaining the performance
and adaptation mechanisms provided by ARC. It is based on the CLOCK
algorithm that is an approximation of LRU that eliminates lock contention.
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In Figure 5.4 we can see the detailed algorithm for CAR. In the next
paragraphs we will give an overview of CAR and we will describe the steps
of the algorithm when dealing with the sample list of requests (Table 5.1).
The algorithm design is similar to that of ARC. There are still the lists T1,
B1, T2 and B2 with the same meaning of the ARC policy. The difference with
the aforementioned algorithm is that it maintains a strict lru ordering in lists
T1 and T2, while CAR uses a one-bit approximation to LRU. As in ARC
the CAR policy continuously uses the extra information history contained
in lists B1 and B2 to adapt the size of T1 and consequently T2 (using the
parameter p). The list T1 may contain sectors that have the reference bit
set either to 1 or 0. The sectors inside list T1 with the reference bit set to 1
could be ideally grouped in a list, called T1

′
for reference. The sectors with

reference bit are thus ideally grouped in list T1 T1
′
. The cache replacement

policy remove a sector from T1 if T1 \ T1
′

is greater than p otherwise it
removes a sector from T1

′ ∪T2. The adaptation rule is basically the same as
ARC, while the cache replacement rule evict only the sectors with reference
bit set to 0.

In Table 5.6 we can see the CAR algorithm applied to the working exam-
ple (with a cache of size 3). In this example each row of each table represents
a list of the algorithm (table 5.6a). Each list is referenced from left to right,
meaning that the leftmost number in each cell represents the head of the list,
while the tail of the list is the rightmost number. The number in parenthesis
near each sector is the sector reference bit and the parameter p is initialized
to 0 (the symbol (∗) indicates a cache hit). The first three steps of the al-
gorithm are depicted in table 5.6b. At the beginning all lists are empty and
a cache miss implies storing the requested sector in head position of list T1.
After filling the cache, the request for the next sector (table 5.6c) requires
a replacement by looking at the reference bit of the head sector of list T1
(because T1 size is greater than the parameter p). The evicted sector is not
placed in B1 because the size of T1 plus T2 equals the maximum cache size.
The next request is a hit, because sector 0 is already in T1, and consequently
its reference bit is set to 1 (table 5.6d). The request for next sector (sector
3 in table 5.6e) is a miss, but this time the evicted sector is not placed in a
history list, since its reference bit is one it is placed in list T2 (with refer-
ence bit set to 0). The successive sector in list T1 (sector 1) is demoted to
the head of list B1 and the requested sector is placed in list T1. Successive
request is a hit, sector 0 is in T2, and the algorithm set the reference bit for
that sector to 1 (table 5.6g). Sector 4, requested next, is not in cache and
thus is placed in list T1 with the consequence that sector 1 is removed from
B1 and sector 2 is demoted from T1 and placed in B1 (table 5.6h). The next
sector requested is sector 2 that is present in history list B1, this information
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Cache references:

T1
B1
T2
B2

(a)

7 0 1

7(0) 7(0),0(0) 7(0),0(0),1(0)

(b)

2

0(0),1(0),2(0)

(c)

0
(∗)

0(1),1(0),2(0)

(d)

3

2(0),3(0)
1(0)
0(0)

(e)

T1
B1
T2
B2

(f)

0
(∗)

2(0),3(0)
1(0)
0(1)

(g)

4

3(0),4(0)
2(0)
0(1)

(h)

2

4(0)
3(0)

0(1),2(0)

(i)

3

4(0)
0(1),2(0),3(0)

(j)

0
(∗)

4(0)
0(1),2(0),3(0)

(k)

T1
B1
T2
B2

(l)

3
(∗)

4(0)
0(1),2(0),3(1)

(m)

2
(∗)

4(0)
0(1),2(1),3(1)

(n)

1

1(0)
4(0)

2(1),3(1)
0(0)

(o)

2
(∗)
1(0)
4(0)

2(1),3(1)
0(0)

(p)

0

1(0)
4(0)

3(1),0(0)
2(0)

(q)

1
(∗)
1(1)
4(0)

3(1),0(0)
2(0)

(r)

Table 5.6: CAR example
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is used to increase the target size parameter p (p = 1) and successively move
the sector to list T2 (table 5.6i). The successive request triggers the same
action leaving list T1 empty (table 5.6j). The next request (for sector 0) is
a hit and leaves the cache unchanged, because the sector reference bit is al-
ready equal to 1 (table 5.6k). The next two requests are two more hits, sector
3 and 2 are in list T2 and their respective reference bit is set to 1 (tables
5.6m and 5.6n). Successively, the miss for sector 1 has the effect to demote
the head sector of list T2 to list B2; the requested sector is then placed in
list T1 (table 5.6o). Request for sector 2 leaves the cache unchanged (table
5.6p). The next request, for sector 0, is a miss for the cache but a hit for the
reference list B2 with the effect that the requested sector is swapped with the
head sector of list T2 (table 5.6q); in this case the parameter p is decreased.
Finally, sector 1 is already in the cache and its reference bit is set to 1 (table
5.6r).

5.1.3 Implicit Cache prefetching algorithms

Demand caching is the traditional assumption used for studying caching al-
gorithms, where a sector is brought into cache only on a miss. Prefetching,
on the other hand, speculates on which sectors will be accessed in the near
future and selectively preload sectors in the cache before they are requested.

Several algorithms are known in the literature to exploit prefetching. The
choice of which object prefetch is based on the prediction of likely future
references, given an history of past accesses. The algorithms differ in the
accuracy of the prediction mechanisms. A possible approach to increase
accuracy is mining past history, but, whereas it is deeply studied subject, it
has been rarely used in commercial systems, due to the complexity of the
algorithms (that introduce a computational overhead) and for the necessity
of long historic data to make the prediction sufficiently accurate.

For these reasons the most widely adopted algorithm exploits sequential-
ity of access, that is the request of a sector will be likely followed by request
for subsequent sectors. The algorithms exploit sequential pattern of accesses
first by detecting it and then by retrieving adjacent sectors from the main
memory and put them into cache.

The simplest algorithm for sequential prefetching is synchronous prefetch-
ing. This algorithm merely load p extra sector in cache on a sector s request
miss, thus loading into the cache the sectors s through s+p. The sector miss
is interpreted as a sequential miss, that is, we are in presence of a sequen-
tial pattern but we have not already loaded all the sectors of that sequence
in the cache. Although really simple this mechanisms is widely used in the
context of prefetching because it has a low overhead and it is simple to be
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implemented.
In order to increase the number of hits a more useful approach is to

load sectors into cache, even without the detection of a sequential pattern.
Typically when a special object (called trigger) is requested. The trigger tells
the algorithm to prefetch successive objects even if a sequential miss is not
occurred.

The prefetching mechanisms used in ENIGMA are: synchronous, syn-
chronous plus asynchronous and SARC [38]. In the next sections we will
review these algorithms.

Synchronous

As already anticipated in the previous paragraph, the simplest method of
prefetching is synchronous prefetching. On every request for a sector s that
represent a miss (i.e. sector s is not in the cache), a prefetch request is
made for p successive sectors (beyond s); that is the proxy issues an increase
redundancy requests for the sectors s through s + p that are not already in
the cache (and thus have a “normal” level of redundancy). Conversely if
a sector exceed the cache boundaries, it is evicted from the cache and its
redundancy is decreased to the standard level. The list of sectors that form
the cache is managed as a LRU list.

Synchronous plus asynchronous

As previously noted, other prefetching mechanisms tries to adapt to different
sequential patterns. This strategy, as the name suggests, tries to combine
synchronous and asynchronous mechanisms. In the first instance the algo-
rithm detects a sequential pattern by associating to each cached sector an
identifier, namely “sequential count”. On a read miss, if sector s − 1 is
in cache and its sequential count exceed the threshold, a sequential miss is
detected and the proxy sends an increase redundancy command to the suc-
cessive p sectors (and a reference to those sectors is stored in the cache).
Along this request a sector is marked as trigger, that if accessed will produce
subsequent asynchronous prefetch requests. The trigger is the last sector in
the prefetch request minus a prefixed parameter g.

SARC

As described in [38], SARC tries to capture both temporal and spatial locality
in a single prefetching mechanisms. SARC partitions the cache space between
random data (for temporal locality) and sequential data (for spatial locality).
The algorithm starts with a given cache partitioning and dynamically tweaks
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it to find the optimum. In practice a desired cache size is calculated for both
the sequential data and random data, using the marginal utility of allocating
more space to the sequential or random prefetched data. At any given step
if the marginal utility of sequential list is higher than that of random list,
the desired size is increased, otherwise is decreased.

SARC is inspired by ARC and maintains two lists, namely RANDOM and
SEQ. The policy dynamically adapts the amount of space given to sequential
data (SEQ list) and random data (RANDOM list). The goal of the algorithm
is to avoid cache pollution, that is when requested sectors are evicted from
the cache in favor of prefetched sectors(speculatively chosen and possibly less
precious). As in ARC the desired SEQ list size is given by the parameter
p. The sectors are evicted from the lru end of list SEQ if its size is greater
than p, otherwise the sector are evicted from the lru end of list RANDOM.
The adaptation of the parameter p is performed by calculating the marginal
utility of allocating more space to list SEQ and list RANDOM, that is how the
misses experienced by a list change as the list size change. If at a certain time
the marginal utility of SEQ is higher than that of RANDOM, the parameter
p is increased, otherwise is decreased. In Figure 5.5 we can see the detailed
SARC algorithm.

In the next section we will describe the results obtained by ENIGMA
using the architecture and caching algorithms discussed in the previous sec-
tions.
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Figure 5.4: CAR algorithm
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Figure 5.5: SARC algorithm
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5.2 Caching policies evaluation

In this section we provide an evaluation of the caching algorithms described
previously. In the next section we review the methodology used and we
comment the results.

We evaluated the caching architecture of ENIGMA with regard to the
latency of sectors retrieval. The goal of applying caching algorithms to
ENIGMA is to reduce average access time (latency). The key features of
our simulation software are described in section 4.3.1. In this section and the
next we will describe simulation settings and we will evaluate results. Then,
we will choose the best policy for EC and IC based on these results. We will
also evaluate how performance are related to caches dimension and to the
amount of increase in sector redundancy level. The evaluation is performed
feeding the simulator with real workload traces, as described in section 4.3.1.

In the next section we will describe the scenario and settings in detail,
then we will comment the simulation results.

5.2.1 Scenario

The two caches are evaluated with a suitable combination of these algorithms.
Each policy determines the choice for the sector to be replaced (if the cache
is full). If a particular policy is applied to EC the sector is evicted from
the cache. Conversely if a policy is applied to IC, the redundancy of the
sector evicted is decreased up to a standard level. Conversely, a sector in
EC has faster access time, whereas a sector in IC has an increased level of
redundancy (that reduces access time).

ENIGMA borrows some similarities from existing storage systems where
the algorithms described previously are applied, but it has also some pecu-
liarities on its own. As pointed out in [72] (whereas in a different context),
in a multilevel cache environment, if the temporal locality (i.e. the working
set of most accessed sector) is completely exploited by the first level cache,
accesses to the second level cache are actually misses from the first level (i.e.
the pattern of access to the second level cache does not follow the temporal
locality principle). For this reason the algorithms for EC and IC should differ
in order to prevent poor IC utilization.

In a standard disk the latency for retrieving a sector is dominated by the
time needed by the head to seek the correct cylinder. Since this operation
is slow, the disk controller tries to gain advantage by reading all the trace
rather than a single sector. Given the absence of mechanical components in
ENIGMA (whose positioning would take time), such strategies are not feasi-
ble. In practice in order to take advantage of prefetching and exploit spatial
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locality, we have to apply other strategies. A possible criterion is to use IC as
a prefetching cache, in order to exploit spatial locality of requests. The EC
cache, on the other hand, has the task of capturing temporal locality. In the
next section we will outline the settings used to perform the simulations; in
section 5.2.3 we will evaluate the EC algorithms when no IC cache is present,
then in section 5.2.4 we will evaluate IC prefetching algorithms when no EC
cache is present. Finally in section 5.2.5 we will evaluate the cache when
used together.

5.2.2 Simulation settings

We choose a sector size of 4KB which is a standard size of modern large
capacity disk drives. Following table 4.1, we choose a fixed value of k and
n, that is k = 128 and n = 256. Fragments are placed uniformly at random
over the storage nodes of the infrastructure.

We experimented several EC cache dimension ranging from 64MByte to
1GByte, because modern large size hard disk drive have typically 64MByte
cache value and because the proxy has to store caches of several users. The
IC cache instead has less space constraints because it relies on the storage
capacity of the infrastructure. Thus we used larger values for the IC cache:
1GByte and 2GByte.

The redundancy level determines how fast a sector is retrieved. As al-
ready mentioned, placing a sector in the IC cache means that its redundancy
is increased; in the experiments we pick several values for the amount of
redundancy applied each time, in order to study how redundancy affects
performance. The values are a percentage of the k fragments needed to re-
construct the sector and are added to the total amount of fragments n. The
percentage selected are 10%, 20%, 50%, 100% and 150%.

5.2.3 EC cache policy evaluation

In this section we describe the results obtained by using the caching algo-
rithms applied to EC cache against the workload discussed in 4.3.1, varying
cache size and without using the IC cache. In figures 5.6, 5.8, 5.10, 5.12
we can see, on the x-axes, the cache size in MByte whereas, on the y-axes,
the reduction in percentage of the average latency for retrieving a sector. In
Figures 5.7, 5.9, 5.11, 5.13 we evaluate the cache hits in percentage over the
total number of requests.
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CFS workload (4.3.1)

In figures 5.6 and 5.7 we can see the performance of the various caching algo-
rithms, when the simulation is driven by the CFS workload. CFS workload
processes several small size requests (few sectors at the time) with short in-
ter arrival time. It is the workload with the higher number of unique file
accesses, which means that, most of the request for a given sector are made
only once. Moreover the number of the most requested files is very high,
which means that the temporal locality is divided between a large number
of files.

Proportionately, the maximum increment of performance is obtained with
a small value of cache size; 64MByte succeed in reducing the average latency
of the 20%. This improvement is proportional to the number of cache hits.
Increasing the cache size further does not produce an increment as we could
expect. The relationship between the cache size and the number of hits is
non-linear; doubling the cache size does not halve the percentage of cache
hits respect to the previous value. Moreover, for cache size values above
512MByte the increment of performance is not large.

As we can see from Figure 5.6, the performance of all the caching al-
gorithms are quite similar. The only algorithm whose performance is not
satisfactory is LRU, because it is too simple and its replacing policy dos not
cope with the complexity of this workload.

The reasons for these results is due to the particular behavior of the
workload. Most of the time the workload requests different files (with few
sector requests per file) and all the requests arrive within small time interval.
The result of this behavior is that the cache is accessed frequently, with an
high degree of concurrency between the requests, which makes the sectors
stay in cache for shorter time. The higher number of requests, most of which
are unique, and the high I/O rate increases the probability that popular
sectors are evicted from the cache shortly after they are pushed into (to
make space to new requested sectors) and before they are accessed again.

Given the unsteadiness of the workload, the algorithms that seek to adapt
to the workload (namely ARC and CAR) performs similar to those algorithm
with fixed parameters (namely 2Q and LIRS). In this case the adaptation fails
to improve performance because it is impossible to adapt to the continuous
variation of the workload.
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Figure 5.6: CFS workload with several EC cache size and algorithms. Aver-
age Latency 95% confidence interval and 2.5% relative error.

Figure 5.7: CFS workload with several EC cache size and algorithms. Cache
hits (%)
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DAP-DS workload (4.3.1)

In figures 5.8 and 5.9 we can see the performance of the various caching
algorithms when the simulation is driven by the DAP-DS workload. DAP-
DS workload has a low I/O rate, most of the requests arrive within one second
time interval and are directed to a single file (i.e. the sectors requested are
always the same). the requests have a medium-size sequentiality (that is, each
requests is made for a series of contiguous sectors, in this case 8 contiguous
sectors on average).

As we can see in Figure 5.8 and 5.9, unlike the previous workload, the
relationship between cache size and performance benefits is linear, meaning
that increasing the size of the cache results in a proportional increase of
cache hits (and consequently latency reduction). This could be explained
by the fact that I/O request rate is low and thus the sectors remain for a
longer period in the cache. This is helpful because this workload requests
more frequently the same file and hence its sectors have the chance of remain
in cache and be accessed again for each request. The file is probably large
and it is partially stored in the cache. The more the cache size increase, the
more the sectors of the file are stored. In particular, increasing the size of
the cache proportionally increases the number of sectors contemporaneously
stored and allows the algorithm to choose the worst sector for eviction.

With this workload the algorithm with higher adaptation characteris-
tics, namely ARC, performs better. The adaptation allows the algorithm to
maintain in cache the set of sectors that will be requested again with higher
probability; this set is continuously adapted to the changing characteristics
of the workload. The other algorithms, however, are really close to the best
one, except for LRU that performs badly for every cache size (it fails to
maintain the most accessed sectors in cache).
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Figure 5.8: DAP-DS workload with several EC cache size and algorithms.
Average Latency 95% confidence interval and 2.5% relative error.

Figure 5.9: DAP-DS workload with several EC cache size and algorithms.
Cache hits (%)
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WBS workload (4.3.1)

In figures 5.10 and 5.11 we can see the performance of the various caching
algorithms when the simulation is fed by the WBS workload. The average
size of the requests equals the size of the sector, that is, most of the requests
are of 4KByte size. Moreover, 13% of the requests are purely sequential,
meaning that several contiguous sectors are requested at the same time. The
number of files requested is very high and corresponds to a poor correlation
between successive requests (a small number sectors is requested two or more
times)

As we can see in Figure 5.11 a small cache size can hold the most accessed
sectors, indeed with a cache of size 64MByte we have an number of hits that
is around 15% of the requests, whereas successive increments of the cache size
increase the number of hits of only 2%. This behavior, however, does not
provide a significant performance improvement, because the most frequently
requested sectors are far less than the total amount of sectors requested. Most
of the requests are sequential or are directed to a wide number of sectors,
requested only once.

As we can see in Figure 5.10, there are no significant differences between
the algorithms. In particular LRU performs as well as the other algorithms
and even better in some cases.

Figure 5.10: WBS workload with several EC cache size and algorithms. Av-
erage Latency 95% confidence interval and 2.5% relative error.
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Figure 5.11: WBS workload with several EC cache size and algorithms.
Cache hits (%)
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RAD-BE workload (4.3.1)

In figures 5.12 and 5.13 we can see the performance of the various caching
algorithms when the simulation is driven by the RAD-BE workload. This
workload represents the best testbed for ARC, because it has strong temporal
locality and high I/O rate. The 80% of requests are directed to two files and
consequently a subset of the total number of sectors (that corresponds to the
sectors that form the file) are requested most of the times.

As we can see in Figure 5.13 the graph is quite similar to that of the pre-
vious workload (5.11), but in this case the number of hits is two times higher
on average, leading to a decrement of latency of almost half the value com-
pared to the experiments where no cache is present. This could be explained
by noting that the higher degree of temporal locality is exploited even for
smaller cache size (64MByte cache suffice to hold the most requested sec-
tors), and this workload does not have sequential requests that could pollute
the cache with useless sectors.

As we can see in 5.12 ARC outperforms the other algorithms for every
cache size. This is due to its higher adaptation characteristics that performs
particularly well with this workload.

Figure 5.12: RAD-BE workload with several EC cache size and algorithms.
Average Latency 95% confidence interval and 2.5% relative error.
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Figure 5.13: RAD-BE workload with several EC cache size and algorithms.
Cache hits (%)
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5.2.4 IC cache policy evaluation

In this section we provide an evaluation of the IC cache alone, in order to
establish the best amount of redundancy to give to each sector present in the
cache at a particular moment. We also evaluate the IC cache algorithms and
the size of the IC cache. The workloads are the same of the previous set of
experiments. We compare each choice with regard to the average latency of
retrieving a sector.

As we can see from figures 5.14, 5.15, 5.16 and 5.17 the performance
improvement due to IC prefetching algorithms is less variable than for the
EC caching algorithms.

Given this results we can conclude that the IC size does not improve
performance, meaning that there is no significant difference between the per-
formance of ENIGMA with a cache of 1GByte size and a cache of 2GByte
size. Moreover the choice of the prefetching algorithm is not decisive, there is
no significant difference between the algorithms in most of the cases. These
results could be explained by noting that the sequential requests of each
workload are not frequent and the cache is probably polluted most of the
time with useless sectors. The constant factor in the reduction of the aver-
age latency, that is similar for every workload (20% of reduction of latency),
may suggest that, although sequentiality is not completely exploited, some
of the sectors in IC cache are still randomly requested.

The redundancy increment is effective only for values between 60% and
100%. For smaller values, the average latency does not decrease significantly.
In this case if we add new fragments to the total number of fragments that
compose the sector, it is unlikely that they will contribute significantly to
decreasing the latency if their number is far less than the total number of
fragments. In particular, if we add few fragments to a sector that is composed
of hundred of fragments, the new ones contribution will be hidden by other
fragments (that are far more).

For values over 100% the average latency does not change (for differ-
ent number of fragments this threshold would be different). This could be
probably explained by noting that, when the number of fragments become
comparable to the number of nodes of the infrastructure, the probability of
storing new fragments on faster nodes decrease (most of the nodes have been
already used for storing a fragment). In practice, when the number of frag-
ments exceeds a certain threshold, it is as if we have already made the most
of all network resources.
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Figure 5.14: CFS workload varying IC cache size and redundancy. Average
latency 95% confidence interval and 2.5% relative error.

Figure 5.15: DAP-DS workload varying IC cache size and redundancy. Av-
erage latency 95% confidence interval and 2.5% relative error.
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Figure 5.16: WBS workload varying IC cache size and redundancy. Average
latency 95% confidence interval and 2.5% relative error.

Figure 5.17: RAD-BE workload varying IC cache size and redundancy. Av-
erage latency 95% confidence interval and 2.5% relative error.
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5.2.5 Combination of EC and IC algorithms

In this section we compare the combination of EC and IC algorithms to find
one that could suites ENIGMA needs. We choose to compare the caching
algorithms ARC and 2Q that are representative of two classes of algorithms,
respectively, algorithms with an higher degree of adaptability and algorithms
with tunable parameters. We combined each algorithm with two prefetching
algorithms for IC cache described previously, namely seq and SARC, that
represents respectively a simple (but widely used) algorithm and an adaptive
algorithm. We choose to use an EC cache of size 256MByte and an IC cache
of size 1GByte with an increasing amount of redundancy. In figures 5.18,
5.19. 5.21 and 5.20 we can see the average sector retrieval time in millisecond.
The constant functions represented by the lines titled “2Q no IC cache” and
“ARC no IC cache” are the latency of retrieval with IC cache disabled (only
EC cache is present). The top line, named “no cache” is the average latency
when either cache are off line. As we can see in the pictures the combination
of both caches (EC cache and IC cache) can lead to significant performance
improvement.

In Figure 5.18 we can see that the contribution of EC cache in decreasing
the latency is greater than the contribution of IC cache. This could be
explained by noting that the CFS workload has poor locality and most of
that locality is exploited by EC cache. The EC algorithm does not alter
significantly the result, meaning that, as noted previously, with this kind of
workload all algorithms have the same performance.

In Figure 5.19, conversely, the contribution of IC cache is greater, because
the DAP-DS workload has a sequential components in the stream of requests.
As we can see, the IC cache contribution to the reduction of latency is similar
with respect to the EC contribution. With this particular workload, the more
sophisticate algorithm, namely ARC and SARC, performs better, because of
their ability to adapt to the varying workload characteristics.

As we can see in Figure 5.20, also in this case IC cache contribution to
performance improvement is comparable to that of EC cache. Most of the
WBS requests are sequential and the remaining requests are unique accesses,
meaning that the corresponding fragments are requested only once. Given
this dual nature of the workload the SARC algorithm performs better com-
pared to the simple prefetching scheme, due to its ability to cope with both
sequentially accessed data and randomly accessed data.

In Figure 5.21 the algorithms are tested using the RAD-BE workload.
This workload has a strong temporal locality, meaning that most of the time
the same few files are requested. For this reason the EC cache provides most
of the benefits to performance improvement.
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Figure 5.18: CFS workload with EC and IC. Average Latency 95% confidence
interval and 2.5% relative error.

In this chapter we provided a review of caching algorithms used in ENIGMA
and we studied, by means of simulation techniques, how these algorithm per-
forms in ENIGMA. As we can see from the previous discussions, using caching
algorithms brings considerable benefits. Unfortunately, the algorithms that
work well in traditional systems, do not show significant differences when
applied to ENIGMA. In the next chapter we will make concluding remarks
and we will give some hints for possible future works.
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Figure 5.19: DAP-DS workload with EC and IC. Average Latency 95% con-
fidence interval and 2.5% relative error.

Figure 5.20: WBS workload with EC and IC. Average Latency 95% confi-
dence interval and 2.5% relative error.
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Figure 5.21: RAD-BE workload with EC and IC. Average Latency 95%
confidence interval and 2.5% relative error.
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Chapter 6

Conclusions and future work

In this thesis we proposed ENIGMA, a distributed infrastructure that pro-
vides virtual disks that can be used either directly by the VMs hosted on a
Cloud infrastructure, or as the back-end for VBD systems.

ENIGMA exploits erasure coding techniques to encode each sector of a
virtual disk as a set of fragments independently stored on a set of physical
storage nodes to achieve tunable large storage capacity, high availability,
strong confidentiality, and high data access performance. In particular, we
used LT erasure codes, with the addition of a second level of coding in order
to preserve confidentiality when increasing and decreasing the redundancy
level of given sectors of a virtual disk.

The architecture of ENIGMA is based on proxy nodes that coordinate
the usage of storage nodes providing access to their local storage to store
encoded sector fragments. Storage nodes are organized in clusters and each
cluster is coordinated by a cluster-head. The set of cluster-heads forms a
logical peer-to-peer network with arbitrary topology.

The caching architecture of ENIGMA is organized in two levels; at first
level, a traditional cache is located in the proxy and stores recently used
sectors, that will be likely reused in the near future. The second level of
caching uses the ability of erasure coding techniques to increase the redun-
dancy level of selected sectors in order to decrease sectors retrieval time
(conversely the proxy can decrease the redundancy level of sectors that are
no longer requested). This special cache is located in the infrastructure and
it is composed with all the sectors with increased redundancy; the proxy
stores only a reference to those sectors, not the sectors themselves. The sec-
ond level of caching is used for prefetching purposes, that is, to increase in
advance the redundancy level of sectors that will be likely requested in the
future. Caching and prefetching techniques are used to decrease average disk
access time performance.

105
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ENIGMA is resilient to attacks by a single malicious storage node, at-
tempting to decode fragments of disk sectors as well as by a more sophisti-
cated attacker that has gained sufficient knowledge of the distributed storage
system to retrieve a set of K coded fragments of a particular sector. Further-
more, it is possible to derive design criteria to obtain a desired availability
level, based on analytical models developed specifically for ENIGMA.

ENIGMA obtains high data access performance by letting the proxy man-
age overlapped operations, by simultaneously fetching many fragments of the
same sector, and by dynamically increasing or decreasing sectors redundancy
(this last feature provides also the basic mechanism that can be used to keep
virtual disk performance at a given level in face of migration of the VM
accessing it).

The metrics used for evaluating ENIGMA virtual disks performance are
average sector retrieval time and overall throughput and are obtained with
a ad-hoc simulator of the ENIGMA system.

ENIGMA disk throughput is evaluated using several values of proxy band-
width. The results shows that the infrastructure can provide an aggregate
throughput that is adequate to exploit the full proxy channel (for reasonable
values of proxy bandwidth). Sector retrieval latency is analyzed using dif-
ferent caching and prefetching algorithms. ENIGMA caching infrastructure
provides a general reduction in the average sectors access time; increasing re-
dundancy produces benefits, in term of access time reduction, that grows up
rapidly for initial increments, then, when the number of fragments becomes
comparable to the total number of resources, increasing the redundancy level
further on, does not bring adequate advantages.

Simulation was used also to test ENIGMA tolerance to failures. In the
simulations performed, the storage nodes have a non-zero probability of fail-
ure and, when an appropriate redundancy level is chosen, ENIGMA can
tolerate failures with little performance degradation.

ENIGMA characteristics are different compared to other storage solu-
tions.

Commercial storage solutions, like for example Dropbox, provide a simple
and transparent way to integrate a cloud storage with the client file system.
Unlike ENIGMA it offers a file system like interface to access data. In this
case a software has to be developed for each operating system in order to
interact with the Dropbox. ENIGMA, on the contrary, provides access at
a low level and it relies on standard software like, for example, iSCSI). The
storage capacity provided by Dropbox is flexible, ranging from few GByte
up to 100GByte; ENIGMA storage capacity is flexible as well, but with
the limit given by the aggregate storage capacity of the infrastructure (that
could be potentially in the order of TeraBytes). Unlike ENIGMA, Dropbox
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is able to work offline, but we think that this is a minor difference, because
the amount of redundancy of a virtual disk can cope with network failures
as well. One of the peculiarities of the Dropbox is that it allows folder
sharing between users (users can access the same data). ENIGMA does not
directly provide this feature, however it could be used as a raw device with a
software layer atop of it, that provides concurrent access. In order to provide
confidentiality, Dropbox uses standard encryption mechanisms (e.g., ssh and
AES), that could possibly introduce computational overhead. The use of
LT codes in ENIGMA provides the basic mechanisms for confidentiality at
a low computational cost. Finally, Dropbox performance could be an issue,
because it relies on remote data centers to provide its functionality and has
no means of improve performance, as can do ENIGMA.

ENIGMA performance, respect to a traditional storage solution (e.g.,
SAN), is clearly not comparable. However there are situation in which a
distributed system like ENIGMA is preferable. For example ENIGMA com-
pared to a SAN, can increase and decrease the storage capacity without
buying new hardware. In practice storage capacity is added on demand on a
pay-per-use basis. Storage space offered by existing solution is getting larger
due to the increasing demand for it, but in the context of SAN or storage
arrays the availability is bound to the availability of a single datacenter.
ENIGMA on the contrary uses redundancy (and in particular LT codes) to
provide availability in spite of failure; moreover availability can be tuned at
runtime, to meet the demand of the user (stipulated for example with SLA).

For these reasons ENIGMA has intermediate characteristics compared to
cloud and traditional storage solutions. With regards to existing back up
solution, for example, it has better access time, because it was designed to
be used in more performance sensitive scenario. Moreover ENIGMA can
provide high availability, a key feature for back up systems. If used as a
disk, ENIGMA access time is higher than that of traditional storage, but it
is comparable with the access time of virtual disks used by virtual machines.
However, compared to virtual disks ENIGMA offers greater availability and
the ability to cope with virtual machine migration (existing virtual disk are
accessible only inside a datacenter).

6.1 Future work

In this section we will sketch future directions we would like to investigate
in order to further increase ENIGMA capabilities.

In this Thesis we performed an analysis, with simulation techniques, of
read access time performance of a cloud disk provided by ENIGMA; in order
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to evaluate the virtual disk in all its aspects, we plan to investigate the
performance in case of writing as well; in particular we would like to test if
the mechanisms adopted by ENIGMA suffice to guarantee an adequate level
of consistency and writing throughput.

The second level of coding (introduced to preserve confidentiality) does
not exploit the full potential of erasure codes and introduces a management
overhead. Using the second level of coding has the drawback of increasing
the information that the proxy must store and process, and it also introduces
a new kind of encoded fragment that does not have the strong erasure coding
properties of LT codes. This means that the more we use the second level
of coding, the more new (second level) encoded fragments are difficult to be
created (because of linear dependencies between each second level encoded
fragment). Moreover, traditional network codes for distributed storage [31],
unlike LT codes, takes into account also the repair bandwidth. When a
node fails or reliability must be increased a new fragment must be created
using original information. This operation involves reconstructing a given
sector and creating new fragments, an operation that only the proxy can do,
with the drawback of increasing computational complexity and bandwidth
usage. Regenerating codes were created to face the problem of error repair.
A key feature of these codes is that they are able to minimize the bandwidth
necessary to repair a failure. We plan to investigate the feasibility of using
LT features to solve both problems: eliminate the need of a second level of
coding and cut down repair bandwidth. To the best of our knowledge, using
LT codes for addressing the repair problem ( [13]), is still an open problem
of research in this area.

As we showed, dynamically increasing and decreasing sectors redundancy
level is a valuable mechanism to improve access time performance. We also
showed that the benefits obtained by this technique increase up to a cer-
tain limits and then further increasing redundancy does not longer reduce
access time. We plan to study other techniques to improve performance. In
particular one of the basic assumptions of ENIGMA is that each fragment
is placed uniformly at random over the infrastructure, that is, each storage
node has the same probability of storing a fragment of a given sector. We
plan to investigate how performance varies when different placement policies
are used. This problem is somewhat similar to the distributed service place-
ment problem, present in the literature (for example in [61]). Distributed
service placement algorithms aim to find a suitable placement of a service
inside a network, given a cost metric (for example CPU, available bandwidth
and available storage).

The placement of fragments over the infrastructure could cause an imbal-
ance of the load on the network, with heavily loaded nodes and, consequently,
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a degradation of performance. In practice a fragments placement that is near-
optimal at a certain time could become non-optimal in the future. We think
that could be useful to use techniques for integrating fragment placement
with mechanisms that periodically restore the balance of the network and
the load on the storage nodes. We plan to study the feasibility of apply-
ing data migration algorithms known in the literature (for example in [18]
and [33]) to ENIGMA, also from the perspective of improving performance
in face of virtual machines migration.

In articles [64], [62] and [63], the authors conducted a series of studies that
address problems similar to that of ENIGMA, whereas in the context of peer-
to-peer backup storage. In the articles the authors addresses the problem
of how data placement and bandwidth allocation affects the performance
metric, that is the time required to complete a backup. Moreover they studied
the problem of how scheduling policy adopted for uploading large data files
in presence of churn (in the peers) affects the performance metric. We think
that techniques and formal studies exposed in the aforementioned articles
could be adopted in the context of ENIGMA and we plan to investigate their
applicability in the near future.

At the moment we are working on an implementation of ENIGMA, in
order to test its behavior in a real environment and compare simulated results
with real measurement.
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